文档库 最新最全的文档下载
当前位置:文档库 › J020 空调温度场分布设计规范

J020 空调温度场分布设计规范

J020 空调温度场分布设计规范
J020 空调温度场分布设计规范

Q/XRF

xxxx公司

Q/XRF-J020-2015

xxxx

空调温度场分布设计规范

编制:日期:

校对:日期:

审核:日期:

批准:日期:

2015-03-15发布 2015-03-15实施

xxxx公司发布

1.概述

空调车室内空气的温度场是空调车室内气流组织设计及车室内舒适环境的基础.空调汽车运行环境恶劣,太阳辐射作用及复杂的车室内部结构等直接影响汽车室内的温度场分布与空气速度场分布。本规范将指导本公司汽车产品车室内汽流组织设计及汽车热负荷的分布、计算等设计方案。

2.空调汽车结构

空调汽车车室内部结构复杂,空间有限,车窗面积较大,易受阳光直射而影响汽车室内的温度场分布;汽车室内乘客所占空间较大,加之座椅和其他机械装置的凹凸不平等因素,直接影响车室内空气的速度场分布。

2.1空调制冷原理

低压低温制冷剂气体进入压缩机压缩,压缩机排出的高压高温制冷剂气体通过高压软管被送到冷凝器冷凝(轿车冷凝器一般置于汽车发动机水箱前面,靠冷凝风扇冷却),向经过冷凝器的空气放热,被冷凝成高压中温的液体,流向储液器,在储液器中被过滤、脱水后,通过高压软管流至膨胀阀。在膨胀阀中节流膨胀,变成低压低温液气混合物,进入蒸发器。低压低温液气混合物制冷剂在蒸发器中蒸发,从经过蒸发器的车内空气吸热,蒸发为过热的气体,进入压缩机开始下一个制冷循环。经过蒸发器的车内空气向蒸发器放热,变为冷空气,同时由于蒸发器表面的温度低于空气露点,空气中的水汽冷凝成为露水排出车外,从而降低了车内空气的温度和湿度。图1、图2展示了空气的热量转移和制冷工质的变化过程。

图1汽车空调制冷系统基本流程图

2.2空调供暖原理

利用水泵将发动机的热冷却液循环进入暖风机,向通过暖风机的车内空气放热,然后进入水泵(或水箱)产生下一个循环。

图2汽车空调供暖系统基本流程图

暖风循环系统主要由暖风机、发动机、水泵、水箱、节温器、管路等组成。

2.3系统构造典型示意图如下:

2.3.1分体式空调系统连接示意图

2.3.2中顶双风道空调系统连接示意图

2.3.3平顶单风道空调系统连接示意图

3汽车空调系统组成

汽车空调一般由压缩机,蒸发器,冷凝器,膨胀阀,干燥器,储液器等组成。

1.空调壳体 2 蒸发器 3.蒸发风机 4.干燥器 5.膨胀阀 6.储液罐 7.冷凝器 8 冷凝风机

图3 空调系统结构图

4.热负荷计算

4.1.1车内条件确定

车内空气干球温度T1=27°C

车内空气湿球温度T2=19.5°C

4.1.2车外条件确定

车外环境温度T3=35°C,日照强度I水平=0.98Kw/m2,I垂直=0.16Kw/ m2,I散=0.04 Kw/ m2

4.2热平衡方程

Q=а(Q1+Q2+Q3+Q4+Q5+Q6+Q7)

Q:空调热负荷

а:储备系数

Q1:车体瞬变传热形成的热负荷

Q2:车体稳态形成的热负负荷

Q3:玻璃窗瞬变传热形成的热负荷

Q4:通过玻璃窗日射传热形成的热负荷

Q5:室外空气热负荷

Q6:车室内乘员人体散发的热负荷

Q7:车内仪器、设备及照明灯的热负荷

4.3空调热负荷计算参数

表1 空调热负荷计算参数表

5.汽车空调的热舒适性

汽车空调是把经过处理的的空气以一定方式送入车室内,从而使车室内空气的温度、湿度、气流速度和洁净度保持在一定范围内。以车室内人员的舒适性为目的,人的身体不断产生和散发热量,人体所散发的热量大部分是由皮肤散发的,汽车空调的热舒适性是指适宜的车室内气候环境。

影响汽车空调热舒适性的参数

A)温度:夏季人体感到舒适的的温度为22°C~25°C,上半身气流速度0.6~

0.9m/s,下半身气流速度0.2~0.3m/s,冬季上半身气温24~28°C,下半身气

温28°C~32°C

B)湿度:人体感到舒适的相对湿度35%~65%。

C)车室内汽流组织:大流量低速气流令人体感到舒适,流速不大于0.3 m/s. 6.温度场模拟

6.1模拟效果图

6.2模拟结果

A)空调车室内中心平面上空气流动强度较两侧小,温度场分布不均匀,空调效果较两侧差,这是由于送风口位于两侧且风口向下,致使两侧座椅处产生较大流动涡旋,而中间座椅处则明显较小;

B)送、回风口的布置对空调车室内空气流场温度场影响较大,由于风道位于车顶左右两侧,汽车前部驾驶室空气流动强度较小,温度较高,空调效果较差,而车室中部空气流动强度较大,空调效果较好;

C)由于空调汽车车身较长,前后区域空气流动强度不同,造成前后温差较大,整个空调车室内温度场流场分布不均匀,影响了整体空调效果;

D)空调汽车室内上部区域流速较大,下部区域流速较小,温度较高,致使上下区域温差较大,从而会影响乘客的热舒适感觉。

7.温度场设计要求

A)车室内水平场的温度分布尽可能均匀,乘员左、右脚温差尽可能小。

B)车室内温度分面符合头凉足暖的热舒适性要求。

C)车室内前后排座位温差要小。

通风与空调节能工程验收规范(参考Word)

