文档库 最新最全的文档下载
当前位置:文档库 › 解三角形说课稿

解三角形说课稿

解三角形说课稿
解三角形说课稿

解三角形说课稿

解三角形是高中数学的重要教学内容,高考几乎都考察到。它涉及三角形的边、角、面积,以及三角函数、圆等知识,综合性较强。在解三角形的复习中,根据考试大纲的要求,重点讲解如何运用正弦定理和余弦定理解三角形问题,以及判断三角形的形状问题。做好解三角形的教学,不但可以提高学生的解题能力,而且还对学生的数学思路的发展有帮助。因此,解三角形对于高考数学复习的意义之大。

考纲要求

考纲研读

1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.会解四种基本类型的斜三角形问题.

(1)已知两角和任一边,求其余两边和一角:可(2)已知两边及一边的对角,求其余两角和一边(可能无解或一解或两解):可先利用正弦定理求出另一边的对角,再求出其余边角;(3)已知两边及其夹角,求第三边和其余两角(有唯一解):可先利用余弦定理求出第三边,再求出其余两角;(4)已知三边,求三角:可利用余弦定理求出三内角.先求出第三角,再利用正弦定理求出其余两边;

(1)已知三角形的两边和夹角求第三边时,通常使

用余弦定理,无论这个角是什么方式给出的,都要求出其余弦值.

(2)当给出两边和其中一边所对的角,通常使用正弦定理.

(3)当已知三角形的三边时,可以求出所有角的余弦值和正弦

值,还可以求出此三角形的面积.

规律方法总结:

1、要正确区分两个定理的不同作用,围绕三角形面积公式及三角形外接圆直径展开三角形问题的求解。

2、两个定理可以实现将“边、角混合”的等式转化成“边或角的单一”等式。

3、记住一些结论:1,,,sin 2

A B C A B C S ab C π++==

均为正角;等。 4、余弦定理的数量积表示式:cos ||||BA CA A BA CA ?= 。 5.余弦定理中,涉及到四个量,利用方程思想,知道其中的任意三个量可求出第四个量。

专题24解三角形中的最值、范围问题(解析版)

专题24 解三角形中的最值、范围问题 解三角形问题是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意2 2 ,,a c ac a c ++三者的关系. 高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式. 1、正弦定理: 2sin sin sin a b c R A B C ===,其中为ABC V 外接圆的半径 正弦定理的主要作用是方程和分式中的边角互化.其原则为关于边,或是角的正弦值是否具备齐次的特征.如果齐次则可直接进行边化角或是角化边,否则不可行 学/科-+网 例如:(1)2 2 2 2 2 2 sin sin sin sin sin A B A B C a b ab c +-=?+-= (2)cos cos sin cos sin cos sin b C c B a B C C B A +=?+=(恒等式) (3) 22sin sin sin bc B C a A = 2、余弦定理:2 2 2 2cos a b c bc A =+- 变式:()()2 2 21cos a b c bc A =+-+ 此公式在已知的情况下,配合均值不等式可得到和的最值 4、三角形中的不等关系 (1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可.由于不存在等号成立的条件,在求最值时使用较少 (2)在三角形中,边角以及角的三角函数值存在等价关系: sin sin cos cos a b A B A B A B >?>?>?<

人教版必修五“解三角形”精选难题及其答案

人教版必修五“解三角形”精选难题及其答案 一、选择题(本大题共12小题,共60.0分) 1.锐角中,已知,,则的取值范围是 A. , B. , C. , D. , 2.在中,角,,的对边分别为,,,且满足,则 的形状为 A. 等腰三角形 B. 直角三角形 C. 等边三角形 D. 等腰直角三角形 3.在中,,,,则的值等于 A. B. C. D. 4.在中,有正弦定理:定值,这个定值就是的外接圆 的直径如图2所示,中,已知,点M在直线EF上从左到右运动点M不与E、F重合,对于M的每一个位置,记的外接圆面积与的外接圆面积的比值为,那么 A. 先变小再变大 B. 仅当M为线段EF的中点时,取得最大值 C. 先变大再变小 D. 是一个定值 5.已知三角形ABC中,,边上的中线长为3,当三角形ABC的面积最大 时,AB的长为 A. B. C. D. 6.在中,,,分别为内角,,所对的边,,且满足若 点O是外一点,,,平面四边形OACB 面积的最大值是 A. B. C. 3 D. 7.在中,,, ,则使有两解的x的范围是 A. , B. , C. , D. , 8.的外接圆的圆心为O,半径为1,若,且,则 的面积为 A. B. C. D. 1 9.在中,若,则是

