复数概念及公式总结

数系的扩充和复数概念和公式总结

1.虚数单位i:

它的平方等于-1,即21

i=-

2. i与-1的关系: i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i

3. i的周期性:i4n+1=i, i4n+2=-1, i4n+3=-i, i4n=1

4.复数的定义:形如(,)

+∈的数叫复数,a叫复数的实部,b叫复数

a bi a

b R

的虚部全体复数所成的集合叫做复数集,用字母C表示复数通常用字母z表示,即(,)

=+∈

z a bi a b R

5. 复数与实数、虚数、纯虚数及0的关系:对于复数(,)

+∈,当且

a bi a

b R

仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;a≠0且b≠0时,z=bi叫做非纯虚数的纯虚数;当且仅当a=b=0时,z就是实数0.

复数概念及公式总结

5.复数集与其它数集之间的关系:N Z Q R C.

6. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等如果a,b,c,d∈R,那么a+bi=c+di?a=c,b=d 一般地,两个复数只能说相等或不相等,而不能比较大小.如果两个复数都

是实数,就可以比较大小 当两个复数不全是实数时不能比较大小

7. 复平面、实轴、虚轴:

点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R )可用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫做复平面, x 轴叫做实轴,y 轴叫做虚轴实轴上的点都表示实数 (1)实轴上的点都表示实数

(2)虚轴上的点都表示纯虚数

(3)原点对应的有序实数对为(0,0)

设z 1=a +bi ,z 2=c +di (a 、b 、c 、d ∈R )是任意两个复数,

8.复数z 1与z 2的加法运算律:z 1+z 2=(a +bi )+(c +di )=(a +c )+(b +d )i .

9.复数z 1与z 2的减法运算律:z 1-z 2=(a +bi )-(c +di )=(a -c )+(b -d )i .

10.复数z 1与z 2的乘法运算律:z 1·z 2= (a +bi )(c +di )=(ac -bd )+(bc +ad )i . 11.复数z 1与z 2的除法运算律:z 1÷z 2 =(a +bi )÷(c +di )=i d

c a

d bc d c bd ac 2222+-+++(分母实数化) 12.共轭复数:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数虚部不等于0的两个共轭复数也叫做共轭虚数

通常记复数z 的共轭复数为z 。例如z =3+5i 与z =3-5i 互为共轭复数

13. 共轭复数的性质

(1)实数的共轭复数仍然是它本身

(2)2

2Z Z Z Z ==? (3)两个共轭复数对应的点关于实轴对称

14.复数的两种几何意义: 15几个常用结论

(1)()i i 212=+,(2)()i i 212-=- (3)i i -=1, (4) i i i

=-+11 16.复数的模: (5) i i

i -=+-11 复数bi a Z +=的模22b a Z += (6)()()22b a bi a bi a +=-+

点),(b a Z 向量OZ uuu r 一一对应 一一对应 一一对应 复数()R b a bi a Z ∈

+=,

有关计算:

⑴n i ()*n N ∈怎样计算?(先求n 被4除所得的余数,r r k i i =+4()*,k N r N ∈∈) ⑵i i 2

321232121--=+-=ωω、是1的两个虚立方根,并且: 13231==ωω 221ωω= 122ωω= 211ωω= 12

1ωω= 21ωω= 12ωω= 121-=+ωω

⑶ 复数集内的三角形不等式是:212121z z z z z z +≤±≤-,其中左边在复数

z 1、z 2对应的向量共线且反向(同向)时取等号,右边在复数z 1、z 2对应的向量共线且同向(反向)时取等号。

⑷ z z ?=2z 。

⑸ 复平面内复数z 对应的点的几个基本轨迹:

?=-是正的常数)r r z z (0轨迹是一个圆。

?-=-)(2121是复常数、z z z z z z 轨迹是一条直线。

?=-+-是正的常数)是复常数,、a z z a z z z z 2121(2轨迹有三种可能情形:a)当212z z a ->时,轨迹为椭圆;b)当212z z a -=时,轨迹为一条线段;c)当212z z a -<时,轨迹不存在。

?=---)(221是正的常数a a z z z z 轨迹有三种可能情形:a)当212z z a -<时,轨迹为双曲线;b) 当212z z a -=时,轨迹为两条射线;c) 当212z z a ->时,轨迹不存在。

相关推荐
相关主题
热门推荐