文档库 最新最全的文档下载
当前位置:文档库 › 量子阱结构对GaN基紫光二极管性能的影响

量子阱结构对GaN基紫光二极管性能的影响

量子阱结构对GaN基紫光二极管性能的影响
量子阱结构对GaN基紫光二极管性能的影响

量子阱结构对GaN基紫光二极管性能的影响

陆 敏1,2,3*,杨志坚1,2,潘尧波1,2,陆 羽1,2,陈志忠1,2,张国义1,2

(1.北京大学物理学院人工微结构和介观物理国家重点实验室; 2.北京大学宽禁带半导体研究中心,北京100871; 3.中国科学院苏州纳米技术与纳米仿生研究所,苏州215123)

摘要:采用不同MQW结构在MOCVD系统上生长UV LED外延片。对样品进行了X射线衍射、电注入发光(EL)和光致发光谱(PL)测试,通过优化LED器件材料的生长条件,获得了光发光特性一般而电发光特性优良的高质量多量子阱紫光LED外延片。

关键词:紫光二极管;MOCVD;GaN;量子阱结构

中图分类号:TN304123 文献标识码:A 文章编号:0258-7076(2007)-0033-03

Ga N是一种直接宽带隙、强原子键[1]、高电子饱和速率[2]和高热导率[3]的半导体材料,可用来制备高稳定、长寿命、耐腐蚀、耐高温、耐辐射的短波长、大功率器件[4](如LED,LD,FE T,紫外光电导传感器,反射滤波器等)。近几年来短波长LED 发展迅速,因为在环境保护,医疗器件,生物工程,白光照明[5]等诸多领域有着广泛的应用。比如,汽车发动机所引起的空气污染是世界上各大城市的主要问题之一。因此,寻找一种能够分解有机物的方法是极其必要的。简单的方法就是用二氧化钛作光催化剂,可以将这些有机物分解成水和二氧化碳。但是,二氧化钛作光催化剂只有在350nm或者更短波长的紫外光照射下才能有效进行[6~8]。在白光照明领域,InGaN GaN基蓝光LED 和近紫外光LED能够作为YAG Ce3+和其他荧光粉的泵浦源而得到固态白光光源,但是存在着严重的color rendering和低能量转换效率问题[9],如果采用350nm的紫外发光二极管作泵浦源,可以改善上述问题。在医疗器件领域,用发光波长深达280nm的深紫外发光二极管可以杀死像炭疽热等病菌。

如今,10~20mW(在20m A注入电流的条件下)高发光功率的InGa N Ga N基量子阱蓝光二极管已经商业化。然而,当发光波长减小时,发光效率随着铟摩尔浓度的减小而减小,这是由于量子局域化效应削弱造成的。对于362nm发光二极管以下,一般来说,InGaN不能用作有源层,取而代之的是AlGa N (Al)GaN系统。本文所讨论的LED发光波长在400nm左右,本文的目的就在于通过优化器件的MQW和金属有机物汽相外延(MOCVD)的生长条件,提高紫光LED发光效率。

1 实验材料与方法

本文所用的是垂直腔MOC VD系统,钨电阻丝加热,采用中压(0.04MPa)生长,N源和Ga源分别为NH3和TMGa,高纯H2为载气,(0001)面蓝宝石为衬底,生长速率约2 m h-1。样品A外延结构如图1所示。首先,在蓝宝石衬底上生长约30nm 的低温GaN缓冲层。然后,将衬底温度升高到1120 !,生长约1.5 m的非掺杂GaN层和3 m的Si掺杂n型GaN层。随后,衬底温度降低到800~870!生长10个周期的InGaN(3.5nm) Ga N(10nm)多量子阱作为发光区。在多量子阱生长结束后,升温至1070!左右生长约30nm的p型AlGa N和120nm的p型Ga N。样品B外延结构如图2所示。MQW为10个周期的InGaN(3.5nm) Al Ga N(10nm),其余同样品A外延结构。外延完成后,首先对外延片进行退火,退火条件为在N2气氛中800!20min。对材料进行了X射线衍射(XRD)和光致发光谱(PL)测试,X射线衍射测试使用Philip公司的X Pert多功能高分辨率衍射

第31卷 增 刊Vol.31 Suppl.