A. 等边三角形 B. 等腰三角形 C. 直角三角形 D. 等腰直角三角形 10.在中,已知,,分别为, , 的对边,则为 A. B. 1 C. 或1 D. 11.设锐角的三内角A、B、C所对边的边长分别为a、b、c,且,,则b 的取值范围为 A. , B. , C. , D. , 12.在中,内角,,所对边的长分别为,,,且满足 ,若,则的最大值为 A. B. 3 C. D. 9 二、填空题(本大题共7小题,共35.0分) 13.设的内角,,所对的边分别为,,且,则角A的大 小为______ ;若,则的周长l的取值范围为______ . 14.在中,, , 所对边的长分别为,,已知 ,,则______ . 15.已知中,角A、B、C的对边分别是a、b、c,若,则 的形状是______ . 16.在中,若,则的形状为______ . 17.在中,角,,的对边分别为,,,若, 且,则______ .18.如果满足,,的三角形恰有一个,那么k的取值范围 是______ . 19.已知的三个内角,,的对边依次为,,,外接圆半径为1,且满足 ,则面积的最大值为______ . 三、解答题(本大题共11小题,共132.0分) 20.在锐角中,,,是角,,的对边,且. 求角C的大小; 若,且的面积为,求c的值. 21.在中,角,,的对边分别为,,已知. 求角A的大小; 若,,求的面积.

解三角形中的最值问题

解三角形中的最值问题 1、在ABC ?中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,求cos C 的最小值。 【解析】由余弦定理知2 14242) (21 2cos 2222222 2 2 =≥+=+-+=-+=ab ab ab b a ab b a b a ab c b a C , 2、在ABC ?中,60,3B AC ==o ,求2AB BC +的最大值。 3、在ABC ?中,已知角,,A B C 的对边分别为a ,b ,c ,且,sin 32sin a b A A B ≥+=。 (1)求角C 的大小;(2)求 a b c +的最大值。 解析:(1)由sin 32sin A A B +=得2sin 2sin 3A B π?? + = ?? ?,则sin sin 3A B π? ?+= ??? ,因为,a b ≥则A B ≥,所以3 A B π π+ =-,故2,33 A B C ππ+= =。 (2)由正弦定理及(1)得sin sin =sin sin 3cos 2sin sin 363a b A B A A A A A c C ππ++???? ?=+++=+ ? ??????? 所以当3 A π = 时, a b c +取得最大值2. 4、△ABC 在内角,,A B C 的对边分别为,,a b c ,已知cos sin a b C c B =+. (1)求B ;(2)若2b =,求△ABC 面积的最大值. 【答案】

5、在△ABC 中,a, b, c 分别为内角A, B, C 的对边,且2sin (2)sin (2)sin .a A a c B c b C =+++ (1)求A 的大小;(2)求sin sin B C +的最大值. 解: 6、在ABC ?中,角A B C 、、的对边分别为,,a b c ,且满足2)a c BA BC cCB CA -?=?u u u r u u u r u u u r u u u r 。 (1)求角B 的大小;(2)若||6BA BC -=u u u r u u u r ,求ABC ?面积的最大值。 答案:(1)2)cos cos a c B b C -=,由正弦定理得(2sin )cos sin cos ,A C B B C -=