通风与空调节能工程验收规范 1 一般规定 1.1本章适用于通风与空调系统节能工程的施工与验收。 1.2通风与空调系统节能工程的施工与验收,除应执行本规范的规定外,尚应符合被批准的设计图纸和《通风与空调工程施工质量验收规范》GB 50243等国家现行相关技术标准的要求和规定。 1.3通风与空调系统节能工程所使用的设备、管道、阀门、仪表、绝热材料等产品的规格、型号及技术参数必须符合施工图设计要求,产品质量及性能检测报告应符合国家相关的标准。 1.4 通风与空调系统节能工程的绝热材料和设备进场时,应按下列要求进行核查或复验: 1对风机盘管机组、组合式空调机组、柜式空调机组、新风机组、单元式空调机组、热回收装置等设备的风量、风压及热工技术性能进行核查; 2 对风机的风量、风压、效率等技术性能进行核查; 3 对绝热材料的导热系数、材料密度、吸水率进行复验; 4 对合同中约定的复验项目进行复验。 1.5通风与空调系统,应随施工进度对与节能有关的隐蔽部位或内容进行验收,并应有详细的文字和图片资料。 1.6通风与空调系统节能工程验收的检验批划分应按本规范3.3.4条的规定执行。当需要重新划分检验批时,可按照系统、楼层、建筑分区划分为若干个检验批。 2主控项目 2.1通风与空调节能工程中的送、排风系统、空调风系统、空调水系统的安装应符合下列规定: 1 各系统的制式及其安装,应符合施工图设计要求; 2 各种设备、自控阀门与仪表应安装齐全,不得随意增加、减少和更换; 3 水系统各分支管路水力平衡装置的安装位置、方向应正确,并便于调试操作; 4 空调系统安装完毕后应能进行分室(区)温度调控。对有分栋、分户、分室(区)冷、热计量要求的建筑物,空调系统安装完毕后应能实现相应的计量要求。 检验方法:按设计施工图进行核对。 检验数量:全数检查。 2.2风管的制作与安装应符合下列规定: 1 风管材料的品种、规格、厚度与性能等,应符合施工图设计和现行国家产 品标准的要求; 2 风管的严密性及风管系统的严密性检验和漏风量,应符合设计要求和现行 国家标准《通风与空调工程施工质量验收规范》GB50243的有关规定; 3 风管与部件、风管与土建风道及风管间的连接应严密、牢固; 4 需要绝热的风管与金属支架的接触处、复合风管及需要绝热的非金属风管 的连接和加固等处,应有防冷桥的措施。 检验方法:按设计施工图核对、尺量、观察检查,查阅产品进场验收记录、检查风管及风管系统严密性检验记录。

数据中心机房空调系统气流组织研究与分析

IDC机房空调系统气流组织研究与分析 摘要:本文阐述了IDC机房气流组织的设计对机房制冷效率有重要影响,叙述现有空调系统气流组织的常见形式。同时重点对IDC机房常见的几种气流组织进行了研究与分析,对比了几种气流组织的优缺点,从理论与实践中探讨各种气流组织情况下冷却的效率。 关键词:IDC、气流组织、空调系统 一、概述 在IDC机房中,运行着大量的计算机、服务器等电子设备,这些设备发热量大,对环境温湿度有着严格的要求,为了能够给IDC机房等提供一个长期稳定、合理、温湿度分布均匀的运行环境,在配置机房精密空调时,通常要求冷风循环次数大于30次,机房空调送风压力75Pa,目的是在冷量一定的情况下,通过大风量的循环使机房内运行设备发出的热量能够迅速得到消除,通过高送风压力使冷风能够送到较远的距离和加大送风速度;同时通过以上方式能够使机房内部的加湿和除湿过程缩短,湿度分布均匀。 大风量小焓差也是机房专用空调区别于普通空调的一个非常重要的方面,在做机房内部机房精密空调配置时,通常在考虑空调系统的冷负荷的同时要考虑机房的冷风循环次数,但在冷量相同的条件下,空调系统的空调房间气流组织是否合理对机房环境的温湿度均匀性有直接的影响。 空调房间气流组织是否合理,不仅直接影响房间的空调冷却效果,而且也影响空调系统的能耗量,气流组织设计的目的就是合理地组织室内空气的流动使室内工作区空气的温度、湿度、速度和洁净度能更好地满足要求。 影响气流组织的因素很多,如送风口位置及型式,回风口位置,房间几何形状及室内的各种扰动等。 二、气流组织常见种类及分析: 按照送、回风口布置位置和形式的不同,可以有各种各样的气流组织形式,大致可以归纳以下五种:上送下回、侧送侧回、中送上下回、上送上回及下送上回。 1) 投入能量利用系数 气流组织设计的任务,就是以投入能量为代价将一定数量经过处理成某种参数的空气送进房间,以消除室内某种有害影响。因此,作为评价气流组织的经济指标,就应能够反映投入能量的利用程度。 恒温空调系统的“投入能量利用系数”βt,定义: (2-1) 式中: t0一一送风温度, tn一一工作区设计温度, tp一一排风温度。 通常,送风量是根据排风温度等于工作区设计温度进行计算的.实际上,房间内的温度并不处处均匀相等,因此,排风口设置在不问部位,就会有不同的排风温度,投入能量利用系数也不相同。 从式(2—1)可以看出: 当tp = tn 时,βt =1.0,表明送风经热交换吸收余热量后达到室内温度,并进而排出室外。 当tp > tn时,βt >1.0,表明送风吸收部分余热达到室内温度、且能控制工作区的温度,而排风温度可以高于室内温度,经济性好。 当tp < tn时,βt <1.0,表明投入的能量没有得到完全利用,住住是由于短路而未能发挥送入风量的排热作用,经济性差。 2) 上送下回 孔板送风和散流器送风是常见的上送下回形式。如图2-1和图2-2所示.

空调制冷量匹数换算方式

1,空调匹数定义: 物理定义:1匹=1马力=735W,匹不指制冷量,而是输入功率。 空调定义:匹数与空调制冷量有绝对关系。空调匹数越大,制冷量越大。1匹空调制冷量大约为2000大卡,换算国际单位乘以1.162。即一匹制冷量为2000×1.162=2324W。W(瓦)表示制冷量。依次类推,能判断空调的匹数和制冷量。一般制冷量2200-2600W都称为一匹,3200-3600W称为1.5匹,4500-5500W称为2匹。平时说的空调匹数,根据空调消耗功率来估算出空调的制冷量。通常一匹的名义制冷量为2200W-2300W。而2500W -2800W为大一匹,3200W-3300W为1.5匹。等等。 2,空调匹数与制冷量及适用面积的关系。 型号匹数适用面积(m2) KFR-23:小1匹9-12 KFR-25:1匹10-14 KFR-28:大1匹 11-18 KFR-31(32):小1.5匹 14-20 KFR-33: 1.5匹16-22 KFR-35:大1.5匹18-26 KFR-45:小2匹20-28 KFR-51: 2 匹 28-32 KFR-60: 2.5匹32-42 KFR-70:3匹42-52 KFR-120:5匹 53-73 -23表示制冷量为2300W,-51表示制冷量为5100W。制冷量具体计算办法:不顶层、不西晒的房间,每平方米需要150W的制冷量,有其中一条的话,每平方米至少需要200W的制冷量,既顶层又西晒,则每平方米最少需要

