文档库 最新最全的文档下载
当前位置:文档库 › 随堂练习_切线长定理-优质公开课-鲁教9下精品

随堂练习_切线长定理-优质公开课-鲁教9下精品

随堂练习_切线长定理-优质公开课-鲁教9下精品

圆幂定理及其应用

[文件] sxc3jja0008.doc [科目] 数学 [年级] 初三 [章节] [关键词] 圆/圆幂定理/应用 [标题] 圆幂定理及其应用 [内容] 教学目标 1.使学生理解相交弦定理、切割线定理及其推论间的相互关系,并能综合运用它们解 决有关问题; 2.通过对例题的分析,提高学生分析问题和解决问题的能力,并领悟添加辅助线的方 法; 3.从运动的观点来统一认识圆幂定理.对学生进行事物之间是相互联系和运动变化的 观点的教育. 教学重点和难点 相交弦定理、切割线定理及其推论之间的关系以及应用是重点;灵活运用圆幂定理解题是难点. 教学过程设计 一、从学生原有的认知结构提出问题 1.根据图7-162(1)、(2)、(3),让学生结合图形,说出相交弦定理、切割线定理、割线定理的内容. 2.然后提出问题.相交弦定理、切割线定理及其推论这三者之间是否有联系? 提出问题让学生思考,在学生回答的基础上,教师用电脑或投影演示图形的变化过程, 从相交弦定理出发,用运动的观点来统一认识定理. (1)如图7-163,⊙O的两条弦AB,CD相交于点P,则PA·PB=PC·PD.这便是我们学过的相交弦定理.对于这个定理有两个特例: 一是如果圆内的两条弦交于圆心O,则有PA=PB=PC=PD=圆的半径R,此时AB,CD是直径,相交弦定理当然成立.(如图7-164)

二是当P点逐渐远离圆心O,运动到圆上时,点P和B,D重合,这时PB=PD=O,仍然有PA·PB=PC·PD=O,相交弦定理仍然成立.(图7-165) (2)点P继续运动,运动到圆外时,两弦的延长线交于圆外一 点P,成为两条割线,则有PA·PB=PC·PD,这就是我们学过的 切割线定理的推论(割线定理).(图7-166) (3)在图7-166中,如果将割线PDC按箭头所示方向绕P点旋 转,使C,D两点在圆上逐渐靠 近,以至合为一点C,割线PCD变成切线PC.这时有PA·PB=PC·PD =PC2,这就是我们学过的切割线定理.(图7-167) (4)如果割线PAB也绕P点向外旋转的话,也会成为一条切线PA.这时应有PA2=PB2,可得PA=PB,这就是我们学过的切线长定理.(图7-168) 至此,通过点的运动及线的运动变化,我们发现,相交弦定理、切割线定理及其推论和 切线长定理之间有着密切的联系. 3.启发学生理解定理的实质. 经过一定点P作圆的弦或割线或切线,如图7-169. 观察图7-169,可以得出:(设⊙O半径为R) 在图(1)中,PA·PB=PC·PD=PE·PF =(R-OP)(R+OP) =R2-OP2;

北京市2014届九年级数学下册 切线长定理的应用课后练习一 新人教版

专题:切线长定理的应用 重难点易错点解析 题一: 题面:⊙O 的两条切线PA 和PB 相交于点P ,与⊙O 相切于A 、B 两点,C 是⊙O 上的一点,若∠P =60°,求∠ACB 的度数. 金题精讲 题一: 题面:如图1,△ABC 中,CA =CB ,点O 在高CH 上,OD ⊥CA 于点D ,OE ⊥CB 于点E ,以O 为圆心,OD 为半径作⊙O . (1)求证:⊙O 与CB 相切于点E ; (2)如图2,若⊙O 过点H ,且AC =5,AB =6,连结EH ,求△BHE 的面积. 图1 图2 满分冲刺 题一: 题面:如图,直角梯形ABCD 中,以AD 为直径的半圆与BC 相切于E ,BO 交半圆于F ,DF 的延 长线交AB 于点P ,连DE .以下结论:①DE ∥OF ;②AB +CD =BC ;③PB =PF ;④AD 2 =4AB ?DC .其中正确的是( ) A .①②③④ B .只有①② C .只有①②④ D .只有③④

题二: 题面:如图①所示,AB为⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE 延长线上一点,且CE=CB. (1)求证:BC为⊙O的切线; (2)连接AE,AE的延长线与BC的延长线交于点G(如图②所示).若AB=25,AD=2,求线段BC和EG的长. 课后练习详解 重难点易错点解析 题一: 答案:60或120度 解析:连接OA、OB, ∵PA、PB与圆O分别相切于点A、B, ∴OA⊥AP,OB⊥PB, ∴∠OAP=∠OBP=90°,又∠P=60°, ∴∠AOB=360°-90°-90°-60°=120°, 当点C在优弧AC上时,如图

《切线》word版 公开课一等奖教案 (2)