高考大题---解三角形中有关最值问题的题型汇总

解三角形中有关最值问题的题型汇总 1.(2010年浙江高考)在ABC ?中,c b a ,,C B A 所对的边分别为,,角,设S 为ABC ?的面积,满足)(4 3222c b a S -+=。 (1)求角C 的大小; (2)求B A sin sin +的最大值。 2(2011年湖南高考)在ABC ?中,c b a ,,C B A 所对的边分别为,,角,且满足C a A c sin sin = (1) 求角C 的大小; (2) 求)4cos(sin 3π +-B A 的最大值,并求取得最大值时角A ,B 的大小。 3.(2011年全国新课标2)在ABC ?中,?=60B ,AC=3,求AB+2BC 的最大值。 4.(2012太原模拟)ABC ?中,c b a ,,C B A 所对的边分别为,,角,设向量),(a b a c m --=→,),(c b a n +=→,若→m 平行于→n 。 (1)求角B 的大小; (2)求C A sin sin +的最大值。 5(2012年浙江宁波模拟)已知函数θθπ2cos )4( sin 32)(2-+=x f ,A 为ABC ?中的最小内角,且满足32)(=A f 。 (1)求角A 的大小; (2)若BC 边上的中线长为3,求ABC S ?的最大值。 6. (2013年全国新课标2)在ABC ?中,c b a ,,C B A 所对的边分别为 ,,角,已知B c C b a sin cos += (1)求B ; (2)若b=2, 求ABC S ?的最大值。

7(2014年陕西高考)在ABC ?中,c b a ,,C B A 所对的边分别为,,角。 (1)若c b a ,,成等差数列,证明sinA+sinC=2sin(A+C); (2)若c b a ,,成等比数列,求cosB 的最小值。 8.(2015年山东高考)设)4(cos cos sin )(2π+ -=x x x x f (1)求)(x f 的单调区间; (2)在锐角ABC ?中,c b a ,,C B A 所对的边分别为,,角,若)2(A f =0,a=1,求ABC S ?的最大值。 9.(2016年北京高考)在ABC ?中,ac b c a 2222+=+ (1)求角B 的大小; (2)C A cos cos 2+求的最大值。 10(2016高考山东理数)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知tan tan 2(tan tan ).cos cos A B A B B A +=+ (Ⅰ)证明:a+b=2c; (Ⅱ)求cosC 的最小值. 11.(2016河南中原名校一联,理10)在ABC ?中,角A ,B ,C 的对边分别为a ,b , c ,已知向量()cos ,cos m A B = ,(),2n a c b =- ,且//m n . (1)求角A 的大小; (2)若4=a ,求ABC S ?的最大值。 12.(2016绥化模拟)在ABC ?中,232cos 2 --x x C 是方程的一个根。 (1)求角C ; (2)当a+b=10时,求ABC ?周长的最小值。

2010年高考真题分类汇编(新课标)考点10 解三角形应用举例

2010年高考真题分类汇编(新课标) 考点10 解三角形应用举例 1.(2010·陕西高考理科·T17)如图,A ,B 是海面上位于东西方向相距 (533海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60° 的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距3 海里的C 点的救援船立即即前往营救,其航行速度为30海里/小时,该救援 船到达D 点需要多长时间? 【命题立意】本题考查了三角恒等变换、已知三角函数值求角以及正、余弦定理,考查了解决三角形问题 的能力,属于中档题。 【思路点拨】解三角形22202cos60ABD BD DC BD BC BD BC DC t ???=+-???? 【规范解答】000003)906030,45,105.DBA DAB ADB ∠=-=∠=∴∠=由题意知AB=5(3+, 00000 sin105sin 45cos 60sin 60cos 45213226222∴=?+?+=+= sin sin sin 5(33)sin 45sin 25(33)103(13)2 3.2613 BD AB ABD DAB ADB AB DAB BD ADB ?=∠∠?∠+?∴==∠+===++在中,由正弦定理得: 00002220 180606060,3, 2cos 6013001200233900.2 30301().30 D DBC CD DBC BC DBC CD BD BC BD BC CD t ∠=--==?=+-???=+-?=∴===?又在中,由余弦定理得 (海里),则需要的时间小时答;救援船到达点需要1小时.注:如果证出为直角三角形,根据勾股定理求出,同样给分. 2.(2010·陕西高考文科·T17)在△ABC 中,已知B=45°,D 是BC 边上的一点, AD=10,AC=14,DC=6,求AB 的长. 【命题立意】本题考查了已知三角函数值求角、正弦定理、余弦定理,考查了解三角形问题的能力,

专题24解三角形中的最值、范围问题(解析版)