250W的制冷量。计算出来的制冷量再加上10%的富裕量就是最小制冷量了。只能选择比它大的,否则,不但不能顺利调节温度,而且还会有损空调。 3,空调匹数选择的计算方法: 空调匹数选择方法一:200W(或150W或250W)*面积数=所需制冷量。 空调匹数选择方法二:看上表格查看。 空调匹数选择方法三:让专业人员介绍。 4,空调匹数与空调型号标记的关系: (1)K-房间空调器 (2)结构形式:F-分体式房间空调器;C-窗式房间空调器 Y-移动式。 (3)功能代号(单冷型无此代号,如KF):单冷型,单冷型代号省略;R-热泵型;D-电热型;BD-热泵辅助电热型。 (4)名义制冷量:用阿拉伯数字表示,其值取制冷量的前两位数。 (5)室内机组结构分类为吊顶式(D)、挂壁式(G)、落地式(L)、天井式(T)、嵌入式(Q)等。即空调型号中KFR-22GW/HA,G代表挂壁式,其余类型以此类推。 (6)改进型代号:分为A、B、C、D、E等 (7)特殊功能:BP-变频;Y--遥控(仅限窗机) 如:KC-32/Y代表窗机,单冷,制冷量为3200W,为遥控型; KFR-28GW/BP表示壁挂分体式变频空调器,冷暖,制冷量为2800W。 "k35556A2N3"类似的指型号,不用记。

风口设计规范

风口设计规范 1 主题内容和适用范围 本标准规定了通风空调风口(简称风口)的分类、基本规格、技术要求、试验方法、检验规则和标志、包装、运输、贮存等。 本标准适用于通风空调系统中的各类出风口和进风口。其它类似用途的产品也可参照本标准。 2 引用标准 GB 8070空气分布器性能试验方法 GB 321 优先数和优先数系列 GB 5237铝合金建筑型材 GB 11257碳素结构钢和低合金结构钢冷轧落薄钢板及钢带 GB 8170 数值修约规则 3 分类与基本规格 分类 按用途分类: A.出风口 B.进风口 按型式分类: A.百叶风口:外形有方形、矩形、圆形;叶片有单层、双层等。 B.散流器:有圆形、方形、矩形、圆盘形等。 C.喷口:有圆形、矩形、球形等。 D.条缝型风口:有单条缝和多条缝等。 E.旋流风口。 F.孔板风口(包括网板风口)。 G.专用风口:如椅子风口、灯具风口、孔风口、格栅风口等。 基本规格

风口基本规格用颈部尺寸(指与风管的接口尺寸)表示,按GB 321的要求排列,详见表1和表2。 圆形风口基本规格(MM)表1 方、矩形风口基本规格(mm)表2 散流器基本规格可按相等间距数50mm、60mm、70mm排列。 型号表示法 型号表示法 分类代号表表3

规格代号用风口基本规格数值的1/10表示。 型号示例: FJS-3225--表示矩形散流器,规格为320*250(mm) FQP-16--表示球形喷口,规格为160(mm) FYS-25--表示圆形散流器,规格为250(mm) 第二节技术要求 基本要求 风口产品应符合本标准的要求,并按规定程序批准的图样和技术文件制造。 尺寸偏差的允许值如下: a:矩形(包括方形)风口的尺寸允差风表4。 尺寸允差(mm)表4 b:矩形(包括方形)风口两条对角线之间的允差风表5 c:圆形风口的尺寸允差见表6 尺寸允差(mm)表6 风口装饰平面应平整光滑,其平面度应符合表7的规定值。 平面度表7

通风空调风口设计规范

通风空调风口设计规范 第一节一般说明 1 主题内容和适用范围 本标准规定了通风空调风口(简称风口)的分类、基本规格、技术要求、试验方法、检验规则和标志、包装、运输、贮存等。 本标准适用于通风空调系统中的各类出风口和进风口。其它类似用途的产品也可参照本标准。 2 引用标准 GB 8070空气分布器性能试验方法 GB 321 优先数和优先数系列 GB 5237铝合金建筑型材 GB 11257碳素结构钢和低合金结构钢冷轧落薄钢板及钢带 GB 8170 数值修约规则 3 分类与基本规格 3.1 分类 3.1.1 按用途分类: A.出风口 B.进风口 3.1.2 按型式分类: A.百叶风口:外形有方形、矩形、圆形;叶片有单层、双层等。 B.散流器:有圆形、方形、矩形、圆盘形等。 C.喷口:有圆形、矩形、球形等。 D.条缝型风口:有单条缝和多条缝等。 E.旋流风口。 F.孔板风口(包括网板风口)。 G.专用风口:如椅子风口、灯具风口、孔风口、格栅风口等。 3.2 基本规格 3.2.1 风口基本规格用颈部尺寸(指与风管的接口尺寸)表示,按GB 321的要求排列,详见表1和表2。 圆形风口基本规格(MM)表1

方、矩形风口基本规格(mm)表2 3.2.2散流器基本规格可按相等间距数50mm、60mm、70mm排列。 3.3型号表示法 3.3.1型号表示法 分类代号表表3 规格代号用风口基本规格数值的1/10表示。 3.3.2型号示例: FJS-3225--表示矩形散流器,规格为320*250(mm) FQP-16--表示球形喷口,规格为160(mm)

FYS-25--表示圆形散流器,规格为250(mm) 第二节技术要求 4.1基本要求 4.1.1风口产品应符合本标准的要求,并按规定程序批准的图样和技术文件制造。 4.1.2尺寸偏差的允许值如下: a:矩形(包括方形)风口的尺寸允差风表4。 尺寸允差(mm)表4 b:矩形(包括方形)风口两条对角线之间的允差风表5 c:圆形风口的尺寸允差见表6 尺寸允差(mm)表6 4.1.3风口装饰平面应平整光滑,其平面度应符合表7的规定值。 平面度表7 4.1.4风口装饰面上接口拼缝的缝隙,铝型材应不超过0.15mm,其它材料应不超过0.2mm。 4.1.5 风口的叶片应符合下列要求: a:叶片间距的尺寸偏差不大于±1mm; b:叶片弯曲度3/1000mm; c:叶片平行度4/1000mm;

