文档库 最新最全的文档下载
当前位置:文档库 › J2S伺服异常代码

J2S伺服异常代码

J2S伺服异常代码
J2S伺服异常代码

警報處置方法

發生警報時,故障信號(ALM)會變成OFF,伺服馬達的動態煞車會動作以停止。此時,顯示部會顯示出警報碼。

請依照本項將警報發生的原因解決,使用選用配備的SET UP S/W可參照警報的發生原因。

警告對應處置方法

當ALE1(過負載警告)發生時仍可繼續運轉,但有可能出現警報而

導致無法正常動作,若發生期的的警告(ALE6 or ALE9)則會呈

SV OFF狀態。

請依照本項將產生警告的原因排除,

安川伺服驱动器的常用故障代码

安川伺服驱动器的常用故障代码 A.00 绝对值数据错绝对值错误或没收到 A.02 参数中断用户参数检测不到 A.04 参数设置错误用户参数设置超出允许值 A.10 过流电源变压器过流 A.30 再生电路检查错误再生电路检查错误 A.31 位置错误脉冲溢出位置错误,脉冲超出参数Cn-1E设定值 A.40 主电路电压错误主电路电压出错 A.51 过速电机转速过快 A.71 过载(大负载) 电机几秒至几十秒过载运行 A.72 过载(小负载) 电机过载下连续运行 A.80 绝对值编码器差错绝对值编码器每转脉冲数出错ssszxx f A.81 绝对值编码器失效绝对值编码器电源不正常 A.82 绝对值编码器检测错误绝对值编码器检测不正常 A.83 绝对值编码器电池错误绝对值编码器电池电压不正常 A.84 绝对值编码器数据不对绝对值编码器数据接受不正常 A.85 绝对值编码器转速过高电机转速超过400转/分后编码器打开 A.A1 过热驱动器过热 A.B1 给定输入错误伺服驱动器CPU检测给定信号错误 A.C1 伺服过运行伺服电机(编码器)失控 A.C2 编码器输出相位错误编码器输出A、B、C相位出错 A.C3 编码器A相B相断路编码器A相B相没接 A.C4 编码器C相断路编码器C相没接 A.F1 电源缺相主电源一相没接 A.F3 电源失电电源被切断 CPF00 手持传输错误1 通电5秒后,手持与连接仍不对 CPF01 手持传输错误2 传输发生5次以上错误 A.99 无错误操作状态不正常 安川伺服报警代码 报警代码报警名称主要内容 A.00 绝对值数据错误不能接受绝对值数据或接受的绝对值数据异常A.02 参数破坏用户常数的“和数校验”结果异常 A.04 用户常数设定错误设定的“用户常数”超过设定范围 A.10 电流过大功率晶体管电流过大 A.30 测出再生异常再生处理回路异常 A.31 位置偏差脉冲溢出位置偏差脉冲超出了用户常数“溢出(Cn-1E)”的值

ASD伺服常见问题处理方式

ASD伺服常见问题处理方式 1,伺服驱动器输出到电机的UVW三相是否可以互换? 不可以,伺服驱动器到电机UVW的接法是唯一的。普通异步电机输入电源UVW两相互换时电机会反转,事实上伺服电机UVW任意两相互换电机也会反转,但是伺服电机是有反馈装置的,这样就出现正反馈会导致电机飞车。伺服驱动器会检测并防止飞车,因此在UVW接错线后我们看到的现象是电机以很快的速度转过一个角度然后报警过负载ALE06。 2,伺服电机为何要Servo on之后才可以动作? 伺服驱动器并不是在通电后就会输出电流到电机,因此电机是处于放松的状态(手可以转动电机轴)。伺服驱动器接收到Servo on信号后会输出电流到电机,让电机处于一种电气保持的状态,此时才可以接收指令去动作,没有收到指令时是不会动作的即使有外力介入(手转不动电机轴),这样伺服电机才能实现精确定位。 3,伺服驱动器报警ALE01如何处理? 检查UVW线是否有短路。如果把UVW线与驱动器断开再通电仍然出现ALE01则是驱动器硬件故障。 4,ALE02过电压/ALE03低电压报警发生时如何处理? 首先使用万用表测量输入电压是否在允许范围内;再次是通过驱动器或伺服软件示波器监视“主回路电压”,这是直流母线电压,电压伏数应该是输入交流电压的1.414倍,正常来讲应该不会有太大的偏差。如果偏差很大需返厂重新校准。ALE02/ALE03报警是以“主回路电压”来判断的。 5,在高速运行时机台在中途有很明显的一钝,观察发现是中途有ALE03报警产生,但是一闪就消失了,如何解决这个问题? 在高速运行时会消耗很大能量,母线电压会下降,如果输入电压偏低此时就会出现ALE03报警。报警发生时伺服马上停止,母线电压恢复正常,报警自动消失,伺服会继续运行,因此看起来就是明显的一钝。这种情况多发生在使用单相电源供电时,建议主回路使用三相电源供电。参数P2-65 bit12置ON可使ALE03报警发生时,母线电压恢复后报警不会自动消失。 6,伺服驱动器报警ALE04如何处理? AB系列伺服驱动器配ECMA马达时功率不匹配上电会报警ALE04,除这种情况外刚一上电就报警ALE04就是电机编码器故障。如果在使用过程中出现ALE04报警是因为编码器信号被干扰,请查看编码器线是否是屏蔽双绞、驱动器与电机间地线是否连接,或者在编码器线上套磁环。通过ALE04.EXE软件可以监测每次Z脉冲位置AB脉冲计数是否变化,有变化则会报