专题24 解三角形中的最值、范围问题解三角形问题是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角” “角转边”,另外要注意a c,ac,a2 c 2三者的关系 . 高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式” ,其中的核心是“变角” ,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式 . a b c 1、正弦定理:2R,其中R为ABC 外接圆的半径 sin A sinB sinC 正弦定理的主要作用是方程和分式中的边角互化 . 其原则为关于边,或是角的正弦值是否具备齐次的特征 . 如果齐次则可直接进行边化角或是角化边,否则不可行学/科-+ 网 2 2 2 2 2 2 例如:(1) sin A sin B sin AsinB sin C a b ab c (2)bcosC ccosB a sin B cosC sinC cosB sin A (恒等式) bc sin B sinC (3) a 2 sin 2 A a sin A 2、余弦定理:a2 b2 c2 2bc cos A 22 变式:a2b c 2bc 1 cosA 此公式在已知a, A的情况下,配合均值不等式可得到 b c和bc 的 最值 4、三角形中的不等关系 (1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可 . 由于不存在等号成立的条件,在求最值时使用较少 (2)在三角形中,边角以及角的三角函数值存在等价关系: a b A B sinA sinB cosA cosB 其中由A B cosA cosB 利用的是余弦函数单调性,而A B sinA sinB 仅在一个三角形内有效. 5 、解三角形中处理不等关系的几种方法(1)转变为一个变量的函数:通过边角互化和代入消元,将多变量表达式转变为函数,从而将问题转化为求函数的值域(最值) (2)利用均值不等式求得最值

【数学】1.2.1《解三角形应用举例》教案(新人教A版必修5)

课题: §1.2.1解三角形应用举例 第一课时 授课类型:新授课●教学目标 知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语 过程与方法:首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫。其次结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握解法,能够类比解决实际问题。对于例2这样的开放性题目要鼓励学生讨论,开放多种思路,引导学生发现问题并进行适当的指点和矫正情感态度与价值观:激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力 ●教学重点 实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解 ●教学难点 根据题意建立数学模型,画出示意图 ●教学过程 Ⅰ.课题导入 1、[复习旧知] 复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形? 2、[设置情境] 请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。于是上面介绍的问题是用以前的方法所不能解决的。今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离。 Ⅱ.讲授新课 (1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解[例题讲解] (2)例1、如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,∠BAC=? 75。求A、B 51,∠ACB=? 两点的距离(精确到0.1m)

高中数学解三角形课件

解三角形 (数学5必修)第一章:解三角形 [基础训练A 组] 一、选择题 1.在△ABC 中,若0 30,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32- 2.若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A .A sin B .A cos C .A tan D . A tan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( ) A .2 B . 2 3 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( ) A .006030或 B .006045或 C .0060120或 D .0015030或 6.边长为5,7,8的三角形的最大角与最小角的和是( ) A .090 B .0120 C .0135 D .0150 二、填空题 1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。 2.在△ABC 中,若=++=A c bc b a 则,2 22_________。 3.在△ABC 中,若====a C B b 则,135,30,20 0_________。 4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________。 5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值是________。 三、解答题 1. 在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么 2.在△ABC 中,求证: )cos cos (a A b B c a b b a -=- 3.在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++。

解三角形应用举例最新衡水中学自用精品教学设计

解三角形应用举例 主标题:解三角形应用举例 副标题:为学生详细的分析解三角形应用举例的高考考点、命题方向以及规律总结。 关键词:距离测量,高度测量,仰角,俯角,方位角,方向角 难度:3 重要程度:5 考点剖析: 能够运用正弦定理、余弦定理等知识解决一些与测量和几何计算有关的实际问题. 命题方向: 1.测量距离问题是高考的常考内容,既有选择、填空题,也有解答题,难度适中,属中档题. 2.高考对此类问题的考查常有以下两个命题角度: (1)测量问题; (2)行程问题. 规律总结: 1个步骤——解三角形应用题的一般步骤 2种情形——解三角形应用题的两种情形 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 2个注意点——解三角形应用题应注意的问题 (1)画出示意图后要注意寻找一些特殊三角形,如等边三角形、直角三角形、等腰三角形等,这样可以优化解题过程. (2)解三角形时,为避免误差的积累,应尽可能用已知的数据(原始数据),少用间接求出的量.

