文档库 最新最全的文档下载
当前位置:文档库 › 模拟印染废水处理中贵金属钯催化剂的研究

模拟印染废水处理中贵金属钯催化剂的研究

模拟印染废水处理中贵金属钯催化剂的研究
模拟印染废水处理中贵金属钯催化剂的研究

第41卷第9期 当 代 化 工 Vol.41,No.9 2012年9月 Contemporary Chemical Industry September,2012

基金项目: 2009广东省自然科学基金项目(9452104101003815);2010广东省自然科学基金项目(10152104101000010);2011年广东省高等

学校人才引进专项资金。

收稿日期: 2012-01-05

作者简介:张永利(1973-), 女, 辽宁人, 博士后, 副教授. 研究方向:环境污染治理. E-mail : zhang024@https://www.wendangku.net/doc/ee14150629.html,。 通讯作者:王庆雨(1971-), 男, 辽宁人,助理研究员. 研究方向: 水环境保护. E-mail: wangqy_71813@https://www.wendangku.net/doc/ee14150629.html,。

模拟印染废水处理中贵金属钯催化剂的研究

张永利,陈恩杰,史 册,莫金莲,王庆雨*

(韩山师范学院,广东 潮州 521041)

摘 要:选用三叶草状γ-Al 2O 3为载体,采用等量浸渍法制备了负载型复合催化剂,各组成分比例为:Pd ∶Cu ∶Fe ∶Ce ∶La=0.5∶0.5∶0.5∶0.75∶0.75,其中,Pd 、Cu 、Fe 为催化剂活性组分,Ce 、La 为催化助剂。用甲基橙模拟偶氮染料废水,采用催化湿式氧化法对其进行处理(甲基橙模拟废水的浓度为238 mg/L )。分别测定不同反应时间水样的pH 和吸光度,对其活性进行评价;分别对使用前后的催化剂进行XRD 和FT-IR 表征,对其稳定性进行评价。本实验制备的贵金属钯复合催化剂处理模拟废水,脱色率可达99%以上。使用前后催化剂的XRD 和FT-IR 谱图表征无明显变化。结果表明,贵金属钯复合催化剂活性高,稳定性好。 关 键 词:模拟印染废水;贵金属钯复合催化剂;活性;稳定性

中图分类号:TQ 423.93 文献标识码: A 文章编号: 1671-0460(2012)09-0950-04

Study of Precious Metal Palladium Catalyst for Treatment of

Simulated Dyeing Wastewater

ZHANG Yong-li ,CHEN En-jie ,SHI Ce ,MO Jin-lian ,WANG Qing-yu*

(Hanshan Normal University, Guangdong Chaozhou 521041, China)

Abstract : Using clover leaf shape γ -Al 2O 3 as the carrier, supported composite catalyst was prepared by the impregnation method. Proportion of each component was Pd:Cu:Fe:Ce:La=0.5:0.5:0.5:0.75:0.75. Pd, Cu and Fe were used as catalyst active components; Ce and La were used as catalytic promoters. Methyl orange simulated azo dyeing wastewater (238 mg/L) was treated with the catalyst by CWAO process. The pH and absorbance were measured at different reaction times to evaluate its activity. The catalyst before and after using was respectively characterized by XRD and FT-IR to evaluate its stability. The decolorization rate of treated wastewater with prepared precious metals palladium composite catalyst in this experiment was up to 99% or more. The XRD and FT-IR spectra had no significant changes. The results show that the precious metal palladium composite catalyst has high activity and good stability.

Key words : Simulated dyeing wastewater; Precious metal palladium composite catalyst ;Activity ;Stability

印染废水主要是印染厂、毛纺厂等印染企业排放的含人造纤维等材料的有机染色废水。此废水具有高浓度、高色度和难生化降解等特点,是当前国内外水污染控制急需解决的一大难题[1]。废水中含有颗粒悬浮物,处理时通常采用化学凝聚法和电凝聚法[2],但各种混凝剂对染料的脱色没有广普性,其广泛应用有待于进一步研究。

湿式催化空气氧化法(catalytic wet air oxidation,简称CWAO)是在高温(423~623 K)、高压(0.5~20 MPa)下,以氧气为氧化剂,在催化剂的作用下将高浓度、有毒、有害、难生物降解有机污染物氧化分解为CO 2和H 2O 等无机物或小分子有机物的一种

高效的高级氧化技术[3]

。因不产生二次污染,因而

被越来越多的研究者所重视。杨润昌[4]等用芬顿试剂在低压条件下催化湿式氧化模拟偶氮染料甲基橙溶液,处理水样的脱色率可达95 %以上;杨琦等[5,6]首次将催化湿式氧化法应用于香料废水的处理,得出了相应的动力学模型。

湿式催化氧化法采用的催化剂通常为过渡金属、稀土金属及贵金属。贵金属具有熔点高、强度大、电热性稳定,抗电火花蚀耗性高、抗腐蚀性优良、高温抗氧化性能强、催化活性良好等特性。杜鸿章等[7,8]研制出一种新型高效的催化湿式氧化催化剂—钌-稀土/氧化钛催化剂,并在固定床鼓泡式反应器中对高浓度焦化废水进行处理。但贵金属价格昂贵且储量有限,因此通过添加适量过渡金属或

第41卷第9期 张永利,等:模拟印染废水处理中贵金属钯催化剂的研究 951

稀土元素等手段来提高催化剂活性、降低贵金属含量就成为必然的选择。

1 实验部分

1.1 实验设备

实验的主体设备是0.5 L GS型磁力搅拌高压反应釜,釜体材质是耐酸碱腐蚀的316 L (Cr18Ni12Mo2~3),反应釜由容器、搅拌装置、加热炉、控制系统、釜体、电机及冷却系统等组成,技术参数如表1。

表1 反应釜技术参数

Table 1 Technology parameters of reaction kettle

技 术 参 数 指 标

有效容积/L 0.5

设计压力/MPa 12.5

工作压力/MPa 0.53

爆破阀爆破压力/MPa 12.5±4%

设计温度/℃ 350

工作温度/℃ 120~260

温控仪精度/℃ ±5

加热功率/KW 1.5

电机功率/W 80

搅拌方式 永磁端面驱动

搅拌转速/(r·min-1) 0~1 500

釜体材料Cr18Ni12Mo2~3

反应釜的工艺控制是影响实验结果的重要因素,必须按照严格的操作方法去执行,具体如下:打开釜盖,将0.25L实验水样置入反应釜内,需要时加入设定量的催化剂。按对角分配原则上紧螺栓,分2~3次拧紧;打开电源,设定所需的反应温度及加热功率,此时反应釜的加热外套开始升温;联接电机及釜体的冷却水管路、充氧管路及取样管路。当釜体温度升到150 ℃时,适量开通电机冷却管路;温度升到设定温度时,打开氧气钢瓶阀门充氧气至设定压力,开启磁力搅拌器和计时器,此时作为反应时间的“零点”;按照实验设计的方案,每隔一定时间通过取样管取出适量水样;反应完毕后,停止搅拌,关闭电源,开启冷却装置,打开气阀释放出釜内的气体,待釜体冷却到80 ℃时,打开釜盖,用吸管吸出釜内残液,用砂布打磨抛光釜体,将釜体及釜盖密封面用清水冲洗干净,再用丙酮浸泡,下次使用前依次用清水和蒸馏水清洗干净。1.2 研究方法

1.2.1 水质pH的测定

本实验使用的是PH-3C型pH计,采用玻璃电极法测定水样在不同时间段的pH值。使用pH计要保证其探头清洁干燥,电子显示屏上的数值稳定后,记录数据。测定完成,将探头冲洗擦干,浸泡在KCl 饱和溶液中以备下次使用。

1.2.2 水质吸光度的测定

脱色率是废水处理中的一项重要检测指标。本实验使用的仪器是722E可见分光光度计,测定对象是甲基橙模拟偶氮染料废水。在甲基橙最大吸收波长465 nm下测定其吸光度A,在实际操作中应使0.2<A测定<0.7,以保证数据的准确性。色度大的水样经过一定倍数的稀释后测定。此时,试样吸光度A=稀释倍数n×A测定。原水样吸光度为A0,脱色率η按下式计算:

%

100

?