伺服驱动器常见故障的原因及对策

伺服驱动器常见故障的原因及对策 伺服驱动器由于长时间的使用,难免会出现故障,最重要的是及时查找出原因,对应解决故障,及早恢复正常使用。小编在这整理伺服驱动器常见的故障原因及对策供大家参考。 1、伺服电机在有脉冲输出时不运转,如何处理 ①监视控制器的脉冲输出当前值以及脉冲输出灯是否闪烁,确认指令脉冲已经执行并已经正常输出脉冲; ②检查控制器到驱动器的控制电缆,动力电缆,编码器电缆是否配线错误,破损或者接触不良; ③检查带制动器的伺服电机其制动器是否已经打开; ④监视伺服驱动器的面板确认脉冲指令是否输入; ⑤ Run运行指令正常; ⑥控制模式务必选择位置控制模式; ⑦伺服驱动器设置的输入脉冲类型和指令脉冲的设置是否一致; ⑧确保正转侧驱动禁止,反转侧驱动禁止信号以及偏差计数器复位信号没有被输入,脱开负载并且空载运行正常,检查机械系统。 2、伺服电机高速旋转时出现电机偏差计数器溢出错误,如何处理 ①高速旋转时发生电机偏差计数器溢出错误; 对策: 检查电机动力电缆和编码器电缆的配线是否正确,电缆是否有破损。 ②输入较长指令脉冲时发生电机偏差计数器溢出错误; 对策: a.增益设置太大,重新手动调整增益或使用自动调整增益功能; b.延长加减速时间; c.负载过重,需要重新选定更大容量的电机或减轻负载,加装减速机等传动机构提高负荷能力。 ③运行过程中发生电机偏差计数器溢出错误。 对策: a.增大偏差计数器溢出水平设定值; b.减慢旋转速度; c.延长加减速时间; d.负载过重,需要重新选定更大容量的电机或减轻负载,加装减速机等传动机构提高负载能力。 3、伺服电机做位置控制定位不准,如何处理 ①首先确认控制器实际发出的脉冲当前值是否和预想的一致,如不一致则检查并修正程序; ②监视伺服驱动器接收到的脉冲指令个数是否和控制器发出的一致,如不一致则检查控制线电缆; ③检查伺服指令脉冲模式的设置是否和控制器设置得一致,如CW/CCW还是脉冲+方向; ④伺服增益设置太大,尝试重新用手动或自动方式调整伺服增益; ⑤伺服电机在进行往复运动时易产生累积误差,建议在工艺允许的条件下设置一个机械原点信号,在误差超出允许范围之前进行原点搜索操作; ⑥机械系统本身精度不高或传动机构有异常(如伺服电机和设备系统间的联轴器部发生偏移等)。 4、伺服电机做位置控制运行报超速故障,如何处理

安川伺服驱动器常用故障代码

安川伺服驱动器常用故障代码 A.00 绝对值数据错 绝对值错误或没收到 A.02 参数中断 用户参数检测不到 A.04 参数设置错误 用户参数设置超出允许值 A.10 过流 电源变压器过流 A.30 再生电路检查错误 再生电路检查错误 A.31 位置错误脉冲溢出 位置错误,脉冲超出参数Cn-1E设定值 A.40 主电路电压错误 主电路电压出错 A.51 过速 电机转速过快 A.71 过载(大负载) 电机几秒至几十秒过载运行A.72 过载(小负载) 电机过载下连续运行 A.80 绝对值编码器差错 绝对值编码器每转脉冲数出错ssszxx f A.81 绝对值编码器失效 绝对值编码器电源不正常 A.82 绝对值编码器检测错误 绝对值编码器检测不正常 A.83 绝对值编码器电池错误 绝对值编码器电池电压不正常 A.84 绝对值编码器数据不对 绝对值编码器数据接受不正常 A.85 绝对值编码器转速过高 电机转速超过400转/分后编码器打开 A.A1 过热 驱动器过热 A.B1 给定输入错误

伺服驱动器CPU检测给定信号错误 A.C1 伺服过运行 伺服电机(编码器)失控 A.C2 编码器输出相位错误 编码器输出A、B、C相位出错 A.C3 编码器A相B相断路 编码器A相B相没接 A.C4 编码器C相断路 编码器C相没接 A.F1 电源缺相 主电源一相没接 A.F3 电源失电 电源被切断 CPF00 手持传输错误1 通电5秒后,手持与连接仍不对 CPF01 手持传输错误2 传输发生5次以上错误 A.99 无错误 操作状态不正常 常见故障编码器的大多是连接线或插头,过载大多是电机或丝杠轴承损坏或润滑不到位,首先判断是机械还是电器部分的,从连轴器部分断开如果还有故障显示,则为电器故障,反之则为机械故障。

rexroth伺服驱动器故障代码

C204:(伺服电机编码器接头接触不好) C601: C602:回零故障。 (将S-0-0288显示出来的数值写到S-0-0289上即可解决) E257:直流限制功能发生作用。说明驱动器超载。 (青岛二厂新两鼓成型机径向后压辊电机通电后出现自激吱吱声,一会驱动器便出现报警参数E257,随后又出现F219。最后查原因是电机三相相序接错了) E410:不能随动或扫描0# 地址。 F219:电机过热关断。 F220: 负载势能超出伺服驱动器吸收能力。 (青岛二厂老厂18V两鼓成型机在进行第十一步侧压辊反包滚压动作时,主鼓在侧压辊反包滚压动作结束、旋转停止时,主轴伺服驱动器报警F220。而在其它正、反转动作时则没有问题。将S-0-0100参数由原来的4﹒5改变为10;将S-0-0101参数由7改变为5后将问题解决。小魏说:如果再不能解决问题,也可用将各个驱动器上顶部的L1和L2两个端子点分别串联在一起的方法加以解决) F228:过分偏差。 (青岛二厂新两鼓成型机调试时主机鼓伺服曾经出现过这个报警,查其原因是连接编码器的齿型带过于松弛,信号跳动变化太大所致。主机机械制动闸脱离不干净或机械旋转系统捌劲,也会出现这个报警。用加大S-0-0159的值加以解决) F237:设定的位置或速度值超出系统(伺服驱动器)允许的最大值。 (青岛黄海橡胶集团公司新厂19V两鼓成型机试车时在后压辊径向伺服驱动器上曾经出现过这个报警信号,表现为后压辊径向运转速度非常的慢。就象是齿数比给定的不对一样。但将伺服参数再次拷贝(F5)一遍就好了) (在调试上海载重轮胎厂工业胎成型机时,当从DriveTop看完主机驱动参数将其关闭后,成型鼓正转有且正常,而反转没有,一起动便出现F237报警.经查看是S_393<控制值方式为模数格式>的最后一位由0变为1所致.复原为0便好了) F434: 紧急停止.伺服驱动器紧急停止功能起动. F822:伺服电机编码器信号没有或太小。 F878:速度环出错。 (青岛二厂新两鼓成型机调试时主机鼓伺服曾经出现过这个报警,查其原因是连接主鼓电机和主鼓轴的齿型带太松弛,转动时齿型带跳动,跳齿时电机有时过载所致。 排除机械问题外,用增加点C-0018参数值或减少点C-0017参数值解决。 当旋转轴力矩不够时,如电机慢速动作正常,转换快速旋转时却转动不起开,伺服驱动器显示出F878。用适当增加S100值,减少S101值来解决问题) F2820 = F220: 制动电阻过载. (上海载重如皋轮胎厂23V大两鼓工程胎试车时突然出现报警,主鼓驱动器出现F2820 按复位钮后报警解除.可以点动主鼓正反转.但过了一会后报警会再次出现,即使不转动主鼓.后查得是外接电阻器<正常阻值5Ω>连接线断路所致. 如果是在刚刚开使试车出现此报警则应先加大速度循环时间[如P04速度环滤波时间<滤波周期>]常数和降低轴最高转速S91试一试)

