文档库 最新最全的文档下载
当前位置:文档库 › 随机疲劳裂纹扩展新模型

随机疲劳裂纹扩展新模型

随机疲劳裂纹扩展新模型
随机疲劳裂纹扩展新模型

疲劳裂纹扩展.

第五章疲劳裂纹扩展 §5.1 概述 前面介绍的内容为静载荷作用下的断裂准则。构件在交变应力作用下产生的破坏为疲劳破坏,疲劳破坏的应力远比静载应力低。 一、疲劳破坏的过程 1)裂纹成核阶段 交变应力→滑移→金属的挤出和挤入→形成微裂纹的核(一般出现于零件表面)。 2)微观裂纹扩展阶段 微裂纹沿滑移面扩展,这个面是与正应力轴成45°的剪应力作用面,是许 沿滑移带的裂纹,此阶段裂纹的扩展速率是缓慢的,一般为10-5mm每循环,裂纹尺寸<0.05mm。 3)宏观裂纹扩展阶段 裂纹扩展方向与拉应力垂直,为单一裂纹扩展,裂纹尺寸从0.05mm扩展至临a,扩展速率为10-3mm每循环。 界尺寸 c 4)断裂阶段 a时,产生失稳而很快断裂。 当裂纹扩展至临界尺寸 c 工程上一般规定:①0.1mm~0.2mm裂纹为宏观裂纹;②0.2mm~0.5mm,深 0.15mm表面裂纹为宏观裂纹。 N)宏观裂纹扩展阶段对应的循环因数——裂纹扩展寿命。( p N) 以前阶段对应的循环因数——裂纹形成寿命。( i 二、高周疲劳和低周疲劳 高周疲劳:当构件所受的应力较低,疲劳裂纹在弹性区内扩展,裂纹的疲劳寿命较长。(应力疲劳) 低周疲劳:当构件所受的局部应力已超过屈服极限,形成较大的塑性区,裂纹在塑性区中扩展,裂纹的疲劳寿命较小。(应变疲劳) 工程中一般规定N ≤105为低周疲劳。 f 三、构件的疲劳设计

1、总寿命法 测定S-N曲线(S为交变应力,N为应力循环周次)。 经典的疲劳设计方法是循环应力范围(S-N)曲线法或塑性总应变法来描述导致疲劳破坏的总寿命。 在这些方法中通过控制应力幅或应变幅来获得初始无裂纹的实验室试样产生疲劳破坏所需的应力循环数和应变循环数。 N=N i +N p (N i 萌生寿命,N p 扩展寿命) 2、损伤容限法(疲劳设计的断裂力学方法) 容许构件在使用期内出现裂纹,但必须具有足够的裂纹亚临界扩展寿命,以保证在使用期内裂纹不会失稳扩展而导致构件破坏。 疲劳寿命定义为从某一裂纹尺寸扩展至临界尺寸的裂纹循环数。

材料疲劳裂纹扩展设计研究综述

材料疲劳裂纹扩展研究综述 摘要:疲劳裂纹扩展行为是现代材料研究中重要的内容之一。论述了组织结构、环境温度、腐蚀条件以及载荷应力比、频率变化对材料疲劳裂纹扩展行为的影响。总结出疲劳裂纹扩展研究的常用方法和理论模型,并讨论了“塑性钝化模型”和“裂纹闭合效应”与实际观察结果存在的矛盾温度、载荷频率和应力比是影响材料疲劳裂纹扩展行为的主要因素。发展相关理论和方法,正确认识影响机理,科学预测疲劳裂纹扩展行为一直是人们追求的目标。指出了常用理论的不足,对新的研究方法进行了论述。 关键词: 温度; 载荷频率; 应力比; 理论; 方法; 疲劳裂纹扩展 1 前言 19世纪40年代随着断裂力学的兴起,人们对于材料疲劳寿命的研究重点逐渐由不考虑裂纹的传统疲劳转向了主要考察裂纹扩展的断裂疲劳。尽量准确地估算构件的剩余疲劳寿命是人们研究材料疲劳扩展行为的一个重要目的。然而,材料的疲劳裂纹扩展研究涉及了力学、材料、机械设计与加工工艺等诸多学科,材料、载荷条件、使用环境等诸多因素都对疲劳破坏有着显著的影响,这给研究工作带来了极大困难。正因为此,虽然对于疲劳的研究取得了大量有意义的研究成果,但仍有很多问题存在着争议,很多学者还在不断的研究和探讨,力求得到更加准确的解决疲劳裂纹扩展问题的方法和理论。 经过几十年的发展,人们已经认识到断裂力学是研究结构和构件疲劳裂纹扩展有力而现实的工具。现代断裂力学理论的成就和工程实际的迫切需要,促进了疲劳断裂研究的迅速发展。如Rice的疲劳裂纹扩展力学分析(1967年) ,Elber的裂纹闭合理论(1971年) ,Wheeler 等的超载迟滞模

