文档库 最新最全的文档下载
当前位置:文档库 › 晶体能带典型题解

晶体能带典型题解

晶体能带典型题解
晶体能带典型题解

高中化学选修三几种典型晶体晶胞结构模型总结

学生版:典型晶体模型 晶体晶体结构晶体详解 原子晶体金刚 石 (1)每个碳与相邻个碳以共价键结合, 形成体结构 (2)键角均为 (3)最小碳环由个C组成且六个原子不 在同一个平面内 (4)每个C参与条C—C键的形成,C原子 数与C—C键数之比为 SiO2 (1)每个Si与个O以共价键结合,形成正 四面体结构 (2)每个正四面体占有1个Si,4个“ 1 2O”,n(Si)∶ n(O)= (3)最小环上有个原子,即个O,个Si 分子晶体干冰 (1)8个CO2分子构成立方体且在6个面心又各 占据1个CO2分子 (2)每个CO2分子周围等距紧邻的CO2分子 有个 冰 每个水分子与相邻的个水分子,以相 连接,含1 mol H2O的冰中,最多可形成 mol“氢键”。 NaCl( 型)离子 晶体(1)每个Na+(Cl-)周围等距且紧邻的Cl-(Na+)有 个。每个Na+周围等距且紧邻的 Na+有个 (2)每个晶胞中含个Na+和个Cl- CsCl (型)(1)每个Cs+周围等距且紧邻的Cl-有个,每个Cs+(Cl-)周围等距且紧邻的Cs+(Cl-)有个(2)如图为个晶胞,每个晶胞中含个Cs +、个Cl-

金属晶体简单 六方 堆积 典型代表Po,配位数为,空间利用率52% 面心 立方 最密 堆积 又称为A1型或铜型,典型代表,配位 数为,空间利用率74% 体心 立方 堆积 又称为A2型或钾型,典型代表,配位 数为,空间利用率68% 六方 最密 堆积 又称为A3型或镁型,典型代表,配位 数为,空间利用率74% 混合晶体石墨(1)石墨层状晶体中,层与层之间的作用是 (2)平均每个正六边形拥有的碳原子个数是,C原子采取的杂化方式是 (3)每层中存在σ键和π键,还有金属键 (4)C—C的键长比金刚石的C—C键长,熔点比金刚石的 (5)硬度不大、有滑腻感、能导电

半导体结晶学-典型晶体结构及电子材料-06

第五章 典型半导体材料及电子材料晶体 结构特点及有关性质 5.1 典型半导体材料晶体结构类型 5.2 半导体材料晶体结构与性能 5.3 电子材料中其他几种典型晶体结构 5.4 固溶体晶体结构 5.5 液晶的结构及特征 5.6 纳米晶体的结构及特征 2013-12-81

5.1.1 金刚石型结构 硅 Si:核外电子数14,电子排布式方式为 1s2 2s22p6 3s23P2 锗Ge:核外电子数32,电子排布式方式为 1s2 2s22p6 3s23p63d104s24p2 在Si原子与Si原子,Ge原子与Ge原子相互作用构成Si、Ge晶体时,由于每个原子核对其外层电子都有较强的吸引力。又是同一种原子相互作用,因此原子之间将选择共价键方式结合。 电负性:X Si= X Ge=1.8,⊿X = 0, ∴形成非极性共价键 2013-12-83

为了形成具有8个外层电子的稳定结构,必然趋于与邻近的四个原子形成四个共价键。由杂化理论可知,一个s轨道和三个p轨道杂化,结果产生四个等同的sp3杂化轨道,电子云的方向刚好指向以原子核为中心的正四面体的四个顶角,四个键在空间处于均衡,每两个键的夹角都是109°28′。如图5.11所示。 图5.1.1 SP3杂化轨道方向 2013-12-84

每个原子都按此正四面体键,彼此以共价键结合在一起,便形成如图5.1.2和图5.1.3所示的三维空间规则排列结构—金刚石性结构。金刚石型结构的晶体具有Oh群的高度对称性。(对称中心在哪里? 答案 ) 2013-12-85

5.1.2 闪锌矿结构 化合物半导体GaAs、InSb、GaP等都属于闪锌矿结构,以GaAs为例介绍其结构特点。 Ga 的原子序数 31,核外电子排布式 1s2 2s22p6 3s23p63d10 4s24p1 As 的原子序数 33,核外电子排布式 1s2 2s22p6 3s23p63d10 4s24p3 电负性:X Ga =1.6,X As=2.0,电负性差⊿X=0.4 <1.5。 ∴形成共价键(极性共价键) 。 2013-12-86