当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料。这些资料因为用的比较少,所以在全网范围内,都不易被找到。您看到的资料,制作于2021年,是根据最新版课本编辑而成。我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品。 本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最终形成了本作品。本作品为珍贵资源,如果您现在不用,请您收藏一下吧。因为下次再搜索到我的机会不多哦! 福建省泉州市九年级数学下册《28.2.3 切线(2)》教案华东师大 版 教学目标: 通过探究,使学生发现、掌握切线长定理,并初步长定理,并初步学会应用切线长定理解决问题,同时通过从三角形纸片中剪出最大圆的实验的过程中发现三角形内切圆的画法,能用内心的性质解决问题。 教学重点: 切线长定理及其应用,三角形的内切圆的画法和内心的性质。 教学难点: 三角形的内心及其半径的确定。 教学过程 (一)复习导入: 请同学们回顾一下, 1.如何判断一条直线是圆的切线? 2.圆的切线具有什么性质? (经过半径外端且垂直于这条半径的直线是圆的切线; 圆的切线垂直于经过切点的半径。) 你能说明以下这个问题?如右图所示,PA是 BAC 的平分线,AB是⊙O的切线,切点E, 那么AC是⊙O的切线吗?为什么? (二)实践与探索问题: 1、从圆外一点可以作圆的几条切线?请同学们画一画。 2、请问:这一点与切点的两条线段的长度相等吗?为什么? 3、切线长的定义是什么? P O F E C B A

通过以上几个问题的解决,使同学们得出以下的结论: 从圆外一点可以引圆的两条切线,切线长相等。 这一点与圆心的连线平分两条切线的夹角。 (三)拓展与应用 : 例:右图,PA 、PB 是,切点分别是A 、B ,直线EF 也是⊙O 的切线,切点为P ,交PA 、PB 为E 、F 点,已知12PA cm =,70P ∠=?, (1)求PEF 的周长; (2)求EOF ∠的度数。 解:(1)连结PA 、PB 、EF 是⊙O 的切线 所以PA PB =,EA EQ =,FQ FB = 所 以 PEF 的周长24OE EP PF FB PA PB cm =+++=+= (2)因为PA 、PB 、EF 是⊙O 的切线 所以PA OA ⊥,PB OB ⊥,EF OQ ⊥ AEO QEO ∠=∠,QFO BFO ∠=∠ 所以180110AOB P ∠=?-∠=?, 1 552 EOF AOB ∠= ∠=? (四)练习:P58第10题. 小结:切线长定理:从圆外一点可以引圆的两条切线,切线长相等。 这一点与圆心的连线平分两条切线的夹角。 作业:P48第11、12题。 三角形的内切圆 教学目标: 通过从三角形纸片中剪出最大圆的实验的过程中发现三角形内切圆的画法, 能用内心的性质解决问题。 教学重点 :三角形的内切圆的画法和内心的性质。 O B Q O F E B A

切线长定理

切线长定理 教材分析: 本节内容是切线长的概念和切线长定理。通过本节教学应使学生理解切线长的概念,掌握切线长定理并会运用它解决有关问题。切线长定理再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,这个定理经常用到,因此,它是本节的重点。灵活运用图形语言、文字语言、符号语言三种语言表述切线长定理,学生感觉困难;用切线长定理解决有关问题中,准确应用数学语言进行表述,学生感觉困难;从实际情境中抽象出切线长定理模型解决问题,学生感觉困难;在综合题中迅速找出切线长定理模型, 学生感觉困难;因此,综合应用切线长定理及有关知识解决问题,是本节的难点。本节内容是在学习了“切线的判定和性质”之后,并进一步了解了“三角形的内切圆”这一内容的基础上进行研究的。是前面内容的必然延伸,也是后面学习切割线定理等重要内容的基础。切线长定理的出现,可以让我们对直线与圆位置关系的研究由定性分析深入到定量研究。再次让我们感触到了圆的轴对称性。它为我们证明线段相等、角相等、弧相等、垂直关系等提供了理论依据。通过本节内容的学习,会让学生更客观地认识切线的有关问题。同时,该定理的学习对我们解决一些实际问题很有指导意义。因此,本节内容在这部分中具

有非常重要的作用,是“直线与圆的位置关系”这部分内容的纽带和桥梁。同时,它综合运用等腰三角形、直角三角形、全等三角形、相似三角形、四边形等知识解决问题。切线长定理及其研究方法又是研究两圆相切问题的基础,因此,本节内容在整个初中几何教材体系中,起着承上启下的作用。 学生分析: 1、经过前面几节的学习,学生对圆的轴对称性已经有了初步了解,掌握了等腰三角形、直角三角形、全等三角形、相似三角形、四边形等知识,具备了学习本节内容的知识基础。 2、经过前面的学习,学生已经对合情推理和逻辑推理都有了一定的认识,具备了证明线段相等、角相等、弧相等、垂直关系等的基本技能。 3、初三学生已经具备了一定的探索解决问题方法的经验,从心理学的角度分析:他们正处于想成为大人,想得到别人肯定的年龄阶段,因此,他们会不遗余力地提出他们自己的看法并能较有条例地申述自己的理由,这些是很必要的情感准备;但由于特定年龄阶段的关系,他们对问题的分析还不是很全面,用数学语言表述看法,有时还欠准确贴切。有待于教师不断地加以培养。 设计理念: 1、本着“人人都能学好数学”,“人人都学有价值的数

最新数学冀教版初中九年级下册29.4切线长定理公开课教学设计

294 切线长定理 1.掌握切线长定理,初步学会运用切线长定理进行计算与证明. 2.了解有关三角形的内切圆和三角形的内心的概念. 3.学会利用方程思想解决几何问题,体验数形结合思想. 一、情境导入 新农村建设中,张村计划在一个三角形中建一个最大面积的圆形花园,请你设计一个建筑方案.、 二、合作探究 探究点一:切线长定理 【类型一】利用切线长定理求三角形的周长 如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F , 切点在(AB ︵)上.若PA 长为2,则△PEF 的周长是________. 解析:因为PA 、PB 分别与⊙O 相切于点A 、B ,所以PA =PB ,因为⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点为,所以EA =E ,F =BF ,所以△PEF 的周长PE +EF +PF =PE +E +F +PF =(PE +E )+(F +PF )=PA +PB =2+2=4

