文档库 最新最全的文档下载
当前位置:文档库 › 基于等效鉴相频率的频标比对途径

基于等效鉴相频率的频标比对途径

基于等效鉴相频率的频标比对途径
基于等效鉴相频率的频标比对途径

幅相频率特性图—奈奎斯特Nyquist图

第二章控制系统的数学模型 1.本章的教学要求 1)使学生了解控制系统建立数学模型的方法和步骤; 2)使学生掌握传递函数的定义、性质及传递函数的求取方法; 3)掌握典型环节及其传递函数; 4)掌握用方框图等效变换的基本法则求系统传递函数的方法。 2.本章讲授的重点 本章讲授的重点是传递函数的定义、性质;用方框图等效变换的基本法则求系统传递函数的方法。 3.本章的教学安排 本课程预计讲授10个学时

第一讲 2.1 线性系统的微分方程 1.主要内容: 本讲介绍数学模型定义、特点、种类;主要介绍控制系统最基本的数学模型——微分方程,通过举例说明列写物理系统微分方程的基本方法和步骤。 2.讲授方法及讲授重点: 本讲首先给出数学模型定义,说明为什么建立数学模型;介绍建立数学模型的依据;介绍数学模型特点,重点说明相似系统的概念、模拟的概念,由此引出今后研究控制系统问题都是在典型数学模型基础上进行的;介绍数学模型种类,说明本课程主要介绍微分方程、传递函数、频率特性形式数学模型。 其次,本讲主要以电气系统为例介绍列写物理系统微分方程的方法和步骤,通过例题的详细讲解,使学生了解微分方程是描述控制系统动态性能的数学模型,熟悉在分析具体的物理系统过程中,要综合应用所学过的物理、力学、机械等学科的知识。 3.教学手段: Powerpoint课件与黑板讲授相结合。 4.注意事项: 在讲授本讲时,应说明列写物理系统微分方程的依据是系统本身的物理特性,本课程主要讲授物理系统微分方程列写的方法和步骤。 5.课时安排:1学时。 6.作业:p47 2-1 7.思考题:复习拉普拉斯(Laplace)变换

系统频率特性

第三章 系统频率特性 系统的时域分析是分析系统的直接方法,比较直观,但离开计算机仿真,分析高阶系统是困难的。系统频域分析是工程广为应用的系统分析和综合的间接方法。频率分析不仅可以了解系统频率特性,如截止频率、谐振频率等,而且可以间接了解系统时域特性,如快速性,稳定性等,为分析和设计系统提供更简便更可靠的方法。 本章首先阐明频率响应的特点,给出计算频率响应的方法,接着介绍Nyquist 图和Bode 图的绘制方法、系统的稳定裕度及系统时域性能指标计算。 3.1 频率响应和频率特性 3.1.1 一般概念 频率响应是指系统对正弦输入的稳态响应。考虑传递函数为G(s)的线性系统,若输入正弦信号 t X t x i i ωsin )(= (3.1-1) 根据微分方程解的理论,系统的稳态输出仍然为与输入信号同频率的正弦信号,只是其幅值和相位发生了变化。输出幅值正比于输入的幅值i X ,而且是输入正弦频率ω的函数。输出的相位与i X 无关,只与输入信号产生一个相位差?,且也是输入信号频率ω的函数。即线性系统的稳态输出为 )](sin[)()(00ω?ωω+=t X t x (3.1-2)

由此可知,输出信号与输入信号的幅值比是ω的函数,称为系统的幅频特性,记为)(ωA 。输出信号与输入信号相位差也是ω的函数,称为系统的相频特性,记为)(ω?。 幅频特性: )()()(0ωωωi X X A = (3.1-3) 相频特性: )()()(0ω?ω?ω?i -= (3.1-4) 频率特性是指系统在正弦信号作用下,稳态输出与输入之比对频率的关系特性,可表示为: )()()(0ωωωj X j X j G i = (3.1-5) 频率特性)(ωj G 是传递函数)(s G 的一种特殊形式。任何线性连续时间系统的频率特性都可由系统传递函数中的s 以ωj 代替而求得。 )(ωj G 有三种表示方法: )()()(ω?ωωj e A j G = (3.1-6) )()()(ωωωjV U j G += (3.1-7) )(sin )()cos()()(ω?ωωωωjA A j G += (3.1-8) 式中,实频特性: )(cos )()(ω?ωωA U = 虚频特性:

幅相频率特性图—奈奎斯特Nyquist图

第五章频率特性 1.本章的教学要求 1) 掌握频率特性的基本概念、性质及求取方法; 2)掌握典型环节及系统的频率特性图—奈奎斯特(Nyquist)图的绘制方法; 3)掌握典型环节及系统的对数频率特性图—波德图(Bode)图的绘制方法; 4)使学生掌握频率特性的实验测定法。 5)使学生掌握奈奎斯特(Nyquist)稳定性判据应用; 6)掌握对数频率稳定性判据(Bode判据)应用; 7)掌握相对稳定性的基本概念,相位裕量Υ、幅值裕量K g定义、计算、在Nyquist图与Bode图上的表示。 2.本章讲授的重点 本章讲授的重点是掌握频率特性的基本概念、求取方法;奈奎斯特(Nyquist)图的绘制方法;波德图(Bode)图的绘制方法;利用频率特性分析控制系统。3.本章的教学安排 本课程预计讲授14个学时

第一讲 5.1 频率特性 1.主要内容: 1)频率响应和频率特性 2)频率特性的求取方法 3)频率特性的表示方法 2.讲授方法及讲授重点: 本讲首先给出频率响应定义,用图说明线性系统稳态响应曲线的特点,由此引出幅频特性、相频特性的概念,然后给出频率特性的定义及数学表达式,利用图及公式说明幅频特性、相频特性、实频特性、虚频特性的关系。 在介绍频率特性的求取方法时,首先说明频率特性一般有三种求法:利用定义求取、根据系统的传递函数来求取、通过实验测得。在此主要说明和推导根据系统的传递函数来求取的方法, 第三种方法后面介绍。 在介绍频率特性的表示方法时,首先说明频率特性的表示方法主要有如下几种:幅频特性和相频特性图、幅相频率特性图、对数频率特性图、对数幅相频率特性图、实频特性图和虚频特性图,分别简单介绍各自特点,然后强调本章重点介绍幅相频率特性(Nyquist)图和对数频率特性(Bode)图。 3.教学手段: Powerpoint课件与黑板讲授相结合。 4.注意事项: 在讲授本讲时,频率特性概念比较抽象,同学不好理解,但此概念在本门课中又非常重要,可以联系实际举几个简单例子说明此概念。 5.课时安排:2学时。 6.作业: 书后P173,习题5-2

幅频特性和相频特性实验报告

HUNAN UNIVERSITY 课程实验报告 题目:幅频特性和相频特性 学生: 学生学号: 专业班级: 完成日期:2014年1月6号

一.实验容 1、测量RC串联电路频率特性曲线 元件参数:R=1K,C=0.1uF,输入信号:Vpp=5V、f=100Hz~15K 正弦波。测量10组不同频率下的Vpp,作幅频特性曲线。 2、测量RC串联电路的相频特性曲线 电路参数同上,测量10组不用频率下的相位,作相频特性曲 线。用莎育图像测相位差。 3、测量RC串并联(文氏电桥)电路频率特性曲线和相频特性曲 线 二.实验器材 1k?电阻一个,0.1uf电容一个,函数信号发生器一台,示波 器一台,导线和探头线若干 三.实验目的 (1)研究RC串并联电路对正弦交流信号的稳态响应; (2)熟练掌握示波器萨如图形的测量方法,掌握相位差的测量方法; (3)掌握RC串并联电路以及文氏电桥幅频相频特性特征。四.实验电路图