典型的晶体结构

典型的晶体结构 1.铁 铁原子可形成两种体心立方晶胞晶体:910℃以下为α-Fe,高于1400℃时为δ-Fe。在这两种温度之间可形成γ-面心立方晶。这三种晶体相中,只有γ-Fe能溶解少许C。问:1.体心立方晶胞中的面的中心上的空隙是什么对称?如果外来粒子占用这个空隙,则外来粒子与宿主离子最大可能的半径比是多少? 2.在体心立方晶胞中,如果某空隙的坐标为(0,a/2,a/4),它的对称性如何?占据该空隙的外来粒子与宿主离子的最大半径比为多少? 3.假设在转化温度之下,这α-Fe和γ-F两种晶型的最相邻原子的距离是相等的,求γ铁与α铁在转化温度下的密度比。 4.为什么只有γ-Fe才能溶解少许的C? 在体心立方晶胞中,处于中心的原子与处于角上的原子是相接触的,角上的原子相互之间不接触。a=(4/3)r。 ①②③ 1.两个立方晶胞中心相距为a,也等于2r+2r h[如图①],这里r h是空隙“X”的半径,a =2r+2r h=(4/3)r r h/r=0.115(2分) 面对角线(2a)比体心之间的距离要长,因此该空隙形状是一个缩短的八面体,称扭曲八面体。(1分) 2.已知体心上的两个原子(A和B)以及连接两个晶体底面的两个角上原子[图②中C和D]。连接顶部原子的线的中心到连接底部原子的线的中心的距离为a/2;在顶部原子下面的底部原子构成晶胞的一半。空隙“h”位于连线的一半处,这也是由对称性所要求的。所以我们要考虑的直角三角形一个边长为a/2,另一边长为a/4[图③],所以斜边为16 /5a。(1分)r+r h=16 /5a=3/5r r h/r=0.291(2分) 3.密度比=42︰33=1.09(2分) 4.C原子体积较大,不能填充在体心立方的任何空隙中,但可能填充在面心立方结构的八面体空隙中(r h/r=0.414)。(2分) 2.四氧化三铁 科学研究表明,Fe3O4是由Fe2+、Fe3+、O2-通过离子键而组成的复杂离子晶体。O2-的重复排列方式如图b所示,该排列方式中存在着两种类型的由O2-围成的空隙,如1、3、6、7的O2-围成的空隙和3、6、7、8、9、12的O2-围成的空隙,前者为正四面体空隙,后者为正八面体空隙,Fe3O4中有一半的Fe3+填充在正四面体空隙中,另一半Fe3+和Fe2+填充在正八面体空隙中,则Fe3O4晶体中正四面体空隙数与O2-数之比为2:1,其中有12.5%正四面体空隙填有Fe3+,有50%正八面体空隙没有被填充。 Fe3O4中三价铁离子:亚铁离子:O原子=2:1:4 晶胞拥有8个正四面体空隙,4个O2-离子;所以2:1 一半三价铁离子放入正四面体空隙,即一个三价铁离子,所以为1/8=12.5%晶胞实际拥有4个正八面体空隙,其中已经有一个放Fe3+,另外一个Fe2+占据一个正八面体空隙,所以50%的正八面体空隙没有被填充。

几种典型晶体结构的特点分析

几种典型晶体结构的特点分析 徐寿坤 有关晶体结构的知识是高中化学中的一个难点,它能很好地考查同学们的观察能力和三维想像能力,而且又很容易与数学、物理特别是立体几何知识相结合,是 近年高考的热点之一。熟练掌握NaCl、CsCl、CO 2、SiO 2 、金刚石、石墨、C 60 等 晶体结构特点,理解和掌握一些重要的分析方法与原则,就能顺利地解答此类问题。 通常采用均摊法来分析这些晶体的结构特点。均摊法的根本原则是:晶胞任意位置上的原子如果是被n个晶胞所共有,则每个晶胞只能分得这个原子的1/n。 1. 氯化钠晶体 由下图氯化钠晶体结构模型可得:每个Na+紧邻6个,每个紧邻6个(上、下、左、右、前、后),这6个离子构成一个正八面体。设紧邻的Na+与Cl-间的距离为a,每个Na+与12个Na+等距离紧邻(同层4个、上层4个、下层 4个),距离为。由均摊法可得:该晶胞中所拥有的Na+数为, 数为,晶体中Na+数与Cl-数之比为1:1,则此晶胞中含有4个NaCl结构单元。 2. 氯化铯晶体