知识梳理 1.距离的测量 背景可测元素图形目标及解法 两点均可到达a,b,α 求AB:AB= a2+b2-2ab cos α 只有一点可到达b,α,β 求AB:(1)α+β+B=π; (2) AB sin β= b sin B 两点都不可到达a,α,β, γ,θ 求AB:(1)△ACD中,用 正弦定理求AC; (2)△BCD中,用正弦定理 求BC; (3)△ABC中,用余弦定理 求AB 2.高度的测量 背景可测元素图形目标及解法 底部可 到达 a,α求AB:AB=a tan_α 底部不可到达a,α,β 求AB:(1)在△ACD中用正弦 定理求AD;(2)AB=AD sin_β 3.实际问题中常见的角 (1)仰角和俯角 在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角(如图1).

三角形中的最值问题

第42课 三角形中的最值问题 考点提要 1.掌握三角形的概念与基本性质. 2.能运用正弦定理、余弦定理建立目标函数,解决三角形中的最值问题. 基础自测 1.(1)△ABC 中,cos A A =,则A 的值为 30° 或90° ; (2)△ABC 中,当A= 3π 时,cos 2cos 2B C A ++取得最大值 3 2 . 2.在△ABC 中,m m m C B A 2:)1(:sin :sin :sin +=,则m 的取值范围是 2 1 >m . 解 由m m m c b a C B A 2:)1(:::sin :sin :sin +==, 令mk c k m b mk a 2,)1(,=+==,由b c a c b a >+>+,,得2 1>m . 3.锐角三角形ABC 中,若A=2B ,则B 的取值范围是 30o<B <45o . 4.设R ,r 分别为直角三角形的外接圆半径和内切圆半径,则 r R 1. 5.在△ABC 中,内角A ,B ,C 所对边的边长分别是,,a b c ,若23b ac =,则B 的取值范围是 0°<B ≤120° . 6.在△ABC 中,若A>B ,则下列不等式中,正确的为 ①②④ . ①A sin >B sin ; ②A cos B 2sin ; ④A 2cos B ?a >b A R sin 2?>B R sin 2?A sin >B sin ,故①正确; A cos < B cos ?)2sin(A -π<)2 sin(B -π ?A>B ,故②正确(或由余弦函数 在(0,)π上的单调性知②正确); 由A 2cos B sin ?A>B ,故④正确. 知识梳理 1.直角△ABC 中,内角A ,B ,C 所对边的边长分别是,,a b c ,C=90°,若内切圆的半径为r ,则2 a b c r +-= . 2.在三角形中,勾股定理、正弦定理、余弦定理是基础,起到工具性的作用.它们在处理三角形中的三角函数的求值、化简、证明、判定三角形的形状及解三角形等问题中

解三角形应用举例

第7节 解三角形应用举例 最新考纲 能够运用正弦定理、余弦定理等知识方法解决一些与测量、几何计算有关的实际问题. 知 识 梳 理 1.仰角和俯角 在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1). 2.方向角 相对于某正方向的水平角,如南偏东30°,北偏西45°等. 3.方位角 指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图2). 4.坡度:坡面与水平面所成的二面角的正切值. [常用结论与微点提醒] 1.不要搞错各种角的含义,不要把这些角和三角形内角之间的关系弄混. 2.在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易出现错误. 诊 断 自 测 1.思考辨析(在括号内打“√”或“×”) (1)东北方向就是北偏东45°的方向.( ) (2)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.( ) (3)俯角是铅垂线与视线所成的角,其范围为? ?????0,π2.( ) (4)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( )

解析 (2)α=β;(3)俯角是视线与水平线所构成的角. 答案 (1)√ (2)× (3)× (4)√ 2.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( ) A.北偏东15° B.北偏西15° C.北偏东10° D.北偏西10° 解析 如图所示,∠ACB =90°, 又AC =BC , ∴∠CBA =45°,而β=30°, ∴α=90°-45°-30°=15°. ∴点A 在点B 的北偏西15°. 答案 B 3.(教材习题改编)如图所示,设A ,B 两点在河的两岸,一测量 者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m , ∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的 距离为( ) A.50 2 m B.50 3 m C.25 2 m D.2522 m 解析 由正弦定理得AB sin ∠ACB =AC sin B , 又∵B =30°,∴AB =AC sin ∠ACB sin B =50×2212 =502(m). 答案 A 4.轮船A 和轮船B 在中午12时同时离开海港C ,两船航行方向的夹角为120°,两船的航行速度分别为25 n mile/h ,15 n mile/h ,则下午2时两船之间的距离是______n mile. 解析 设两船之间的距离为d , 则d 2=502+302-2×50×30×cos 120°=4 900, ∴d =70,即两船相距70 n mile.