【类型二】利用切线长定理求角的大小 如图,PA、PB是⊙O的切线,切点分别为A、B,点在⊙O上,如果∠AB=70°, 那么∠OPA的度数是________度. 解析:如图所示,连接OA、OB∵PA、PB是⊙O的切线,切点分别为A、B,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°又∵∠AOB=2∠AB=140°,∴∠APB=360°-∠PAO-∠AOB -∠OBP=360°-90°-140°-90°=40°又易证△POA≌△POB,∴∠OPA=错误!∠APB =20°故答案为20 方法总结:由公共点引出的两条切线,可以运用切线长定理得到等腰三角形.另外根据全等的判定,可得到PO平分∠APB 【类型三】切线长定理的实际应用 为了测量一个圆形铁环的半径,某同学采用了如下办法:将铁环平放在水平桌面 上,用一个锐角为30°的三角板和一把刻度尺,按如图所示的方法得到相关数据,进而可求得铁环的半径.若测得PA=5c,则铁环的半径长是多少?说一说你是如何判断的. 解:过O作OQ⊥AB于Q,设铁环的圆心为O,连接OP、OA∵AP、AQ为⊙O的切线,∴AO为∠PAQ的平分线,即∠PAO=∠QAO又∠BA=60°,∠PAO+∠QAO+∠BA=180°,∴∠PAO=∠QAO=60°在Rt△OPA中,PA=5,∠POA=30°,∴OP=55(c),即铁环的半径为55c 探究点二:三角形的内切圆 【类型一】求三角形的内切圆的半径 如图,⊙O是边长为2的等边△AB的内切圆,则⊙O的半径为________.

切线长和切线长定理的应用

A 第20题 N C B D E F M O O 切线长和切线长定理的应用 例(2011·济宁)如图,AB 是⊙O 的直径,AM 和BN 是它的两条切线,DE 切⊙O 于点E ,交AM 与于点D ,交BN 于点C ,F 是CD 的中点,连接OF 。 (1) 求证:OD ∥BE; (2) 猜想:OF 与CD 有何数量关系?并说明理由。 解:(1)证明:连接OE ∵AM 、DE 是⊙O 的切线,OA 、OE 是⊙O 的半径 ∴∠ADO=∠EDO,∠DAO=∠DEO=90°…………1分 ∴∠AOD=∠EOD=2 1 ∠AOE …………2分 ∵∠ABE=2 1 ∠AOE ∴∠AOD=∠ABE ∴OD ∥BE …………3分 (2) OF = 2 1 CD …………4分 理由:连接OC ∵BE 、CE 是⊙O 的切线 ∴∠OCB=∠OCE …………5分 ∵AM ∥BN ∴∠ADO+∠EDO+∠OCB+∠OCE=180° 由(1)得 ∠ADO=∠EDO ∴2∠EDO+2∠OCE=180° 即∠EDO+∠OCE=90° …………6分 在Rt △DOC 中, ∵ F 是DC 的中点 ∴OF =2 1 CD ……7分 巩固提高 1、如图,AB 是半圆(圆心为O )的直径,OD 是半径,BM 切半圆于B ,OC 与弦AD 平行且交BM 于C 。 (1) 求证:CD 是圆O 的切线; (2)若2OA =且6AD OC +=,求CD 的长? C O D B A

2、在Rt ABC ?中,90A ∠=?,点O 在BC 上,以O 为圆心的圆O 分别与AB 、AC 相切于E 、F ,若A B a =, AC b =,则圆O 的半径为( ) A 、ab B 、a b ab + C 、ab a b + D 、2 a b + C E O F B A C E O D B A P E O F D B A 例1图 例2图 例3图 3、如图,AB BC ⊥,DC BC ⊥,BC 与以AD 为直径的圆O 相切于点E ,9AB =,4CD =,则四边形ABCD 的面积为 。 4、如图,过O 外一点P 作圆O 的两条切线PA 、PB ,切点分别为A 、B ,连结AB ,在AB 、PB 、PA 上分别取一点D 、E 、F ,使AD BE =,BD AF =,连结DE 、DF 、EF ,则EDF ∠=( ) A 、90P ?∠- B 、1902P ?-∠ C 、180P ?-∠ D 、1 452 P ?∠- 5、如图,已知ABC ?中,AC BC =, CAB α∠=(定值),圆O 的圆心O 在AB 上,并分别与AC 、BC 相切于点P 、Q 。 (1)求POQ ∠; (2)设D 是CA 延长线上的一个动点,DE 与O 相切于点M ,点E 在CB 的延长线上,试判断DOE ∠的大小是否保持不变,并说明理由。 N Q P O D C B A 6、如图,圆O 为Rt ABC ?的内切圆,点D 、E 、F 为切点,若6AD =,4BD =,则ABC ?的面积为 。 C E O F D B A