型(1970年) ,Hudak等关于裂纹扩展速率标准的测试方法,Sadananda和Vasudevan ( 1998年)的两参数理论等都取得了一定成果。本文将对其研究中存在问题、常用方法和理论模型、以及温度、载荷频率和应力比对疲劳裂纹扩展影响的研究成果和新近发展起来的相关理论进行介绍。 2 疲劳裂纹扩展研究现存问题 如今,人们在分析材料裂纹扩展问题时最常用到的是“塑性钝化模型”和裂纹尖端因“反向塑性区”等原因导致的“裂纹闭合效应”理论。而它们是否正确,却一直在人们的验证和争论之中。 根据现有的研究结果,有学者提出,若按照“塑性钝化模型”理论,强度高的材料应具有较低的裂纹扩展速率,但实验结果却不能证实这一预测。另外,该“模型”认为的“裂纹尖端的钝化是在拉应力达到最大值时完成的”这一观点在理论上不妥,也与实测结果不符。观察结果表明,裂纹尖端钝化是一个渐进的过程,钝化半径与外载荷大小成正比。 而疲劳裂纹在扩展过程中的“裂纹闭合效应”在什么情况下存在,能否对材料的裂纹扩展速率产生重要影响,考虑“裂纹闭合”的实验室数据能否用于工程中等问题也一直在人们的争论之中。由于“裂纹闭合效应”理论推出的结论是:“对载荷比的依赖性不是材料的内在行为,而是源于裂纹表面提前闭合后应力强度因子幅(△K) 的变化”,所以早在1984年S.Suresh等人就指出[1],“裂纹闭合”不是一个力学参数,它受构件形状、载荷、环境和裂纹长度等因素的影响。因此,除非在实际使用过程中测量构件的裂纹闭合情况,否则在实验室里做出来的试验结果不能用来预测构件中的裂纹扩展速率。1970年,Ritchie研究钢中裂纹扩展的近门槛值时发现:在真空环境下,应力比R对门槛值几乎没有影响,首度质疑了裂纹闭合的存在性和所起的作用。在前人研究的基础上,美国海军实验室的

基于ANSYS有限元软件裂纹扩展模拟

万方数据

万方数据

56基于ANSYS有限元软件裂纹扩展模拟 【鬈I2子模型有限几删韬幽 (plane82),如图1所示。模型中裂纹长度为10mm,几何尺寸如图2所示。材料的弹性模量在2.017×105MPa上下变化,泊松比为o.3。顶端从侧端的一端起在长度为20mm的线上承受一200N/mm的压力。侧端从距裂纹处10mm开始在长度为20nlm的线上承受looN/mm的压力。这只是其中某一种状态,可以根据构件的实际受力状况,改变子模型的边界条件和受 匝墨巫巫匦圃 I得到应变能仞始值【,o ’ 图3ANsYs二次tH:发模拟流程力状况。 3ANSYS二次开发程序基本思路和模拟结果用上述的八NsYS二次开发的源程序对图1所示的子模型结构的疲劳裂纹扩展进行模拟,模拟流程见图3。由于模拟构件疲劳裂纹扩展从开始到失稳,裂纹扩展长度大,因而程序运行时间长。为此笔者只模拟了五步,模拟的结果见表1和图4。图4中的粗黑线为裂纹扩展路径。 表1疲劳裂纹扩展模拟所得的路径参数 (a)模拟一步裂纹扩展路径 (b)模拟二步裂纹扩展路径 (c)模拟三步裂纹扩展路径 万方数据

《化工装备技术》第27卷第1期2006年57 (d)模拟四步裂纹扩展路径 【e)模拟止步裂纹扩展路径剧4订限厄模拟的裂纹扩展路径 (a)一步裂纹扩展竖A疗向的应力云图(b,二步裂纹扩腱竖A方f川的臆力西矧(c)三步裂纹扩展悭直方向的应力云图 (d)四步裂纹扩展竖^力‘向的应JJ云图 (e)五步裂纹扩展竖直方向的应力云图 图5模拟裂纹扩展过程巾竖直方向的应力云图 4结束语 ANSYS软件是一个功能非常强大的有限元计算软件,其本身又是一个开放型软件,可以进行二次开发。利用最大能量释放率作为判 断方向基准,笔者对ANSYS进行二次开发,能动态地描述2D构件在复合加载状况下疲劳裂纹的扩展路径。对ANsYs软件进行二次开发来模拟疲劳裂纹的扩展迄今未见报道。本文通过对2D构件疲劳裂纹扩展路径的模拟,为下一步3D构件的模拟打下了好的基础。 参考文献 1W01fgangBrocks.Num时icaIinves“gatlonsonthesignifi~ canceofJforlargestablecrad‘growth.E“gineeri“gFrac~tureMech.1989,32:459~468 2杨庆生,杨卫.断裂过程的有限元模拟.计算力学学报, 1997,14(4):407412 3HellenT.0nthemethodofvirtualcrackextensions.Int JNumMethEngn,1975(9):187—207 4傅祥炯,周岳泉.何字廷.疲劳裂纹扩展全寿命模型.第八届全国断裂学术会议论文集,1996:155~252 5011the ene。gy releaserateandtheJ—int。gralfor3一Dcrackconfiguratiolls.IntJournofFracture.1982,l9:183~1936ClaydonPW.MaximumenergvreleaseratedistributionfromageneraIized3Dvirtualcrackextensionmethod.En~ginee““gFractureMechanics,1992,42(6):96l~9697TimbrellC.eta1.Simulationofcrackpropagationinrub~ber.ThirdEuroDeanConferenceonConstitutiveModelsforRubber.1517SeDtember2003London,UK. (收稿日期:2005一07—28) 万方数据