=

A

A

A

η

(1)1.3 实验水样

用分析纯甲基橙水溶液模拟印染废水,其参数指标依次为:甲蓝橙浓度951.6 mg/L;水样COD 2 000 mg/L;吸光度0.718;pH值6.410。

2 催化剂的制备

2.1 载体的预处理

将载体γ-A12O3用清水洗涤数遍,再用蒸馏水洗涤到水澄清为止,105 ℃烘干10 h,最后在450℃焙烧3 h,备用。

2.2 贵金属钯催化剂的制备

称量10.000 g的γ-Al2O3载体,以蒸馏水多次滴加达到饱和时所用蒸馏水平均质量(g)。实验测出γ-Al2O3的饱和吸附量为7.365左右。用等量浸渍法制备负载型催化剂。

3 催化剂在模拟印染废水处理中应用

使用催化剂处理模拟印染废水,反应时间不同其pH和脱色率各有差异。水样的色度随着有机物的分解而降低。空白实验和催化剂处理的模拟印染废水在不同出水时间的pH和465 nm处的吸光度如表2。

表2 甲基橙空白实验和催化剂实验出水各项指标 Table 2 Test results of methyl orange blank experiment and

catalyst experiment

时间/min 0 10 20 40 60 空白实验出水pH 6.41 6.20 6.10 5.84 5.26

催化剂实验出水pH 6.41 5.09 5.08 5.13 5.34

空白实验吸光度A0.718 0.595 0.531 0.4520.385

空白实验脱色率,% 0.0 17.1 26.1 37.046.4

催化剂实验吸光度A0.718 0.025 0.008 0.0020.001

催化剂实验脱色率,% 0.0 95.6 98.9 99.799.8

952 当 代 化 工 2012年9月

空白实验与催化剂实验的出水pH 、吸光度和脱色率随时间的变化如图1、2、3。

图1 空白实验和催化剂实验的出水pH 随时间的变化

Fig.1 Effluent pH change with time of blank experiment

and catalyst experiment

图2 空白实验和催化剂实验的吸光度随时间的变化 Fig.2 Absorbance change with time of blank experiment

and catalyst experiment

图3 空白实验和催化剂实验的脱色率随时间的变化 Fig.3 Decolorization rate change with time of blank

experiment and catalyst experiment

从图1可见,使用催化剂处理水样,甲基橙降解成酸性更大的物质,从而使水样的pH 下降。随着处理时间的增加,水样的pH 均呈现上升趋势,可能是甲基橙降解成CO 2和H 2O 等无机物或小分子有机物的结果。空白实验和催化剂实验pH 的回归线方程分别是:

2

-4 3.1407E - 0.00358+6.18111= X X Y (2-a) 2

-42.06771E + 0.00903-5.16459= X X Y (2-b) 相关系数分别是0.99 756、0.99 729,相关性很好。

从图2、3可见,经催化剂处理的水样和空白实验的水样对比,吸光度明显降低,脱色率明显增强,说明贵金属钯催化剂对水样的降解能力最好。空白实验和催化剂实验吸光度、脱色率的回归线方程分别是:

2

-5

3.40955E + 0.0065-0.65336= X X Y (3-a)

2

-5 1.78266E + 0.00167-0.03801= X X Y (3-b) 2

0.00473- 0.90371+9.01608= X X Y (4-a) 20.00339- 0.30986+93.26482= X X Y (4-b) 相关系数分别是0.997 44、0.936 11和0.997 06、

0.904 39,空白实验的相关性非常好,催化剂实验的相关性较好,说明催化剂的催化效果不随时间均匀变化。

4 催化剂的表征

模拟印染废水水样在经催化剂处理前后的XRD 和FT-IR 谱图如图4、图5。

图4 催化剂使用前后的XRD 谱图

Fig.4 XRD spectra of Catalyst before and after using

从图4可见,使用前后的催化剂的XRD 谱图衍射峰的出峰位置和强度变化均不明显,在2θ为47°和68°处比较明显的衍射峰可能是催化剂载体含有的Al 造成的。从图5可见,使用前后的催化剂的FI-IR 谱图的吸收峰也没有明显差别。由此可见,所制备的催化剂有较好的稳定性。

图5 催化剂使用前后的FT-IR 谱图

Fig.5 FT-IR spectra of Catalyst before and after using

第41卷第9期 张永利,等:模拟印染废水处理中贵金属钯催化剂的研究 953

5 结 论

(1)通过对比实验,得出本实验所制备的贵金属钯催化剂处理模拟废水时,活性很高,具有实用推广价值。

(2)本实验所制备的贵金属钯催化剂在使用前后变化不大,具有很好的稳定性。

参考文献:

[1] Zhang Hongyi, Li Qianfeng, Shi Zhihong et al. Analysis of aesculin and aesculotin in Cortex fraxini by capillary zone electrophoresis[J]. Talanta, 2000, 52(4): 607 – 621.

[2] Chen Guohua, Lei Lecheng, Hu Xijun, et al. Kinetic study into the wet air oxidation of printing and dyeing wastewater[J]. Separation and

Purification Technology, 2003, 31(1): 71-76.

[3] V S Mishra, V V Mahajani, J B Joshi. Wet Air Oxidation[J]. Ind. Eng, Chem. Res., 1995, 34:2-48.

[4]杨润昌.低压湿式氧化发处理偶氮染料废水[J].云南环境科学,2000(8):172-174.

[5]杨琦.催化湿式氧化法处理香料废水[J].中国环境科学,1998(18):170-172.

[6]杨琦,钱易.湿式氧化法处理香料废水[J].给水排水,1998(24):35-37. [7]杜鸿章,房廉清,江义,等.难降解高浓度有机废水催化湿式氧化净化技术:1.高活性、高稳定性的湿式氧化催化剂的研制[J].水处理技术,1997,23(2):83-87.

[8]杜鸿章,房廉清,江义,等.难降解高浓度有机废水催化湿式氧化净化技术:II反应工艺条件的研究[J].水处理技术,1997,23(3:)160-164.

(上接第931页)

其速率方程可以表示为:

d C/d t = -K T C2(7) 式中:C为t时刻NaNO2或NH4Cl的浓度,当t = 0时,C = C0,mol/L;

K T为体系在一定pH值和温度下的速率常数,L/9mol·min0。

表3 活化能Ea的测定

Table 3 The determination of activity energy, Ea

反应 温度 /K

c H+

/(mol·L-1)

半衰期t1/2

/min

反应

级数

n

速率常数K T

/(L·mol-1·mi

n-1)

活化能Ea

/(kJ·mol-1)

323 0.1910 52 2 3.85×10-2

333 0.1911 29 2 6.90×10-2

50.26

结合阿仑尼乌斯(Arrhenius)公式和(7)式可得:

K T = K o C H+e-Ea/(RT)(8) 式中: K0为常数;

Ea为活化能,kJ/mol。

由(6)式求得该反应的活化能Ea = 50.26 (kJ/mol),将其带入(8)式求得K0 = 2.066 × 107 (L2/(mol-2?min-1),则(8)式表达为:

K T = 2.066×107C H+ e-6045/T(9) 再将(8)式带入(6)式,即得到NaNO2与NH4Cl反应的动力学方程为:

d C/d t = -2.066×107C H+e-6045/T C2 (10)

3 结论

通过对反应过程中产生气体的测量,测定其反应级数、K T与H+浓度关系,计算得到其反应的活化能,结合阿仑尼乌斯(Arrhenius)公式,得到了亚硝酸钠与氯化铵反应的动力学方程为:

d C/d t = -2.066×107C H+e-6045/T C2

参考文献:

[1]吴安明,陈茂涛,顾树人,等.NaNO2与NH4C1反应动力学及其在油田的应用研究[J].石油钻采工艺,1995, 17(5): 60-64.

[2]张军闯,王德智,马青庄.热化学采油技术应用研究[J].油气采收率技术,1999, 6(4): 62-66.