(完整版)解三角形应用举例练习题

解三角形应用举例练习题 一、选择题 1.某人向正东方向走x km后,他向右转150°,然后朝新方向走3 km,结果他离出发点恰好 3 km,那么x的值为() A.3B.2 3 C.23或 3 D.3 2.已知船A在灯塔C北偏东85°且到C的距离为2km,船B在灯塔C西偏北25°且到C的距离为3km,则A,B两船的距离为() A.23km B.32km C.15km D.13km 3.已知△ABC的三边长a=3,b=5,c=6,则△ABC的面积是() A.14 B.214 C.15 D.215 4.两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为() A.a km B.3a km C.2a km D.2a km 5.已知△ABC中,a=2、b=3、B=60°,那么角A等于() A.135°B.90° C.45°D.30° 6.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是每小时() A.5海里B.53海里 C.10海里D.103海里 二、填空题 7.(2010~2011·醴陵二中、四中期中)已知A、B两地的距离为10km,BC两地的距离为20km,经测量∠ABC=120°,则AC两地的距离为________km. 8.如图,为了测量河的宽度,在一岸边选定两点A,B,望对岸的标记物C,测得∠CAB=30°,∠CBA=75°,AB=120 m,则河的宽度是__________.

《解三角形的实际应用举例》教学设计

课题:解三角形的实际应用举例 一、教材分析 本节课是学习了正弦定理、余弦定理及三角形中的几何计算之后的一节实际应用课,可以说是为正弦定理、余弦定理的应用而设计的,因此本节课的学习具有理论联系实际的重要作用。在本节课的教学中,用方程的思想作支撑,以具体问题具体分析作指导,引领学生认识问题、分析问题并最终解决问题。 二、教学目标 1、知识与技能 ①能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解测量的方法和意义 ②会在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法,搞清利用解斜三角形可解决的各类应用问题和基本图形和基本等量关系,理解各种应用问题中的有关名词、术语(如:坡度、俯角、仰角、方向角、方位角等) 2、过程与方法 ①采用启发与尝试的方法,让学生在温故知新中学会正确识图、画图、想图,帮助学生逐步构建知识框架 ②通过解三角形的应用的学习,提高解决实际问题的能力;通过解三角形在实际中的应用,要求学生体会具体问题可以转化为抽象的数学问题,以及数学知识在生产、生活实际中所发挥的重要作用 3、情感态度价值观 ①激发学生学习数学的兴趣,并体会数学的应用价值 ②培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力 ③进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力 三、教学重点、难点 1、重点:①实际问题向数学问题的转化 ②掌握运用正、余弦定理等知识方法解三角形的方法 2、难点:实际问题向数学问题转化思路的确定 四、教学方法与手段 本节课的重点是正确运用正弦定理、余弦定理解斜三角形,而正确运用两个定理的关键是要结合图形,明确各已知量、未知量以及它们之间的相互关系。通过问题的探究,要让学生结合实际问题,画出相关图形,学会分析问题情景,确定合适的求解顺序,明确所用的定理;其次,在教学中让学生分析讨论,在方程求解繁与简的基础上选择解题的思路,以提高学生观察、识别、分析、归纳等思维能力。

(完整版)解三角形应用举例

解三角形应用举例 【重要知识】 1、仰角和俯角 在视线和水平线所成的角中,视线在水平线上方的叫做 仰角;视线在水平线下方的叫做俯角。 2、方向角: 方向角是正北方向或正南方向到目标方向线所成的锐角。 方向角α的取值范围是:?<

2、如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是42m,∠BAC=45?, ∠ACB=? 75。求A、B两点的距离. 3、为了开凿隧道,要测量隧道上D、E间的距离,为此在山的一侧选取适当点C,如图,测得CA=400m,CB=600m,∠ACB=60°,又测得A、B两点到隧道口的距离AD=80m,BE=40m(A、D、E、B在一条直线上),计算隧道DE的长.