切线长定理及其应用

切线长定理及其应用 一、基础知识总结 1.内切圆和内心 定义: 与三角形各边都相切的圆叫做三角形的内切圆.内切圆的圆心是三角形三条角平分 线的交点,叫做三角形的内心. 总结:判断一个多边形是否有内切圆,就是判断能否找到一个点到各边距离都 相等。 2.直角三角形的内切圆半径与三边关系 (1)一个基本图形; (2)两个结论: 1)四边形OECF 是正方形 2)r=(a+b-c)∕2或r=ab ∕(a+b+c) (3)两个方法 代数法(方程思想);面积法 3.切线长定义:过圆外一点作圆的切线,该点和切点之间的线段长叫做切线长。 4.切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的交角。 二、典型例题解析 【例1】如图△ABC 的内切圆⊙O 与BC 、CA 、AB 分别相交于点D 、E 、F ,且AB=9 cm,BC=14 cm ,CA=13 cm ,求AF 、BD 、CE 的长 D E F O C B A 112 12902 a b c A B C A B C S s r p a b c p C r a b c ?∠∠∠==++∠=?=+-设、、分别为中、、的对边,面积为,则内切圆半径(),其中(); (),则()

【例2】如图,已知⊙O是△ABC的内切圆,切点为D、 E、F,如果AE=1, CD=2,BF=3,且△ABC的面积为6.求内切圆的半径r. 【例3】如图,以等腰ABC ?中的腰A B为直径作⊙O,交底边BC于点D.过点D作⊥,垂足为E. D E A C (I)求证:D E为⊙O的切线; (II)若⊙O的半径为5,60 ∠= ,求D E的长. B A C 【例4】如上图等边三角形的面积为S,⊙O是它的外接圆,点P是⌒BC的中点.(1)试判断过C所作的⊙O的切线与直线AB是否相交,并证明你的结论;(2)设直线 CP与AB相交于点D,过点B作BE⊥CD垂足为E,证明BE是⊙O的切线,并求△ BDE的面积.

湘教版九年级数学下册2.5.3 切线长定理教案与反思

*2.5.3 切线长定理 原创不容易,为有更多动力,请【关注、关注、关注】,谢谢! 师者,所以传道,授业,解惑也。韩愈 1.理解和掌握切线长定理;(重点) 2.初步学会用切线长定理进行计算与证明.(难点) 一、情境导入 有一天,同学们去王老师家做客,王老师正在洗锅,就问:谁能测出这个锅盖的半径,就可以得到一根雪糕,同学们都跃跃欲试,但老师家里只有一个曲尺,到底谁能得到这根雪糕呢? 教师引导学生发现A、B分别为⊙O与PA、PB的切点,连接OB,OA,则四边形OAPB是正方形,所以,圆的半径为A点或B点的刻度,PA=PB. 如果这根尺子的夹角不是90°,是否还能得到PA=PB? 二、合作探究 探究点:切线长定理及应用 【类型一】利用切线长定理求线段的长 如图,从⊙O外一点P引圆的两条切线PA、PB,切点分别是A、B,如果∠APB=60°,线段PA=10,那么弦AB的长是( ) A.10 B.12 C.5 3 D.10 3

解析:∵PA 、PB 都是⊙O 的切线,∴PA =PB .∵∠APB =60°,∴△PAB 是等边三角形,∴AB =PA =10.故选A. 方法总结:切线长定理是判断线段相等的主要依据,在圆中经常用到. 变式训练:见《学练优》本课时练习“课堂达标训练”第1题 【类型二】 利用切线长定理求三角形的周长 如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在AB ︵上.若PA 长为2,则△PEF 的周长是________. 解析:因为PA 、PB 分别与⊙O 相切于点A 、B ,所以PA =PB .因为⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点为C ,所以EA =EC ,CF =BF ,所以△PF 的周长=PE +EF +PF =PE +EC +CF +PF =(PE +EA )+(BF +PF )=PA +PB =2+2=4.故答案为4. 变式训练:见《学练优》本课时练习“课堂达标训练”第4题 【类型三】 利用切线长定理求角的大小 如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,点C 在⊙O 上,如果∠ACB =70°,那么∠OPA 的度数是________度. 解析:如图所示,连接OA 、OB .∵PA 、P 是⊙O 的切线,切点分别为A 、B ,∴OA ⊥PA ,OB ⊥PB ,∴∠OAP =∠OBP =90°.又∵∠AOB =2∠ACB =140°,∴∠APB =360°-∠PAO -∠AOB -∠OBP =360°-90°-140°-90°=40°.又易 证△POA ≌△POB ,∴∠OPA =12 ∠APB =20°.故答案为20. 方法总结:由公共点引出的两条切线,可以运用切线长定理得到等腰三角形.另外根据等的判定,可得到PO 平分∠APB . 变式训练:见《学练优》本课时练习“课堂达标训练”第2题

切线长定理的证明及其运用

《切线长定理》教学设计 1、教材分析 重点、难点分析 重点:切线长定理及其应用.因切线长定理再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点. 难点:与切线长定理有关的证明和计算问题.不仅应用切线长定理,还用到方程的知识,是代数与几何的综合题,学生往往不能很好的把知识连贯起来.2、教法建议 本节内容需要一个课时. (1)在教学中,组织学生自主观察、猜想、证明,并深刻剖析切线长定理的基本图形;对重要的结论及时总结; (2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学. 教学目标 1.理解切线长的概念,掌握切线长定理; 2.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想. 3.通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度. 教学重点: 切线长定理是教学重点 教学难点: 切线长定理的灵活运用是教学难点 教学过程设计: (一)观察、猜想、证明,形成定理 1、切线长的概念. 如图,P是⊙O外一点,PA,PB是⊙O的两条切线,我们把线段PA,PB 叫做点P到⊙O的切线长. 引导学生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;