FANUC伺服驱动系统故障分析诊断

FANUC交流伺服驱动系统故障维修举例 例244~245.加工过程中出现过热报警的故障维修 例244.故障现象:某配套FANUC 0T MATE系统的数控车床,在加工过程中,经常出现伺服电动机过热报警。 分析与处理过程:本机床伺服驱动器采用的是FANUC S系列伺服驱动器,当报警时,触摸伺服电动机温度在正常的围,实际电动机无过熟现象。所以引起故障的原因应是伺服驱动器的温度检测电路故障或是过热检测热敏电阻的不良。 通过短接伺服电动机的过热检测热敏电阻触点,再次开机进行加工试验,经长时间运行,故障消失,证明电动机过热是由于过热检测热敏电阻不良引起的,在无替换元件的条件下,可以暂时将其触点短接,使其系统正常工作。 例245.故障现象:某配套FANUC 0T MATE系统的数控车床,在加工过程中,经常出现X轴伺服电动机过热报警。 分析与处理过程:故障分析过程同上例,经检查X轴伺服电动机外表温度过高,事实上存在过热现象。 测量伺服电动机空载工作电流,发现其值超过了正常的围。测量各电枢绕组的电阻,发现A相对地局部短路;拆开电动机检查发现,由于电动机的防护不当,在加工时冷却液进入了电动机,使电动机绕阻对地短路。修理电动机后,机床恢复正常。 例246.驱动器出现OVC报警的故障维修 故障现象:某配套FANUC 0T-C系统、采用FANUC S系列伺服驱动的数控车床,手动运动X轴时,伺服电动机不转,系统显示ALM414报警。 分析与处理过程:FANUC 0T-C出现ALM 414报警的含义是“X轴数字伺服报警”,通过检查系统诊断参数DGN720~723,发现其中DGN720 bit5=l,故可以确定本机床故障原因是X轴OVC(过电流)报警。 分析造成故障的原因很多,但维修时最常见的是伺服电动机的制动器未松开。 在本机床上,由于采用斜床身布局,所以X轴伺服电动机上带有制动器,以防止停电时的下滑。经检查,本机床故障的原因确是制动器未松开:根据原理图和系统信号的状态诊断分析,故障是由于中间继电器的触点不良造成的,更换继电器后机床恢复正常。 例247~例248.参数设定错误引起的故障维修 例247.故障现象:某配套FANUC 0TD系统的二手数控车床,配套FANUC子α系列数字伺服,开机后,系统显示ALM417、427报警。 分析与处理过程:FANUC 0TD出现ALM 417、427报警的含义是“数字伺服参数设定错误”。 由于机床为二手设备,调试时发现系统的电池已经遗失,因此,系统的参数都在不同程度上存在错误。进一步检查系统主板,发现主板上的报警指示灯L1、L2亮,驱动器显示“-”,表明驱动器未准备好。 根据系统报警ALM417、427可以确定,引起报警可能的原因有: 1)电动机型号参数8*20设定错误。 2)电动机的转向参数8*22设定错误。 3)速度反馈脉冲参数8*23设定错误。 4)位置反馈脉冲参数8*24设定错误。

安川伺服故障维修报警代码

安川伺服故障维修报警代码 安川伺服报警代码 报警代码报警名称主要内容 A.00 绝对值数据错误不能接受绝对值数据或接受的绝对值数据异常 A.02 参数破坏用户常数的“和数校验”结果异常 A.04 用户常数设定错误设定的“用户常数”超过设定范围 A.10 电流过大功率晶体管电流过大 A.30 测出再生异常再生处理回路异常 A.31 位置偏差脉冲溢出位置偏差脉冲超出了用户常数“溢出(Cn-1E)”的值 A.40 测出主回路电压异常主回路异常 A.51 速度过大电机的回转速度超出检测电平 A.71 超高负荷大幅度超过额定转矩运转数秒-数十秒 A.72 超低负荷超过额定转矩连续运转 A.80 绝对值编码器错误绝对值编码器一转的脉冲数异常 A.81 绝对值编码器备份错误绝对值编码器的三个电源(+5v,电池组内部电容器)都没电了 A.82 绝对值编码器和数校验错误绝对值编码器内存的“和数校验”结果异常A.83 绝对值编码器电池组错误绝对值编码器的电池组电压异常 A.84 绝对值编码器数据错误收受的绝对值数据异常 A.85 绝对值编码器超速绝对值编码器通电源时,转速达400r/min以上 A.A1 散热片过热伺服单元的散热器过热 A.b1 指令输入阅读错误伺服单元的CPU不能检测指令输入 A.C1 伺服失控 伺服电机(编码器)失控 A.C2 测出编码器相位差编码器的A,B,C三相输出的相位异常 A.C3 编码器A 相,B相断线编码器的A相,B相断线 A.C4 编码器C相断线编码器C相断线 A.F1 电源线缺相主电源有一相没连接