每个Cs+紧邻8个Cl-,每个Cl-紧邻8个Cs+,这8个离子构成一个正立方体。设紧邻的Cs+与Cs+间的距离为,则每个Cs+与6个Cs+等距离紧邻(上、下、左、右、前、后)。在如下图的晶胞中Cs+数为,在 晶胞内其数目为8,晶体中的数与数之比为1:1,则此晶胞中含有8个CsCl结构单元。 3. 干冰 每个CO 2分子紧邻12个CO 2 分子(同层4个、上层4个、下层4个),则此晶胞 中的CO 2 分子数为。 4. 金刚石晶体 每个C原子与4个C原子紧邻成键,由5个C原子形成正四面体结构单元,C-C 键的夹角为。晶体中的最小环为六元环,每个C原子被12个六元环共有,

晶体结构的分类与解析

第十章晶体结构 晶体结构的分类方法有很多种,常用的分类方法有: (1)按照化学组成中原子的种类及数目分类。如单质晶体、二元化合物晶体、多元化合物晶体等。这种分类方法的缺点是:①一些形式上相同,但对称性和其它性质都截然不同的化合物常被归为一类。例如NaCl、NiAs的晶体结构是不同的。②一些同型结构的晶体又会被归为不同的类型,如LiFeO2和NaCl(晶体结构基元排列方式相同,且具有相同的空间群,为同型结构)。 (2)根据晶体结构中化学键的类型分类,如离子键型、共价键型、金属键型等。这种分类的不足在于:①许多晶体是多键型的,归类存在困难。如石墨层内为共价键,层间为分子键。②不同化学键的晶体可以是同一结构型,NaCl、TaC均为AX型晶体,但是前者为离子键,后者为金属键。 (3)根据晶胞的形状、大小和晶体生长习性间的相互关系,将晶体结构分为等向型、层型和链型三种主要类型,而这三种类型又以等大球的六方和立方最紧密堆积为基础。 下面的介绍将以上三种方法结合使用。 第一节元素单质的晶体结构 单质的晶体结构可以分为金属单质、惰性气体和非金属单质三类。 一、金属单质的晶体结构 元素周期表中,共有70多种金属元素。典型的金属单质晶体,其原子与原子之间的结合力为金属键,由于金属键没有方向性和饱和性,其配位数高,密度也大,故可把典型的金属单质晶体结构看成是由等大球紧密堆积而成。按堆积方式可分为三种类型: A1型:为立方最紧密堆积; A2型:为立方体心紧密堆积; A3型:为六方最紧密堆积。它们的典型实例如下: ⒈铜的晶体结构 属A1型,铜原子成立方最紧密堆积,格子类型为立方面心格子。空间群为Fm3m, 晶胞参数a o=0.3608nm,原子配位数CN=12,单位晶胞中原子的数目Z=4, 163

第三章晶体结构

第十章晶体结构 一、教学要求 1 .了解晶体与非晶体的区别,掌握晶体的基本类型及其性质特点。 2 .了解离子极化的基本观点及其对离子化合物的结构和性质变化的解释。 3 .了解晶体的缺陷和非整比化合物。 二、教学重点 1 .晶胞 2 .各种类型晶体的结构特征 3 .离子极化 三、教学难点 晶胞的概念 四、教学时数 4 学时 五、教学内容 1 .晶体的基本知识 2 .离子键和离子晶体 3 .原子晶体和分子晶体 4 .金属键和金属晶体 5 .晶体的缺陷和非整比化合物 6 .离子极化 10-1 晶体 10-1-1 晶体的宏观特征 晶体有一定规则的几何外形。不论在何种条件下结晶,所得的晶体表面夹角(晶角)是一定的。晶体有一定的熔点。晶体在熔化时,在未熔化完之前,其体系温度不会上升。只有熔化后温度才上升。 10-1-2 晶体的微观特征 晶体有各向异性。有些晶体,因在各个方向上排列的差异而导致各向异性。各向异性只有在单晶中才能表现出来。晶体的这三大特性是由晶体内部结构决定的。晶体内部的质点以确定的位置在空间作有规则的排列,这些点本身有一定的几何形状,称结晶格子或晶格。每个质点在晶格中所占的位置称晶体的结点。每种晶体都可找出其具有代表性的最小重复单位,称为单元晶胞简称晶胞。晶胞在三维空间无限重复就产生晶体。故晶体的性质是由晶胞的大小、形状和质点的种类以及质点间的作用力所决定的。 10-2 晶胞 10-2-1 晶胞的基本特征 10-2-2 布拉维系 十四种不拉维格子 类型说明