切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量. 2、观察 利用PPT来展示P 的位置的变化,观察图形的特征和各量之间的关系. 3、猜想 引导学生直观判断,猜想图中PA是否等于PB.PA=PB. 4、证明猜想,形成定理. 猜想是否正确。需要证明. 组织学生分析证明方法.关键是作出辅助线OA,OB, 要证明PA=PB. 想一想:根据图形,你还可以得到什么结论? ∠OPA=∠OPB(如图),连接AB,有AD=BD等. 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角. 5、归纳: 把前面所学的切线的5条性质与切线长定理一起归纳切线的性质 6、切线长定理的基本图形研究(小组合作交流) 如图,PA,PB是⊙O的两条切线,A,B为切点.直线OP交⊙O于点D,E,交AB于C 要求:就你所知晓的几何知识,写出你认为正确 的结论,小组交流,看哪个小组的结论最多,用最简 短的话语证明你的结论是正确的。 说明:对基本图形的深刻研究和认识是在学习几 何中关键,它是灵活应用知识的基础. (二)应用、归纳、反思 例1、已知:如图,PA、PB是⊙O的切线,切点分别是A、B,Q为AB上一点,过Q点作⊙O的切线,交PA、PB于E、F点,已知PA=12CM,求△PEF的周 长。

理解切线长的概念掌握切线长定理并运用它

理解切线长的概念-掌握切线长定理-并运用它

————————————————————————————————作者:————————————————————————————————日期:

第十八讲 知识要点: 1、理解切线长的概念,掌握切线长定理,并运用它解决有关问题; 2、理解弦切角的定义,掌握弦切角定理及其推论,并运用它解决有关角的问题; 3、掌握圆的相交弦定理及推论,能进行有关计算、证明,会作两条线段的比例中项; 4、掌握切割线定理及其推论,并会利用它进行有关的计算和证明; 难题解疑: 例题1:⊙O是△ABC 的内切圆,D 、E、F 为切点,AB =12c m,BC =14cm,CA=18c m,求A E、B F、CD 的长; 例题2:PA 、P B切⊙O 于点A 、B,CD切⊙O于点Q,交PA 、 PB 于点C 、D,求证:(1)△P CD 的周长=2PA ; (2)∠COD =90°-21∠P ; 例题3:△ABC 是⊙O 的内接三角形,B T为⊙O的切线,B 为切点,P 为直线AB 上一点,过P 作BC 的平行线交直线BT 于点E ,交线段AC 于点F , (1)如图(1),当点P 在线段AB 上时,求证:PA ·PB =PE ·PF ; (2)如图(2),当点P 在线段BA 延长线时,第(1)题的结论还成立吗?如果成立,请证明;如果不成立,请说明理由;

例题4:从不在⊙O上的一点A作⊙O的割线,交⊙O于B、C,且AB·AC=64,OA=10,求⊙O的半径; 例题5:小张、小李、小王三位同学解下列作图题:“已知线段a、b,求作线段x,使 2=”,他们所作的图形如下: “ab x2 他们作图的方法: A.小张正确,小李、小王都不正确B.小王正确,小张、小李都不正确 C.小张、小李都正确,小王不正确 D.小张、小李、小王都正确 例题6:如图,PQ切⊙O于点Q,PAB、PCD是⊙O的两条割线,连结AC、AD,且∠P 2 AC=∠BAD,求证:AD = -2 PQ? PA AC 例题7:已知AD是⊙O的直径,AB是⊙O的切线,割线BMN交AD的延长线于C,且BM=MN=NC,若AB=2,求(1)BC;(2)半径r;

切线长定理及其应用

切线长定理及其应用 知识点一 切线长定义及切线长定理 1. 切线长定义:过圆外一点作圆的切线,这点和 之间的线段长叫作这点到圆的切线长. 注意切线长和切线的区别和联系: 切线是直线,不可以度量;切线长是指切线上的一条线段的长,可以度量。 2. 切线长定理:过圆外一点引圆的两条切线,它们的切线长相等,即PA=PB. 推论: (1)△PAB 是等腰三角形; (2)OP 平分△APB ,即△APO=△BPO ; (3)弧AM=弧BM ; (4)在Rt OAP ?和Rt OBP ?中,由AB OP ⊥,可通过相似得相关结论; 如:222222,,OA OB OE OP AP BP PE PO AE BE OE EP ==?==?==? (5)图中全等的三角形有 对,分别是: 题型一 切线长定理的直接应用 【例1】如图所示,△O 的半径为3cm ,点P 和圆心O 的距离为6cm ,经过点P 的两条切线与△O 切于点E 、 F ,求这两条切线的夹角及切线长. 【例2】如图,P A 、PB 、DE 分别切△O 于A 、B 、C ,△O 的半径长为6 cm ,PO =10 cm ,求△PDE 的周长.

【例3】如图所示,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为__________. 【过关练习】 1.如图所示,PA、PB是△O的切线,A、B为切点,△OAB=30°.(1)求△APB的度数.(2)当OA=3时,求AP的长. e于A、B、C三点,△O的半径为5cm,△PED的周长为24cm,2.如图所示,已知PA、PB、DE分别切O △APB=50°.求:(1)PO的长;(2)△EOD的度数.