[3]李友富,山力,李德胜.微乳热化学复合解堵剂的研制及应用[J].特种油藏,2003, 10(5): 67-70.

[4]谢建军,徐波翔.化学生热技术在稠油生产中的应用与分析[J].特种油气藏,1997, 4(1): 54-56.

[5]刘静,吴金桥,张宁生,等.压裂液低温破胶化学生热体系的探讨[J].西安石油大学学报,2004, 19(5): 39-45.

[6] Davies DR, Field Application of In situ Nitrogen Gas Generation System[J]. SPE9653, 1981:747-752.

[7]邓强,徐敬芳,汤颖,等. 一个大学生课外科技创新活动简介[J].广州化工,2011, 39(12): 189-191.

贝正公司玉树州液化气储配站投入运营

9月20日,青海贝正实业有限公司玉树州液化气储配站开业及三江源清洁能源推广启动仪式举行,该公司投建玉树灾后重建民生能源项目——玉树州液化气储配站,在经过近两年的施工后建成并投入运营。

玉树州液化气储配站位于结古镇当代加涅滩214国道南侧,本着“民生、洁净、环保”的经营宗旨,以服从城市发展和经济建设的需要,与城镇配套设施同步建设的原则,青海贝正实业有限公司自2010年8月承建玉树州液化气储配站,为打造藏区基础民生能源供应配送基地,以服务灾后重建与城镇配套设施同步建设的原则,积极响应政府号召,自筹资金1800多万元,建设面积为1.78万平米,储量为400立方米,配备了电子网络系统和电子灌装联网监控系统的液化气储配站。

印染废水处理工艺流程

某印染厂 印染污水处理工程 设 计 方 案 方案设计人:蒋平 学号:0706203037

目录 一、摘要 二、水量、水质及排放标准 三、设计原则及标准 四、工艺方案的选择 五、设计工艺流程图 六、工艺设计参数 七、主要构筑物及主要设备 八、技术参数 九、主概算及总投入 十、主要功率 十一、运转成本核算 十二、经营管理 十三、结论 十四、致谢 十五、参考文献 附图01 平面布置图 附图02 高程和流程图 附图03 水酸化池剖面图 一、摘要

印染废水是指印染加工过程中各工序所排放的废水混合成的混合废水,印染废水水质随原材料、生产品种、生产工艺、管理水平的不同而有所差异。近年来,新型助剂、染料、整理剂等在印染行业中被大量使用,难降解有毒有机成分的含量也越来越多,有些甚至是致癌、致突变、致畸变的有机物,这在一定程度上增加了废水的处理难度,对环境尤其是对水环境的威胁和危害越来越大。废水如果不经处理或处理未达标的话,不仅直接危害人们的身体健康,而且严重破坏水体、土壤及生态,将造成不可想象的后果。 印染加工包括预处理(退浆、煮炼、漂白、丝光等一系列操作)、染色、印花、整理四道工序,预处理工序分别排除退浆、煮炼、漂白、丝光等四股废水,而染色、印花、整理等工序分别排除染色废水、印花废水和整理废水。以上的混合废水称之为印染废水印染废水随着采用的纤维种类、染料和浆料的不同而水质变化很大。在印染加工过程中常采用的浆料有天然淀粉浆料和化学合成浆料PVA(聚乙烯醇),而PVA是一种难以降解的合成有机物,随着合成浆料逐步代替天然浆料,印染废水的可生化性变差。 常用的染料有直接染料、酸性染料、活性染料、还原染料、硫化染料等,助剂(化学药剂)通常有表面活性剂(洗涤剂)和整理剂。表面活性剂不会在环境中积累,在低浓度时,对生物无明显影响,但会导致起泡,对废水处理带来不良的影响。整理剂用以改善织物机械物理性能,整理剂一般有硬挺整理剂、柔软整理剂、增白剂、催化剂、添加剂等。 该厂属印染大型专业生产厂,由于生产工艺的需要,印染车间要排放一定量的废水。这些废水中含有大量的有机物,色度、硫化物、染料及部分助剂、碱等。因生产的间断运行,故存在着水量水质的波动,该厂旺季时最大水量1500m3/d。按国家环保要求,该厂的印染废水应达标排放。文中主要对处理厂单元组成包括各个构筑物、设备进行了选取和计算,对厂址的选择、平面布置、高程布置等作了简要概述,最后评估了建设该处理厂的基建和运行费用。 二、水量、水质及排放标准 根据该印染厂提供的现场实测污水水质资料,再结合我们所掌握的印染废水资料,确定本方案的原水设计水质如下: 三、设计原则及标准 1、按照国家给排水设计标准设计 2、按照国家城市污水处理标准设计 3、按照国家污水排放标准设计 4、按照类同企业污水工程处理达标设计 5、选用技术成熟,处理效果稳定、适应性强的生物处理与物化处理相结合的处理工

印染厂污水处理工艺

印染厂污水处理工艺 印染生产废水成份比较复杂,含有大量残余的染料和助剂,因此色度大、有机物含量较高、悬浮物多,并且含有微量有毒物质。 根据提供的水质资料和要求对其进行设计,一般采用预处理+物化处理+生化处理的处理工艺。采用专利管式橡胶微孔曝气器,氧利用率提高4-8倍,根据多年运行经验,结合专业的相关配置,从而达到建设成本低、运行费用小、出水水质稳定等特点。其进水COD 按500-1300mg/1计,出水≤100mg/1来设计。 工艺流程 废水→ 粗格栅→ 集水井→ 泵→ 冷却塔→ 调节池→ 泵→ 转鼓筛→ 混凝反应池→ 初沉池→水解酸化池→ 接触氧化池→ 混凝反应池→ 二沉池→ 达标出水排放 现代污水处理技术,按处理程度划分,可分为一级、[2]二级和三级处理,一般根据水质状况和处理后的水的去向来确定污水处理程度。 一级处理

主要去除污水中呈悬浮状态的固体污染物质,物理处理法大部分只能完成一级处理的要求。经过一级处理的污水,BOD一般可去除30%左右,达不到排放标准。一级处理属于二级处理的预处理。 二级处理 主要去除污水中呈胶体和溶解状态的有机污染物质(BOD,COD物质),去除率可达90%以上,使有机污染物达到排放标准,悬浮物去除率达95%出水效果好。 三级处理 进一步处理难降解的有机物、氮和磷等能够导致水体富营养化的可溶性无机物等。主要方法有生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法等。 整个过程为通过粗格栅的原污水经过污水提升泵提升后,经过格栅或者筛率器,之后进入沉砂池,经过砂水分离的污水进入初次沉淀池,以上为一级处理(即物理处理),初沉池的出水进入生物处理设备,有活性污泥法和生物膜法,(其中活性污泥法的反应器有曝气池,氧化沟等,生物膜法包括生物滤池、生物转盘、生物接触氧化法和生物流化床),生物处理设备的