采暖通风与空调设计规范汇总

说明:本目录收集载有暖通空调制冷专业内容(章、节)和相关内容的国家标准GB、国家标准建筑系列GB50×××、GBJ、建设部标准CJJ、CJ、JJ、ZBP、ZBJ等的目录,有些标准规范虽用于公共建筑和专门工程建筑,但并无暖通空调内容章节故不收录。 一、基础类 1.1GB3100-93国际单位制及应用 1.2GB3101-93有关量、单位和符号的一般原则 1.3GBJ1-86房屋建筑制图统一标准 1.4GBJ144-88采暖通风与空气调节制图标准 1.5GBJ155-92采暖通风与空气调节术语标准 1.6CJJ55-93供热术语标准 1.7CJJ65-95环境卫生术语标准 1.8GB140-59输送液体与气体管道的规定代号 1.9GB4270-84热工图形符号与文字说明 1.10GB4457-84至GB4640-84机械制图 1.11GB11943-89锅炉制图 1.12GB50178-93建筑气候区划标准 1.13JGJ35-87建筑气象参数标准 1.14JGJ37-87民用建筑设计通则 1.15GBJ300-88建筑安装工程质量检验评定统一标准 1.16GB/T16732-97建筑采暖通风、空调、净化设备计量单位及符号 1.17GB/T16803-97采暖、通风、空调、净化术语 二、暖通空调一般设计规范 2.1GBJ19-87采暖通风与空气调节设计规范 2.2GB50028-93城镇燃气设计规范 2.3GB50176-93民用建筑热共设计规范 2.4GB50189-93旅游宾馆建筑热工与空气调节节能设计标准 2.5GB50264-97设备及管道绝热工程设计规范 2.6JGJ26-95民用建筑节能设计标准(采暖居住建筑部分) 2.7CJJ34-90城市热力网设计规范 2.8GB4272-92设备及管道保温技术通则 2.9GB8175-87设备及管道保温设计导则 2.10GB11790-89设备及管道保冷技术通则 三、住宅及公共建筑类 3.1GB50038-94人民防空地下室设计规范 3.2GBJ96-86住宅建筑设计规范

数据中心空调设计浅析

数据中心空调设计浅析 数据中心空调设计浅析 摘要随着网络时代的发展,服务器集成度的提高,数据中心机房的能耗急剧增加,这就要求数据中心的空调设计必须高效、节能、合理、经济,本文结合某工程实例浅谈下数据中心空调的特点和设计思路。 关键词:数据中心气流组织机房专用空调节能措施 数据中心是容纳计算机房及其支持区域的一幢建筑物或是建筑 物中的一部分。数据中心空调系统的主要任务是为数据处理设备提供合适的工作环境,保证数据通信设备运行的可靠性和有效性。本文结合工程实例浅析一下数据中心机房空调设计的特点和机房空调的节 能措施。 一、冷源及冷却方式 数据中心的空调冷源有以下几种基本形式:直接膨胀风冷式系统、直接膨胀水冷式系统、冷冻水式系统、自然冷却式系统等。 数据中心空调按冷却方式主要为三种形式:风冷式机组、水冷式机组以及双冷源机组。 二、空调设备选型 (1)空气温度要求 我国《电子信息系统机房设计规范》(GB50174―2008 )中规定:电子信息系统机房划分成 3级。对于A级与B级电子信息系统机房,其主机房设计温度为2 3±1°C,C级机房的温度控制范围是1 8―2 8°C 。 (2)空气湿度要求 我国《电子信息系统机房设计规范》(GB50174―2008 )中规定:电子信息系统机房划分成3级。对于A级与B级电子信息系统机房,其主机房设计湿度度为40―55%,C级机房的温度控制范围是 40―60%。 (3)空气过滤要求

在进入数据中心机房设备前,室外新风必须经过滤和预处理,去除尘粒和腐蚀性气体。空气中的尘粒将影响数据机房设备运行。 (4)新风要求 数据中心空调系统必须提供适量的室外新风。数据通信机房保持正压可防止污染物渗入室内。 三、气流组织合理布置 数据中心的气流组织形有下送上回、上送侧回、弥漫式送风方式。 1.下送上回 下送上回是大型数据中心机房常用的方式,空调机组送出的低温空气迅速冷却设备,利用热力环流能有效利用冷空气冷却率,如图1所示为地板下送风示意图: 图1地板下送风示意图 数据中心内计算机设备及机架采用“冷热通道”的安装方式。将机柜采用“背靠背,面对面”摆放。在热空气上方布置回风口到空调系统,进一步提高制冷效果。 2.上送侧回 上送侧回通常是采用全室空调送回风的方式,适用于中小型机房。空调机组送风出口处宜安装送风管道或送风帽。回风可通过室内直接回风。如图2所示为上送侧回示意图: 图2上送侧回示意图 四、节能措施 1、选择合理的空调冷源系统方式 在节能型数据中心空调冷源形式的选择过程中,除了要考虑冷源系统形式的节能性以外,还要综合考虑数据中心的规模、数据中心的功率密度、数据中心的投资规模、工作人员的维护能力、数据中心所在地的气候条件以及数据中心的基础条件等。 2、设计合理的室内空气温湿度 越低的送风温度意味着越低的空调系统能量利用效率。笔者认为冷通道设计温度为l5―22℃,热通道为25―32℃。 3、提高气流组织的效率 数据中心空调气流组织应尽量避免扩散和混合。在数据中心机房

空调冷量计算方法

中央空调冷量计算方法 实际受冷面积=房屋建筑面积×房屋实用率×65%(除去厨房、洗手间等非制冷面积) 实际所需冷量=实际受冷面积×单位面积制冷量 注意:单位面积制冷量根据具体情况有所变化,家用通常为100 -150瓦/平方米。如果房间朝南、楼层较高,或者有大面积玻璃墙,可适当提高到170-200瓦/平方米左右。 第二步:确定室内机与风口 根据实际所需冷量大小决定型号,每个房间或厅只需要一台室内机或者风口,如果客厅的面积较大,或者呈长方形,可以多加一台室内机或风口。以每12平方米需要一匹左右为准。 第三步:确定空调布局: 1、主机的位置要讲究通风散热良好,便于检修维护,同时位置要尽量隐蔽,避免影响房子外观和噪音影响室内; 2、室内机的位置要和室内装修布局配合,一般是暗藏在吊顶内,也可以隐藏在高柜的顶部。一般室内机都是超薄型的,只需要大约25厘米的高度就可以放置。安装时要注意回风良好,使室内空气形成循环,以保证空调效果和空气质量; 3、管路的布置:冷水机组的冷媒管路都比较细,即使外面包上保温层,也可以方便地暗藏起来;管路需要全程保温,管件、阀件以及与管路接触的金属配件都要保温包裹起来,以防冷凝水滴漏;管路材料一般选用PP R管、PVC U管或铝塑复合管,可以保证50年不损坏;全部的冷凝水集中或就近隐蔽排放; 4、室内机可根据用户要求增加负离子发生器、净化除尘装置,以进一步提高室内空气质量。 第四步:选择适合价格的产品 家用中央空调的价格大约在300 -350元/平方米左右。品牌、机型、用户自己的需求,如选择变频与非变频空调,冷暖或单冷,都会导致价格差异。 第五步:选择服务 同普通分体空调相比,家用中央空调实际上是一个“半成品”,因为它要同室内装修相配合。家用中央空调的服务,不仅包括售后服务,还包括销售前的咨询、方案设计、安装施工。可以说,要使一套家用中央空调系统能够正常运行,设计、安装、施工的重要性不亚于主机设备。