切线长定理_九年级数学教案_模板

切线长定理_九年级数学教案_模板 1、教材分析(1)知识结构 (2)重点、难点分析 重点:切线长定理及其应用.因切线长定理再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点. 难点:与切线长定理有关的证明和计算问题.如120页练习题中第3题,它不仅应用切线长定理,还用到解方程组的知识,是代数与几何的综合题,学生往往不能很好的把知识连贯起来. 2、教法建议 本节内容需要一个课时. (1)在教学中,组织学生自主观察、猜想、证明,并深刻剖析切线长定理的基本图形;对重要的结论及时总结; (2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学. 教学目标 1.理解切线长的概念,掌握切线长定理; 2.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想. 3.通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度. 教学重点: 切线长定理是教学重点 教学难点: 切线长定理的灵活运用是教学难点 教学过程设计: (一)观察、猜想、证明,形成定理 1、切线长的概念. 如图,P是⊙O外一点,PA,PB是⊙O的两条切线,我们把线段PA,PB叫做点P到⊙O的切线长. 引导学生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量. 2、观察 利用电脑变动点P 的位置,观察图形的特征和各量之间的关系. 3、猜想 引导学生直观判断,猜想图中PA是否等于PB.PA=PB. 4、证明猜想,形成定理. 猜想是否正确。需要证明. 组织学生分析证明方法.关键是作出辅助线OA,OB,要证明PA=PB. 想一想:根据图形,你还可以得到什么结论?

北师大版九年级数学下册3.7切线长定理公开课优质教案 (1)

切线长定理 一、教学目标 1. 使学生理解切线长定义. 2. 使学生掌握切线长定理,并能初步运用. 二、教学重点和难点 重点:切线长定理. 难点:切线长定理及应用 三、教学过程 (一)情境引入: 1. 作一作:过圆O 外一点P 作出圆O 想一想,可以作几条? .O P. (二)学习新知: 圆的切线长概念 上图中,P 是⊙O 外一点,__________________是⊙O 的切线,我们把线段__________________的长叫做点P 到⊙O 的切线长. 注:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量. (三)合作探究: 【探究一】 1、探索问题1:从⊙O 外一点P 引⊙O 的两条切线,切点分别为A 、B ,那么线段PA 和PB 之间有何关系? (1)根据条件画出图形; O P A

(2)度量线段PA和PB的长度; (3)猜想:线段PA和PB之间的关系; (4)寻找证明猜想的途径; (5)在图3中还能得出哪些结论?并把它们归类. (6)上述各结论中,你想把哪个结论作为切线长的性质?请说明理由. 2. 圆的切线长定理 从圆外一点引圆的_______条切线,它们的切线长_______,圆心和这一点的连线_______两条切线的夹角. 已知:(如上图) 求证: 证明: 3、剖析定理: (1)指出定理的题设和结论; (2)用符号语言表示定理: ∵PA、PB分别是⊙O的切线,点A、B分别为切点,(PA、PB分别与⊙O 相切于点A、B) ∴PA=PB,∠APO=∠BPO. (3)切线和切线长区别. 切线是到圆心距离等于圆的半径的直线,而切线长是线段,指过圆外一点做圆的切线,该点到切点的距离. 【探究二】圆的外切四边形的概念及性质. 请同学们先在草稿本中作出有关已知圆O的四条切线,再互相交流与讨论你的发现与结论,并加以验证.

切线长定理的应用

切线长的应用 1.已知,如图,△ABC的三边长为AC=5,BC=6,AB=7,⊙O与△ABC的三边相切于D,E,F, ⑴求AE,BD,CF的长; ⑵若⊙O的半径为2,求△ABC的面积。 ⑶若上图变为下图所示,PA,PB为⊙O的切线,DE与⊙O相切于点F, ①已知,PA=6,求△PDE的面积; ②∠P=400,求∠DME的度数。 2.如图,⊙O是直角△ABC的内切圆,已知AC=8.BC=6,∠C=900,求⊙O 的半径 若上题中的图形变为下图所示,⊙O与三角形的三边所在的直线都相切, 其余条件不变,求⊙O的半径 3.在△ABC中,AC=8.,∠C=900,AB=10,点P在AC上,AP=2,若⊙O的圆心在线段BP上,且⊙O 与AB,AC都相切,求⊙O的半径。 4,已知,等边三角形的边长为2,求这个三角形内切圆半径,外接圆半径。 5.如图所示,两等圆的半径为5,DC=16,求AD的长。 若上题图形变为下图所示,三个等圆两两外切,且与三角形的各边都相切,已知圆的半径为5, 求这个三角形的边长。