裂纹扩展的扩展有限元(xfem)模拟实例详解

基于ABAQUS 扩展有限元的裂纹模拟 化工过程机械622080706010 李建 1 引言 1.1 ABAQUS 断裂力学问题模拟方法 在abaqus中求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。 断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等。如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这就是基于断裂力学的方法。这种方法可以计算裂纹的应力强度因子,J积分及T-应力等。 损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。 1.2 ABAQUS 裂纹扩展数值模拟方法 考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。 debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD 等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。 cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等。cohesive模型属于损伤力学模型,最先由Barenblatt 引入,使用拉伸-张开法则(traction-separation law)来模拟原子晶格的减聚力。这样就避免了裂纹尖端的奇异性。Cohesive 模型与有限元方法结合首先被用于混凝土计算和模拟,后来也被引入金属及复合材料。Cohesive界面单元要服从cohesive 分离法则,法则范围可包括粘塑性、粘弹性、破裂、纤维断裂、动力学失效及循环载荷失效等行为。 此外,从abaqus6.9版本开始还引入了扩展有限元法(XFEM),它既可以模拟静态裂纹,计算应力强度因子和J积分等参量,也可以模拟裂纹的开裂过程。被誉为最具有前途的裂纹数值模拟方法。本文将利用abaqus6.9版本中的扩展有限元法功能模拟常见的Ⅰ型裂纹的扩展。 2 Ⅰ型裂纹的扩展有限元分析 本文针对断裂力学中的平面Ⅰ型裂纹扩展问题用abaqus中的扩展有限元方法进行数值模拟,获得了裂纹扩展的整个过程,裂尖单元的应力变化曲线,以及裂纹尖端塑性区的形状。在此基础上绘制裂纹扩展的能量历史曲线变化趋势图。

岩石裂纹扩展过程的动态监测研究

第25卷第3期岩石力学与工程学报V ol.25 No.3 2006年3月Chinese Journal of Rock Mechanics and Engineering March,2006 岩石裂纹扩展过程的动态监测研究 刘冬梅1,2,蔡美峰1,周玉斌3,陈志勇3 (1. 北京科技大学土木与环境工程学院,北京 100083;2. 浙江理工大学建筑工程学院,浙江杭州 310018; 3. 江西理工大学,江西赣州 341000) 摘要:利用实时全息干涉法、高分辨率数字摄像机与计算机图像处理系统相链接的三位一体化测量系统,连续动态观测了单轴受压砂岩、花岗岩和压剪受荷砂岩试样裂纹扩展与变形破坏过程;基于动态干涉条纹的定量分析,描述了岩石微裂纹孕育起裂、扩展与闭合的动态交替演化过程,计算了岩石裂纹扩展速度与蠕变扩展速率和裂纹面的扩展变形量与蠕变变形量,实现了岩石内部I型、I–II复合型、I–II–III复合型裂纹力学性状动态演变的有效判识。 关键词:岩石力学;岩石变形;裂纹扩展;裂纹闭合;动态监测;实时全息条纹图 中图分类号:TU 452;TD 313 文献标识码:A 文章编号:1000–6915(2006)03–0467–06 DYNAMIC MONITORING ON DEVELOPING PROCESS OF ROCK CRACKS LIU Dong-mei1,2,CAI Mei-feng1,ZHOU Yu-bin3,CHEN Zhi-yong3 (1.School of Civil and Environment Engineering,University of Science and Technology of Beijing,Beijing100083,China; 2. College of Civil Engineering and Architecture,Zhejiang Sci-Tech University,Hangzhou,Zhejiang310018,China; 3. Jiangxi University of Science and Technology,Ganzhou,Jiangxi341000,China) Abstract:An integrated measuring system of real-time holographic interferometry layout linked charge coupled device(CCD) camera and computer graph process is experimentally used to continuously test and record the dynamic process of cracks growth and closure emerged in the whole stages of rock deformation and fracture on sand and granite specimens under unaxial compression and compressive-shear loading,respectively. The active interference fringe patterns captured from the holograms can reappear the development behaviour of rock cracks. Based on the fringes′ quantitative analysis and its calculation,the initiation and propagation of rock cracks as well as its growth and closure in different loading states are directly shown. And the spreading velocity and reformative quantity of rock cracks resulted from cracks growth or closure are given. In addition,the velocity of cracks creep extension and the quantity of cracks creep deformation are obtained. The movement of active fringes in space and time expounds the distribution of rock deformation field. Consequently,the mechanical types of rock cracks can be distinguished effectively. Mode I crack perhaps keeps unchangeable or progressively transforms into mixed mode I–II or I–II–III crack under the different loading conditions,and crack modes are also varied with the evoluation and interaction of rock cracks,and the local deformation and inhomogeneous distributions of stress field become more intense in turn,which induces cracks growth and closure once again or secondary crack 收稿日期:2004–10–20;修回日期:2005–03–29 基金项目:国家自然科学基金资助项目(50164004) 作者简介:刘冬梅(1964–),女,1985年毕业于淮南矿业学院地质工程专业,现任教授、博士研究生,主要从事岩石力学与工程方面的教学与研究工

基于ABAQUS的渐开线齿轮齿根裂纹扩展仿真

基于ABAQUS的渐开线齿轮齿根裂纹扩展仿真

————————————————————————————————作者: ————————————————————————————————日期: ?