解三角形中的取值范围问题

解三角形中的取值范围问题 1、已知a ,b ,c 分别为ABC ?的三个内角,,A B C 的对边,且2cos 2b C a c =-。 (1)求角B 的大小; (2)若ABC ?,求b 的长度的取值范围。 解析:(1)由正弦定理得2sin cos 2sin sin B C A C =-,在ABC ?中, sin sin()sin cos cos sin A B C B C B C =+=+,所以sin (2cos 1)0C B -=。 又因为0,sin 0C C π<<>,所以1cos 2B =,而0B π<<,所以3 B π = (2)因为1 sin 2 ABC S ac B ?= = 所以4ac = 由余弦定理得2 2 2 2 2 2scos b a c ac B a c ac ac =+-=+-≥,即2 4b ≥,所以2b ≥ 2、在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos (cos )cos 0C A A B +=. (1) 求角B 的大小;(2)若a +c =1,求b 的取值范围 【答案】解:(1)由已知得cos()cos cos cos 0A B A B A B -++= 即有sin sin cos 0A B A B = 因为sin 0A ≠,所以sin 0B B =,又cos 0B ≠,所以tan B =又0B π<<,所以3 B π =. (2)由余弦定理,有2 2 2 2cos b a c ac B =+-. 因为11,cos 2a c B +==,有2 2113()24 b a =-+. 又01a <<,于是有 2114b ≤<,即有1 12 b ≤<. 3、已知(2cos ,1),(cos ,)m x x n x y =+=- ,满足0m n ?= . (I )将y 表示为x 的函数()f x ,并求()f x 的最小正周期; (II )已知,,a b c 分别为ABC ?的三个内角,,A B C 对应的边长,若3)2 A ( =f ,且2a =,求b c +的取值范围.

高中数学专题:解三角形中的最值问题

解三角形中的最值问题 解三角形中的最值问题有两种解题思路: 1. 转化为三角函数求最值问题,有两个转化方法: (1)利用正弦定理将边转化为角的正弦值,A R a sin 2=,B R b sin 2=,C R c sin 2=. (2)利用三角形内角和和诱导公式进行角的转化,C B A sin )sin(=+,C B A cos )cos(-=+,C B A tan )tan(-=+. 最终转化为一个角的三角函数形式,求其最值. 2. 转化为利用均值不等式(ab b a 222≥+)求最值问题,主要与余弦定理或其推论相结合,求三角形面积的最大值,或某一个内角余弦值的最小值. 一.转化为三角函数求最值问题. 例1.(2016年北京卷理科15题) 在ABC ?中,ac b c a 2222+=+. (1)求B 的大小; (2)求C A cos cos 2+的最大值. 解:(1)ac b c a 2222=-+,则由余弦定理得: 22222cos 222==-+=ac ac ac b c a B ,4 π=B , (2) )4cos(cos 2)cos(cos 2cos cos 2π +-=+-=+A A B A A C A

A A A A A sin 2 2cos 22sin 22cos 22cos 2+=+-= 1)4 sin(≤+=πA 当24π π =+A 时,C A cos cos 2+取最大值,为1. 例2.(2011年全国卷理科16题) 在ABC ?中, 60=B ,3=AC ,则BC AB 2+的最大值为 . 解:设3==AC b ,AB c =,BC a =, 由正弦定理得:22 3 3sin sin sin ====C c B b A a , 则A a sin 2=,C c sin 2=, 所以A B A A C a c BC AB sin 4)sin(2sin 4sin 222++=+=+=+ A A A A A A A cos 3sin 5sin 4cos 3sin sin 4)60sin(2+=++=++= 72)sin(72≤+=?A ;(其中5 3tan =?), 当1)sin(=+?A 时,BC AB 2+取最大值,为72. 例3.(2018年北京卷文科14题) 若ABC ?的面积为)(43222b c a -+,且C 为钝角,则=B ;a c 的取值范围是 . 解:由余弦定理得B ac b c a cos 2222=-+, 所以B ac B ac S cos 243sin 21?==,则3tan =B ,所以3 π=B , 由正弦定理得:

三角形中的最值与范围问题

在正余弦定理的运用中,有一类题目值得关注。这类题有一个相同的特点,即知道三角形的一条边和边所对的角,求三角形面积(或周长)的最值(或范围),但在解题方法的选择上有值得考究的地方。请先看两个例题: 例1(13年重庆綦江中学)在ABC ?中,角A,B,C 的对边分别为c b a ,,且4,4 1cos == a A . (1)若6=+c b ,且b < c ,求c b ,的值. (2)求ABC ?的面积的最大值。 解 (1)由余弦定理A bc c b a cos 2222-+=, ∴bc bc c b 2 12)(162--+= ∴8=bc , 又∵,6=+c b b