练习: 填空: 1.如图,P 是⊙O 外一点,PA.PB 分别与⊙O 相切于A.B 两点,C 是弧AB 上任意一点,过C 作⊙O 的切线,分别交PA.PB 于D.E,若△PDE 的周长为20cm,则PA 长为 。 2.如图,AB.AC 与⊙O 相切于B.C ∠A=50°,点P 是圆上异于B.C 的一动点,则∠BPC 的度数是 。 3.如图,若⊙O 的直径AB 与弦AC 的夹角为30°,切线CD 与AB 的延长线交于点D ,且⊙O 的半径为2,则CD 的长为 。 4.如图,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于B ,PA=4,OA=3,则co s ∠APO= . 5.已知,R t △ABC 中,∠C=90°,若AB=5,AC=3,则内切圆半径为 ,外接圆半径为 。 6.边长为6.8.10的三角形的内心与外心的距离为 。 7.若直角三角形斜边为12cm ,其内切圆半径为1cm ,则三角形的周长为 。 8.如图,在R t △ABC 中,∠A=90°,⊙O 分别与AB,AC 相切于E.F ,圆心O 在BC 上,若AB=a,AC=b,则⊙O 的半径为 。A.ab B. 2b a + C.b a ab + D.ab b a + 9.已知,半圆O 的直径在梯形ABCD 的底边AB 上,且与其余三边BC.CD.DA 相切,若BC=a,DA=b, 则AB 的长是 。 10.△ABC 内切圆半径为2cm ,周长为10cm ,那么S △ABC= cm 2。 11.已知,等边△ABC 的边长为2,则这个三角形内切圆半径长为 ,外接圆半径为 。 12.已知,等边△ABC 的边长为1,则它的内切圆与外接圆组成的圆环面积为 。 13.如图,PA 为⊙O 的切线,A 为切点,PBC 为割线,若PB=2cm,BC=6cm,则PA= 。 14.如图,PA.PB 为⊙O 的两条切线,切点为A.B,若直径AC=12cm ,∠P=60°,则弦AB= 。

切线长定理及其应用

知识点一切线长定义及切线长定理 1. _____________________________________________________ 切线长定义:过圆外一 点作圆的切线,这点和____________________________________________ 之间的线段长叫作这点 到圆的切线长 注意切线长和切线的区别和联系: 切线是直线,不可以度量;切线长是指切线上的一条线段的长,可以度量。 2. 切线长定理:过圆外一点引圆的两条切线,它们的切线长相等,即PA=PB. 推论: (1) △ PAB是等腰三角形; (2) OP 平分△ APB,即△ APO A BPO ; (3) 弧AM=弧BM ; (4)在Rt OAP和Rt OBP中,由AB OP,可通过相似得相关结论; 如:OA2 OB2 OE OP, AP2 BP2 PE PO, AE2 BE2 OE EP (5)图中全等的三角形有对,分别是: 题型一切线长定理的直接应用 【例1】如图所示,AO的半径为3cm,点P和圆心O的距离为6cm,经过点P的两条切线与 AO切于点E、 F,求这两条切线的夹角及切线长. 【例2】如图,FA、PB、DE分别切A0于A、B、C, A O的半径长为6 cm, PO= 10 cm,求APDE的周长. 切线长定理及其应用

【例3】如图所示,△ ABC中,/ C=90 , AC=3 , AB=5 , D为BC边的中点,以AD上一点0为圆心的O 0和AB、BC均相切,则O 0的半径为 ______________ . £4 【过关练习】 1?如图所示,PA、PB是AO的切线,A、B为切点,△ OAB=30°.( 1)求厶APB的度数.(2)当0A=3时, 求AP的长? 2?如图所示,已知PA、PB、DE分别切e 0于A、B、C三点,AO的半径为5cm, △ PED的周长为24cm , △ APB=50°求:(1) P0 的长;(2) △ EOD 的度数?

九年级数学:切线长定理

切 线 长 定 理 胜利中学刘秀峰 学习目标:理解切线长、切线长定理,并会用切线长定理解决实际问题。培养学生的观察、 分析能力,转化思想。 重点:切线长定理及实际应用。 难点:切线长定理的实际应用。 学习过程: 一、如图:在同一平面内,你能过已知点,作出已知圆的切线吗? 二填空: 1、经过 一点作圆的切线, 和 之间的 叫做这点到圆的 2、如图:(1)直线PA ,PB 叫 。 (2)线段PA 、PB 的长叫 。 3、切线和切线长是两个不同的概念: (1)、切线是一条与圆相切的 ,不能 ; (2)、切线长是 ,这条线段的两个端点分别是 和切点,可以 。 4、切线长定理:从 可以引圆的两条切线,它们的 相等,这一点和圆心的连线 这两条切线的夹角. 5、切线长定理的数学语言是: ∵ ∵ 6、如图:PA 、PB 是∵O 的两条切线,A 、B 为切点;由切线长定理可以得出哪些结论? (1) 图中所有的直角三角形是: (2) 图中所有的等腰三角形是: (3) 图中所有的全等三角形是: 三、尝试应用(一),我最棒! 如图:已知∵O 的半径为3cm ,PO =5cm ,PA ,PB 分别切∵O 于A ,B , (1)PA = ,PB = . (2)若PO 交∵O 于点Q ,直线CD 切∵O 于点Q ,交PA 、PB 于点C 、D ,则 ∵PCD 的周长是______. · O · O · O ·P ·P ·P O B A P O B A P C Q D Q D C 。 A O C P B

四、如图:有一张三角形铁皮,如何在它上面截一个面积最大的圆形铁皮? 五、尝试应用(二) 已知:在∵ABC 中,BC =14厘米,AC =9厘米,AB =13厘米,它的内切圆I 分别和BC ,AC ,AB 相切于点D ,E ,F ,求AF ,BD 和CE 的长 六、小结: 1、本节课你有什么收获? 2、你还有什么不明白的问题吗? 七、课堂检测,我是高手!要求认真读题、回扣知识点! 1、直角三角形的两直角边分别是3cm,4cm 则其内切圆的半径为______。 2.已知:AB,BC,CD 分别与⊙O 相切于E,F,G 三点,且AB ∥CD ,BO=6cm ,CO=8cm.求BC 的长.. A B C ● I D E F B A C a b c r A F E C B O