基于ABAQUS的渐开线齿轮齿根裂纹扩展仿真 齿轮传动是机械传动中最重要、应用最广泛的一种传动。齿轮传动的主要优点有:传动效率高,工作可靠,寿命长,传动比准确,结构紧凑。齿轮传动的失效一般发生在轮齿上,通常有齿面损伤和齿轮折断两种形式。齿轮折断一般发生在齿根部位,包括疲劳折断和过载折断。 为了提高齿轮的可靠性和使用寿命,有必要对齿轮根部的断裂现象进行研究。本文将从断裂力学角度出发,采用有限元的计算方法,研究齿根的断裂。 1 轮齿断裂分析 应力强度因子是描述裂纹尖端的一个参数,它与载荷大小以及几何有关,共有3种断裂模型(图1),在任何应力下的裂尖应力场为 ?图1 断裂模型 式中:r为距裂尖的距离;θ=arctan(x2/x1);KI为Ⅰ型(张开)裂纹应力强度因子;KⅡ为Ⅱ型(张开)应力强度因子。KⅢ为Ⅲ型(撕开)应力强度因子。 对于二维裂纹,假定KⅡ为0。

裂纹扩展方向根据条件аσθθ/аθ=0或者γγθ=0,得到 为了计算二维情况下的积分,ABAQUS定义了围线围绕着裂尖由单元组成的环形域(图2)。 图2 裂纹尖端环形域 计算J积分时,围线外的节点处值为0,围线内的所有节点(裂纹 扩展方向)的值为l,但外层单元的中间点除外,这些节点根据在单元中的位置被置于0和1之间。 裂纹扩展角度口可以参考裂纹平面计算,当裂纹扩展方向沿着初始裂纹方向时,θ=0;当K1>0时,θ<0;当K1<0时,θ>0。裂纹扩展角度从q到n(图3)。

爆炸的动静作用破岩与动态裂纹扩展机理研究

爆炸的动静作用破岩与动态裂纹扩展机理研究岩石的爆破理论包括两部分:一是爆炸应力波的动态作用,二是爆生气体的准静态作用。目前我们认为岩石的爆炸破岩是两者共同作用的结果,只是在不同的爆破参数和装药条件下两者各自的作用程度不同而已。 因此,在研究岩石爆破破岩机理时必须同时考虑到两者对岩石破碎的不同贡献,提高精细化控制爆破效果,深化爆破理论。基于上述考虑,本文单独分别对爆炸应力波的动作用和爆生气体的准静态作用进行试验研究,同时结合DLSM数值模拟,对动态裂纹的扩展过程进行分析。 课题的研究成果将为定向断裂控制爆破提供理论基础。本文的研究内容主要包括以下几个方面:1.基于NSCB测试方法,利用霍普金森杆试验系统,同时结合高速摄影、DLSM数值分析、SEM电镜扫描、P波波速测量等技术手段,研究了砂岩等几种典型岩石类材料的在常规及特殊状态下的动态断裂韧度,发现:岩石类材料的动态断裂韧度表现出明显的加载率依赖性,随着加载率的增大,岩石的动态断裂韧度呈逐渐增大的趋势。 试验中发现,相同加载率的条件下,花岗岩的断裂韧度最高,煤的断裂韧度最低,砂岩和泥岩较为接近,有机玻璃的断裂韧度低于3种岩石但高于煤。DLSM数值分析也得到与试验类似的结果,但加载面对测试结果有着重要的影响,理想的线性加载并不适用于岩石类材料动态断裂韧度测试研究,自由面加载和5mm面加载时的数值计算结果能够与试验较好的吻合。 同时,底端支座的约束条件也会对测试产生影响。高温处理后砂岩的断裂韧度测试中发现,在同一个热处理温度时,断裂韧度随加载率的变化成线性增加的趋势。

特别的,加载率较低时,各个热处理温度时的断裂韧度值较为接近,但加载率较高时,断裂韧度值则有较大差别,断裂韧度-加载率曲线的斜率随热处理温度的升高而减小。含层理煤的动态断裂韧度测试发现,随着节理倾角的增大,“动态断裂韧度”有减小的趋势,但并不是呈线性递减的关系。 天然的层理结构分布并不均匀,其赋存状态及其矿物构成不一,这些都会对测试结果带来影响。2.利用数字激光动态焦散线试验方法(DLDC),进行了不同装药结构切缝药包爆破试验,揭示切缝药包不耦合装药爆破爆生气体准静态作用机理,同时利用显式动力分析程序LS-DYNA模拟切缝药包爆炸以及初始裂纹形成的早期过程,并对不耦合系数与爆破损伤之间的关系进行了探讨。 不耦合系数对爆生裂纹扩展有显著的影响。不耦合系数α1为1.67时,主裂纹扩展长度和裂纹数目最佳。 爆炸应力波与爆生气体对裂纹的扩展产生了影响。不耦合装药使得应力波的幅值降低,爆生气体的准静态作用加强。 在以橡皮泥为介质的试验中,应力强度因子和速度的变化幅度较小。橡皮泥介质作为炸药爆炸产物与炮孔壁间的缓冲层,使得能量传递增加,应力波的作用时间延长,爆炸的作用范围加大。 次裂纹尖端的动态能量释放率数值整体上小于两条主裂纹。能量沿切缝药包壁的切缝方向优先释放,促使炮孔切缝方向的径向裂纹受到强烈的拉应力而快速扩展,从而抑制非切缝方向裂纹的扩展。 数值模拟的结果表明,空气不耦合装药时,在固体介质中产生的高强压应力超过其抗压强度时,就会在炮孔壁上形成粉碎区,其面积虽小,但耗能很大。为了避免粉碎区的形成,使爆炸产生的能量更多的用于切缝方向裂纹的扩展,从改善

疲劳裂纹扩展

疲劳裂纹扩展

————————————————————————————————作者: ————————————————————————————————日期: ?