稀 有 金 属

CHINESE JOURNAL OF RARE ME TALS

2007年12月

Dec.2007

收稿日期:2006-12-19;修订日期:2007-04-04

作者简介:陆 敏(1973-),男,江苏人,博士,副研究员;研究方向:半导体光电子材料及器件*通讯联系人(E mail:mlu2006@https://www.wendangku.net/doc/e815372783.html,)

图1 样品A 的外延结构Fig.1 Wafer s tructure of sample

A

图2 样品B 的外延结构Fi g.2 Wafer structure of sample B

仪,PL 测试使用He Cd(325nm)激光器作为激发光源,室温测量,扫描范围为350~550nm 。然后制作成LED 器件,使用W PSR3100设备对LED 芯片进行电学和发光性能测试。

2 结果与讨论

图3给出了样品A 和B 的(0002)X 射线衍射摇摆曲线,两样品主峰左右分别有-1,-2级和+1级卫星峰,表明两样品的MQW 界面平整且质量相当;样品B 的半高宽小于样品A,X 射线衍射曲线半高宽是表征材料结晶品质的重要参数,(0002)X 射线衍射摇摆曲线半高宽是Ga N 外延膜中位错密度的很好量度

[10]

,因此,样品B 结晶品质比样

品A 好。由布拉格衍射定律推导样品A,B 晶格常数c 分别为0.499和0.551nm,无应力的体材料GaN 的晶格常数c 为0.518nm 。故样品A 中ab 平面内为张应力和c 方向为压应力而样品B 中ab 平面内为压应力和c 方向为张应力。图4给出了样品

A,B 的PL 谱线。样品A 主峰高度远远大于样品

B,并且样品A 主峰半高宽小于样品B,样品B 在450nm 左右有一蓝光峰,故样品A 光发光特性优于样品B 。另外虽然样品B 的MQW 的势垒高度高,但由于样品B 的MQW 生长温度略低使得量子阱中In 组分较高,最终导致发光波长增加。表1给出了样品在100.0mA 正向注入下的中心发光波长、正向压降和相对发光强度以及5.0V 负偏置下的反向电流。样品A 的正向压降高于样品B,可能由于样品B 的结晶品质好导致欧姆接触性能提高;样

品A 的中心发光波长低于样品B,这与PL 谱的结果是一致的;两样品的漏电流一样,说明MQW 有源区的界面特性和缺陷密度相当;样品B 的发光强度大大强于样品B,这主要由于样品B 的MQW 的势垒高度的增加而有效地抑制了注入电子的溢出,从而使样品B 的外量子效率大大提高,这与PL 谱的结果是相反的,这说明对于UV-LED 的光发光和电发光特性可能不一致。

图3 样品A,B 的(0002)面X 射线双晶摇摆曲线

Fig.3 XRD 2 scanning curves of samples A and B from

(0002)plain reflection

图4 样品A,B 的室温PL 谱

Fig.4 Room temperature PL of samples A and B

34

稀 有 金 属

31卷

表1 样品A,B在100.0m A下发光波长、正向压降和相对发光强度,-5.0V下的漏电流

Table1 Main peak wavelength,forward voltage and relative intensity at100.0mA and current leakage at-5.0

V for samples A and B

样品正向压降 V中心波长 nm反向电流 mA发光强度 a.u.

A 5.203922 1.35

B 3.753972 2.25

3 结 论

本文通过在MQW的垒层加入Al组分和优化MOCVD生长工艺,制备出高质量的波长在390nm 左右的UV LED外延片。由于有效地抑制了电子的溢出,从而使发光强度提高了70%左右。

参考文献:

[1] 张国义,刘弘度,王舒民. ? #氮化物和蓝光LEDs[J].

应用基础与工程科学学报,1995,3(1): 1.

[2] Akas aki I. Progress in crys tal growth and future prospects of group

!nitrides by metal organic vapor phase epitaxy[J].J.Cryst

Growth,1998,195:248.

[3] Akas aki I. Renaiss ance and progress in crys tal growth of ni tride

se miconductors[J].J.Cryst Growth,1999,198 199:885.

[4] 马洪磊,杨莺歌,薛成山,马 瑾,肖洪地,刘建强. GaN

纳米结构的制备[J].稀有金属,2005,29(2):236.

[5] 朱军山,胡加辉,徐岳生,刘彩池,冯玉春,郭宝平. 双缓

冲层法在硅上外延生长GaN研究[J].稀有金属,2004,28

(3):455.

[6] Wang T,Liu Y H,Lee Y B,Izumi Y,Li H D,Bai J,Sakai S.

Fabricati on of hi gh performance of AlGaN GaN bas ed UV light e mit ti ng diodes[J].J.Crys.Growth,2002,235:177.

[7] Wang T,Morishi ma Y,Naoi N,Sakai S. A ne w method for a

great reduc tion of dislocati on density in a GaN layer grown on a sap phire subs trate[J].J.Cryst.Growth,2000,213:188.

[8] Wang T,Liu Y H,Lee Y B,Ao J P,Bai J,Sakai S. 1mW

AlInGaN based ultraviolet ight emitting di ode wi th an e miss ion wave length of348nm grown on sapphire subs trate[J].Appl.Phys.Lett.,

2002,81:2508.

[9] Tamua T,Setomoto T,Taguchi T. Illumination characteris tics of

lighting array us ing10candela class white LEDs under AC100V op eration[J].J.Lumin.,2000,87-89:1180.

[10] Heinke Kirchner H V,Einfeld S,Homme D. X ray diffraction

analysis of the defect s truc ture i n epi taxial GaN[J].Appl.Phys.