北京四中数学必修五1.2解三角形应用举例提高版

解三角形应用举例 编稿:张希勇审稿:李霞 【学习目标】 1.能够利用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的问题; 2.提高运用所学知识解决实际问题的能力,并初步掌握数学建模的思想方法; 3.掌握运用正弦定理、余弦定理解决几何计算问题的方法. 【学习策略】 解斜三角形的知识主要用于测量及航海两大类型问题.实际应用中,首先要弄清题意,画出直观示意图,将实际问题转化为解三角形的问题,再确定是哪类解三角形问题,即应用哪个定理来解决. 【要点梳理】 要点一、解三角形应用题的步骤 解三角形在实际中应用非常广泛,如测量、航海、几何、物理等方面都要用到解三角形的知识,解题时应认真分析题意,并做到算法简练,算式工整,计算正确.其解题的一般步骤是: (1)准确理解题意,尤其要理解应用题中的有关名词和术语;明确已知和所求,理清量与量之间的关系; (2)根据题意画出示意图,并将已知条件在图形中标出,将实际问题抽象成解三角形模型; (3) 分析与所研究的问题有关的一个或几个三角形,正确运用正弦定理和余弦定理,有顺序的求解; (4)将三角形的解还原为实际问题,注意实际问题中的单位及近似计算要求,回答实际问题. 要点二、解三角形应用题的基本思路 实际问题画图数学问题解三角形数学问题的解检验实际问题的解 要点三、实际问题中的一些名词、术语 仰角和俯角 与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角,如图所示:

坡角和坡度 坡面与地平面所成的角度,叫做坡角;坡面的铅直高度和水平宽度的比叫做坡度或者坡比,常用字母i 表示。坡比是坡角的正切值。 方位角与方向角: 方位角:一般指正北方向线顺时针到目标方向线的水平角。方位角的取值范围为0°~360°。 如图,点B 的方位角是0 135α=。 方向角:一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度。 如图为南偏西060方向(指以正南方向为始边,向正西方向旋转0 60); 如图为北偏东030方向(指从正北开始向正东方向旋转0 30). 东南方向:指经过目标的射线是正东与正南的夹角平分线.依此可类推西南方向、西北方向等;

解三角形中的范围(最值)问题的求解策略

解三角形中的范围(最值)问题的求解策略 与解三角形相关的最值(范围)问题在高中数学中经常遇见.由于它涉及的知识面广,灵活性大,综合性强,因而利于培养学生的思维能力和创新意识.本文举例说明此类问题几种常见的解题策略,供大家参考. 一.转化为三角函数的有界性求解 例1:(2018?汉中二模)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,若 ,A=3 π,则b +c 的最大值为( ) A .4 B . C . D .2 【分析】利用正弦定理表示出b 与c ,问题转化为角的正弦函数,利用三角函数恒等变换化简为一角一函数的形式,再利用三角函数的单调性与值域即可得出. 解:由正弦定理可得:2sin sin sin 3 b c B C π ===, ∴b +c=2sinB +2sinC=2sinB +2sin 2()3 B π- =2sinB + 21sin )2 B B +=3sinB sin ()3B π +≤,当且仅当B=3 π时取等号. ∴b +c 的最大值为 C . 【点评】本题考查了正弦定理、和差公式、三角函数的单调性与值域,解决这类问题的思路是利用正弦定理把边转化为角,再利用三角函数的性质求出范围或最值。 同步训练题:(2018?三明二模)在△ABC 中,∠BAC 的平分线交BC 边于D ,若AB=2,AC=1,则△ABD 面积的最大值为( ) A .12 B .23 C .34 D .1 解析:根据∠BAC 的平分线交BC 边于D ,可得△A BD 和△ACD 以D 为顶点的高相等.可得△ABD 面积与△ACD 面积之比为AB :AC=2:1,则△ABD 面积为 23S △ABC .由题意,△ABD 面积为23S △ABC ,∵S △ABC =12bcsinA ,即12 ×2×1×sinA ,

相关文档 最新文档