天然高分子锚定钯镍双金属催化剂的性能

天然高分子锚定钯镍双金属催化剂的性能 2016-06-11 12:39来源:内江洛伯尔材料科技有限公司作者:研发部 胶原纤维锚定钯-镍催化剂 研究表明, 高分子的表面化学环境和结构相对可控, 可用作载体制备分散度较高、比表面积较大的负载型纳米催化剂. 高分子与纳米粒子间往往以配位键相结合, 相互作用力适当, 而且高分子链的隔离保护作用使纳米颗粒不易聚集、脱落和失活, 能够保持其催化活性, 易回收, 重复使用性好. 胶原纤维(CF)来源于家畜动物皮的天然高分子, 它具有独特的亲疏水性、柔韧性以及规整的纤维结构, 其中含有能与多种金属离子结合的–OH,–COOH 和–NH2 等活性基团. 四川大学制革清洁技术国家工程实验室廖学品等人曾以CF 为载体, 制备了一系列负载型纳米催化剂, 均表现出较高的催化活性. 另一方面, 表棓儿茶素棓酸酯(EGCG)是一种典型的植物多酚, 在茶叶中含量很高. EGCG分子中含有大量的邻位酚羟基, 它能在醛的作用下牢固地接枝到 CF上, 这些邻位酚羟基还可与Pd2+和Ni2+形成稳定的五元螯合环, 还原后, Pd-Ni纳米粒子仍结合在EGCG 上, EGCG可起到较好的分散和稳定Pd-Ni纳米粒子的作用, 避免粒子团聚.近期他们以胶原纤维(CF)接枝表棓儿茶素棓酸酯(EGCG)为载体, 制备了新型 Pd-Ni/CF-EGCG催化剂. EGCG作为“桥分子”对Pd-Ni纳米粒子起着分散和锚定作用.通过热重分析、扫描电镜、透射电镜、X射线光电子能谱和X射线衍射对该催化剂进行了表征. 结果表明, 该催化剂具有规整的纤维结构, 在纤维表面形成了高分散的平均粒径为2.2 nm的Pd-Ni合金颗粒. 液相硝基苯催化加氢反应结果表明, 当Ni和Pd摩尔比为0.8时, Pd-Ni/CF-EGCG催化剂具有最佳的双金属协同作用, 在308 K和1.0 MPa 氢压下, 加氢速率达237 min-1,比单金属的Pd/CF-EGCG快1倍, 重复使用5次后仍具有较高的催化活性.

钯催化剂的制备

金属钯最外层电子数为零,赋予了钯怎样的性质? 因为最外层电子数为零,其化学性质不活泼(但是不如铂稳定)。常温下在空气和潮湿环境中稳定,加热至800℃,钯表面形成一氧化钯薄膜。钯能耐氢氟酸、磷酸、高氯酸、盐酸和硫酸蒸气的侵蚀,但易溶于王水和热的浓硫酸及浓硝酸。熔融的氢氧化钠、碳酸钠、过氧化钠对钯有腐蚀作用。 因为电子价层是4d10(钯(Pd)的原子结构为[Kr]4d10,虽然钯原子中的电子只占据四个电子层,但因期第五能级组(5s4d5p)上由电子,故钯仍属于第五周期),钯的氧化态为+2、+3、+4。钯容易形成配位化合物,如K2[PdCl4]、K4[Pd(CN)4]等。 化学符号Pd ,原子序数46 ,原子量106.42 ,属周期系Ⅷ族,为铂系元素的成员。1803 年英国W.H.渥拉斯顿从粗铂中分离出一种新元素,为了纪念1802年发现的小行星武女星(Pallas),把它命名为palladium。钯在地壳中的含量为1×10-6%,常与其他铂系元素一起分散在冲积矿床和砂积矿床的多种矿物(如原铂矿、硫化镍铜矿、镍黄铁矿等)中。独立矿物有六方钯矿、钯铂矿、一铅四钯矿、锑钯矿、铋铅钯矿、锡钯矿等,还以游离状态形成自然钯。 钯是银白色金属,熔点1554 ℃,沸点2970 ℃,密度12.02克/厘米3(20℃)。较软,有良好的延展性和可塑性,能锻造、压延和拉丝。块状金属钯能吸收大量氢气,使体积显著胀大,变脆乃至破裂成碎片。海绵状或胶状钯吸氢能力更强,在常温下,1体积海绵钯可吸收900体积氢气,1体积胶体钯可吸收1200体积氢气。加热到40~50℃,吸收的氢气即大部释出。 将精选的砂铂矿或富铂矿用王水溶解,经一系列的化学处理,可得二氯二氨合钯,经灼烧后在高温下用氢气还原可得海绵状钯。钯在硝酸生产、蒽醌法制造过氧化氢以及氢化、脱氢、异构化和裂解反应中用作催化剂。钯银合金管用于生产高纯氢,钯铜合金可做大容量继电器的触头,钯钌合金用于补牙和制造首饰、厚膜电路上的电容和电阻。 元素符号:Pd 中文名称:钯 英文名称:Palladium 原子序数:46 原子量:106.4

印染废水处理设计方案

印染废水处理设计方案 更新时间:10-26 12:09来源:作者: 阅读:1526网友评论0条 福建省某某印染有限公司印染废水处理方案设计 1 工程概况 PU革是近几年迅速发展的一种产品,它种类繁多,物美价廉,广泛应用于汽车、鞋革、箱包、沙发、装饰及服装生产工业,是皮革的优良代用品,而革基布则是PU革的基础材料,市场需求量极大,某县县现有织布厂20多家,织布机1500多台,年产革基布9000万米,以往某县县各织布厂生产的革基坯布未经漂染加工直接销往外地,产品附加值较低。福建省某某印染有限公司在某县县埔头工业区建设年产PU革基布3000万米这一项目,可成为某县县当地的漂染基地,既可增加某县县税费收入,又可解决部分剩余劳动力。 纺织印染行业是工业废水排放大户,据估算,全国每天排放的废水量约(3-4)×106m3,且废水中有机物浓度高,成分复杂,色度深,pH变化大,水质水量变化大,属较难处理工业废水。据福建省某某印染有限公司提供的数据,该项目的建成排放废水量800吨/日。 根据《建设项目管理条例》和《环境保护法》之规定,环保设施的建设应与主体工程“三同时”。受福建省某某印染有限公司委托,我们提出了该项目的废水处理方案,按本方案进行建设后,可确保废水的达标排放,能极大地减轻该项目外排废水对某县的不利影响。 2 方案设计依据 2.1 福建省某某印染有限公司提供的水质参数 2.2 《纺织染整工业水污染物排放标准》GB4287-92 2.3 《室外排水设计规范》GBJ14-87 2.4 《建筑给排水设计规范》GBJ15-87 2.5 《福建省环境保护条例》

2.6 其它同类企业废水处理设施竣工验收监测数据 3 方案设计原则 3.1 可行性原则。在工程设计中,在确保工艺可行的同时,兼顾经济上许可的能力(总投资费用省、运行费用低等),考虑工艺上的可行性与经济上的可行性协调统一。 3.2 可靠性原则。通过对印染行业目前废水处理情况的调研,结合多年从事废水处理的经验,同时借鉴目前印染废水处理的成功个例,并与当前先进的废水处理设备相融合,制定合理、成熟、可靠的废水处理工艺,确保废水处理系统能长期、稳定、可靠地运行。 3.3 先进性原则,采用当前废水处理的先进工艺和设备。 3.4 操作管理方便,技术简单实用,提高操作管理水平,实现科学现代化的管理。 3.5 避免二次污染,在治理废水的同时,避免污泥和噪音产生二次污染。 4 废水的水质水量 福建省某某印染有限公司采用的原料为纯棉或涤棉坯布,染料有直接和分散染料,助剂有烧碱、碳酸钠、双氧水、表面活性剂、工业食盐、起毛剂等。 废水为连续排放,但水量、水质变化大,无固定规律,根据福建省某某印染有限公司提供并结合同类型企业的资料,其废水水质参数如下:

金属有机化学中的钯催化的反应全解

XXXX大学研究生学位课程论文(2012 ---- 2013 学年第一学期) 学院(中心、所):化学化工学院 专业名称:应用化学 课程名称:高等有机化学 论文题目:金属有机化学中的钯催化的反应 授课教师(职称)XXXX(教授) 研究生姓名:XXXX 年级:2012级 学号:XXXXXXXXX 成绩: 评阅日期: XXXX大学研究生学院 2012年12 月25 日