单斜底心格子( N ) 单位平行六面体的三对面中 有两对是矩形,另一对是非矩形 。 两对矩形平面都垂直于非矩形 平面,而它们之间的夹角为β, 但 ∠β≠ 90°。 a 0 ≠ b 0 ≠ c 0 ,α = γ =90°, β≠ 90° 正交原始格子( O ) 属于正交晶系,单位平 行六面体为长、宽、高都不 等的长方体,单位平行六面 体参数为: a 0 ≠ b 0 ≠ c 0 α = β = γ =90 ° 正交体心格子( P ) 属于正交晶系,单位平行六 面体为长、宽、高都不等的长方 体,单位平行六面体参数为: a 0 ≠ b 0 ≠ c 0 α = β = γ =90 ° 正交底心格子( Q ) 属于正交晶系,单位平 行六面体为长、宽、高都不 等的长方体,单位平行六面 体参数为: a 0 ≠ b 0 ≠ c 0 α = β = γ =90 ° 正交面心格子( S ) 属于正交晶系,单位平 行六面体为长、宽、高都不 等的长方体,单位平行六面 体参数为: a 0 ≠ b 0 ≠ c 0 α = β = γ =90 ° 立方体心格子( B ) 属于等轴晶系,单位平行六 面体是一个立方体。单位平行六 面体参数为: a 0 = b 0 = c 0 α = β = γ = 90 ° 立方面心格子 (F) 属于等轴晶系,单位 平行六面体是一个立方体。 位平行六面体 参数为: a 0 = b 0 = c 0 α = β = γ = 90° 四方原始格子( T ) 属于四方晶系,单位平行六面 体为横截面为正方形的四方柱。规 定柱面相交的棱 c 0 ,单位平行六面 体参数为: a 0 = b 0 = c 0 α = β = γ = 90 ° 四方体心格子( U ) 属于四方晶系单位平行六面 体为横截面为正方形的四方柱。 规 定柱面相交的棱 c 0 ,单位平 行六面体参数为: a 0 = b 0 = c 0 α = β = γ = 90 ° 立方和三方原始格子 (H) 对应于六方晶系的空间六方格子。单位平行六面体底面为菱形的 柱体。菱形交角为 60o 和 120 o ,如果把三个单位平行六面体 拼起来,底面就成六边形,柱面的交棱就是六次轴方向。单位平 行六面体参数为: a 0 ≠ b 0 ≠ c 0 ,α = β =90 o , γ =120 o 三方菱面体格子 ( R ) 属于三方晶系,单位 平行六面体相当于立方体 在 4L3 中的一个 L3 方向被 拉长或压缩,使立方体变 成菱面体。单位平行六面 体参数为: a 0 = b 0 = c 0 α = β = γ≠ 90 °、60 °、109 °28 ′ 16 ″ 三斜原是格子( Z ) 单斜平行六面体是三 条棱不相等,三对面互相 间不垂直的斜平 行六面体。 单位平行六面体参数为: a 0 ≠ b 0 ≠ c 0 , α≠β≠γ≠ 90o 单斜原始格子( M ) 单位平行六面体的三对面中 有两对是矩形,另一对是非矩形 。 两对矩形平面都垂直于非矩形平面,而它们之间的夹角为β, 但∠ β≠ 90 。 a 0 ≠ b 0 ≠ c 0 ,α = γ =90 °, β≠ 90 ° 立方原始格子 属于等轴晶系,单位平行六 面体是一个立方体。单位平行六 面 体参数为: a 0 = b 0 = c 0 α = β = γ = 90 °

常见晶胞模型

常见晶胞模型

氯化钠晶体 (1)NaCl晶胞中每个Na+等距离且最近的Cl-(即Na+配位数)为6个 NaCl晶胞中每个Cl-等距离且最近的Na+(即Cl-配位数)为6个 (2)一个晶胞内由均摊法计算出一个晶胞内占有的Na+4_个; 占有的Cl-4个。 (3)在该晶体中每个Na+周围与之最接近且距离相等的Na+共有12个; 与每个Na+等距离且最近的Cl-所围成的空间几何构型为正八面体 CsCl晶体(注意:右侧小立方体为CsCl晶胞;左侧为8个晶胞) (1)CsCl晶胞中每个Cs+等距离且最近的Cl-(即Cs+配位数) 为8个 CsCl晶胞中每个Cl-等距离且最近的Cs+(即Cl-配位数) 为8个,这几个Cs+在空间构成的几何构型为正方体。 (2)在每个Cs+周围与它最近的且距离相等的Cs+有6个 这几个Cs+在空间构成的几何构型为正八面体。 (3)一个晶胞内由均摊法计算出一个晶胞内占有的Cs+ 1个;占有的Cl- 1个。CaF2晶体 (1))Ca2+立方最密堆积,F-填充在全部四面体空隙中。 (2)CaF2晶胞中每个Ca2+等距离且最近的F-(即Ca2+配位数)为8个CaF2晶胞中每个F-等距离且最近的Ca2+(即F-配位数)为4个 (3)一个晶胞内由均摊法计算出一个晶胞内占有的Ca2+4个; 占有的F-8个。 ZnS晶体: (1)1个ZnS晶胞中,有4个S2-,有4个Zn2+。 (2)Zn2+的配位数为4个,S2-的配位数为 4个。