Lett.,2000,77(14):2145.

Effect of MQW Structure on Characteristic of GaN Base Violet LED

Lu Min1,2,3*,Yang Zhijian1,2,Pan Yaobo1,2,Lu Yu1,2,Chen Zhizhong1,2,Zhang Guoyi1,2(1.State Key Laboratory o f Arti f icial Microstructures and Mesoscopic Physics,Beijing100871,China;2.Research Center f or Wide Band Ga p Semiconductor,Peking Unive rsity,Beijing100871,China; 3.Suzhou Institute o f Nano Tech and Nano Bionics,C AS,Suzhou215123,China)

Abstract:GaN base violet LEDs?wafers with different MQW structures were gro wn by MOCVD.X ray diffrac tion,electroluminence and photoluminence were applied to study the characteristic of wafers.Optimizing epitaxial process,high quality violet LEDs?wafers with good elec troluminence property have been grown.

Key words:Violet LED;MOCVD;GaN;MQW structure 35

增刊 陆 敏等 量子阱结构对GaN基紫光二极管性能的影响

脉冲驱动激光二极管

脉冲驱动激光二极管

脉冲驱动激光二极管 by Doug Hodgson, Kent Noonan, Bill Olsen, and Thad Orosz 介绍 相对较高的峰值功率和工作效率使得脉冲激光二极管成为固态激光器泵浦和范围测定这类应用的理想选择。脉冲激光二极管工作时通常占空比相对较低,因此平均功率较低,这样就可能达到更高的峰值功率。所以产生的热量并不很高。另一方面,连续波激光二极管要承受的热量比脉冲激光器高。这是由于在连续波工作期间,器件的热电阻使得结温度显著增加。所以连续波激光二极管一般需要很好的热沉封装和/或用热电致冷。 脉冲驱动激光二极管是测试其质量和热效率的一个强大的分析工具。本文描述了通过用电流脉冲驱动激光二极管来进行测试的方法,提出了脉冲驱动激光二极管的几点困难,并给出了克服或避免的方法。文中介绍了一个简单的实验,用ILX Lightwave LDP-3811脉冲电流源来驱动一个典型的激光二极管。这里主要表现的是脉冲驱动二极管出现的问题。最后描述了LDP-3811的典型应用。 为什么要脉冲驱动一个连续波激光二极管? 在低占空比情况下脉冲驱动连续波激光二极管的能力在二极管评测中很有用。其应用可划分为两个广泛领域。第一个是封装前通过/失败测试;第二个是器件特性评价。这两种应用都利用了脉冲方式驱动激光二极管不会产生大量热量的优点。可在热效应最小的情况下完成测试和特性评价。 封装前测试 对于这种应用,低占空比的脉冲可用于半 导体制造工艺后的晶圆或条级测试。单点 光测量或L/I曲线(光输出vs.驱动电流)能用来“预筛选”工艺处理后的晶圆。它能将有缺陷的晶圆在花费不匪的切割和 封装操作之前就清除掉,建立制造工艺的成品率数目和性能。(注意对于这些测试相对测量比绝对精度更重要。) 特性测试 脉冲测试的第二个应用领域是对封装好的器件的特性测试。很多关于激光二极管特性的工业文档既推荐连续波测试也推荐脉冲波测试。(贝尔交流研究出版的题为“光电器件可靠性保证实践”的技术咨询文档TA-TSY-000983就是这样。)通过比较脉冲和连续波工作方式,可以评测像输出功率、波长和阈值电流这样一些与温度相关的参数。图1所示的是一个典型激光二极管的L/I曲线。 这些曲线既表示了低占空比脉冲模式,又表示了连续波工作模式。连续波曲线阈值电流的增加和斜率效率的略微减少(与脉冲曲线比较)主要是由器件热电阻引起的结温度上升造成。(脉冲L/I曲线所用的脉宽一般为100至500ns,占空比小于百分之一,因此热效应不明显。) 脉冲与连续波L/I曲线的比较也可用来检图1 典型激光二极管的脉冲及连续波L/I曲线

(完整word版)量子点LED

量子点LED专题报告 一、什么是量子点LED? 量子点LED是把有机材料或者LED芯片和高效发光无机纳米晶体结合在一起而产生的具有新型结构的量子点有机发光器件。相对于传统的有机荧光粉,量子点具有发光波长可调(可覆盖可见和近红外波段)、荧光量子效率高(可大于90%)、颗粒尺寸小、色彩饱和度高、可 低价溶液加工、稳定性高等优点,尤其值得注意的是高色纯度的发光使得其色域已经可以超过HDTV标准色三角。因此基于量子点的发 光二极管,有望应用于下一代平板显示和照明。