(完整版)采暖通风与空气调节设计规范

采暖通风与空气调节设计规范 ◆标准号:GB 50019-2003 ◆发布日期:2003 年 ◆实施日期:2004 年4 月1 日 ◆发布单位:建设部 ◆出版单位:中国计划出版社 第二章室内外计算参数 第一节室内空气计算参数 第 2.1.1 条设计集中采暖时,冬季室内计算温度,应根据建筑物的作途,按下列规定采用: 一、民用建筑的主要房间,宜采用16 -20 ℃; 二、生产厂房的工作地点: 轻作业不应低于15 ℃;中作业不应低于12 ℃;重作业不应低于10 ℃。 注:( 1 )作业各类的划分,应按国家现行的《工业企业设计卫生标准》执行。 ( 2 )当每名工人占用较大面积(50 -100m2 )时,轻工业可低至10 ℃;中作业可低至7 ℃,重作业可低至 5 ℃。 三、辅助建筑及辅助用室,不应低于下列数值: 浴室25 ℃;更衣室23 ℃;托儿所、幼儿园、医务室20 ℃;办公用室16 -18 ℃;食堂14 ℃;盥洗室、厕所12 ℃。 注:当工艺或使用条件有特殊要求时,各类建筑物的室内温度,可参照有关专业标准、规范的规定执行。 第 2.1.2 条设置集中采暖的建筑物,冬季室内生活地带或作业地带地平均风速,应符合下列规定: 一、民用建筑及工业企业辅助建筑物,不宜大于0.3m /s ; 二、生产厂房的工作地点,当室内散热量小于23W/m3[20kcal/ (m3 · h )] 时,不宜大于0.3m /s ;当室内散热量天于或等于23W/m3 时,不宜大于0.5m /s 。

注:设置空气调节的条件,应符合本规范第 5.1.1 条的规定。 第 2.1.4 条当工艺无特殊要求时,生产厂房夏季工作地点的温度,应根据夏季通风室外计算温度及其与工作地点温度的允许温差,按[表 2.1.4 ]确定。 夏季工作地点(℃)[表 2.1.4 ] 注:如受条件限制,在采取通风降温措施后仍不能达到本表要求时,允许温差可加大 1 -2 ℃。 第 2.1.5 条设置局部送风的生产厂房,其室内工作地点的允许风速,应按本规范第 4.3.5 条至第 4.3.7 条的有关规定执行。 第 2.1.6 条夏季空气调节室内计算参数,应符合下列规定: 一、舒适性空气调节室内计算参数: 温度应采用24 -28 ℃;相对湿度应采用40%-65% ;风速不应大于0.3m /s 。 二、工艺性空气调节室内温度基数及其允许波动范围,应根据工艺需要并考虑必要的卫生条件确定;工作区的风速,宜采用0.2 -0.5m /s, 当室内温度高于30 ℃时,可大于0.5m /s 。 注:设置空气调节的条件,应符合本规范第 5.1.1 条的规定。 第二节室外空气计算参数 第 2.2.1 条采暖室外计算温度,应采历年平均不保证 5 天的日平均温度。 注:本条及本节其他文中所谓“不保证”。系针对室外空气温度状况而言,“历年平均不保证”,系针对累年不保证总天数或小时数的历年平均值而言。 第 2.2.2 条冬季通风室外计算温度,应采用累年最冷月平均温度。 第 2.2.3 条夏季通风室外计算温度,应采用历年最热月14 时的月平均温度的平均值。 第 2.2.4 条夏季通风室外计算相对湿度,应采用历年最热月14 时的月平均相对湿度的平均值。 第 2.2.5 条冬季空气调节室外计算温度,应采用历年平均不保证 1 天的日平均温度。

绿色数据中心空调系统设计方案

绿色数据中心空调系统设计方案 北京中普瑞讯信息技术有限公司(以下简称中普瑞讯),是成立于北京中关村科技园区的一家高新技术企业,汇集了多名在硅谷工作过的专家,率先将机房制冷先进的氟泵热管空调系统引进到中国。 氟泵热管空调系统技术方案适用于各种IDC机房,通信机房核心网设备,核心机房PI路由器等大功率机架;中普瑞讯对原有的产品做了优化和改良,提高节能效率的同时大大降低成本。 中普瑞讯目前拥有实用专有技术4项、发明专有技术2项;北京市高新技术企业;合肥通用所、泰尔实验室检测报告;中国移动“绿色行动计划”节能创新合作伙伴,拥有国家高新企业资质。 中普瑞讯的氟泵热管空调系统技术融合了结构简单、安装维护便捷、高效安全、不受机房限制等诸多优点,目前已在多个电信机房得到实地应用,取得广大用户一致认可,并获得相关通信部门的多次嘉奖。 中普瑞讯的ZP-RAS氟泵热管背板空调系统专门用于解决IDC高热密度机房散热问题,降低机房PUE值,该系统为采用标准化设计的新型机房节能产品,由以下三部分组成。

第一部分,室内部分,ZP-RAS-BAG热管背板空调。 第二部分,室外部分,ZP-RAS-RDU制冷分配单元。 第三部分,数据机房环境与能效监控平台。 中普瑞讯的ZP-RAS氟泵热管背板空调体统工作原理:室外制冷分配单元(RDU)机组通过与系统冷凝器(风冷、水冷)完成热交换后,RDU通过氟泵将冷却后的液体冷媒送入机房热管背板空调(BGA)。 冷媒(氟利昂)在冷热温差作用下通过相变实现冷热交换,冷却服务器排风,将冷量送入机柜,同时冷媒受热汽化,把热量带到RDU,由室外制冷分配单元(RDU)与冷凝器换热冷却,完成制冷循环。 1.室外制冷分配单元(RDU)分为风冷型和水冷型两种。制冷分配单元可以灵活选择安装在室内或室外。室外RDU可以充分利用自然冷源自动切换工作模式,当室外温度低于一定温度时,可以利用氟泵制冷,这时压缩机不运行,充分利用自然免费冷源制冷,降低系统能耗,同时提高压缩机使用寿命。 北方地区以北京为例每年可利用自然冷源制冷的时间占全年一半以上左右。从而大大降低了机房整体PUE值,机房PUE值可控制在较低的数值。 2.热管背板空调(ZP-RAS-BGA)是一种新型空调末端系统,是利用分离式热管原理将空调室内机设计成机柜背板模