不锈钢304L的疲劳裂纹扩展模拟 Feifei Fan, SergiyKalnaus,Yanyao Jiang (美国内华达大学机械工程学院) 摘要 :一个基于最近发展的疲劳方法的实验用来预测不锈钢304L的裂纹扩展。这种疲劳方法包括两个步骤:(1)材料的弹塑性有限元分析;(2)多轴疲劳标准在基于有限元分析的可输出的拉伸实验的裂纹萌生与扩展预测中的应用。这种有限元分析具有这样的特点:能够实现在先进循环塑性理论下扑捉材料在常幅加载条件下重要的循环塑性行为。这种疲劳方法是基于这样的理论:当累计疲劳损伤达到一个特定值时材料发生局部失效,而且这种理论同样适用于裂纹的萌生与扩展。所以,一组材料特性参数同时用来做裂纹的萌生与扩展预测,而所有的材料特性参数都是由平滑试样试验产生。这种疲劳方法适用于I型紧凑试样在不同应力比和两步高低加载顺序下等幅加载的裂纹扩展。结果显示,这种疲劳方法能够合理的模拟在试验上观察到的裂纹扩展行为,包括刻痕影响、应力比的影响和加载顺序的影响。另外,这种还方法能够模拟从刻痕到早期的裂纹扩展和疲劳全寿命,而且预测的结果和试验观察的结果吻合得很好。 关键词:累计损伤;疲劳裂纹扩展;疲劳标准 1 .简介 工程承压设备经常承受到循环加载,一般说来,疲劳过程有三个阶段组成:裂纹萌生和早期裂纹扩展、稳定裂纹扩展和最后的疲劳断裂。裂纹扩展速率dN da/通常被表示为重对数图尺在应力强度因素范围上的一个功能。在常幅加载下,不同应力比时稳定的裂纹扩展结果通常服从Paris公式和其修正公式。常幅疲劳加载下不同材料的行为不同。有些材料表现为应力比的影响:在相同应力比时,裂纹扩展速率曲线一致,但是,应力比增大时,裂纹扩展速率也增大。而其他金属材料没有表现出任何应力比的影响,而且在恒幅加载其裂纹扩展速率曲线在重对数图纸上重合。 在变幅加载条件下疲劳裂纹扩展行为作为另一个课题已经研究了若干年了。过载和变幅加载的应用对疲劳裂纹扩展研究产生了重大的影响。对于大多数金属材料而言,上述加载方法的应用导致疲劳裂纹扩展速率减慢。基于线弹性断裂力学的理论,这种过渡行为经常使用应力强度因子和通过引入在稳定裂纹扩展状态下的Paris公式的修正

ANSYS LS-DYNA中裂纹模拟的几种办法

Ls-dyna中裂纹模拟的几种办法 1、*CONSTRAINED_TIED_NODES_FAILURE 首先必须把单元间共节点的节点离散,可以采用ls-prepost或femp实现。然后在通过matlab 或者其他语言编写小程序,对位于同一个位置的节点建立节点集,添加*CONSTRAINED_TIED_NODES_FAILURE关键字。采用此方法来实现裂纹模拟的缺点是前处理太麻烦。应用实例可参考白金泽《lsdyna3d基础理论与实例分析》。 2、mat_add_eroson 关于这个关键字本版内有很多讨论,可以搜索一下。需要注意的是,在lsdyna 971R4之前的版本中,这个材料模型所带的失效模式均只适用于单点积分的二维和三维实体单元。但是在R4之后的版本中,这个关键字有了很大的改进: 1、去除了单点积分的限制,同时还支持3维壳单元和厚壳单元中的type1和type2。 2、可以定义初始损伤值,增加了几种损伤模型,具体可以参考lsdyna 971R5版的关键字。 3、带有失效的材料模型 有些材料模型本身就带有失效的,可以定义单元的失效来模拟裂纹的拓展。如*MAT_PLASTIC_KINEMA TIC等。如果某些材料模型不带失效模式,可以采用方法2,或者通过自定义材料本构来实现裂纹的模拟。 4、带有失效模型的接触或者用弹簧单元来模拟裂纹 这个方法个人觉得有些牵强,但是在有些文献中也见过。在定义裂纹前必须已知可能出现裂纹的区域,通过带有失效模式的面对面的绑定接触CONTACT_TIED_SURFACE_TO_SURFACE_FAILURE或者用弹簧单元来模拟裂纹面。" j. y: ~6 S3 S5 z$ E3 U! ] 5、采用特殊的材料模型 某些材料模型如*MAT_120(*MAT_GURSON),*MAT_120_JC(*MAT_GURSON_JC),*MAT_120_RCDC(*MAT_GURSON_RCDC),还有一些damage模型,如*MAT_96(*MAT_BRITTLE_DAMAGE)等,用损伤值来代替裂纹,通过观察损伤云图来判断裂纹的扩展。 6、EFG 和XFEM Cohesive 这两种方法是目前lsdyna重点发展的用来模拟裂纹扩展的方法。其中EFG方法适用于4节点积分的实体单元,XFEM只适用于2维平面应变单元和壳单元。这两种方法具体使用参考LS 971 R4 EFG User’sManual和XFEM User’s Manual。