金刚石 金刚石晶胞 金刚石晶胞分位置注释 (1)金刚石晶体 a 、每个金刚石晶胞中含有8个碳原子,最小的碳环为6元环,并且不在同一平面(实 际为椅式结构),碳原子为sp 3杂化,每个C 以共价键跟相邻的_4_个C 结合,形成 正四面体。键角 109°28’ b 、每个碳原子被12个六元环共用,每个共价键被6个六元环共用 c 、12g 金刚石中有2mol 共价键,碳原子与共价键之比为 1:2 (2)Si 晶体 由于Si 与碳同主族,晶体Si 的结构同金刚石的结构。将金刚石晶胞中的C 原子全部换成Si 原子,健长稍长些便可得到晶体硅的晶胞。 (3)某些非金属化合物【SiO 2、SiC (金刚砂)、BN (氮化硼)、Si 3N 4等】 例如SiC 将金刚石晶胞中的一个C 原子周围与之连接的4个C 原子全部换成Si 原 子, 键长稍长些便可得到SiC 的晶胞。(其中晶胞的8个顶点和6个面心为Si 原子,4个互 不相邻的立方体体心的为C 原子,反之亦可) a 、每个SiC 晶胞中含有 4 个硅原子,含有 4 个碳原子 b 、1mol SiC 晶体中有4 mol Si —C 共价键 (4)SiO 2 晶体:在晶体硅的晶胞中,在每2个Si 之间插入1个O 原子, 便可得到SiO 2晶胞。 a 、每个硅原子都采取sp 3杂化,与它周围的4个氧原子所形成的空间 结构为__正四面体_型,SiO 2晶体中最小的环为 12 b 、每个Si 原子被 12 个十二元环共用,每个O 原子被 6 个 十二元环共用 c 、每个SiO 2晶胞中含有 8 个Si 原子,含有 16 个O 原子 d 、1mol Si O 2晶体中有 4 mol 共价键 ( 5)晶体硼

晶体结构分类

晶体结构试题分类解析 有关晶体结构的推断和计算是高中化学中的一个难点,这些题目能很好地考察学生的观察能力和三维想象能力,而且又很容易与数学、物理特别是立体几何知识相结合,自然也就成为近年高考的热点之一。此类题目的解答,要求学生在熟练掌握NaCl、CsCl、CO2、SiO2、金刚石等晶体结构的基础上,进一步理解和掌握一些重要的分析方法与原则。 一、教材中重要的晶体结构示意图 图1 NaCl的晶体结构图2 CsCl的晶体结构图3 干冰的晶体结构 图4 SiO2的晶体结构图5 金刚石的晶体结构图6石墨的晶体结构俯视图练习图 [练习题] 1、请将上面练习图中NaCl晶体结构中代表Na+的圆圈涂黑(不考虑体积大小),以完成NaCl 晶体的结构示意图。在该晶体中每个Na+周围与之最接近且距离相等的Na+共有个;与每个Na+等距离且最近的Cl-所围成的空间几何构型为。 2、在CsCl晶体中,每个Cs+周围与之最接近的且距离相等的Cs+有个。 3、在干冰晶体中,每个CO2分子周围与之最接近的且距离相等的CO2分子有个。 4、在金刚石的网状结构中,含有由共价键形成的碳原子环,其中最小的环上有个碳原子,每个碳原子上的任意两个C—C键的夹角都是。 5、石墨是层状结构,每一层内,碳原子排列成而成平面网状结构。每一个碳原子跟其它个碳原子相连。 二、根据晶体结构或晶胞结构示意图推断晶体的化学式 解答这类试题,通常采用分摊法。因为在一个晶胞结构中出现的多个原子,并不是只为这一个晶胞所独立占有,而是为多个晶胞共用,所以每一个晶胞只能按比例分摊。 分摊的根本原则是:晶胞任意位置上的原子如果是被n个晶胞所共有,则每个晶胞只能分得这个原子的1/n。 具体地,根据晶胞(晶体中最小重复单位)求晶体中粒子个数比的方法是:①处于顶点的粒子,同时为8个晶胞共有,每个粒子有1/8属于晶胞;②处于棱上的粒子,同时为4个晶胞共有,每个粒子有1/4属于晶胞;③处于面上的粒子,同时为两个晶胞共有,每个粒子有1/2属于晶胞。 例⒈现在四种晶体,其离子排列方式如图所示,其中化学式正确的是()