机房空调制冷量计算方法

精心整理 机房空调制冷量计算方法 精密空调的负荷一般要根据工艺房间的实际余热余温以及状态的变化进行准确计算,但在条件不允许时也可计算,下面介绍两种简便的计算方法: 制冷量简便计算方法: 方法一:功率及面积法 Qt Q1 Q2 Qt=Sxp Qt S P ? ? ? ? ? ? ?Ups ? ? UPS 1-2.KCal=KVA×860 1-3.BUT/小时=KVA(UPS容量)×860×3.96×(1-UPS效率) =KVA(UPS容量)×3400(1-UPS效率) 例:10KVAUPS一台整机效率85%其散热量计算如下: 10KVA×3400×(1-0.85)=5100BTU/小时 1英热单位/时(Btu/h)=0.293071瓦(W) IDC机房空调选项计算公式 Q=W×0.8×(0.7---0.95)+{(80---200)×S}/1000.Q为制冷量,单位KW;

W为设备功耗,单位KW;按用户需求暂按110KW; 0.8为功率因数; 0.7-0.95为发热系数,即有多少电能转化为热能;取0.7 80-200是每平方米的环境发热量,单位是W; S为机房面积,单位是m2。 根据不同情况确定制冷量 情况一(没有对机房设备等情况考察之下) 数据室估算:在一个小型的金融机房中,数据设备室通常的面积小于50平方,在数据设备、机房的建筑热量没有确定下来之前,可以按照金融机房通用的估计方法进行机房空调制冷量的预估: 500w~ 例如 ~ 例如的 共3 2台 1 ①设备负荷(计算机及机柜热负荷); ②机房照明负荷; ③建筑维护结构负荷; ④补充的新风负荷; ⑤人员的散热负荷等。 ⑥其他 2:热负荷分析: (1)计算机设备热负荷:Q1=860xPxη1η2η3Kcal/h

机房空调制冷量简便计算方法

制冷量简便计算方法: 方法一:功率及面积法 Qt=Q1+Q2 Qt总制冷量(kw) Q1室内设备负荷(=设备功率X0.8) Q2环境热负荷(=0.18KW/m2X机房面积) 方法二:面积法(当只知道面积时) Qt=S x p Qt总制冷量(kw) S 机房面积(m2) P 冷量估算指标精密空调场所冷负荷估算指标电信交换机、移动基站(350-450W/m2)金融机房(500-600W/m2)数据中心(600-800W/m2)计算机房、计费中心、控制中心、培训中心(350-450W/m2)电子产品及仪表车间、精密加工车间(300-350W/m2)保准检测室、校准中心(250-300W/m2)Ups 和电池室、动力机房(300-500W/m2)医院和检测室、生活培养室、洁净室、实验室(200-250W/m2)仓储室(博物馆、图书馆、档案馆、烟草、食品)(150-200W/m2) UPS机房空调选项计算1-1. BTU/小时= KCal×3.96 1-2. KCal= KVA×860 1-3. BUT/小时= KVA(UPS容量)×860×3.96×(1-UPS效率) = KVA(UPS容量)×3400(1-UPS效率) 例:10KVA UPS一台整机效率85%其散热量计算如下: 10KVA×3400×(1-0.85)=5100 BTU/小时 1英热单位/时(Btu/h)=0.293071瓦(W) IDC机房空调选项计算公式Q=W×0.8×(0.7---0.95)+{(80---200)×S}/1000. Q为制冷量,单位KW;W为设备功耗,单位KW;按用户需求暂按110KW; 0.8为功率因数;0.7-0.95为发热系数,即有多少电能转化为热能;取0.7 80-200是每平方米的环境发热量,单位是W; S为机房面积,单位是m2。 根据不同情况确定制冷量情况一(没有对机房设备等情况考察之下) 数据室估算:在一个小型的金融机房中,数据设备室通常的面积小于50平方,在数据设备、机房的建筑热量没有确定下来之前,可以按照金融机房通用的估计方法进行机房空调制冷量的预估:500w~600w/m2 ,部分高容量机房达到800w/m2。例如数据室的面积为50 m2 ,则所需的制冷量约为:25kw。选用3台单机制冷量8.6kw的DataMate空调,外加一台冗余机组,共4台。当数据机房设备、维护结构确定后,对设备的发热量、维护面积的热量核算,调整空调的配置。电力室估算:电力室中主要的发热量来之UPS、电源等设备,其热容量较低,可以选择两台单机制冷量为8.6kw的空调冗余布置在一个中型的金融机房中,数据设备室通常的面积小于200平方,在数据设备、机房的建筑热量没有确定下来之前,可以按照金融机房通用的估计方法进行机房空调制冷量的预估:500w~600w/m2 ,部分高容量机房达到800w/m2。例如数据室的面积为200m2 ,则所需的制冷量约为:100kw。选用2台单机制冷量58.4kw的PEX2060空调,总制冷量为116.8kw,满足要求。为保证设备的工作可靠性,增加一台冗余机组,共3台。当机房设备、维护结构确定后,对设备的发

采暖通风与空调设计规范.

采暖通风与空调设计规范(一) 4.。3 散热器采暖 4.3.1 选择散热器时,应符合下列规定: 1 散热器的工作压力,应满足系统的工作压力,并符合国家现行有关产品标准的规定; 2 民用建筑宜采用外形美观、易于清扫的散热器; 3 放散粉尘或防尘要求较高的工业建筑,应采用易于清扫的散热器; 4 具有腐蚀性气体的工业建筑或相对湿度较大的房间,应采用耐腐蚀的散热器; 5 采用钢制散热器时,应采用闭式系统,并满足产品对水质的要求,在非采暖季节采暖系统应充水保养;蒸汽采暖系统不应采用钢制柱型、板型和扁管等散热器; 6 采用铝制散热器时,应选用内防腐型铝制散热器,并满足产品对水质的要求; 7 安装热量表和恒温阀的热水采暖系统不宜采用水流通道内含有粘砂的铸铁等散热器。 4.3.2 布置散热器时,应符合下列规定: 1 散热器宜安装在外墙窗台下,当安装或布置管道有困难时,也可靠内墙安装; 2 两道外门间的门斗内,不应设置散热器; 3 楼梯间的散热器,宜分配在底层或按一定比例分配在下部各层。 4.3.3 散热器宜明装。暗装时装饰罩应有合理的气流通道、足够的通道面积,并方便维修。 4.3.4 幼儿园的散热器必须暗装或加防护罩。 4.3.5 铸铁散热器的组装片数,不宜超过下列数值: 粗柱型(包括柱翼型)20片 细柱型25片