动态扩展裂纹的若干反平面问题的研究

第26卷第1期2005年3月 力 学 季 刊CHINESE QUART E RLY OF MECHANIC S Vol.26No .1 March 2005 动态扩展裂纹的若干反平面问题的研究 王刚1 ,吕念春2 ,唐立强1 ,程云虹 3 (1.哈尔滨工程大学船舶工程学院,哈尔滨150001;2.哈尔滨工程大学建筑工程学院,哈尔滨150001; 3.东北大学土木工程系,沈阳110006)摘要:采用复变函数论,对反平面条件下的动态裂纹扩展问题进行研究。通过自相似函数的方法可以获得解析解的一般表达式。应用该法可以很容易地将所讨论的问题转化为Riemann )Hilbert 问题,并可以相当简单地得到问题的闭合解。文中分别对裂纹面受均布载荷、坐标原点受集中增加载荷、坐标原点受瞬时冲击载荷以及裂纹面受运动集中载荷Px/t 作用下的动态裂纹扩展问题进行求解,得到了裂纹扩展位移、裂纹尖端的应力和动态应力强度因子的解析解。应用该解并通过叠加原理,就可以求得任意复杂问题的解。 收稿日期:2004-05-09 关键词:复变函数;反平面;裂纹扩展;解析解 中图分类号:O346.1 文献标识码:A 文章编号:0254-0053(2005)01-121-7 Studies on Some An t-i Plane Problems of a Dynamic Propagation Crack WANG Gan g 1 ,L B Nian-chun 2 ,TANG Li-qian g 1 ,CHENG Yu n-hong 3 (1.Shipping Project Institute.Harbin Engineering University,Harbin 150001,China;2.School of Ship ping Engineering,Har bin Engineering University,Harbin 150001,China;3.Dep artment of Civil E ngineering,Northeastern University,Shenyang 110006,China) Abstract:By the application of complex functions theory,the dynamic crack propagation problems under the condition of ant-i plane were investigated.The general representations of analytical solutions were ob -tained by the methods of selfsimilar functions.The problems can be easily transformed into Riemann -Hi-l bert problems and their closed solutions were attained rather simple by this method.The dynamic crack propagation problems for the cracked surfaces subjected to uniform loads,an increasing load concentrated at the origin of the coordinates,an instantaneous impulse load at the origin of the coordinates and the ed -ges of the crack subjected to a moving concentrated load were solved respectively,and the analytical solu -tions on the displacements of crack propagation,stresses of the crack tip and dynamic stress intensity fac -tors could be obtained.Utilizing those solutions and superposition theorem,the solutions of arbitrarily complex problems can be found. Key words:complex functions;ant-i plane;crack propagation;analytical solutions 由复合材料组成的各类结构极易出现微观裂纹,裂纹逐渐扩展并导致结构失稳,丧失结构的承载能力,因此研究裂纹扩展问题具有重要意义。对这类静力问题已有许多人进行了研究,但这一类动力学问题,由于数学上的困难,人们研究的还远远不够深入 [1-3] ,因此有必要对反平面的断裂动力学问题进行了深入研究,利用复变函数论的方法给出解的一般表示。应用该法可以很容易地将所论问题转化为Riemann -Hilbert 问题,而后一问题容易用通常的Muskhelishvili [4-5] 方法求解。

采用ANSYS仿真模拟软件建立三维混凝土试件实体裂纹扩展的模拟

采用ANSYS仿真模拟软件建立三维混凝土试件实体裂纹扩展的模拟1.进入ANSYS软件,输入命令流 finish /clear,start !(1)工作环境设置 /FILENAME,COLUMN !工作名称 /TITLE,FRACTURE OF COLUMN !图形显示标题 !(2)进入前处理器 /PREP7 !进入前处理器 !(3)定义单元类型 ET,1,SOLID45 !定义三维单元 !(4)定义材料参数 MP,EX,1,1.668E10 !弹性模量 MP,PRXY,1,0.3 !泊松比 !(5)建立剖面几何模型 BLOCK,-0.015,0.015,-0.025,0.025,-0.0005,0.0005, !建立一个长方体WPSTYLE,,,,,,,,1 wpro,,90.000000, !旋转工作平面 CSWPLA,100,1,1,1, !在工作平面位置建立局部坐标100,类型为柱坐标 FLST,3,1,6,ORDE,1 FITEM,3,1 VGEN, ,P51X, , , ,45, , , ,1 !旋转长方体 wpro,,-90.000000, !旋转回原工作平面 CYLIND,0.0015,0,-0.05,0.01,0,360 !建立小圆柱体 VSBA,2,1 VDELE,4,,,1 FLST,2,2,6,ORDE,2 FITEM,2,1 FITEM,2,3 VADD,P51X CYLIND,0.025,0,-0.05,0.05,0,360 !建立大圆柱体 VSBV,1,2 MSHAPE,1,3D MSHKEY,0 !* CM,_Y,VOLU VSEL, , , , 3 CM,_Y1,VOLU CHKMSH,'VOLU' CMSEL,S,_Y !* VMESH,_Y1

用现有疲劳试验数据确定疲劳裂纹扩展率

用现有疲劳试验数据确定疲劳裂纹扩展率 收录:《中国造船》 - 2003年,03期 作者:周驰 关键词:船舶 疲劳寿命的预报在船舶与海洋工程领域中相当重要,但其关键问题是要找到一种较科学的疲劳寿命预报方法.最近,本文第二作者提出了一种海洋结构物疲劳寿 命预报的统一方法.该方法是基于疲劳裂纹扩展理论而发展起来的,在其九个参 数模型的假设之下,能够较好地解释一些其它方法所不能解释的现象.采用该方 法的主要障碍在于需要确定疲劳裂纹扩展率.作者通过对不同的疲劳裂纹扩展率的比较研究,并推广McFvily模型后,提出了一个具有较宽适用范围的九个参数 疲劳裂纹扩展率模型(从门槛域一直到不稳定断裂域).本文的主要目的是解决如何根据一些现有的疲劳试验数据来确定这九个模型参数的问题.文中给出了通过实验数据确定裂纹扩展率模型中各个参数的方法,并进行了模型参数的灵敏度分析.通过对文献中一些试验数据的收集,给出了几种常用金属材料的裂纹扩展率 模型参数. Determination of Fatigue Crack Growth Rate Using Existing Data 正在加载... 确定疲劳裂纹扩展理论门槛值的方法 Methods of Determination of Fatigue Crack Growth Theoretical Threshold 疲劳裂纹扩展 疲劳裂纹扩展理论门槛值ΔKthT的方法,特别对利用疲劳裂纹扩展速率表达式、根据da/dN~ΔK试验数据外推确定ΔKthT的三种方法作了较为详细的介绍,并用四套试验数据进行评估,结果显示,如果所采用的表达式能够正确反映近