100nF

100nF 五.实验数据及波形图 电阻的幅度与峰峰值与频率: 电容的幅度与峰峰值与频率:

f/khz 3.1 5.0 9.1 13 15 Vpp/v 2.21 1.47 0.90 0.71 0.58 相位差/度-61.80 -72.21 -78.22 -80.02 -80.12 串并联电路频率峰峰值与相位差: f/khz 0.1 0.3 0.8 1.5 3 Vpp/v 0.348 0.92 1.54 1.70 1.54 相位差/度-81.88 -59.88 -26.24 -0.527 23.87 f/khz 5 7 10 12 15 Vpp/v 1.22 1.02 0.780 0.7 0.58 相位差/度44.60 54.46 64.32 64.68 69.66 当输入电压比输出电压=0.707(/2)时,其波形图如下: 1.电阻:

RL 、RC幅频相频特性要点

扬州大学物理科学与技术学院 大学物理综合实验训练论文 实验名称:RL、RC串联电路幅频特性和相频特性研究 班级:物教1101班 姓名:刘玉桃 学号:110801114 指导老师:徐秀莲

RL、RC串联电路幅频特性和相频特性研究(扬州大学物理1101 刘玉桃学号110801114 指导老师:徐秀莲) 摘要 在交流电路中,电阻值与频率无关,电容具有“通高频,阻低频”的特性,电感具有“通低频,阻高频”的特性。将正弦交流电压加到电阻、电容和电感组成的电路中时,各元件上的电压及相位会随着变化,这称作电路的稳态特性。当把正弦交流电压Vi输入到RC(或RL)串联电路中时,电容或电阻两端的输出电压V0的幅度及相位将随输入电压Vi的频率而变化。这种回路中的电流或电压与输入信号频率间的关系,称为幅频特性;回路电流和电压间的相位差与频率的关系,称为相频特性。将电容、电阻、电感串联起来,可以得到特殊的幅频特性和相频特性。本实验主要研究了交流电路中RL、RC串联电路的幅频特性和相频特性,不难得出,在RL、RC串联电路中,各元件上的电压幅度及相位随信号频率的改变而改变。 关键字:稳态特性;幅频特性;相频特性。 1.实验目的 (1)研究RL、RC串联电路对正弦交流信号的稳态响应 (2)学习使用双踪示波器,掌握相位差的测量方法; 2.实验仪器 名称数量型号 1、双踪示波器一台自备 2、低频功率信号源一台自备 3、九孔插件方板一块 SJ-010 4、万用表一只自备 5、电阻 2只 40Ω、1kΩ 6、电容 1只 0.5pF 7、电感 1只 1mH 8、短接桥和连接导线若干 SJ-009、SJ-301、SJ-302 9、开关 1只 SJ-001-1-纽子开关