A.F3 瞬时停电错误在交流电中,有超过一个电源周期的停电发生 CPF00 数字操作器通讯错误-1 通电5秒后,还不能和伺服单元通讯 CPF01 数字操作器通讯错误-2 连续发生5次数据通讯不好 A.99 无错误显示显示正常动作状态

安川伺服器故障代码

安川伺服器故障代码集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

显示名称内容时的停止方法复位可否伺服(ALM)输出: A.020A.02用户参数和数检查异常1伺服单元内部参数的数据异常DB停止否 H A.021A.02参数格式化异常1伺服单元内部参数的数据异常DB停止否 A.022A.02系统参数和数检查异常1伺服单元内部参数的数据异常DB停止否 A.023A.02参数密码异常1伺服单元内部参数的数据异常DB停止否 A.02AA.02用户参数和数检查异常2伺服单元内部参数的数据异常DB停止否 A.02bA.02系统参数和数检查异常2伺服单元内部参数的数据异常DB停止否 A.030A.03主电路检测部分异常电源电路的各种检测数据异常DB停止可 A.040A.04用户参数设定异常1用户参数的值超出设定范围DB停止否 A.04AA.04用户参数设定异常2用户参数的值超出设定范围DB停止否 A.041A.04分频脉冲输出设定异常PG分频比设定(Pn212)不满足设定范围或设定条件。DB 停止否 A.042A.04参数组合异常多个用户参数的组合超出了设定范围DB停止否 A.050A.05组合错误伺服电机与伺服单元的容量不正确DB停止可 A.051A.05产品未支持连接了不支持的串行转换单元DB停止否 A.0b0A.0B伺服ON指令无效 使用以操作器可伺服ON的功能后,以控制指令进行了 伺服ON DB停止可 A.100A.10过电流或散热片过热IGBT产生过热电流

或者伺服单元的散热片过热 DB停止否 A.300A.30再生异常再生电阻断线 再生晶体管故障 DB停止可 A.320A.32再生过载再生能量超过再生电阻的容量零速停止可 A.330A.33主电路配线错误主电路的供电方法与用户参数Pn001的设定不符DB停止可A.400A.40过电压主电路DC电压异常高DB停止可 A.410A.41不足电压主电路DC电压过低零速停止可 A.510A.51过速伺服电机的转数异常高DB停止可 A.511A.51分频脉冲输出过速超出了已设的PG分频比(Pn212)的电机转速上限DB停止可A.520A.52振动检测出电机转速异常振动DB停止可 A.521A.52自动调谐 自动调谐时的转动惯量比计算异常 DB停止可 A.710A.71过载(瞬间最大负载)以大幅度超额的转矩进行了数秒至数十秒的运行零速停止可 A.720A.72过载(连续最大负载)以超额定值的转矩进行了连续运行DB停止可 A.730A.73 A.731 DB过载由于DB(动态制动器)动作,旋转能量超过了DB电阻 的容量 DB停止可

安川伺服报警信息

安川伺服报警信息.txt大悲无泪,大悟无言,大笑无声。我们手里的金钱是保持自由的一种工具。女人在约会前,一定先去美容院;男人约会前,一定先去银行。安川伺服报警代码 报警代码报警名称主要内容 A.00 绝对值数据错误不能接受绝对值数据或接受的绝对值数据异常 A.02 参数破坏用户常数的“和数校验”结果异常 A.04 用户常数设定错误设定的“用户常数”超过设定范围 A.10 电流过大功率晶体管电流过大 A.30 测出再生异常再生处理回路异常 A.31 位置偏差脉冲溢出位置偏差脉冲超出了用户常数“溢出(Cn-1E)”的值 A.40 测出主回路电压异常主回路异常 A.51 速度过大电机的回转速度超出检测电平 A.71 超高负荷大幅度超过额定转矩运转数秒-数十秒 A.72 超低负荷超过额定转矩连续运转 A.80 绝对值编码器错误绝对值编码器一转的脉冲数异常 A.81 绝对值编码器备份错误绝对值编码器的三个电源(+5v,电池组内部电容器)都没电了 A.82 绝对值编码器和数校验错误绝对值编码器内存的“和数校验”结果异常A.83 绝对值编码器电池组错误绝对值编码器的电池组电压异常 A.84 绝对值编码器数据错误收受的绝对值数据异常 A.85 绝对值编码器超速绝对值编码器通电源时,转速达400r/min 以上 A.A1 散热片过热伺服单元的散热器过热 A.b1 指令输入阅读错误伺服单元的CPU不能检测指令输入 A.C1 伺服失控伺服电机(编码器)失控 A.C2 测出编码器相位差编码器的A,B,C三相输出的相位异常 A.C3 编码器A相,B相断线编码器的A相,B相断线 A.C4 编码器C相断线编码器C相断线 A.F1 电源线缺相主电源有一相没连接 A.F3 瞬时停电错误在交流电中,有超过一个电源周期的停电发生 CPF00 数字操作器通讯错误-1 通电5秒后,还不能和伺服单元通讯 CPF01 数字操作器通讯错误-2 连续发生5次数据通讯不好 A.99 无错误显示显示正常动作状态 源鑫电器自动化 https://www.wendangku.net/doc/ef14149604.html, A.02 参数破坏伺服单元EEPROM 数据异常 A.03 主电路检测部分异常电源电路的各种检测数据异常 (SERVOPACK( 伺服单元) 为6.0kW 以上时不检测)

伺服驱动器常见故障解析

1、伺服电机高速旋转时出现电机偏差计数器溢出错误,如何处理? ①高速旋转时发生电机偏差计数器溢出错误; 对策: 检查电机动力电缆和编码器电缆的配线是否正确,电缆是否有破损。 ②输入较长指令脉冲时发生电机偏差计数器溢出错误; 对策: a.增益设置太大,重新手动调整增益或使用自动调整增益功能; b.延长加减速时间; c.负载过重,需要重新选定更大容量的电机或减轻负载,加装减速机等传动机构提高负荷能力。 ③运行过程中发生电机偏差计数器溢出错误。 对策: a.增大偏差计数器溢出水平设定值; b.减慢旋转速度; c.延长加减速时间; d.负载过重,需要重新选定更大容量的电机或减轻负载,加装减速机等传动机构提高负载能力。 2、伺服电机在有脉冲输出时不运转,如何处理?