扩展有限元方法和裂纹扩展

扩展有限元方法和裂纹扩展 1.1 扩展有限元方法(XFEM )基本理论 1999年,美国Northwestern University 的Belytschko 和Black 领导的研究小 组提出了扩展有限元方法,为解决裂纹这类强不连续问题带来了曙光。他们正式 应用扩展有限元法(XFEM )这一专业术语是在2000年,截止到目前,扩展有 限元法(XFEM )成为我们解决强不连续力学问题的最有效的数值计算方法,也 成为计算断裂力学的重要分支。XFEM 在有限元的框架下进行求解,无需对构件 内部的物理界面进行网格划分,具有常规有限元方法的所有优点。它最明显的特 点是用已知的特征函数作为形函数来使传统有限元的位移得到逼近,进而克服了 在裂纹尖端和变形集中处进行高密度网络划分产生的困难,方便地模拟裂纹的任 意路径,而且计算精度和效率得到了显著的提高[6]。 扩展有限元方法是将已知解析解的特征函数作为插值函数增强传统有限元 的位移逼近,来使得单元内的真实位移特性得以体现,裂纹尖端和物理或几何界 面独立于有限元网格。XFEM 主要包括以下三部分内容:首先是不考虑构件的任 何内部细节,按照构件的几何外形尺寸生成有限元网格;其次,采用水平集方法 跟踪裂纹的实际位置;根据已知解,改进影响区域的单元的形函数,来反映裂纹 的扩展。最后通过引入不连续位移模式来表示不连续几何界面的演化。因为改进 的插值函数在单元内部具有单元分解的特性,其刚度矩阵的特点与常规有限元法 的刚度矩阵特性保持一致。单元分解法(Partition Of Unity Method)和水平集法 (Level Set Method )、节点扩展函数构成了扩展有限元法的基本理论,其中,单 元分解法是通过引入加强函数计算平面裂纹扩展问题,保证了XFEM 的收敛性; 水平集法是跟踪裂纹的位置和模拟裂纹扩展的常用数值方法,任何内部几何界面 位置都可用它的零水平集函数来表示。 (1)单元分解法的基本思想是任意函数()x φ都可以用子域内一组局部函数 ()()x x N I ?表示,满足如下等式: ()()()x x N x I I ?φ∑= (1) 其中,它们满足单位分解条件:f I I ?x ()=1 ()x N I 是有限元法中的形函数,根 据上述理论,便可以根据需要对有限元的形函数进行改进。在XFEM 中,单元 分解的目的是进行数值积分,达到不引人额外的自由度的目的[7-8]。 (2)水平集法 使用水平集法来描述几何间断性。在一般情形下,多用来追踪

任意三维裂纹扩展分析-0319

任意三维疲劳裂纹扩展分析 1.前言 在工程实际中,真实的结构总是存在众多缺陷或裂纹,对于一个含裂纹或缺陷的构件,多在其服役荷载远低于容许强度的情况下就发生了破坏。实际工程结构在经受长时间多因素综合作用下,产生变形、裂纹等缺陷,从而导致整个结构的失效。结构的失效主要由疲劳引起,其最终失效形式即为断裂,有大约80%以上的工程结构的断裂与疲劳有关,由疲劳引起的巨大经济损失及灾难性的后果不胜枚举。 我们通常不能仅仅因为某个构件出现了裂纹就简单的认为该构件不安全或不可靠,尤其是对于大型设备的重要构件,因为这将使企业耗费高昂的成本。对于出现的裂纹,以往多采用以下几种处理办法:一是对出现裂纹的构件进行更换,这对于含裂纹但仍能工作的构件是一个巨大的浪费。二是强行停止使用进行维修,这样会带来巨大的经济损失;三是冒险继续使用,但这样会带来巨大风险,甚至会造成人员伤亡。所以,人们更想知道,出现的裂纹是否会在既定载荷(包括疲劳载荷在内的任意载荷)下扩展成不安全或失效的临界尺寸,因此,出现了疲劳裂纹扩展分析。疲劳裂纹扩展分析是采用断裂力学的理论和方法对含裂纹等缺陷构件的失效过程进行分析,以评估产品的安全性和可靠性,可以进行损伤容限评估和剩余寿命预测等,已经在化工机械、飞行器、核工业等各个工程领域得到了广泛应用,并得到了世界各国政府及学术机构的重视。 2.疲劳裂纹扩展分析软件 在工程实践中,疲劳裂纹扩展分析已成为评估产品性能、改良产品设计和提高服役寿命的一个重要工具。目前,疲劳裂纹扩展分析主要有解析法和数值法这样两种方法,下面分别介绍这两种方法。 1)解析法 解析法主要依据相应的规范和经验公式,将复杂的三维问题简化为二维问题,并对复杂的裂纹形状和荷载状态进行简化,然后用经验的方法对裂纹安全性进行评估。但对于大量结构复杂的工程实际问题却无能为力,况且其简化后的分析准确度及是否真实逼近服役情况也值得探讨。 目前,工程上有几款基于解析法而开发的裂纹扩展分析软件,它们主要应用于航空标准结构的裂纹扩展分析,包括DARWIN、NASGRO、AFGROW等。这些软件内嵌了航空结构多种形式的标准裂纹库,通过修改相应的模型尺寸、边界条件、载荷、裂纹位置和尺寸等参数即可根据内含的公式或内插表快速得出断裂力学结果,用来计算或查找标准航空结构中给定裂纹尺寸、载荷和形状的应力强度因子,仅能计算裂纹库里已有的裂纹模型的应力强度因子,并且适用于相对简单的几何和载荷,往往忽略真实的条件,如温度、非平面裂纹、复杂形状的裂纹、几何形状复杂的部件、部件之间的接触、残余应力和局部应力集中等。如要获得较为准确的结果,需要利用实验数据或其它方法对计算结果进行修正,但修正系数的取值往往很难确定,要靠经验来判断,并不具备求解复杂结构中三维裂纹扩展的能力。 2)数值法 近年来,随着有限元软件的发展,基于数值法的裂纹扩展分析软件已成功应用于解决工