几种典型晶体结构的特点分析

几种典型晶体结构得特点分析 徐寿坤 有关晶体结构得知识就是高中化学中得一个难点,它能很好地考查同学们得观察能力与三维想像能力,而且又很容易与数学、物理特别就是立体几何知识相结合,就是近年高考得热点之一。熟练掌握NaCl、CsCl、CO 2、SiO 2、金刚石、石墨、C 60等晶体结构特点,理解与掌握一些重要得分析方法与原则,就能顺利地解答此类问题。 通常采用均摊法来分析这些晶体得结构特点。均摊法得根本原则就是:晶胞任意位置上得原子如果就是被n个晶胞所共有,则每个晶胞只能分得这个原子得1/n。 1、氯化钠晶体 由下图氯化钠晶体结构模型可得:每个Na+紧邻6个,每个紧邻6个(上、下、左、右、前、后),这6个离子构成一个正八面体。设紧邻得Na+与Cl-间得距离为a,每个Na+与12个Na+等距离紧邻(同层4个、上层4个、下层4个),距离为。由均摊法可得:该晶胞中所拥有得Na+数为,数为,晶体中Na+数与Cl-数之比为1:1,则此晶胞中含有4个NaCl结构单元。 2、氯化铯晶体 每个Cs+紧邻8个Cl-,每个Cl-紧邻8个Cs+,这8个离子构成一个正立方体。设紧邻得Cs+与Cs+间得距离为,则每个Cs+与6个Cs+等距离紧邻(上、下、左、右、前、+ 后)。在如下图得晶胞中Cs数为,在晶胞内其数目为8,晶体中得数与数之比为1:1,则此晶胞中含有8个CsCl结构单元。 3、干冰

每个CO 2分子紧邻12个CO 2分子(同层4个、上层4个、下层4个),则此晶胞中得CO 2分子数为。 4、金刚石晶体 每个C原子与4个C原子紧邻成键,由5个C原子形成正四面体结构单元,C-C键得夹角为。晶体中得最小环为六元环,每个C原子被12个六元环共有,每个C-C键被6个六元环共有,每个环所拥有得C原子数为,拥有得C-C键数为,则C原子数与C-C键数之比为。5、二氧化硅晶体 每个Si原子与4个O原子紧邻成键,每个O原子与2个Si原子紧邻成键。晶体中得最小环为十二元环,其中有6个Si原子与6个O原子,含有12个Si-O键;每个Si原子被12个十二元环共有,每个O原子被6个十二元环共有,每个Si-O键被6个十二元环共有;每个十二元环所拥有得Si原子数为,拥有得O原子数为,拥有得Si-O键数为,则Si原子数与O原子数之比为1:2。 6、石墨晶体 在石墨晶体中,层与层之间就是以分子间作用力结合,同层之间就是C原子与C原子以共价键结合成得平面网状结构,故石墨为混合型晶体或过渡型晶体。在同层结构中,每个C原子与3个C原子紧邻成C-C键,键角为,其中最小得环为六元环,每个C原子被3个六元环共有,每个C-C键被2个六元环共有;每个六元环拥有得C原子数为,拥有得C-C键数为,则C原子数与C-C键数之比为2:3。 7、C 60分子 C 60就是由60个C原子组成得类似于足球得分子,由欧拉定律可推知该分子中有12个正五边形与20个正六边形。每个C原子与其她3个C原子紧邻成键,

几种常见晶体结构的应用与拓展

几种常见晶体结构的应用与拓展

几种常见晶体结构的应用与拓展 中学课本中列举了NaCl、CsCl、金刚石、石墨、干冰、二氧化硅等典型晶体的结构示意图。它们的结构都是立体的,如何从平面图想像出三维实物的结构形态,这是解决有关问题的关键。 首先可以利用直观结构模型,逐步建立起准确、清晰的立体形象,提高空间想像力。 其次还需掌握基本的解题技巧:在晶体结构中切割一个基本结构单元,弄清该单元中点、边、面为多少个基本结构单元所共有。构成晶体的结构粒子是按着一定的排列方式所形成的固态群体。在晶体结构中具有代表性的最小重复单位叫晶胞。 根据晶体的晶胞,求粒子数的方法: ①处于顶点上的粒子:同时为8个晶胞共有,每个粒子有1/8属于晶胞。 ②处于棱上的粒子:同时为4个晶胞共有,每个粒子有1/4属于晶胞。 ③处于面上的粒子;同时为2个晶胞共有,每个粒子有1/2属于晶胞。 ④处于体心的粒子:则完全属于该晶胞。

中学阶段所需掌握的 几种晶体结构类型及 有关问题: 一、离子晶体 图3 干冰晶体 图1 N aCl晶体 图2 CsCl晶体 图4 金刚石晶体 图5 SiO2 晶体 图6 石墨晶体