表征量子点的光电参数: 1、光致发光谱(PL谱):光致发光谱反映的是发射光波长与发光强度的关系。从PL谱上可以得到发光颜色的单色性、复合发光的机制、量子点的颗粒尺寸大小及分布均匀性、本征发射峰波长等基本光学信息。量子点光致发光谱的半高宽越窄,说明量子点的发光单色性越好,器件的缺陷和杂质复合发光越少。 2、紫外可见吸收谱:量子点的紫外可见吸收谱反映的是量子点对不同波长光的吸收程度,从谱中吸收峰的位置可计算出量子点的禁带宽度。量子点吸收谱的第一吸收峰与光致发光谱的发射峰的偏移是斯托

克斯位移,斯托克斯位移越大,量子点的自吸收越弱,量子点的荧光强度越高。 3、光致发光量子产率:量子点溶液的光致发光量子产率是通过与标准荧光物质(一般用罗丹明6G)的荧光强度对比而测出。量子点高的量子产率能有效提升器件的发光效率,但纯核量子点沉积成薄膜后量子产率将比在溶液中的量子产率下降1到2个数量级。量子点也存在荧光自淬灭现象,这是由存在于不均匀尺寸分布的量子点中的激子通过福斯特能量转移到非发光点进行非辐射复合所引起。 二、量子点LED在照明显示中的应用方案 量子点的发射峰窄、发光波长可调、荧光效率高、色彩饱和度好,非常适合用于显示器件的发光材料。量子点LED在照明显示领域中的应用方案主要包括两个方面:a、基于量子点光致发光特性的量子点背光源技术(QD-BLU,即光致量子点白光LED);b、基于量子点电致发光特性的量子点发光二极管技术(QLED)。

有关双异质结激光器与量子阱激光器的基础报告

有关双异质结激光器与量子阱激光器的基础报告 xxx (xxxxxxxxxxxxxxx) 摘要:异质结半导体激光器是半导体激光发展史上的重要突破,它的出现使光纤通信及网络技术成为现实并迅速发展。异质结构已成为当代高性能半导体光电子器件的典型结构,具有巨大的开发潜力和应用价值。 关键词:双异质结半导体激光器;量子阱激光器;泵浦 About double heterostructure lasers andreport on the basis of quantum well laser xxx (xxxx) Abstract:Heterojunction semiconductor laser is an important breakthrough in the history of the development of semiconductor laser, it make the optical fiber communication and network technology become a reality and rapid development. Heterostructure has become the contemporary typical structure of high performance semiconductor optoelectronic devices, has huge development potential and application value Key words: double heterojunction semiconductor lasers; Quantum well laser; pump 0 引言 双异质结激光器和量子阱激光器在我们的当代的科研中都取得了一定的成绩,有很多相关的资料供我们查看和研究,这些惊人的成就给我的生活带来的巨大的改变,我们作为新一代的基础人员,有义务去发展,将这些激光器的研究壮大和深入。 1 双异质结基本结构 双异质结基本结构是将有源层夹在同时具有宽带隙和低折射率的两种半导体材料之间,以便在垂直于结平面的方向(横向)上有效地限制载流子和光子。用此结构于1970年实现了GaAlAs/GaAs激射波长为0.89 μm的半导体激光器在室温下能连续工作。图表示出双异质结激光器的结构示意图和相应的能带图在正向偏压下,电子和空穴分别从宽带隙的N区和P区注进有源区。它们在该区的扩散又分别受到P-p异质结和N-p异质结的限制,从而可以在有源区内积累起产生粒子数反转所需的非平衡载流子浓度。同时,窄带隙具有源区有高的折射率与两边低折射率的宽带隙层构成了一个限制光子在有源区内的介质光波导。 异质结激光器激光器的供应商是半导体半导体的供应商激光发展史上的重要突破,它的出现使光纤光纤的供应商通信及网络技术成为现实并迅速发

Maxim 激光驱动器和激光二极管的接口(1)

Maxim 激光驱动器和激光二极管的接口 Maxim 高频/光纤通信部 一概述 用激光驱动器驱动高速商用激光二极管是设计人员所面临的一项挑战本文旨在就这一主题为光学系统设计者提供参考以尽可能地简化设计过程激光管接口电路的设计难点在于 激光驱动器的输出电 路 激光二极管的电气特性和 二者之间的接口 (通常采用印刷电路板实现 ) 以下首先讨论激光二极管和激光驱动器的电气特性然后再结合二者讨论印刷电路板的接口以Maxim 的 2.5 Gbps 通信激光驱动器 MAX3867 和 MAX3869 为例来说明典型的应用 二激光二极管特性 流过激光管的电流超过它的门限值时半导体激光二极管产生并保持连续的光输出对于快速开关操作激光二极管的偏置需略高于门限以避免开关延迟激光输出的强弱取决于驱动电流的幅度电流-光转换效率或激光二极管的斜率效率门限电流和斜率效率取决于激光器结构制造工艺材料和工作温 度 图1给出了典型激光二极管的电压-电流特性和光输出与驱动电流的关系当温度升高时门限电流将以指数方式增加可近似用下式表示 I T T I th e K I T I ?+=0)( (1) 式中 I 0, K I 和 T I 是激光器常数例如对DBF 激光器 I 0 = 1.8mA, K I = 3.85mA, T I = 40°C 激光器的斜率效率(S) 是输出光功率 (mW) 与输入电流mA)的比值温度升高将导致斜率效率降低下式较好地表示了斜率效率与温度的函数关系 S T T S e K S T S ??=0)( (2) 对上述同样的DFB 激光器特征温度T S 近似等于40°C 其它两个参数 S 0 = 0.485mW/mA K S = 0.033mW/mA 激光管工作电压正向电压V 和电流I 的关系可由二极管的电压和电流特性模型来表示 T V V S e I I ??≈η, (3) 其中 I S 是二极管饱和电流 V T 是热电压η是结构常数当激光二极管被驱动至门限上下时电压和电流的关系近似为线性如图1所示 图2是激光二极管的简化模型图中直流偏置电压V BG 是激光二极管的带隙电压 R L 是二极管的动态电阻当驱动激光管至门限以上时激光管的输出光功率P 0 (图2)可由下式来表示 )(0th I I S P ??= (4) 图2. 简化的激光二极管等效电路 激光管电流