爆炸荷载作用下岩石动态裂纹扩展的数值模拟

第36卷 第6期爆炸与冲击V o l.36,N o.6 2016年11月E X P L O S I O N A N DS HO C K WA V E S N o v.,2016 D O I:10.11883/1001-1455(2016)06-0825-07 爆炸荷载作用下岩石动态裂纹扩展的数值模拟* 钟波波,李 宏,张永彬 (大连理工大学海岸和近海工程国家重点实验室,辽宁大连116024) 摘要:运用岩石破裂过程分析软件R F P A-d y n a m i c,就爆炸荷载的加载速率二炮孔到自由边界的距离以及 两炮孔中间空孔的大小对动态裂纹扩展方式的影响进行了研究三结果表明:随着加载速率的减小,炮孔周围 的破碎区逐渐减少;裂纹开始萌生的位置逐渐由破碎区外边缘向炮孔孔壁转移;萌生的分支小裂纹逐渐减少,主裂纹扩展长度逐渐增大三由于自由边界的影响,炮孔向下扩展的裂纹逐渐弯向水平方向,且炮孔到自由边 界的距离越小,这种趋势越明显三由于空孔的导向作用,使靠近空孔的裂纹逐渐弯曲向空孔处扩展,同时在空 孔孔壁两端产生一条向炮孔扩展的裂纹;空孔半径大小对裂纹的导向作用,并无明显的影响;材料的非均匀 性,对裂纹的扩展方式有显著的影响三 关键词:固体力学;裂纹扩展;R F P A-d y n a m i c;爆炸应力波;空孔 中图分类号:O346.1 国标学科代码:1301545 文献标志码:A 在采矿工程二石油开采工程及地震预测等领域中,常常关注裂纹二空孔二夹杂物等爆破结构或材料中的原始缺陷,对介质中应力波传播方式的影响三尤其在巷道或隧道的开挖中,常设置一些空孔,利用空孔的应力集中效应二自由面效应和卸压效应,以提高爆破效果三空孔在爆破过程的作用机理,有了大量的研究三S.H.C h o等[1]通过数值模拟的方法,研究了不同波形和自由边界对动态裂纹扩展过程的影响,并讨论了岩石的非均匀性对断裂模式的影响;S.H.C h o等[2]通过D F P A软件研究了两端带有刻痕的空孔对动态裂纹扩展过程的控制作用,并讨论了空孔位置二两炮孔起爆时间误差和材料非均匀性对裂纹扩展的影响;Z.A l i a b a d i a n等[3]采用二维动态离散元方法研究了预裂爆破方法,主要考虑的参数是应力张量和压裂模式,结果表明爆炸荷载的大小和炮孔间距非常重要;李启月等[4]运用L S-D Y N A,模拟了槽孔与不同直径空孔的动态破碎贯通过程,分析了不同直径空孔引起的空孔效应及其对槽腔岩石破坏和槽腔成型的促进作用;岳中文等[5]采用新型数字激光动态焦散线实验系统,以P MMA为实验材料,对爆炸荷载作用下空孔周围的动应力场分布及空孔对爆生主裂纹扩展行为的影响进行了研究三由于岩石是一种非均匀材料,其断裂过程依赖于应变率的大小,其空孔作用机理复杂二设置灵活,所以对空孔周围应力场变化过程和动态裂纹扩展方式进行研究有着重要的理论意义和工程价值三本文中,选用R F P A-d y n a m i c分析系统,就爆炸荷载加载速率二炮孔到自由边界距离以及两炮孔中间空孔大小对动态裂纹扩展方式的影响进行研究三该程序可以以一个应力波或初始速度作为输入,按照时间步长进行逐步分析,在每个时间步内,考虑质量和加速度对于力学平衡的影响,用弹性动力有限元程序进行应力分析,用最大拉应力准则和摩尔库仑准则判断单元是否损伤,从而可以再现岩石这种非均匀材料在爆炸荷载作用下的动态裂纹扩展过程三 1 模 型 R F P A-d y n a m i c分析系统规定应力以压为正,拉为负,相关详情请参见文献[6-8]三 模型如图1所示,尺寸为200mm×100mm,划分为500×250=125000个单元,炮孔半径r0均为4mm三图1(a)中,炮孔到自由边界距离l分别为35二30二25mm;图1(b)中,两个炮孔间距s为50mm, *收稿日期:2015-04-15;修回日期:2015-06-29 基金项目:国家重点基础研究发展计划(973计划)项目(2014C B047100,2011C B013503) 第一作者:钟波波(1990 ),男,硕士研究生,y t g c z b b@163.c o m三

相关文档
相关文档 最新文档