①监视控制器的脉冲输出当前值以及脉冲输出灯是否闪烁,确认指令脉冲已经执行并已经正常输出脉冲; ②检查控制器到驱动器的控制电缆,动力电缆,编码器电缆是否配线错误,破损或者接触不良; ③检查带制动器的伺服电机其制动器是否已经打开; ④监视伺服驱动器的面板确认脉冲指令是否输入; ⑤Run运行指令正常; ⑥控制模式务必选择位置控制模式; ⑦伺服驱动器设置的输入脉冲类型和指令脉冲的设置是否一致; ⑧确保正转侧驱动禁止,反转侧驱动禁止信号以及偏差计数器复位信号没有被输入,脱开负载并且空载运行正常,检查机械系统。 3、伺服电机没有带负载报过载,如何处理? ①如果是伺服Run(运行)信号一接入并且没有发脉冲的情况下发生: a.检查伺服电机动力电缆配线,检查是否有接触不良或电缆破损; b.如果是带制动器的伺服电机则务必将制动器打开; c.速度回路增益是否设置过大; d.速度回路的积分时间常数是否设置过小。 ②如果伺服只是在运行过程中发生: a.位置回路增益是否设置过大;

安川伺服器故障代码

显示名称内容时的停止方法复位可否 伺服(ALM) 输出: A.020 A.02 用户参数和数检查异常1 伺服单元内部参数的数据异常DB 停止否 H A.021 A.02 参数格式化异常1 伺服单元内部参数的数据异常DB 停止否 A.022 A.02 系统参数和数检查异常1 伺服单元内部参数的数据异常DB 停止否 A.023 A.02 参数密码异常1 伺服单元内部参数的数据异常DB 停止否 A.02A A.02 用户参数和数检查异常2 伺服单元内部参数的数据异常DB 停止否 A.02b A.02 系统参数和数检查异常2 伺服单元内部参数的数据异常DB 停止否 A.030 A.03 主电路检测部分异常电源电路的各种检测数据异常DB 停止可 A.040 A.04 用户参数设定异常1 用户参数的值超出设定范围DB 停止否 A.04A A.04 用户参数设定异常2 用户参数的值超出设定范围DB 停止否 A.041 A.04 分频脉冲输出设定异常PG 分频比设定(Pn212) 不满足设定范围或设定条件。DB 停止否 A.042 A.04 参数组合异常多个用户参数的组合超出了设定范围DB 停止否 A.050 A.05 组合错误伺服电机与伺服单元的容量不正确DB 停止可 A.051 A.05 产品未支持连接了不支持的串行转换单元DB 停止否 A.0b0 A.0B 伺服ON 指令无效 使用以操作器可伺服ON 的功能后,以控制指令进行了 伺服ON DB 停止可 A.100 A.10 过电流或散热片过热IGBT 产生过热电流 或者伺服单元的散热片过热 DB 停止否 A.300 A.30 再生异常再生电阻断线 再生晶体管故障 DB 停止可 A.320 A.32 再生过载再生能量超过再生电阻的容量零速停止可 A.330 A.33 主电路配线错误主电路的供电方法与用户参数Pn001 的设定不符DB 停止可A.400 A.40 过电压主电路DC 电压异常高DB 停止可 A.410 A.41 不足电压主电路DC 电压过低零速停止可 A.510 A.51 过速伺服电机的转数异常高DB 停止可 A.511 A.51 分频脉冲输出过速超出了已设的PG 分频比(Pn212) 的电机转速上限DB 停止可 A.520 A.52 振动检测出电机转速异常振动DB 停止可 A.521 A.52 自动调谐 自动调谐时的转动惯量比计算异常 DB 停止可 A.710 A.71 过载( 瞬间最大负载) 以大幅度超额的转矩进行了数秒至数十秒的运行零速停止可 A.720 A.72 过载( 连续最大负载) 以超额定值的转矩进行了连续运行DB 停止可 A.730 A.73

三洋伺服驱动器常见故障

伺服驱动器常见故障:无显示、缺相、过流、过压、欠压、过热、过载、接地、参数错误、有显示无输出、模块损坏、报错等; AL 21 RL 21 电源故障,电流过大,驱动器的U、V、W相和驱动器电机之间的连线短路或者U、V、W 相接地 AL 22 RL 22 电源检测异常伺服驱动器和电机不匹配 AL 23 RL 23 电源检测异常伺服驱动器内部电路故障 AL 24 RL 24 电源检测异常 AL 41 RL 41 过载伺服驱动器控制板或电源模块有问题,伺服电机编码器电路故障,驱动器与电机不匹配,伺服电机抱闸没有松开,驱动器和电机UVW相接线不正确,驱动器和电机UVW相接线中一相或全部断开 AL 42 RL 42 过载伺服驱动器控制板或电源模块有问题,伺服电机编码器电路故障,驱动器与电机不匹配,伺服电机抱闸没有松开,驱动器和电机UVW相接线不正确,驱动器和电机UVW相接线中一相或全部断开 AL 43 RL 43 再生故障超过内置再生电阻允许的再生功率,负载惯量过大或导电时间太短,再生电阻断线,外置再生电阻阻抗值太大,驱动器的控制电路故障 AL 51 RL 51 驱动器过热驱动器的温度异常,驱动器内部电路故障 AL 52 RL 52 突入防止电阻过热冲入防止电阻过热,伺服驱动器内部故障,周围温度过高 AL 53 RL 53 DB电阻器过热驱动器内电路故障 AL 54 RL 54 内部过热驱动器内部电路故障 AL 55 RL 55 外部过热伺服驱动器控制板故障 AL 61 RL 61 超电压伺服驱动器控制板故障, AL 62 RL 62 主回路电压过低伺服驱动器内部不良 AL 63 RL 63 主电源缺相3相输入R S T中,1相没有输入 AL 71 RL 71 控制电源的电压下降 AL 72 RL 72 +12V电源下降 AL 81 RL 81 编码器A相B相的脉冲信号异常

fanuc伺服驱动器的常见故障(1)