NaCl型(如图1) 1.在晶体中,每个Na+同时吸引个Cl-,每个Cl-同时吸引着个Na+,阴、阳离子数目之比是。 2.在晶体结构中,每个晶胞由个小立方体构成,每个小立方体的8个顶点分别由个Na+、个Cl-相邻占据,每个小立方体含Na+:个、含Cl-:个。故每个晶胞有NaCl微粒个。 3.在晶体中,经过立方体的中心Na+的平面有三个,每个平面的四个顶点上的Na+都同晶体中与中心Na+最接近且距离相等。所以,在晶体中,每个Na+周围与它最接近的距离相等的Na+的个数共有个。同理,每个Cl-周围与它最接近且距离相等的Cl-的个数也有个。 CsCl型(如图2) 1.在晶体中,每个Cl-吸引个Cs+,每个Cs+吸引个Cl-,Cs+与Cl-的个数比为。 2.每个基本结构单元中(小立方体)含Cl-:个,含Cs+个。

材料物理化学 第二章 晶体的结构与常见晶体结构类型 习题

第二章晶体结构及常见晶体结构类型 1、名词解释 (a)晶体与晶体常数(b)类质同晶和同质多晶(c)二八面体型与三八面体型(d)同晶取代与阳离子交换(e)尖晶石与反尖晶石(f)晶胞与晶胞参数(g)配位数与配位体(h)同质多晶与多晶转变(i)位移性转变与重建性转变(j)晶体场理论与配位场理论 解:(a)晶体是内部质点在三维空间成周期性重复排列的固体。或晶体是具格子构造的固体。晶体常数:晶轴轴率或轴单位,轴角。 (b)类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。 同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。(c)二八面体型:在层状硅酸盐矿物中,若有三分之二的八面体空隙被阳离子所填充称为二八面体型结构。 三八面体型:在层状硅酸盐矿物中,若全部的八面体空隙被阳离子所填充称为三八面体型结构。 (d)同晶取代:杂质离子取代晶体结构中某一结点上的离子而不改变晶体结构类型的现象。 阳离子交换:在粘土矿物中,当结构中的同晶取代主要发生在铝氧层时,一些电价低、半径大的阳离子(如K+、Na+等)将进入晶体 结构来平衡多余的负电荷,它们与晶体的结合不很牢固,在一定条件下可以被其它阳离子交换。 (e)正尖晶石:在AB2O4尖晶石型晶体结构中,若A2+分布在四面体空隙、而B3+分布于八面体空隙,称为正尖晶石; 反尖晶石:若A2+分布在八面体空隙、而B3+一半分布于四面体空隙另一半分布于八面体空隙,通式为B(AB)O4,称为反尖晶石。 (f)任何晶体都对应一种布拉菲格子,因此任何晶体都可划分出与此种布拉菲格子平行六面体相对应的部分,这一部分晶体就称为晶胞。晶胞是能够反映晶体

常见的金属晶体结构

第二章作业2-1 常见的金属晶体结构有哪几种?它们的原子排列和晶格常数有什么特点?V、Mg、Zn 各属何种结构?答:常见晶体结构有 3 种:⑴体心立方:-Fe、Cr、V ⑵面心立方:-Fe、Al、Cu、Ni ⑶密排六方:Mg、Zn -Fe、-Fe、Al、Cu、Ni、Cr、2---7 为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性?答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好?试用多晶体塑性变形的特点予以解释。答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。原因是:(1)强度高:Hall-Petch 公式。晶界越多,越难滑移。(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂7~15 天,然后再精加工。试解释这样做的目的及其原因?答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7 天,让工件释放应力的时间,轴越粗放的时间越长。4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)?答:W、Sn 的最低再结晶温度分别为: TR(W) =(0.4~0.5)×(3410+273)-273 =(1200~1568)(℃)>1000℃ TR(Sn) =(0.4~0.5)×(232+273)-273 =(-71~-20)(℃) <25℃所以W 在1000℃时为冷加工,Sn 在室温下为热加工4-9 用下列三种方法制造齿轮,哪一种比较理想?为什么?(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。答:齿轮的材料、加工与加工工艺有一定的原则,同时也要根据实际情况具体而定,总的原则是满足使用要求;加工便当;性价比最佳。对齿轮而言,要看是干什么用的齿轮,对于精度要求不高的,使用频率不高,强度也没什么要求的,方法1、2 都可以,用方法3 反倒是画蛇添足了。对于精密传动齿轮和高速运转齿轮及对强度和可靠性要求高的齿轮,方法3 就是合理的。经过锻造的齿坯,金属内部晶粒更加细化,内应力均匀,材料的杂质更少,相对材料的强度也有所提高,经过锻造的毛坯加工的齿轮精度稳定,强度更好。4-10 用一冷拔钢丝绳吊装一大型工件入炉,并随工件一起加热到1000℃,保温后再次吊装工件时钢丝绳发生断裂,试分析原因?答:由于冷拔钢丝在生产过程中受到挤压作用产生了加工硬化使钢丝本身具有一定的强度和硬度,那么再吊重物时才有足够的强度,当将钢丝绳和工件放置在1000℃炉内进行加热和保温后,等于对钢丝绳进行了回复和再结晶处理,所以使钢丝绳的性能大大下降,所以再吊重物时发生断裂。4-11 在室温下对铅板进行弯折,越弯越硬,而稍隔一段时间再行弯折,铅板又像最初一样柔软这是什么原因?答:铅板在室温下的加工属于热加工,加工硬化的同时伴随回复和再结晶过程。越弯越硬是由于位错大量增加而引起的加工硬化造成,而过一段时间又会变软是因为室温对于铅已经是再结晶温度以上,所以伴随着回复和再结晶过程,等轴的没有变形晶粒取代了变形晶粒,硬度和塑性又恢复到了未变形之前。第五章作业5-3 一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体、共析渗碳体异同?答:一次渗碳体:由液相中直接析出来的渗碳体称为一次渗碳体。二次渗碳体:从 A 中析出的渗碳体称为二次渗碳体。三次渗碳体:从 F 中析出的渗碳体称为三次渗碳体共晶渗碳体:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体共析渗碳体:经共