长翼型7片 4.3.6 确定散热器数量时,应根据其连接方式、安装形式、组装片数、热水流量以及表面涂料等对散热量的影响,对散热器数量进行修正。 4.3.7 民用建筑和室内温度要求较严格的工业建筑中的非保温管道,明设时,应计算管道的散热量对散热器数量的折减;暗设时,应计算管道中水的冷却对散热器数量的增加。 4.3.8 条件许可时,建筑物的采暖系统南北向房间宜分环设置。 4.3.9 建筑物的热水采暖系统高度超过50m时,宜竖向分区设置。 4.3.10 垂直单、双管采暖系统,同一房间的两组散热器可串联连接;贮藏室、盥洗室、厕所和厨房等辅助用室及走廊的散热器,亦可同邻室串联连接。 注:热水采暖系统两组散热器串联时,可采用同侧连接,但上、下串联管道直径应与散热器接口直径相同。 4.3.11 有冻结危险的楼梯间或其他有冻结危险的场所,应由单独的立、支管供暖。散热器前不得设置调节阀。 4.3.12 安装在装饰罩内的恒温阀必须采用外置传感器,传感器应设在能正确反映房间温度的位置 采暖与通风设计规范(二) 4.4 热水辐射采暖 4.4.1 设计加热管埋设在建筑构件内的低温热水辐射采暖系统时,应会同有关专业采取防止建筑物构件龟裂和破损的措施。 4.4.2 低温热水辐射采暖,辐射体表面平均温度,应符合表4.4.2的要求。 表 4.4.2 辐射体表面平均温度(℃)

数据中心空调系统节能设计分析及方法探究

数据中心空调系统节能设计分析及方法探究 发表时间:2019-08-06T15:46:25.110Z 来源:《建筑学研究前沿》2019年8期作者:傅永洪 [导读] 空调系统作为保证数据中心的稳定高效运转必不可少的措施,经过专业研究有着极大的节能减排的挖掘余地。 浙江新大新暖通设备有限公司浙江金华 321000 摘要:伴随着大数据时代的到来,我国的数据中心的数量与日俱增。但是数据中心的高能耗问题也成为了我国节能减排工作需要关注的一个重点问题,本文以大型数据中心空调系统作为研究对象,在分析大型数据中心空调系统的设置和特点的基础上,提出具有可实施性的节能措施,进而提高大数据中心空调系统的节能减排和能源利用率。 关键词:数据中心;空调系统;节能;分析研究 一、引言 进入大数据时代,各行各业的发展越来越离不开能够集中处理、存储和交换数据的专业数据中心,因此,各领域的数据中心建设和改造数量越来越多,规模越来越大。可以说我国的数据中心发展迅猛。但是通过系列的调查研究,可以发现我国当前的数据中心年耗电量很大,这也就意味着我国大多数的数据中心的平均电能使用效率(简称PUE=数据中心总能耗 / IT设备能耗)高,这并符合当前节能减排的发展原则。因此,我们需要通过多种形式的策略减少大数据中新的高耗能问题。其中,空调系统作为保证数据中心的稳定高效运转必不可少的措施,经过专业研究有着极大的节能减排的挖掘余地。 二、数据中心空调系统的组成 数据中心空调系统主要有制冷系统、散热系统及降温辅助系统三部分组成。 (一)制冷系统 主要是冷水机组,制冷系统的工作原理是通过转变制冷剂的高压、低压的形态,利用空气的流动性,迫使数据中心机房内部的热量流出室内。制冷系统作为保证机房温度的基础保障,是空调系统高耗能的部分之一,影响空调系统中制冷系统能源消耗的因素有机房环境温湿度、室外环境温湿度、受负载率等。 (二)散热系统 主体是风机或泵,工作原理是利用空气或水把热量从数据中心内部搬运到数据中的室外。排热系统产生足够的风量或水量以带走巨大的热量,但同时散热系统也是数据中空调系统耗能高的部分之一。影响散热能源消耗的因素是机房内部的气流组织。 (三)降温辅助 工作原理是通过冷却塔、喷头或湿式过滤器,利用水的蒸发在热量排到室外的工作过程中提供帮助。降温辅助系统可以提高换热效率,帮助空调系统把热量散发地更快。降温辅助系统的耗能比例占空调系统整体耗能比例较小。 三、数据中心空调系统高耗能解析 (一)空调系统配置不合理 由于数据中心对内部环境的恒定温湿度和空气质量都有很高的要求,但限于一些外部环境和技术升级的原因,大部分数据中心的空调系统都不引入室外新风,而采用循环风带走室内高密度的显热量。一般情况下,在室内没有湿源的条件下采用循环风的送风方式,空调系统是不用除湿的。但在数据中心空调系统的实际运行中,机房空调仍会流出冷凝水,这是因为空调在冷量输出时,冷凝水会携带冷量。因此数据中心在严格空气湿度的情况下,机房空调系统通常会一边对机房内部降温回风、冷凝除湿,另一方面又同时加湿,这种设备工作方式并不不合理,会造成大量不必要的能量浪费。 (二)机房气流组织不合理 数据中心机房内部的气流组织会对整体的散热排风效率产生极大的影响,当前的多数数据中心的气流组织都存在一些不合理的现象,主要体现在以下三方面:一是机柜排列方式不合理,把机柜面向同一个方向摆放,造成的结果就是前面服务器排出的热空气直接被后排服务器吸收,使得冷热气流混合在一起,大大拉低了空调制冷效率;二是送风通道设计不合理。一些数据中心建设规划不专业,送风管道等不符合标准,影响了空调系统的制冷能力,为了满足制冷要求会选用超出设备发热量的空调,提高了耗电量;三是地板出风口位置和空调出风口的距离设置不合理,甚至在二者之间摆放机柜,造成出风量不足、局部过热的问题。 四、数据中心空调系统的节能措施 (一)采用自然冷却技术 传统的常规制冷系统,需要制冷系统全年不间断地制冷,冷水机组全年运行运行,占据了空调系统的极大的耗电量。因此,采用自然冷却技术,可以在低温环境下,优先利用低温的自然水或风做冷源,免除了冷水机组的耗电成本。目前的自然冷却技术,主要有水侧自然冷却技术和风侧自然冷却技术两种。 (1)水侧自然冷却技术 水侧自然冷却技术,顾名思义就是在符合标准的情况下利用自然水做冷源供水。采用水侧自然冷却技术,一般需要把冷水和冷却水系统串联在板式换热器中,并把冷水的供回水温度设置成三段式:当冷却水供水温度≥16℃时,冷水机组和平时一样常规制冷,单独承担数据中心的全部冷负荷;当冷却水供水温度降到10—16℃,系统可以开始使用部分的冷水作为免费冷源,由冷水机组和免费冷源共同为空调系统提供冷负荷;当冷却水供水温度<10℃以下时,冷水机组可以在技术设置后自动停止运行,空调系统的全部冷负荷由免费冷源提供。通过自然冷却技术,在过渡季和冬季减少了压缩机工作,这种技术十分适合在我国北方沿海范围内的寒冷湿润性气候里使用,可以大大降低数据中心空调系统的PUE值。 (2)风侧自然冷却技术 风侧自然冷却技术包括和间接利用室外新风两种方式。直接利用室外新风,是指把室外低温冷空气运用过滤、除硫等方式净化处理后,直接引进数据机房内,作为冷源冷却设备,实现节能。如全年PUE仅1.07的FACEBOOK数据中心,采用的就是直接利用新风供冷。间接利用室外新风,又称“京都制冷”,东京很多的数据中心都采用这种方式,具体是指室外低温空气不直接进机房,而是通过转轮式换热器吸