FANUC交流速度控制单元有多种规格,早期的交流伺服为模拟式,目前一般都使用数字式伺服,在数控机床中,常用的规格型号有以下几种: 1)与FANUC交流伺服电动机AC0、5、10、20M、20、30、30R等配套的模拟式交流速度控制单元。它是FANUC最早的AC伺服产品,速度控制单元采用正弦波PWM控制,大功率晶体管驱动。在结构形式上,可以分单轴独立型、双轴一体型、三轴一体型三种基本结构。单轴独立型速度控制单元,常用的型号有 A06B-6050-H102/H103/H104/H113等;双轴一体型速度控制单元,常用的型号有A06B-6050-H201/H202/H203等;三轴一体型速度控制单元,常用的型号有A06B-6050-H401/H402/H403/H404等,多与FANUC 11、0A、0B等系统配套使用。 2)与FANUC交流S (L、T)系列伺服电动机配套的S (L、C)系列数字式交流伺服驱动器,它是FANUC中期的AC伺服产品,驱动器采用全数字正弦波PWM控制,IGBT驱动。其中,S系列用量最广,规格最全;L 系列只有单轴型结构,常用的型号有A06B-6058-H001-H007/H102/H103等;C系列有单轴型、双轴型两种结构,常用的单轴型有A06B-6066-H002-H006等规格,常用的双轴型有A06B-6066-H222~H224/H233、H234、H244等规格。 作为常用规格,S系列有单轴型、双轴型、三轴型三种结构,常用的单轴型有 A06B-6058-H001~H007/H023/H025等;常用的双轴型有A06B-6058-H221~H231/H251-H253等规格;常用的三轴型有A06B-6058-H331-H334等规格;多与FANUC 0C、11、15系统配套使用。 3)与FANUC α/αC/αM/αL系列伺服电动机配套的FANUC α系列数字式交流伺服驱动器,它是FANUC 当前常用的AC伺服产品,驱动器带有IPM智能电源模块,采用全数字正弦波PWM控制,IGBT驱动。FANUC α系列数字式交流速度控制单元有如下两种基本结构形式: ①各驱动公用电源模块(PSM)、伺服驱动单元(SVM)为模块化安装的结构形式,驱动器可以是单轴型、双轴型与三轴型三种结构。常用的单轴型有A06B-6079-H101~H106等,常用的双轴型有 A06B-6079-H201~H208等规格,常用的三轴型有A06B-6079/6080-H301~H307等规格,多与FANUC 0C、15A/B、16A/B、18A、20、21系统配套使用。 ②电源与驱动器一体化(SVU型)的结构形式,各驱动器单元可以独立安装,有单轴型、双轴型两种结构,常用的单轴型有A06B-6089-H10l~H106等规格,常用的双轴型有A06B-6089-H201~H210等规格,多与FANUC 0C、0D、15A/B、16A/B、18A、20、21系统配套使用。 4)与FANUC β系列伺服电动机配套的FANUC β系列数字式交流伺服驱动器,它亦是FANUC当前常用的AC伺服产品,采用电源与驱动器一体化(SVU型)的结构,驱动器带有IPM智能电源模块,采用全数字正弦波PWM控制,IGBT驱动。可以使用PWM接口、I/OLink接口,亦可以采用光缆接口。型号为 A06B-6093-H101~H104/H151~H154//H111-H114,多与FANUC 0TD、PM01等经济型数控系统配套使用。 5)与FANUC αi系列伺服电动机配套的FANUCα i系列伺服驱动器是FANUC公司的最新产品,它在FANUC α系列的基础上作了性能改进。产品通过特殊的磁路设计与精密的电流控制以及精密的编码器速度反馈,使转矩波动极小,加速性能优异,可靠性极高。电动机内装有脉冲/转极高精度的编码器,作为速度、位置检测器件,使系统的速度、位置控制达到了极高的精度。 α i系列驱动器由电源模块(PSM)、伺服驱动器(SVM)、主轴驱动器(SPM)等组成,伺服驱动与主轴驱动共用电源模块,组成伺服/主轴一体化的结构。伺服驱动模块有单轴型、双轴型、三轴型三种基本规格。标准型(FANUC αi系列)为200VAC输入,常用的单轴型有A06B-6114-H103~H109等,双轴型有 A06B-6114-H201-H211等,三轴型有A06B-6114-H301~H304等。高电压输入型(FANUC α i(HV)系列)为400VAC 输入,常用的单轴型有A06B--6124-H102~H109等,双轴型有A06B-6124-H201-H211等,目前尚无三轴型结构。FANUC αi系列交流数字伺服配套的数控系统主要有FANUC 0i、FANUC 15i/150i、 FANUC16i/18i/l60i/180i/20i/21i等。