激光二极管原理及应用

激光二极管参数与原理及应用 2011-06-19 17:10:29 来源:互联网 一、激光的产生机理 在讲激光产生机理之前,先讲一下受激辐射。在光辐射中存在三种辐射过程, 一时处于高能态的粒子在外来光的激发下向低能态跃迁,称之为自发辐射; 二是处于高能态的粒子在外来光的激发下向低能态跃迁,称之为受激辐射; 三是处于低能态的粒子吸收外来光的能量向高能态跃迁称之为受激吸收。 自发辐射,即使是两个同时从某一高能态向低能态跃迁的粒子,它们发出光的相位、偏振状态、发射方向也可能不同,但受激辐射就不同,当位于高能态的粒子在外来光子的激发下向低能态跃迁,发出在频率、相位、偏振状态等方面与外来光子完全相同的光。在激光器中,发生的辐射就是受激辐射,它发出的激光在频率、相位、偏振状态等方面完全一样。任何的受激发光系统,即有受激辐射,也有受激吸收,只有受激辐射占优势,才能把外来光放大而发出激光。而一般光源中都是受激吸收占优势,只有粒子的平衡态被打破,使高能态的粒子数大于低能态的粒子数(这样情况称为离子数反转),才能发出激光。 产生激光的三个条件是:实现粒子数反转、满足阈值条件和谐振条件。产生光的受激发射的首要条件是粒子数反转,在半导体中就是要把价带内的电子抽运到导带。为了获得离子数反转,通常采用重掺杂的P型和N型材料构成PN结,这样,在外加电压作用下,在结区附近就出现了离子数反转—在高费米能级EFC以下导带中贮存着电子,而在低费米能级EFV以上的价带中贮存着空穴。实现粒子数反转是产生激光的必要条件,但不是充分条件。要产生激光,还要有损耗极小的谐振腔,谐振腔的主要部分是两个互相平行的反射镜,激活物质所发出的受激辐射光在两个反射镜之间来回反射,不断引起新的受激辐射,使其不断被放大。只有受激辐射放大的增益大于激光器内的各种损耗,即满足一定的阈值条件: P1P2exp(2G - 2A) ≥1 (P1、P2是两个反射镜的反射率,G是激活介质的增益系数,A是介质的损耗系数,exp 为常数),才能输出稳定的激光,另一方面,激光在谐振腔内来回反射,只有这些光束两两之间在输出端的相位差Δф=2qπq=1、2、3、4。。。。时,才能在输出端产生加强干涉,输出稳定激光。设谐振腔的长度为L,激活介质的折射率为N,则 Δф=(2π/λ)2NL=4πN(Lf/c)=2qπ, 上式可化为f=qc/2NL该式称为谐振条件,它表明谐振腔长度L和折射率N确定以后,只有某些特定频率的光才能形成光振荡,输出稳定的激光。这说明谐振腔对输出的激光有一定的选频作用。 二、激光二极管本质上是一个半导体二极管,按照PN结材料是否相同,可以把激光二极管分为同质结、单异质结(SH)、双异质结(DH)和量子阱(QW)激光二极管。量子阱激光二极管具有阈值电流低,输出功率高的优点,是目前市场应用的主流产品。同激光器相比,激光二极管具有效率高、体积小、寿命长的优点,但其输出功率小(一般小于2mW),线性差、单色性不太好,使其在有线电视系统中的应用受到很大限制,不能传输多频道,高性能模拟信号。在双向光接收机的回传模块中,上行发射一般都采用量子阱激光二极管作为光源。 半导体激光二极管的基本结构如图所示,垂直于PN结面的一对平行平面构成法布里—

半导体激光器驱动电路设计(精)