金属有机化学中的钯催化的反应 XXXXXX (XXXX大学化学化工学院,山西,太原,030006) 摘要:过渡金属钯在金属有机化学方面具有丰富的反应性,在各类有机化学反应中如氢化、氧化脱氢、偶联、环加成等反应中,钯是优良的催化剂,或是催化剂的重要组分之一。本文在查阅大量近几年文献资料的基础上,综述了钯催化的反应,同时综述了钯催化反应的机理以及钯催化反应的研究现状。 关键词:钯,催化剂,反应机理,研究进展 1钯催化的反应类型及反应机理 在现今炼油、石油化工等工业催化反应中,有很多的钯催化反应,尤其是氢化反应中的选择加氢,以及氧化反应中选择氧化生产乙醛、醋酸乙烯、甲基丙烯酸甲酯,均广泛采用和开发钯催化剂。对石油重整反应,钯也是常选取的催化剂组分之一。 1.1氢化反应 钯催化剂具有很大的活性和极优良的选择性,部分氢化选择性高,常用作烯烃选择性氢化催化剂。 1.1.1反应式及反应机理 反应底物首先和氢气分子分别被吸附到催化剂上,然后和催化剂的活性中心形成配位键,最后完成氢的转移,氢和反应底物形成σ-键。 1.1.2反应方程式举例 1.2氧化反应 烯烃和炔烃是十分常见并且重要的有机化合物,选择性地氧化这类不饱和碳氢化合物一直是化学工业和学术界的重要研究目标之一。 1.2.1分子氧参与的钯催化烯烃的氧化反应 根据亲核试剂的不同,如氧、氮和碳等亲核试剂,把催化烯烃的氧化反应可以形成C-O、C-N和C-C键。 1.2.1.1反应机理 钯催化烯烃的氧化反应都经过三个过程:首先,把插入烯烃形成新的C-Pd键;接着,有机钯中间体进行β-H消除产生Pd(0);最后,Pd(0)被重新氧化为Pd(П)。 1.2.1.2形成C-C键 1.2.1.2.1烯-烯偶联

印染厂废水处理

水污染控制工程课程设计 学院: 专业: 班级: 学号: 姓名: 指导教师: 时间: 2010.11.29~2010.12.12

目录 1. 设计任务书 (3) 1.1设计题目 (3) 1.2设计资料 (3) 1.3设计内容 (4) 1.4设计成果 (4) 1.5设计要求 (4) 2.处理工艺的选择与确定 (5) 2.2污水处理工艺流程的确定 (5) 2.3主要构筑物的选择 (6) 2.3.1格栅 (6) 2.3.2 调节池 (6) 2.3.3 水解酸化池 (7) 2.3.4 改良SBR反应池 (7) 2.3.5 沉淀池 (8) 2.3.6 污泥浓缩池 (8) 2.3.7污泥脱水 (8) 3.主要构筑物及设备的设计与计算 (9) 3.1格栅 (9) 3.1.1 格栅尺寸 (9) 3.1.2 通过格栅的水头损失 (9) 3.1.4 栅栅的总长度 (10) 3.1.5 每日栅渣量 (10) 3.2调节池 (11) 3.2.1设计参数 (11) 3.2.2 设计计算 (11) 3.3水解酸化池 (13)

3.4改良SBR池——CAST工艺 (14) 3.5沉淀池 (15) 3.5.1 计算 (15) 3.6污泥浓缩池 (17) 3.7污泥脱水机房 (19) 3.8附属建筑物 (19) 3.8.1维修、配电间 (19) 3.8.2值班室、电控间 (19) 4.污水处理厂总体布置 (19) 4.1平面布置 (19) 4.1.1平面布置的一般原则 (19) 4.1.2平面布置 (20) 4.2污水厂高程布置 (20) 4.2.1高程布置原则 (20) 4.2.2污水污泥处理系统高程布置 (20) 总结 (22) 参考文献 (24)

印染废水SBR处理工艺流程

印染废水SBR处理工艺流程 印染污水处理工程 设 计 方 案 方案设计人:蒋平 学号:0706203037

目录 一、摘要 二、水量、水质及排放标准 三、设计原则及标准 四、工艺方案的选择 五、设计工艺流程图 六、工艺设计参数 七、要紧构筑物及要紧设备 八、技术参数 九、主概算及总投入 十、要紧功率 十一、运转成本核算 十二、经营治理 十三、结论 十四、致谢 十五、参考文献 附图01 平面布置图 附图02 高程和流程图 附图03 水酸化池剖面图

一、摘要 印染废水是指印染加工过程中各工序所排放的废水混合成的混合废水,印染废水水质随原材料、生产品种、生产工艺、治理水平的不同而有所差异。近年来,新型助剂、染料、整理剂等在印染行业中被大量使用,难降解有毒有机成分的含量也越来越多,有些甚至是致癌、致突变、致畸变的有机物,这在一定程度上增加了废水的处理难度,对环境专门是对水环境的威逼和危害越来越大。废水假如不经处理或处理未达标的话,不仅直截了当危害人们的躯体健康,而且严峻破坏水体、土壤及生态,将造成不可想象的后果。 印染加工包括预处理(退浆、煮炼、漂白、丝光等一系列操作)、染色、印花、整理四道工序,预处理工序分不排除退浆、煮炼、漂白、丝光等四股废水,而染色、印花、整理等工序分不排除染色废水、印花废水和整理废水。以上的混合废水称之为印染废水印染废水随着采纳的纤维种类、染料和浆料的不同而水质变化专门大。在印染加工过程中常采纳的浆料有天然淀粉浆料和化学合成浆料PVA(聚乙烯醇),而PVA是一种难以降解的合成有机物,随着合成浆料逐步代替天然浆料,印染废水的可生化性变差。 常用的染料有直截了当染料、酸性染料、活性染料、还原染料、硫化染料等,助剂(化学药剂)通常有表面活性剂(洗涤剂)和整理剂。表面活性剂可不能在环境中积存,在低浓度时,对生物无明显阻碍,但会导致起泡,对废水处理带来不良的阻碍。整理剂用以改善织物机械物理性能,整理剂一样有硬挺整理剂、柔软整理剂、增白剂、催化剂、添加剂等。 该厂属印染大型专业生产厂,由于生产工艺的需要,印染车间要排放一定量的废水。这些废水中含有大量的有机物,色度、硫化物、染料及部分助剂、碱等。因生产的间断运行,故存在着水量水质的波动,该厂旺季时最大水量1500m3/d。按国家环保要求,该厂的印染废水应达标排放。文中要紧对处理厂单元组成包括各个构筑物、设备进行了选取和运算,对厂址的选择、平面布置、高程布置等作了简要概述,最后评估了建设该处理厂的基建和运行费用。 二、水量、水质及排放标准 依照该印染厂提供的现场实测污水水质资料,再结合我们所把握的印染废水资料,确定本方案的原水设计水质如下:

贵金属钯催化剂的研究现状和发展前景_周春晖

综 述 贵金属钯催化剂的研究现状和发展前景 周春晖 李小年 葛忠华 (浙江工业大学催化新材料研究室,浙江省多相催化重点实验室,杭州310014) 摘要 按照反应类型介绍了现今化学工业中使用的贵金属钯催化剂; 综述了国内外钯催化剂研究开发状况;阐明了近期及将来钯催化剂工 业发展前景。 关键词 贵金属 钯 催化剂 综述 贵金属催化剂由于其无可替代的催化活性和选择性,在炼油、石油化工和有机合成中占有极其重要的地位。贵金属钯具有优异的催化性能。70年前,朗格缪尔,为CO在钯上的氧化确立了科学基础,以及70年代以来利用钯等贵金属催化剂的汽车尾气净化催化转化器,这些都是催化科学技术上的重大发现之一。钯催化剂在石油化学工业中的应用甚至超过铂催化剂。例如,石油精炼中的催化重整,烷烃、芳烃的异构化反应、脱氢反应,烯烃生产中的选择加氢反应,乙醛、醋酸乙烯、甲基丙烯酸甲酯等有机化工原料的生产均离不开钯催化剂。此外,在各类有机化学反应中如氢化、氧化脱氢、氢化裂解、偶联、氢酯基化、一碳化学以及汽车尾气净化等反应中,钯是优良的催化剂,或是催化剂的重要组分之一。 1 钯催化反应 在现今炼油、石油化工等工业催化反应中,有很多的钯催化反应,尤其是氢化反应中的选择加氢,以及氧化反应中选择氧化生产乙醛、醋酸乙烯、甲基丙烯酸甲酯,均广泛采用和开发钯催化剂。对石油重整反应,钯也是常选取的催化剂组分之一。在脱氢反应和异构化反应中,虽多数应用贵金属催化剂,但主要是Pt,直接用钯的不多。 1.1 氢化反应 金属钯是催化加氢的能手。在石油化学工业中,乙烯、丙烯、丁烯、异戊二烯等烯烃类是最重要的有机合成原料。在聚合过程中,对烯烃类的纯度要求很高。所以必须予以提纯。由石油化工得到的烯烃含有炔烃及二烯烃等杂质,可将它们转化为烯烃除去。由于形成的烯烃容易被氢化成烷烃,必须选择合适的催化剂来控制适宜的反应条件。钯催化剂具有很大的活性和极优良的选择性,部分氢化选择性高,常用作烯烃选择性氢化催化剂。Lindla r催化剂(沉淀在Ba SO4上的金属钯,加喹啉以降低其活性)是一个著名的选择性加氢催化剂。从乙烯中除去乙炔常用的催化剂是0.03%Pd/Al2O3[1]。文献报道,在输入的乙烯气中加入CO,可以改进Pd/Al2O3催化剂对乙炔氢化的选择性,并已在工业应用[2]。菲利浦石油公司开发的用Pd-Ag/Al2O3催化剂的工艺,可将烯烃中的乙炔降至1%以下[3]。IFP技术[4]是用传统的钯催化剂或含钯的双金属催化剂,用于生产1-丁烯、1,3-丁二烯,可提高烯烃收率,显著降低能耗。常用的氢化反应钯催化剂有Pd、Pd/C、Pd/硫酸钡、Pd/硅藻土、PdO2、Ru-Pd/C等。 1.2 氧化反应 在化肥工业中,只需要常温条件,用金属钯作催化剂,便可由氨气、氧气和水一步生产出亚硝酸铵化肥。 乙烯氧化制乙醛是一个古老的工艺,称作Hoechst-Wacker工艺,使用PdCl2/Cu Cl2均相催化剂。乙醛主要用于进一步氧化生产乙酸,这是以前乙酸工业生产的主要方法之一。目前,对这一古老工艺的改进有美国Cataly tica公司开发的新工艺[5],关键在于用磷钼钒酸盐聚氧阴离子/氯化钯催化剂代替传统的PdCl2/CuCl2水溶液催化剂,从而完全避免氯化烃类副产物的生成。该新型催化剂已用于工业规模的乙醛装置。日昭和电子公司开发的乙烯直接氧化制乙酸的新工艺[6],使用钯为基础的新催化剂。与现有工艺相比,新工艺可大幅度削减建设费用 收稿日期:1999-10-11

某印染厂废水处理工艺设计书

某印染厂废水处理工艺设计书 1.2水质水量基本情况 某印染厂有职工2500人,该厂印花生产线年生产能力为9000万米,生产过程中主要采用印地可素、纳夫妥、硫化和少量分散染料等还原性染料。所产生的主要废水是退浆漂炼废水、印花废水和料房冲洗水,分别由1#、2#、3#出水口排出,各出水口排水量逐时变化情况的实测结果列于表1,其混合废水经24小时的逐时取样混合后实测如表2所列。目前,该废水未经处理就排入附近河道,对河道造成了严重的污染。为此,该厂拟建造一废水处理站对该厂生产废水与生活污水一起进行处理(该厂位于老城区,下水道系统尚未完善)。根据上述的情况,拟建9020m3/d污水处理设施,建后排放水达到《污水综合排放标准》(GB8978-1996)的一级标准。 (1)拟建废水处理站西郊500米左右为河道,该河道95%保证率枯水量为195m3/h,流速为1.4m/s,夏季温度为17℃,水中溶解氧含量为7mg/l,BOD 为 5 2mg/l,最高洪水位(95%保证率)为189.89米。上游1公里以无用水点,下游10公里处有分散饮用水源。 (2)该印染厂位于江南某镇,该地区的夏季主导风向为东南风。废水处理站区地下水水位标高为190.50米(吴凇标高),站区地质情况符合施工要求。(3)该厂可提供的用地面积为120×120米,场地基本平坦,其地面标高为192.00米(吴凇标高)。混合废水自处理站区东南角进入,废水进水总管标高为188.00米(吴凇标高)。 (4)废水处理站建设用各类建材均有供应。 (5)废水处理站所需用电由该厂供应。处理站设计中可不考虑机修车间,食堂和浴室等公共设施由厂方统一解决。 1.3污水处理方案的比选及确定 目前,印染废水的处理工艺主要有以下几种: 1、厌氧-好氧生物处理组合工艺; 2、吸附-生物降解工艺; 3、膜生物反应器 1.3.1 A/O工艺

铂钯双金属纳米催化剂的催化活性

第25卷第1期 中南民族大学学报(自然科学版) Vol.25No.1 2006年3月 Jour nal of South-Central U nivers ity for Nationalities(Nat.Sci.Edition) Mar.2006 a铂钯双金属纳米催化剂的催化活性 王 然 何宝林* [马来]刘光荣 盘荣俊 (中南民族大学化学与材料科学学院催化材料科学湖北省重点实验室,武汉430074) 摘 要 由聚合物稳定的铂纳米催化剂对环己烯催化加氢反应具有较高的催化活性,在铂纳米催化剂中引入第二金属元素钯,即在纳米铂颗粒上包裹一层钯,形成具有球壳结构Pt-Pd双金属催化剂,随引入钯的量不同,其催化能力的大小发生了变化,而且调节反应溶液的pH值,催化能力也发生变化. 关键词 钯铂催化剂;环己烯;催化氢化;pH值 中图分类号 TB383 文献标识码 A 文章编号 1672-4321(2006)01-0001-04 Investigation of Catalytic Activity of Pt/Pd Nanobimetallic Catalyst Wang Ran H e Ba olin [Malaysia]Liew Kongrong Pa n Rongjun Abstr act P olymer stabilized platinum nano-size cat alyst has relatively high hydr ogenation activit y.Intr oduction of a second metal,palladium,to for m a cor e shell str ucture with P d as the shell and Pt as the cor e,enhances the catalytic activit y substantially.The enhancement var ies with t he amount of Pd introduced.Changes in pH was also found t o have significant effects on t he cata lytic activity. Keywor ds P d/Pt bim et al cata lyst;cyclohexene;catalytichydr ogenation;pH Wa ng Ran Master′s Candidate,Key laborat or y for Cat alysis and Mater ial Science of Hubei Pr ovince,College of Chemistr y and M aterial Science,SCUF N,Wuhan430074,China 在室温常压条件下铂族贵金属纳米催化剂对各种小分子底物的催化氢化具有很高的催化能力和选择性[1~4],所以铂族贵金属在催化领域引起了科学界浓厚的研究兴趣.近年来,聚合物稳定的2种或2种以上金属元素组成均相多金属催化剂的研究引起了很多关注,可能是双金属催化剂具有一些比单金属催化剂优异的性能,例如,提高反应速率、选择性以及新的反应类型[5,6],还可以为研究不同合金的形成提供模型,而且其本身有特殊的组成结构[7].在本文中,主要探索了在有PVP稳定的单金属催化剂Pt 纳米颗粒表面引入第二元素Pd形成Pt-Pd双金属纳米催化剂后,催化性能的变化、催化活性与pH值的关系. 1 实验部分 1.1 催化剂的制备 1.1.1 单金属铂纳米催化剂的制备 本文催化剂采用化学醇还原来制备,甲醇为还原剂,聚乙烯吡咯烷酮PVP(K30)为稳定剂[8].过程如下:在250mL的圆底烧瓶里,将0.555g(即5 mmol单体)PV P和0.065g0.125mmol H2PtCl6?H2O溶于由65mL甲醇、75mL H2O组成的混合溶剂中,在磁力搅拌下回流180min得到清澈色泽棕黑的Pt纳米胶体,在反应过程中滴加10mL0.1 mol/L氢氧化钠甲醇溶液. 1.1.2 Pt/Pd双金属纳米催化剂的制备 双金属纳米催化剂的制备方法与单金属制备方法类似,本文以Pt纳米颗粒为晶种再还原Pd,以PVP-Pt0.5sPd0.5为例(0.5表示晶种纳米Pt用量为1.1.1中Pt的用量的0.5倍,即用量为0.625mmol, n Pt/n Pd=1/1),制备过程为:将75mL PVP-Pt纳米胶体、0.287g PVP(即2.5mmol单体)和6.5mL 9.6mmol/L H2PdCl4?n H2O溶于由32.5mL甲醇31.0mL水组成的溶剂中,在磁力搅拌下回流180 a收稿日期 2005-10-31 *通讯联系人hebl@https://www.wendangku.net/doc/ee14150629.html, 作者简介 王 然(1980-),女,硕士研究生,研究方向:贵金属纳米催化剂的制备和催化性能,E-mail:wengdyzhongnan @https://www.wendangku.net/doc/ee14150629.html, 基金项目 国家民委重点基金资助项目(MZY02019)