安川伺服驱动器全参数表和功能表

安川伺服驱动器参数表 安川伺服驱动器和凯恩帝数控系统相配时,只需设定以下参数(见参数表);其余参数,一般情况下,不用修改。 安川伺服驱动器和凯恩帝数控系统相配时,只需设定以下参数(见参数表);其余参数,一般情况下,不用修改。 Pn000 功能选择 n.0010(设定值) 第0位:设定电机旋转方向;设“1”改变电机旋转反向。第1位:设定控制方式为:“1”位置控制方式。 Pn200 指令脉冲输入方式功能选择 n.0101(设定值) “1”正反双路脉冲指令(正逻辑电平)(设定从控制器送给驱动器的指令脉冲的类型) Pn202 电子齿轮比(分子) Pn203 电子齿轮比(分母) 根据不同螺距的丝杆与带轮比计算确定,计算方法如下: Pn202/Pn203=编码器条纹数(32768)X4 / 丝杠螺距×带轮比×1000 参数设置范围: 1/100≤分子/分母≤100 注:1. KND 系统内的电子齿轮比需设置为:CMR/CMD=1:1 (确保0.001 的分辨率);2. 如果是数控车床,X 轴用直径编程,则以上计算公式中,分母还应乘以2,即:丝杠螺距×带轮比×1000×2。 Pn50A 功能选择 n.8100(设定值) 1-使用/S-ON 信号(伺服启动信号)。4-伺服驱动器上,“正向超程功能无效”。 Pn50B 功能选择 n.6548(设定值) 1-伺服驱动器上,“负向超程功能无效”。 Pn50E 功能选择 n.0000(设定值) 配KND 系统时,设置为“0000”,详细见安川手册 Pn50F 功能选择 n.0200(设定值) 3-伺服驱动器上,CN1 插头的27 和28 脚用作控制刹车用的24V 中间继电器的控制信号/BK。(注:当电机带刹车时需设置) Pn506 伺服关时,在电机停止情况下,刹车延时时间根据具体要求设定注:设定单位以“10ms”为单位。出厂时设为“0”。(当电机带刹车时需设置) Pn507 伺服关时,电机在转动情况下,刹车开始参数根据具体要求设定 注:电机在转动情况下,伺服关断时,当电机低于此参数设定的转速时,电机刹车才开始动作。设定单位以“转”为单位。出厂时设为“100”。(Pn507 和 Pn508 满足一个条件,刹车就开始动作) Pn508 伺服关时,电机在转动情况下,刹车延时时间根据具体要求设定 注:电机在转动情况下,伺服关断时,延时此参数设定的时间后半部,

安川伺服器警报代码和故障排除

安川伺服器警报代码和故障排除 A.02 使用者参数失效服务器EEPROM 资料异常 A.03 主电路译码器异常电源电路侦测异常 A.04 使用者参数异常使用者参数设定超出许可范围 A.05 组合错误伺服马达与伺服驱动器容量不匹配 A.10 过电流或散热器过热有一过电流流过IGBT散热器过热A.30 回生异常回生电路故障或回生电阻故障 A.32 回生过载回生电能超过回生电阻容量 A.40 DC 过电压主回路DC 过电压 A.41 DC 低电压主回路DC 低电压 A.51 超速马达转速过高 A.71 过载高负载马达大量超过额定转矩下操作数秒或数十秒A.72 过载低负载马达大量超过额定转矩下连续操作 A.73 动态制动器过载当动态制动器作用时旋转的能量超 过动态制动器电阻容量 A.74 突波电流限制器过载主电路电源在ON 与OFF 间频频转变A.7A 散热器过热服务器的散热器过热 A.81 绝对值编码器备用电池错误 所有的绝对编码器电源均已失效且位置数据已被消除 A.82 编码器CHECK SUM 检查错误 编码器内存的CHECK SUM 检查结果不正确 A.83 绝对值编码器电池错误绝对值编码器电池电压降低

A.84 绝对值编码器资料错误所收到的绝对资料异常 A.85 绝对值编码器超速当电源接上时编码器高速旋转 A.86 编码器过热编码器内部温度太高 A.b1 速度指令输入读出错误指令速度输入的A/D 转换器故障 A.b2 转矩指令输入读出错误指令转矩输入的A/D 转换器故障 A.bF 系统警报服务器内发生一个系统故障 A.C1 伺服超速运转伺服马达失控 AC8 绝对值编码器清除异常及多次转动限制设定异常绝对值编码器多次转动未正确清除或设定 A.C9 编码器通讯错误服务器与编码器间无法通讯 A.CA 编码器参数错误编码器参数故障A.Cb 编码器回授错误与编码器的通讯内容不正确 A.d0 位置错误脉冲满溢位置偏差脉冲超过参数Pn505 A.F1 电源线欠相主电源一相未接 CPF00 操作器传输错误操作器与服务器传输失效

伺服驱动器报警解决方法..

保护功能 报警 代码 故障原因应对措施 控制电源 欠电压 11 控制电源逆变器上P、N 间电压低于规定值。1)交流电源电压太低。瞬时失电。 2)电源容量太小。 电源接通瞬间的冲击电流导致电压跌落。 3)驱动器(内部电路)有缺陷。 测量 L1C、L2C 和r、t 之间电压。 1)提高电源电压。更换电源。 2)增大电源容量。 3)请换用新的驱动器。 过电压 12 电源电压高过了允许输入电压的范围。 逆变器上 P、N 间电压超过了规定值。 电源电压太高。 存在容性负载或UPS(不间断电源),使得 线电压升高。 1)未接再生放电电阻。 2)外接的再生放电电阻不匹配,无法吸收再 生能量。 3)驱动器(内部电路)有缺陷。 测量 L1、L2 和L3 之间的相电压。 配备电压正确的电源。 排除容性负载。 1)用电表测量驱动器上P、B 间外接电阻阻值。如果读数是“∞”,说明电阻没有真正地接入。请换一个。 2)换用一个阻值和功率符合规定值的外接电阻。 3)请换用新的驱动器。 主电源 欠电压 13 当参数Pr65(主电源关断时欠电压报警触发 选择)设成1 时,L1、L3 相间电压发生瞬时 跌落,但至少是参数Pr6D(主电源关断检测 时间)所设定的时间;或者,在伺服使能(Servo-ON)状态下主电源逆变器P-N 间相 电压下降到规定值以下。