第9卷第21期 2009年11月1671 1819(2009)21 6532 04 科学技术与工程 ScienceTechnologyandEngineering 2009 Sci Tech Engng 9 No 21 Nov.2009 Vol 通信技术 半导体激光器驱动电路设计 何成林 (中国空空导弹研究院,洛阳471009) 摘要半导体激光驱动电路是激光引信的重要组成部分。根据半导体激光器特点,指出设计驱动电路时应当注意的问题,并设计了一款低功耗、小体积的驱动电路。通过仿真和试验证明该电路能够满足设计需求,对类似电路设计有很好的借鉴作用。 关键词激光引信半导体激光器窄脉冲中图法分类号 TN242; 文献标志码 A 激光引信大部分采用主动探测式引信,主要由发射系统和接收系统组成。发射系统产生一定频率和能量的激光向弹轴周围辐射红外激光能量,而接收系统接收处理探测目标漫反射返回的激光信号,而后通过信号处理系统,最终给出满足最佳引爆输出信号。由此可见,激光引信的探测识别性能很大程度上取决于激光发射系统的总体性能,即发射激光脉冲质量。而光脉冲质量取决于激光器脉冲驱动电路的质量。因此,半导体激光器驱动电路设计是激光引信探测中十分重要的关键技术。 图1 驱动电路模型 放电,从而达到驱动激光器的目的。 由于激光引信为达到一定的探测性能,通常会要求激光脉冲脉宽窄,上升沿快,一般都是十几纳秒甚至几纳秒的时间。因此在选择开关器件时要求器件开关速度快。同时,由于激光器阈值电流、工作电流大 [1] 1 脉冲半导体激光器驱动电路模型分析 激光器驱动电路一般由时序产生电路、激励脉冲产生电路、开关器件和充电元件几个部分组成,如图1。 图1中,时序产生电路生成驱动所需时序信号,一般为周期信号。脉冲产生电路以时序信号为输入条件。根据其上升或下降沿生成能够打开开关器件的正激励脉冲或负激励脉冲。开关器件大体有三种选择:双极型高频大功率晶体管、晶体闸流管电路和场效应管。当激励脉冲到来时,开关器件导通,

激光二极管概述

激光二极管概述 作者:阿罗整理来源:阿罗小屋发布日期:2009-11-4 激光二极管的结构 激光二极管的结构图如图(a)所示。激光二极管的物理结构是在发光二极管的结间安置一层具有光活性的半导体,其端面经过抛光后具有部分反射功能,因而形成一光谐振腔。在正向偏置的情况下,LED结发射出光来并与光谐振腔相互作用,从而进一步激励从结上发射出单波长的光,这种光的物理性质与材料有关。半导体激光二极管的工作原理,理论上与气体激光器相同。图(b)是激光二极管的代表符号。激光二极管在计算机上的光盘驱动器,激光打印机中的打印头等小功率光电设备中得到了广泛的应用。 激光二极管是一种近红外光激光管,波长在780nm左右,额定功率为 3-5mW。为了能通过电路对激光二极管输出功率进行监控,在同一半导体芯片上同时还制作了一只光敏二极管。它的外形和内部结构如图1 所示。它的管脚排列有三种类型,如图2所示。 目前小功率半导体激光二极管的工作电流均在100mA以内,使用时一定要控制流过激光二极管的电流不能太大。 另外激光是一种能量集中的光源,绝对禁止人仰用眼睛直视激光二极管发出的光轴,以免激光对眼睛造成伤害。 为了便于选用激光二极管,在表1中列出了一些可供CD机、LD 机使用的激光二极管参数。 图1 激光二极管

a)外形尺寸:b)内部封装 图2 激光二极管引脚排列的三种方法 半导体激光二极管常用参数 (1)波长:即激光管工作波长,目前可作光电开关用的激光管波长有635nm、650nm、670nm、690nm、780nm、810nm、860nm、980nm等。 (2)阈值电流Ith:即激光管开始产生激光振荡的电流,对一般小功率激光管而言,其值约在数十毫安,具有应变多量子阱结构的激光管阈值电流可低至10mA以下。 (3)工作电流Iop:即激光管达到额定输出功率时的驱动电流,此值对于设计调试激光驱动电路较重要。 (4)垂直发散角θ⊥:激光二极管的发光带在垂直PN结方向张开的角度,一般在15˚~40˚左右。