民用建筑供暖通风与空气调节设计规范.doc

民用建筑供暖通风与空气调节设计规范 1 前言 根据住房和城乡建设部建标[2008]102 号文件“关于印发《2008 年工程建设国家标准制定、修订计划(第一批)》的通知”,由中国建筑科学研究院主编,会同国内有关设计、科研和高等院校等单位组成编制组,共同编制本标准。 在标准编制过程中,编制组进行了广泛深入的调查研究,总结了国内实践经验,吸收了 发达国家相关设计标准的最新成果,认真分析了我国暖通空调行业的现状和发展,多次征求了国内各有关单位以及业内专家的意见,通过反复讨论、修改和完善,形成征求意见稿。本规范共分11 章和10 个附录。主要内容是:总则,术语,室内空气计算参数,室外设 计计算参数,供暖,通风,空气调节,冷热源,监测与控制,消声与隔振,绝热与防腐。本规范以黑体字标志的条文为强制性条文,必须严格执行。 本规范由住房和城乡建设部负责管理和对强制性条文进行解释,中国建筑科学研究院负 责具体技术内容的解释。 本规范在执行过程中,请各单位注意总结经验,积累资料,随时将有关意见和建议反馈 给中国建筑科学研究院暖通空调规范编制组(北京市北三环东路30 号,邮政编码100013),以供今后修订时参考。 本规范主编单位、参编单位名单: 主编单位:中国建筑科学研究院 参编单位:北京市建筑设计研究院 中国建筑设计研究院 国家气象信息中心 中国建筑东北设计研究院 清华大学 上海建筑设计研究院 华东建筑设计研究院 天津市建筑设计院 天津大学 哈尔滨工业大学 同济大学 中国建筑西北设计研究院 中国建筑西南设计研究院 中南建筑设计院 山东省建筑设计研究院 深圳市建筑设计研究总院 新疆建筑设计研究院 贵州省建筑设计研究院 2 中建(北京)国际设计顾问有限公司 华南理工大学建筑设计研究院 开利空调销售服务(上海)有限公司 特灵空调系统(中国)有限公司 同方股份有限公司 丹佛斯(上海)自动控制有限公司

浅谈数据中心建设设计

浅谈现代化数据中心设计 作者:李书 工作单位:北京捷通机房设备工程有限公司专业方向:数据中心装饰设计 日期:2011年6月

浅谈现代化数据中心设计 【摘要】本文从数据中心建设的必备要素入手,从装饰装修、供配电、空气调节、新风系统以及建筑智能系统等诸多方面阐述了作为一个现代化可持续发展的绿色机房的设计理念,为常规、常态的数据中心的建设提供了最基本的设计参考和指导。同时本文致力于推崇绿色设计理念在计算机机房设计中的应用,顺应社会发展的基本潮流,倡导绿色奥运的人文精神。 【关键词】数据中心绿色设计 【引言】数据中心基础设施的建设,很重要的一个环节就是计算机机房的建设。计算机机房工程不仅集建筑、电气、安装、网络等多个专业技术于一体,更需要丰富的工程实施和管理经验。计算机房设计与施工的优劣直接关系到机房内计算机系统是否能稳定可靠地运行,是否能保证各类信息通讯畅通无阻。由于计算机机房的环境必须满足计算机等各种微机电子设备和工作人员对温度、湿度、洁净度、电磁场强度、噪音干扰、安全保安、防漏、电源质量、振动、防雷和接地等的要求。所以,一个合格的现代化计算机机房,应该是一个安全可靠、舒适实用、节能高效和具有可扩充性的具有绿色理念的现代化机房。 【正文】一个现代化的数据中心建设一般包括以下几个系统:装饰装修系统工程;供配电系统工程;空调和新风系统工程、建筑智能化系统工程、防雷系统工程以及消防系统工程等。而每个系统工程又由若干个子系统构成,每个子系统又由若干个单项工程组成。正是由这些不可再分的单项工程共同组成了一个复杂的数据中心的有机体。下面从数据中心的基本系统设计逐一分析。 一、装饰装修系统 1、设计理念 机房内的装饰设计从风格上一般力求简洁、明快;从使用功能上吊顶和地板可拆卸以便维护,甚至有的客户要求墙面也要做到可拆卸。从功能分区上要遵循机房使用的一些基本需求。如更衣室、缓冲间、主机房、维修间、备品备件室、监控中心、参观走廊等等都是必备的功能划分。从平面布局上力求合理和实用。从层高的考虑上不可一味追求大空间这样会加大空调的配置,也不能太过低矮会造成压抑等不适感,同时过矮的情况下如果摆放机柜过密还会影响机柜操作区域的照度不够。层高一般宜在2400MM左右,不宜高于3000MM,不宜低于2200MM。 2、设计要点 隔断的设计:为了保证机房内不出现内柱,机房建筑常采用大跨度结构。 针对计算机系统的不同设备对环境的不同要求,便于空调控制、灰尘控制、噪音控制和机房管理,往往采用玻璃隔断墙将大的机房空间分隔成较小的功能区域。机房外门窗多采用防火防盗门窗,机房内门窗一般采用无框大玻璃门,这样既保证机房的安全,又保证机房内有通透、明亮的效果。 地面设计:机房工程的技术施工中,机房地面工程是一个很重要的组成部分。机房地板一般采用防静电活动地板。活动地板具有可拆卸的特点,因此,所有设备的导线电缆的连接、管道的连接及检修更换都很方便。随着材

相关文档
相关文档 最新文档