1)主电源电压太低。发生瞬时失电。 2)发生瞬时断电。 3)电源容量太小。 电源接通瞬间的冲击电流导致电压跌落。 4)缺相:应该输入3 相交流电的驱动器实际输入的是单相电。 5)驱动器(内部电路)有缺陷。 测量 L1、L2、L3 端子之间的相电压。 1)提高电源电压。 换用新的电源。 排除电磁继电器故障后再重新接通电源。 2)检查Pr6D 设定值,纠正各相接线。 3)请参照“附件清单”,增大电源容量。 4)正确连接电源的各相(L1、L2、L3)线路。单相电源请只接L1、L3 端子。 5)请换用新的驱动器。 过电流 和 接地错误 14 * 流入逆变器的电缆超过了规定值。 1)驱动器(内部电路、IGBT 或其他部件) 有缺陷。 2)电机电缆(U、V、W)短路了。 3)电机电缆(U、V、W)接地了。 4)电机烧坏了。 5)电机电缆接触不良。 6)频繁的伺服ON/OFF(SRV-ON)动作导 1)断开电机电缆,激活伺服ON 信号。如果马上出现此报警,请换用新驱动器。 2)检查电机电缆,确保U、V、W 没有短路。正确的连接电机电缆。 3)检查U、V、W 与“地线”各自的绝缘电阻。如果绝缘破坏,请换用新机器。 4)检查电机电缆U、V、W 之间的阻值。如果阻值不平衡,请换用新驱动器。 5)检查电机的U、V、W 端子是否有松动或未接,应保证可靠的电气接触。 6)请换用新驱动器。 Minas A4 系列驱动器技术资料选编- 61 - 保护功能 报警 代码 故障原因应对措施

富士伺服驱动器的常用故障代码及其检查与维护

一、检查 1、警报检出内容 (图1) (按键面板的7段LED显示器以秒的间隔闪烁。) 2、警报检出时的动作 (1)在检出的同时自由运转 (图2) (2)以最大转矩减速,停止后自由运转 (图3) 二、维护 1、过电流 【显示】 (图4) 【检出内容】 主回路晶体的输出电流超过规定值。

【要因与处置】 (图5) 伺服马达的动力沛县有可能漏电或短路。 通常,对地间有数MΩ以上,线圈之间的电阻值均衡。 2、过速度 【显示】 (图6) 【检出内容】 伺服马达的回转速度超过最高速度的倍。 【要因与处置】 (图7) 马达的回转速度有可能出现峰突。 (图8) 3、过电压 【显示】 (图9) 【检出内容】 伺服驱动器内部的直流中间电压比上限值大。

【要因与处置】 (图10) 可以在按键面板的监视模式确认内部的中间电压。 On 16:直流中间电压(最大值)On 17:直流中间电压(最小值)约在420V时检出电压。 4、编码器异常 【显示】 (图11) 【检出内容】 伺服马达内部的编码器可能已损坏。 【要因与处置】 (图12) 编码器内部的CPU是以自我诊断的结果来检出警报的。 这时,伺服驱动器马达之间正在进行通信。 5、控制电流异常 【显示】 (图13) 【检出内容】

伺服驱动器内部的控制电源发生异常,有损坏的可能性。 【要因与处置】 (图14) 6、记忆体异常 【显示】 (图15) 【检出内容】 保存在伺服驱动器EEPROM内部的参数内容已损坏。 【要因与处置】 (图16) 发生记忆体异常时,请执行参数的初始化。 执行初始化之后仍然会检出记忆体异常时,必须更换驱动器。 7、回生晶体过热 【显示】 (图17) 【检出内容】 伺服驱动器内装的回生处理用晶体过热。 【要因与处置】

FANUC常见伺服报警及解决方法

FANUC常见伺服报警及解决方法 SV0301:APC报警:通信错误 1、检查反馈线,是否存在接触不良情况。更换反馈线; 2、检查伺服驱动器控制侧板,更换控制侧板; 3、更换脉冲编码器。 SV0306:APC报警:溢出报警 1、确认参数No.2084、No.2085是否正常; 2、更换脉冲编码器。 SV0307:APC报警:轴移动超差报警 1、检查反馈线是否正常; 2、更换反馈线。 SV0360:脉冲编码器代码检查和错误(内装) 1、检查脉冲编码器是否正常; 2、更换脉冲编码器。 SV0364:软相位报警(内装) 1、检查脉冲编码器是否正常; 2、更换脉冲编码器。 3、检查是否有干扰,确认反馈线屏蔽是否良好 。 SV0366:脉冲丢失(内装)报警 1、检查反馈线屏蔽是否良好,是否有干扰; 2、更换脉冲编码器。 SV0367:计数丢失(内装)报警 1、检查反馈线屏蔽是否良好,是否有干扰; 3、更换脉冲编码器。 SV0368:串行数据错误(内装)报警 1、检查反馈线屏蔽是否良好; 2、更换反馈线; 3、更换脉冲编码器。 SV0369:串行数据传送错误(内装)报警 1、检查反馈线屏蔽是否良好,是否有干扰源; 2、更换反馈线; 3、更换脉冲编码器。

SV0380:分离型检查器LED异常(外置)报警 1、检查分离型接口单元SDU是否正常上电; 2、更换分离型接口单元SDU。 SV0385:串行数据错误(外置)报警 1、检查分离型接口单元SDU是否正常; 2、检查光栅至SDU之间的反馈线; 3、检查光栅尺。 SV0386:数据传送错误(外置) 1、检查分离型接口单元SDU是否正常; 2、检查光栅至SDU之间的反馈线; 3、检查光栅尺。 SV0401:伺服准备就绪信号断开 1、查看诊断No.358,根据No.358的内容转换成二进制数值,进一步确认401报警的故障点。 2、检查MCC回路; 3、检查EMG急停回路; 4、检查驱动器之间的信号电缆接插是否正常; 5、更电源单元。 同步控制中SV0407:误差过大报警 1、检查同步控制位置偏差值; 2、检查同步控制是否正常。 移动轴时SV0409报警 1、检查移动时该轴的负载情况; 2、确认机械是否卡死; 3、确认伺服参数设定是否正常; 4、更换伺服电机; 5、更换伺服驱动器。 SV0410:停止时误差过大报警 1、检查机械是否卡死; 2、对于重力轴,抱闸的24VDC供电是否正常,检查抱闸是否正常松开; 3、脱开丝杆等相关机械部分的连接,单独驱动电机,若正常,找MTB检查机械部分;若故障依旧,更换电机或伺服驱动器。 SV0411:移动时误差过大报警 1、查看负载情况,若负载过大。 2、检查机械是否卡死; 3、对于重力轴,抱闸的24VDC供电是否正常,检查抱闸是否正常松开; 4、脱开丝杆等相关机械部分的连接,单独驱动电机,若正常,找MTB检查机械部分;若故障依旧,伺服驱动器。

相关文档
相关文档 最新文档