湘教版九年级数学下册《切线长定理》精品教案

《切线长定理》精品教案

系呢?学完本节课都能解决这些问题了,让我们一 起来学习一下吧。 讲授新课 一、切线长的概念 【说一说】 如图,将三角尺的一条直角边过⊙O外一点 P及圆上的点A,另一条直角边过圆心O,然后作直线PA,则PA是⊙O的切线.用同样的方法可作出切线PB.你能说出PA和PB是⊙O的切线的理由吗? (出示课件5) 解析:根据切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线,可得:OA为⊙O半径,PA⊥OA于A,PA即为⊙O的切线。OB为⊙O半径,PB⊥OA于A,PB 即为⊙O的切线。 【切线长的概念】 切线长的概念:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫作这点到圆的切线长。 (出示课件7) 师:上图所示的哪几条线段叫做切线长呢? 回答:线段PA,PB的长度是点P到⊙O的切线长。 师:切线和切线长一样吗?它们有什么联系和区别? 回答:切线:PA、PB所在的直线; 切线长:线段PA、PB的长度。 切线和切线长是两个不同的概念:思考并回答问 题 思考并回答问 题 通过具体的练 习,让学生理解 切线的判定定理 通过提问,让学 生知道切线和切 线长的区别

1.切线是一条与圆相切的直线,不能度量; 2.切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量。 二、切线长定理 【探究】在透明纸上画出图,设PA,PB是 ⊙O的两条切线,A,B是切点,沿直线OP 将图形对折,你发现了什么? (出示课件10) 师:PA、PB有怎样的数量关系? PO与∠APB又有怎样的关系? 回答:PA=PB PO平分∠APB,即∠APO=∠BPO 师:该如何证明呢? (出示课件12) 证明:连接OA,OB. ∵PA,PB是⊙O的切线, ∴∠PAO=∠PBO=90°,即△PAO和△PBO 均为直角三角形.又∵OA=OB,OP=OP,∴Rt△PAO≌Rt△PBO. ∴PA=PB,∠APO=∠BPO. 【切线长定理】 师:我们可以的得到结论,过圆外一点所画的圆的两条切线长相等,圆心和这一点的连线平分两条切线的夹角。这个结论即为切线长定理。 师:几何语言该如何表达呢? (出示课件13) 几何语言: ∵PA、PB是⊙O的两条切线,∴PA=PB,∠动手操作,发 现问题并证明 观看课件,思 考并回答问题 通过实际操作, 让学生在探究中 习得知识 通过提问,让学 生知道切线长定 理以及其几何表 达

弦切角定理及其应用

弦切角定理及其应用 顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。(弦切角就是切线与弦所夹的角) 弦切角定义 图1 如右图所示,直线PT切圆O于点C,BC、AC为圆O的弦,∠TCB、∠TCA、∠PCA、∠PCB都为弦切角。 弦切角定理 弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半. 如上图,∠PCA=1/2∠COA=∠CBA 弦切角定理证明: 证明一:设圆心为O,连接OC,OB,。 ∵∠TCB=90°-∠OCB ∵∠BOC=180°-2∠OCB ∴,∠BOC=2∠TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)∵∠BOC=2∠CAB(同一弧所对的圆心角等于圆周角的两倍) ∴∠TCB=∠CAB(定理:弦切角的度数等于它所夹的弧的圆周角)

证明已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角∠BAC所夹的 弧. 求证:(弦切角定理) 证明:分三种情况: (1)圆心O在∠BAC的一边AC上 ∵AC为直径,AB切⊙O于A, ∴弧CmA=弧CA ∵为半圆, ∴∠CAB=90=弦CA所对的圆周角 (2)圆心O在∠BAC的内部. (B点应在A点左侧) 过A作直径AD交⊙O于D, E 若在优弧m所对的劣弧上有一点 那么,连接EC、ED、EA 则有:∠CED=∠CAD、∠DEA=∠DAB ∴∠CEA=∠CAB ∴(弦切角定理) (3)圆心O在∠BAC的外部, 过A作直径AD交⊙O于D 那么∠CDA+∠CAD=∠CAB+∠CAD=90° ∴∠CDA=∠CAB

∴(弦切角定理) 3弦切角推论 推论内容 若两弦切角所夹的弧相等,则这两个弦切角也相等 应用举例 例1:如图,在⊙O中,⊙O的切线AC、BC交与 点C,求证:∠CAB=∠CBA。 解:⊙O的切线AC、BC交与点C,∴AC=BC(切线长定理)。∴∠CAB=∠CBA。(等腰三角形“等边对等角”)。 例2:如图,AD是ΔABC中∠BAC的平分线,经过点A 的⊙O与BC切于点D,与AB,AC分别相交于E,F. 求 证:EF//BC. 证明:连接DF AD是∠BAC的平分线 ∠BAD=∠DAC ∠EFD=∠BAD ∠EFD=∠DAC ⊙O切BC于D ,∠FDC=∠DAC ∠EFD=∠FDC EF∥BC 例3:如图,ΔABC内接于⊙O,AB是⊙O直径,CD⊥AB 于D,MN切⊙O于C,求证:AC平分∠MCD,BC平分∠NCD. 证明:∵AB是⊙O直径∴∠ACB=90 ∵CD⊥AB ∴∠ACD=∠B,

相关文档
相关文档 最新文档