碳量子点的制备及其在发光二极管中的应用

第43卷第7期2015年7月 硅酸盐学报Vol. 43,No. 7 July,2015 JOURNAL OF THE CHINESE CERAMIC SOCIETY https://www.wendangku.net/doc/e815372783.html, DOI:10.14062/j.issn.0454-5648.2015.07.03 碳量子点的制备及其在发光二极管中的应用 马莉,裴浪,梁晓娟,向卫东 (温州大学化学与材料工程学院,浙江温州 325035) 摘要:碳量子点是纳米材料领域一个备受关注的荧光纳米材料,仅近几年里,基于碳量子点的研究,在制备和应用方面均取得了许多突破性的进展。本文简述了碳量子点的优异特性及其合成方法,重点概述了碳量子点的修饰、复合材料的制备以及在发光二极管(LED)应用方面的最新研究进展。以期为碳量子点的发展应用提供思路和参考。 关键词:碳量子点;荧光纳米材料;制备;发光二极管;修饰 中图分类号:TB383 文献标志码:A 文章编号:0454–5648(2015)07–0858–09 网络出版时间:2015–05–27 18:47:31 网络出版地址:https://www.wendangku.net/doc/e815372783.html,/kcms/detail/11.2310.TQ.20150527.1847.020.html Synthesis and Application in LED of Carbon Quantum Dots MA Li, PEI Lang, LIANG Xiaojuan, XIANG Weidong (College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, China) Abstract: Carbon quantum dots have attracted much recent attention among the nano-materials family. Recent development on the synthesis and applications of carbon quantum dots materials was reviewed. The superiority and synthesis methods of carbon quantum dots were introduced, and the modification, preparation of composites and application in light emitting diode (LED) of carbon quantum dots were summarized. This review could provide the corresponding information on the future development of carbon quantum dots. Key words: carbon quantum dots; fluorescence nano-material; synthesis; light emitting diode; modification 碳纳米材料家族的新秀——碳量子点(carbon quantum dots, CDs)是一类由碳、氢、氧、氮等元素组成,以sp2杂化碳为主的表面带有大量含氧基团,且颗粒尺寸小于10 nm的准球型碳纳米粒子[1]。除了具有高的载流子迁移率、良好的热学和化学稳定性以及环境友好性、价格低廉等[2?3]无可比拟的优势,与传统半导体量子点材料相比,CDs材料耐光漂白[3?4]、易于功能化[5]、低毒性、反应条件温和[6?7],而且还拥有激发波长和发射波长范围可调、双光子吸收截面大、光稳定性好、无光闪烁、荧光强度高、在近红外光激发下可发射近红外荧光等独特的性质[8?11]。因此,CDs在生命科学[12]、环境检测[13]、光电器件[14]、光催化[15?16]等各个领域具有前所未有的应用前景。近10年中,作为碳家族材料中一类崭新的明星材料,CDs已经逐渐成为研究者关注的热点,在制备和应用方面均取得了许多突破性的进展。 作为纳米材料领域一个备受关注的发光材料,CDs具备优越的发光性能,主要体现在光致发光和电致发光两方面,其中光致发光是CDs最突出的发光性能[3],因此,CDs也常被称作荧光碳。值得一提的是,中国科学院理化技术研究所与中国科学院长春应化研究所合作,制造了首个碳量子点发光器件[17] ,这是用荧光CDs制作白光器件的首次尝试,同时,该研究也首次证明了CDs可以作为新一类发光体用于构筑高性能白光发光二极管(LED)器件。 收稿日期:2014–12–31。修订日期:2015–03–07。 基金项目:国家自然科学基金项目(51472183,51272059)。第一作者:马莉(1990—),女,硕士研究生。 通信作者:向卫东(1962—),男,教授。Received date:2014–12–31. Revised date: 2015–03–07. First author: MA Li (1990–), female, Master candidate. E-mail: mali1002@https://www.wendangku.net/doc/e815372783.html, Corresponding author: XIANG Weidong (1962–), male. Professor. E-mail: xiangweidong001@https://www.wendangku.net/doc/e815372783.html,

量子阱半导体激光器

量子阱半导体激光器 :本文主要叙述了量子阱半导体激光器发展背景、基本理论、主要应用与发展现状。一、发展背景 1962年后期,美国研制成功GaAs同质结半导体激光器,第一代半导体激光器产生。但 这一代激光器只能在液氮温度下脉冲工作,无实用价值。直到1967年人们使用液相外延的方法制成了单异质结激光器,实现了在室温下脉冲工作的半导体激光器。1970年,贝尔实验室有一举实现了双异质结构的在室温下连续工作的半导体激光器。至此之后,半导体激光 器得到了突飞猛进的发展。半导体激光器具有许多突出的优点:转换效率高、覆盖波段范围 广、使用寿命长、可直接调制、体积小、重量轻、价格便宜、易集成等。其发展速度之快、 应用范围之广、潜力之大是其它激光器所无法比拟的。但是,由于应用的需要,半导体激光 器的性能有待进一步提高。 80年代,量子阱结构的出现使半导体激光器出现了大的飞跃。量子阱结构源于60年代末期贝尔实验室的江崎(Esaki)和朱肇祥提出超薄层晶体的量子尺寸效应。当超薄有源层材料 后小于电子的德布罗意波长时,有源区就变成了势阱区,两侧的宽带系材料成为势垒区,电 子和空穴沿垂直阱壁方向的运动出现量子化特点。从而使半导体能带出现了与块状半导体完