一种金属钯催化剂及其制备方法和应用

一种金属钯催化剂及其制备方法和应用 2016-07-18 14:17来源:内江洛伯尔材料科技有限公司作者:研发部 一种金属钯催化剂及其制备方法 钯能够催化卤代芳烃与有机苯硼酸以及其衍生物的Suzuki 反应,这在有机合成中的用途非常广泛,其反应条件比较温和,底物适用比较广泛、产物便于处理等特点,在碳- 碳偶联反应中具有很重要的地位,是合成联苯类化合物的有效方法。近年来,钯催化剂具有很高的催化性能、反应条件温和、易于回收等优点,这就决定了负载型的钯催化剂具有潜在的应用价值。目前,已经有很多文献报道过各种各样的催化剂,在研究Suzuki 反应的现有文献中,有很多含膦配体、含氮配体以及卡宾配体等,但是,在此反应中,常常存在一些的缺点,比如:大量的钯催化剂使用量、催化剂活性低、催化剂难回收使用等问题。膦配体对钯催化剂的催化效果影响很大,但是有些含膦钯催化剂在Suzuki 反应中,活性不高甚至活性很低。另外,在Suzuki 反应中常使用的有机溶剂( 例如甲苯、DMF 等) 通常是有毒、昂贵的。因此,制备出催化活性很高的钯催化剂,在Suzuki 反应中,使用毒性较低的有机溶剂在实际应用中非常重要。 由含氮和膦小分子在钯作用下,通过碳膦、碳氮偶联,生成包覆金属钯的大分子聚合物催化剂。钯盐先与DIPPF([1,1'- 双( 二异丙基膦) 二茂铁)的配位,然后再催化胺化合物与含膦化合物的之间的反应,最后加入一定量的钯盐、胺化合物、哌嗪和碱,其中碱的作用是消除在反应过程中生成的HBr,在甲苯有机溶剂中,惰性气体保护下,一定温度下反应生成的包覆金属钯的聚合物。该催化剂为含氮和膦的聚合物固载金属钯,其中金属钯占聚合物的质量负载量( 通过ICP 测得) 为0.2 ~ 2%;由含氮和膦小分子在钯作用下,通过碳膦、碳氮偶联,生成包覆金属钯的大分子聚合物催化剂。由于固载的含膦配体以及聚苯胺共同作用提高了钯催化剂活性和稳定性。该催化剂在醇和水的混合溶液中可以超高效的催化Suzuki 反应,可在极低的催化剂用量的条件下进行;该催化剂易于回收、便于应用,且该催化剂能够用于合成新型沙坦类高血压药的沙坦联苯(2- 氰基-4′ - 甲基联苯) 和4- 氯-2′ - 硝基联苯( 合成啶酰菌胺的药物中间体) 药物中间体的放大实验,这在工业上有很大的应用价值。

印染废水处理工艺设计及分析

0引言 服装水洗、印染行业具有悬浮物含量高、色度 高、难降解有机物含量较高、用水量大、处理达标难度大的特点。用一般传统的污水处理方法,很难使废水达标排放[1-2]。先通过UASB 厌氧池降低有机物的含量、然后再经过卡鲁塞尔氧化沟工艺对废水中剩余的难降解有机物进行降解,经过该组合工艺对水洗、印染废水进行处理。可以使出水达到《纺织染整工业水污染物排放标准》一级排放标准[3-4]。 1设计水质及排放标准 该水洗、印染厂位于开发区,根据当地水环境功能区划,该污水处理厂出水标准应达到《纺织染整工业水污染物排放标准》一级排放标准。标准具体要求、进水水质及处理程度见表1,设计污水处理厂处理污水能力为2万m 3?d -1。 表1 设计进出水水质 2废水处理工艺设计2.1 工艺流程 根据废水特点及环保要求,综合考虑经济效益、 环境效益、社会效益。结合其他工程实例,我们采用UASB 厌氧反应池和卡鲁塞尔氧化沟为主体的组合工艺,具体工艺流程见图1。 印染废水处理工艺设计及分析 吴 兵1,

梁晓高1, 张波1,胡文方1,宋 静2 (1.汉川市环境监测站, 湖北 汉川 431600;2.武汉工程大学,湖北 武汉 432100 摘 要:水洗、印染废水中的悬浮物含量高、色度高、难降解有机物含量较高,处理达标难度大,根据污水处理厂的 进水水质和出水水质应达到的标准,确定采用厌氧池、卡鲁塞尔氧化沟组合工艺,对水洗、印染废水进行处理。出水可以达到《纺织染整工业水污染物排放标准》一级排放标准。COD C r 去除效率为97.1%,SS 去除效率为90%以上,具有很好的经济效益、环境效益、社会效益。关键词: 洗染废水; 厌氧池; 卡鲁塞尔氧化沟 中图分类号:X5文献标识码:B 文章编号:1004-8642(200706-0029-03

钯的催化剂种类及其应用

钯的催化剂种类及其应用 钯的催化剂种类及其应用 2011年11月03日 钯催化剂在有机加氢中通常兼有良好的活性和选择性,正是这一特性,使钯催化剂在有机催化加氢中极具实用价值。通常钯催化剂分有载体和无载体两类。其中无载体的钯催化剂主要有钯黑、胶态钯、氧化钯和氢氧化钯等。基本上都用于各种有机催化加氢。钯催化剂的载体,本身具有助催化作用,还能调变催化加氢的选择性。相对于无载体钯催化剂,有载体的钯催化剂价格更实惠。 1. 钯/碳酸钙催化剂 钯/碳酸钙催化剂特点是用稀醋酸铅来处理钯/碳酸钙。由于铅的毒性作用,使钯催化剂加氢活性减弱,加氢选择性加强。还可以加喹啉进一步提高其加氢选择性。它能控制反应固定在碳-碳三键加氢成碳-碳双键这一步上,也能使共轭二烯选择加氢成单烯。 1.1. 钯/碳酸钙催化剂的实验室制备 将50ml 5%的氯化钯水溶液加入50g碳酸钙和400mL水的混合液中,室温下搅拌5 min,80?下搅拌10min,然后通氢气。还原氯化钯为钯。过滤并水洗得钯/碳酸钙。将5g醋酸铅溶于100mL水中,然后浸渍钯/碳酸钙。20?搅拌10min。沸水浴上加热并搅拌40min。滤出、水洗后40?-50?真空干燥得钯/碳酸钙催化剂。 1.2 钯/碳酸钙催化剂的应用 前苏联索科耳斯基等表明:在气相中,用被铅毒化的钯/碳酸钙催化剂可非常顺利地使乙炔加氢成乙烯。在40?-60?和C2H2?H2=1:2 时,乙烯产率达98%-100% 。