开环系统频率特性曲线的绘制方法

.. 开环系统频率特性曲线的绘制方法 (一) 已知系统开环传递函数G k (s ),绘制Nyquist 曲线(开环幅相曲线) 一、ω:0+→+∞ 1、由已知的G k (s )求()()k k s j G j G s ωω==,A (ω),φ(ω) ,P (ω),Q (ω); 11211222 1 1 2 2 1 2 1 1 2 2 1 2 1121 12221 1221 2 1 1 2 2 1 2 22222 2 2 2(1)[(1)2](1)[(1)2]()()(1)[(1)2](1)[(1)2] m m m m j k j k k k j k j k k k k v n n n n i l i l l l i l i l l l j T j j T j k G j j j T j j T j ωωωωωξωξωωωωωωωωωωωξωξωωω ω+-+---= +-+---∏∏∏∏∏∏∏∏ (1) 式中:分子多项式中最小相位环节的阶次和为111212m m m =+, 分子多项式中非最小相位环节的阶次和为212222m m m =+, 分母多项式中最小相位环节的阶次和为111212n n n v =++, 分母多项式中非最小相位环节的阶次和为212222n n n =+, 分子多项式阶次之和为12m m m =+,分母多项式阶次之和为12n n n =+。 注:式中仅包含教材p192所列5种非最小相位环节,不包含形如1Ts -、 11Ts -、22 121 n n s s ξωω+-、22 21n n s s ξωω+-等非最小相位环节。 2、求N 氏曲线的起点 当ω→0+时,(1)式可近似为: 0lim ()()k v k G j j ωωω+ →→ (2) 于是,N 氏曲线的起点取决于开环放大系数k 和系统的型v 。 ① 当0v =时,N 氏曲线起始于实轴上的一点(k ,0)或(-k ,0); ② 当0v >时,N 氏曲线起始于无穷远点: 0k >时,沿着角度()2 v π?ω=-?起始于无穷远点; 0k <时,沿着角度()2 v π?ωπ=--?起始于无穷远点。 ③ 当0v <时,N 氏曲线起始于原点: 0k >时,沿着角度()2 v π?ω=?起始于原点; 0k <时,沿着角度()2 v π?ωπ=-+?起始于原点。

幅相频率特性(精)

5.2 幅相频率特性(Nyquist 图) 开环系统的幅相特性曲线是系统频域分析的依据,掌握典型环节的幅相特性是绘制开环系统幅相特性曲线的基础。 在典型环节或开环系统的传递函数中,令ωj s =,即得到相应的频率特性。令ω由小到大取值,计算相应的幅值)(ωA 和相角)(ω?,在G 平面描点画图,就可以得到典型环节或开环系统的幅相特性曲线。 5.2.1 典型环节的幅相特性曲线 1.比例环节 比例环节的传递函数为 K s G =)( (5-22) 其频率特性为 K j G =)(ω00j Ke j =+ ()()()()0A G j K G j ωω?ωω==? ?=∠=?? (5-23) 比例环节的幅相特性是G 平面实轴上的一个点,如图5-8所示。表明比例环节稳态正弦响应的振幅是输入信号的K 倍,且响应与输入同相位。 2. 微分环节 微分环节的传递函数为 s s G =)( (5-24) 其频率特性为 ?=+=900)(j e j j G ωωω ()()90A ωω?ω=? ?=?? (5-25) 微分环节的幅值与ω成正比,相角恒为?90。当∞→=0ω时,幅相特性从G 平面的原点起始,一直沿虚轴趋于∞+j 处,如图5-9曲线①所示。 图5-8 比例环节的 幅相频率特性

3. 积分环节 积分环节的传递函数为 s s G 1 )(= (5-26) 其频率特性为 ?-=+ =901 10)(j e j j G ω ωω 1()()90A ωω?ω?= ? ??=-?? (5-27) 积分环节的幅值与ω成反比,相角恒为-?90。当∞→=0ω时,幅相特性从虚轴 ∞-j 处出发,沿负虚轴逐渐趋于坐标原点,如图5-9曲线②所示。 4. 惯性环节 惯性环节的传递函数为 1 1 )(+=Ts s G (5-28) 其频率特性为 ωωωωT j e T jT j G arctan 2 211 11)(-+=+= ()()arctan A T ω?ωω= =-? (5-29) 当0=ω时,幅值1)(=ωA ,相角?=0)(ω?;当∞=ω时,0)(=ωA ,?-=90)(ω?。可以证明,惯性环节幅相特性曲线是一个以(1/2,j0)为圆心、1/2为半径的半圆。如图5-10所示。证明如下: 设 jY X T jT jT j G +=+-=+= 2 21111)(ω ω ωω 其中 2 211 ωT X += (5-30) X T T T Y ωωω -=+-=2 21 (5-31) 由式(5-31)可得 X Y T =-ω (5-32) 将式(5-32)代入式(5-30)整理后可得 图5-9 微、积分环节 幅相特性曲线

相关文档