晶体模型的制作

二、剪纸晶体模型 剪纸晶体模型材料最为便宜,制作最为简便,如果设计得当,依然可以收到良好效果。根据模型的大小,剪纸晶体模型即可作为演示教具,又可作为学生学习自用,若将多个小晶胞模型规则堆砌,还可构成晶体的整体结构模型。所以剪纸晶体模型的制作应是一种大加提倡的制作。剪纸模型的不足是立体感稍差,表示晶体内部结构较困难。 制作用纸要注意尽可能选择坚韧、平滑、挺括、薄厚适宜,自用的小模型用纸较薄,大个的演示模型要足够厚(如2mm)。可废物利用,旧挂历、纸盒等都可作为制作用纸。 剪纸晶体模型制作步骤大致如下: 设计和制图根据使用方式设计尺寸。在一张白纸上精确绘出欲制作模型的平面展示图,对于晶胞中不同种的原子或离子可根据半径的相对大小画出半径不等的圆,并涂上不同的颜色或剪贴上不同颜色的电光纸,以使模型更加醒目和美观。此外设计时还要尽可能地使模型能够反映出晶胞内部的结构。要注意留出贴接部分。下面给出常见晶胞剪板模型的平面展开图,可供选用或设计参考。 剪裁将平面展示图粘在选好的厚纸上,用剪刀或刻刀将图形沿着外围线剪好,需折叠的线用剃须刀片沿折痕线在纸上轻刻,深度要适宜,不可超过纸的厚度的1/2处,刻线时要用直尺比着准确刻划。 折叠沿折痕线将展开图按需要折叠。要注意折叠的方向,不可在一条折痕线上向两个方面反复折叠。 粘接用普通胶水或乳胶粘接均可,粘接的顺序是先内部后外部,有些展开图上的英文字母表示哪些部分间相互粘接,粘接内部时方向不要粘反,待各个部分确实粘牢后再封口,对于有内部结构的剪纸模型要留出一面不要粘接以便观察。 整理和修饰粘接完毕后经适当的修整即可使用。

现行的高中教材(必修·必修加选修共三册)中有家庭小实验17个,其中制作分子模型、晶体模型共3个。通过制作这些模型,对学生加深理解物质的分子结构、晶体结构,特别是对同分异构体、同素异形体的理解大有裨益。但书本上所提供的制作材料捏出的球的大小、球体表面光滑程度均不好掌握。而一种弹性球能很好地解决上述问题。弹性球有透明、不透明和半透明三种,有的球内还镶有小装饰物。球的直径从25~35mm不等,它弹性好、色彩艳丽、加工容易,制作出来的模型逼真。具体操作如下:材料准备不同直径、不同颜色弹球;两头削尖的且长短不一、颜色各异的牙签或两头磨尖的铁丝;万能胶胶水或502胶水;小刀。制作过程1球棍模型以甲烷为例,取直径为35mm的红色球一枚,把4根牙签分别插入红色球体内,牙签之间的夹角约109,°再把4个直径为25mm的蓝球分别插进牙签的另一端。在牙签与球的连接处均滴上2~3滴502胶水,几分钟后,它们就会牢牢的粘在一起,漂亮的甲烷分子模型就大功告成了。

相关文档
相关文档 最新文档