另外,由于钯在常态下对羰基和芳环基催化加氢无活性,故钯/碳酸钙催化剂能实现选择性加氢。例如:用被铅毒化的钯/碳酸钙催化剂。催化加氢去氢沉香醇成为沉香醇,该反应炔基加氢停留在烯基这一步上,而醇基并不加氢。 开发钯/碳酸钙催化剂可参考钯、碳酸钙、醋酸铅的质量比例。工艺过程能重新设计。试验室制备中催化剂真空干燥主要考虑到单质钯加热易吸附氧,催化剂活性会下降。真空干燥工业生产不现实,可设计成在惰性气氛中干燥。沸水浴上加热搅拌可设计成在红外或微波中加热。载体也可设计成氧化铝或氧化铝球。也有用醋酸锌作毒物处理钯/ 碳酸钙催化剂的。现在工业中运用较多的是钯载于氧化铝上,用负载铅作毒物。用作催化乙炔选择加氢成乙烯,丙炔选择加氢成丙烯、丁二烯,丁炔选择加氢成丁烯等。 2. 钯/碳催化剂 该催化剂的特点是制备工艺流程较简洁,但使用技术要求很高。在某 碳催化剂用95%乙醇洗净凉干,再用其它溶液洗后能套用3-4次。些反应中,钯/ 2.1. 钯/碳催化剂的实验室制备 根据计算钯在催化剂中的百分含量,将固体氯化钯溶于浓盐酸和水,再用水稀释,浸渍炭,搅拌,蒸干。使用时用氢气还原。一般钯/碳催化剂含钯3%-5% 。 钯/碳催化剂用于腈加氢时,要用硼氢化钠还原附载在炭上的氯化钯,制成钯/碳催化剂。这是因为金属硼化物对腈加氢有良好的活性和选择性。 2.2. 钯/碳催化剂的应用 钯/碳催化剂可用于吡啶加氢制哌啶。将吡啶和醛或酮混合,用钯/碳催化剂加氢,可制得收率很好的N-烷基哌啶。钯/碳(5%钯)催化剂,在乙醇中对芳香族硝基化合物进行加氢时,添加烷基环己烯或脂肪族酮可获得良好效果。用钯/碳(5%钯)

印染废水处理方案

印染厂废水处理工程方案 目录 一、生产概况............................................................. 错误!未定义书签。 二、设计依据............................................................. 错误!未定义书签。 三、设计条件............................................................. 错误!未定义书签。 四、工艺选择............................................................. 错误!未定义书签。 五、工艺流程及其说明............................................. 错误!未定义书签。 六、主要构筑物及其设计参数................................. 错误!未定义书签。 七、主要设备及材料................................................. 错误!未定义书签。 八、工程概算............................................................. 错误!未定义书签。 九、技术经济指标..................................................... 错误!未定义书签。 十、工期安排............................................................. 错误!未定义书签。十一、结论 .................................................................... 错误!未定义书签。

印染厂废水处理

摘要:根据印染废水的来源不同,分别介绍了水质特点及排放规律,重点对印染废水的处理方法进行了归纳和总结。并建议解决印染废水污染问题应坚持改革工艺,从源头减少污染物排放和积极治理所排放污水、实现污水回用相结合的方针。 关键词:印染废水水质特征处理技术 0引言 印染行业是工业废水');">工业废水排放大户,据不完全统计,全国印染废水每天排放量为3×106~4×106m3。印染废水具有水量大、有机污染物含量高、色度深、碱性大、水质变化大等特点,属难处理的工业废水。近年来由于化学纤维织物的发展,仿真丝的兴起和印染后整理技术的进步,使PV A浆料、人造丝碱解物(主要是邻苯二甲酸类物质)、新型助剂等难生化降解有机物大量进入印染废水,其COD浓度也由原来的数百mg/L上升到2000~ 3000mg/L,从而使原有的生物处理系统COD去除率从70%下降到50%左右,甚至更低。传统的生物处理工艺已受到严重挑战;传统的化学沉淀和气浮法对这类印染废水的COD去除率也仅为30%左右。因此开发经济有效的印染废水处理技术日益成为当今环保行业关注的课题。 1印染废水来源、水质、水量 1.1来源 印染加工的四个工序都要排出废水,预处理阶段(包括烧毛、退浆、煮炼、漂白、丝光等工序)要排出退浆废水、煮炼废水、漂白废水和丝光废水,染色工序排出染色废水,印花工序排出印花废水和皂液废水,整理工序则排出整理废水。印染废水是以上各类废水的混合废水,或除漂白废水以外的综合废水。 1.2水质及水量印染废水的水质随采用的纤维种类和加工工艺的不同而异,污染物组分差异很大。一般印染废水pH值为6~10,CODCr为400~ 1 000 mg/L,BOD5为100~400mg/L,SS为10 0~2 00mg/L,色度为100~400倍。但当印染工艺及采用的纤维种类和加工工艺变化后,废水水质将有较大变化。如,当废水中含有涤纶仿真丝印染工序中产生的碱减量废水时,废水的COD Cr 将增大到 2 000 ~ 3 000 mg/L以上,BOD5增大到800mg/L以上,pH值达11.5 ~12,并且废水水质随涤纶仿真丝印染碱减量废水的加入量增大而恶化。当加入的碱减量废水中CODCr的量超过废水中CODCr的量20%时,生化处理将很难适应。印染各工序的排水情况一般是: (1)退浆废水:水量较小,但污染物浓度高,其中含有各种浆料、浆料分解物、纤维屑、淀粉碱和各种助剂。废水呈碱性,pH值为12左右。上浆以淀粉为主的(如棉布)退浆废水,其COD、BOD值都很高,可生化性较好;上浆以聚乙烯醇(PV A)为主的(如涤棉经纱)退浆废水,C OD高而BOD低,废水可生化性较差。 (2)煮炼废水:水量大,污染物浓度高,其中含有纤维素、果酸、蜡质、油脂、碱、表面活性剂、含氮化合物等,废水呈强碱性,水温高,呈褐色。 (3)漂白废水:水量大,但污染较轻,其中含有残余的漂白剂、少量醋酸、草酸、硫代硫酸钠等。 (4)丝光废水:含碱量高,NaOH含量在3%~5%,多数印染厂通过蒸发浓缩回收NaOH,所以丝光废水一般很少排出,经过工艺多次重复使用最终排出的废水仍呈强碱性,BOD、COD 、SS均较高。 (5)染色废水:水量较大,水质随所用染料的不同而不同,其中含浆料、染料、助剂、

印染废水的处理方法及工艺流程0001

印染废水的处理方法及工艺流程 印染废水处理就找“厦门威士邦” 印染废水的处理方法及工艺流程 目前,国内的印染废水处理手段以生物法为

主,辅以物理法与化学法。由于近年来化纤织物的发展和印染后整理技术的进步,使新型染料、PAV浆料、新型助剂等难生化降解有机物大量进入印染废水,给处理增加了难度。原有的生物处理系统COD去除率大都由原来的70%下降到50%左右,甚至更低。色度的去除是印染废水处理的一大难题,旧的生化法在脱色方面一直不能令人满意。此外,PAV等化学浆料造成的COD占印染废水总COD的比例相当大,但由于它们很难被普通微生物所利用而使其去除率只有20%~30%。针对上述问题,国内外都开展了一些研究工作,主要是新的生物处理工艺和高效专门细菌以及新型化学药剂的探索

和应用研究。. 印染废水处理就找“厦门威士邦” 其中具有代表性的有:厌氧-好氧生物处理工艺、高效脱色菌和PVA降解菌的筛选与应用研究、光降解技术研究、高效脱色混凝剂的研制等。 1、印染废水常用处理技术 印染废水的常用处理方法可分为物理法、化学法与生物法三类。物理法主要有格栅与筛网、调节、沉淀、气浮、过滤、膜技术等,化学法有中和、混凝、电解、氧化、吸附、消毒等,生物法有厌氧生物法、好氧生物法、兼氧生物法。 2、印染废水处理单元的选择系列 (1)调节:对水质水量变化大的废

水,调节池应考虑停留时间长些。一般情况下后续处理单元为水解酸化或厌氧处理时,调节时不应采用曝气方式搅拌混合。.印染废水处理就找“厦门威士邦” (2)混凝反应:废水中含疏水性染料较多时,混凝反应工艺放在生化前面,以去除不溶性染料物质,减轻后续生物处理的负荷。混凝药剂可根据染料性质选用碱式氯化铝(PAC)、硫酸亚铁(FeSO4)等,混凝反应方式采用机械搅拌易于调整水力条件,保证反应充分,反应时间应在25~30min 之间。考虑脱色效应时,应把反应时间再适当延长。 (3)中和:原水pH值高时通常用

相关文档