全不同的形状与结构。在此基础上,根据需要,通过改变超薄层的应变量使能带结构发生变 化,发展起来了应变量子阱结构。这种所谓“能带工程”赋予半导体激光器以新的生命力, 其器件性能出现大的飞跃。具有量子阱结构的量子阱半导体激光器与双异质结半导体激光器 (DH)相比,具有阈值电流密度低、量子效应好、温度特性好、输出功率大、动态特性好、 寿命长、激射波长可以更短等等优点。目前,量子阱已成为人们公认的半导体激光器发展的 根本动力。 其发展历程大概为:1976年,人们用GaInAsP/InP实现了长波长激光器。对于激光腔 结构,Kogelnik和Shank提出了分布反馈结构,它能以单片形式形成谐振腔。Nakamura用实验证明了用光泵浦的GaAs材料形成的分布反馈激光器(DBR)。Suematsu提出了用于光通信的动态单模激光概念,并用整体激光器验证了这种想法。1977年,人们提出了所谓的面 发射激光器,并于1979年做出了第一个器件。目前,垂直腔面发射激光器(VECSEL)已用于千兆位以太网的高速网络。自从Nakamura实现了GaInN/GaN蓝光激光器,可见光半导体激 光器在光盘系统中得到了广泛应用,如CD播放器、DVD系统和高密度光存储器。1994年,一种具有全新机理的波长可变、可调谐的量子级联激光器研制成功,且最近,在此又基础上

激光驱动器与激光二极管接口优化调试

激光驱动器与激光二极管接口优化调试 Maxim高频/光纤通信部 一、概述: 在激光驱动器与激光二极管的接口电路设计中,即使是对电路做了仔细、周密的考虑,也很难达到最优状态,系统调试过程中仍需对各部分电路加以调整、优化,图1是采用Maxim的2.5Gbps激光驱动器MAX3869构成的激光驱动器典型连接电路。本文以该电路为例,以激光二极管的输出通过光电(O/E)转换后显示在示波器上的波形为基础,列举了一些通用接口问题和可能的解决办法。 二、优化设计 以下列举了八个常见激光管接口问题,激光管的输入是伪随机比特流(PRBS)。 A. 眼图不清晰(图2): 图2中,在显示的眼图最下面有黑色水平线。当减少偏置电流时,波形会被压缩,波形上端下移,底端固定不变。导致这一问题的原因可能是偏置电流设置得太低,数字零电平低于激光管的门限。可以提高激光管的偏置电流,直到示波器上的波形开始上移(表示数字零电平已高于激光管门限),当偏置电流增加时,眼图会变得清晰可辨。 B. 欠阻尼振荡(图3): 在波形图上有较大的过冲,示波器显示的眼图最下方有黑色水平线。减小偏置电流使数字1电平下移,但过冲幅度保持不变,甚至增大。偏置电流减小时波形底端(数字0电平)保持不变。 造成这一现象的可能原因是偏置电流设得太低。数字0电平低于激光管的门限。当激光管从低于门限电平向高电平切换时需要额外的时间,从而导致了上升边沿的延迟。开关延迟使电势积累增加,一旦克服了门限就冲过数字1电平(被称作欠阻尼振荡)。可通过提高激光管的偏置电流解决,提高激光管的偏置电流直到示波器上的波形开始上移(表示数字零电流已高于激光管门限)。当数字0电平高于门限值后,过冲将显著减少。 C. 过冲(图4): 图4所示,波形的上升沿冲过了数字1电平。当偏置电流和调制电流变化时过冲的相对幅度没有变化。没有明显的振铃。可能原因有两个:(a)上升太快,(b)用于上拉的铁氧体磁珠Q 值太高。解决的方法是:(a)插入截止频率为75%数据率的低通滤波器,减慢上升和下降沿,减小过冲。(b)降低与铁氧体磁珠并联的电阻(图1中的RP)阻值,使Q值降低。(c)调整串联阻尼电阻(图1中的RD)。 D. 欠冲(图5): 当输出电路过阻尼会造成欠冲现象,示波器显示波形的上升或下降沿在单个间隔的前半部分不能到达高或低电平。这是由置于OUT+ 和OUT-间的0.5pF 电容(用来阻尼某些振铃)引起的。 解决途径有:(a)如果可能,减小OUT+和OUT-间的电容。(b) 减小OUT+的负载电容。(c)减小串联阻尼电阻(图1中的RD)的值。 E. 振铃(图6): 振铃指的是眼图的上升或下降沿相对于正确电平出现振荡、振幅逐渐衰减的现象。可能原因是: 阻抗不匹配,电路中电感过大,电路元件产生谐振。在图6显示的图像中,振铃是由拿

量子阱半导体激光器简述

上海大学2016~2017 学年秋季学期研究生课程考试 (论文) 课程名称:半导体材料(Semiconductor Materials) 课程编号:101101911 论文题目: 量子阱及量子阱半导体激光器简述 研究生姓名: 陈卓学号: 16722180 论文评语: (选题文献综述实验方案结论合理性撰写规范性不足之处) 任课教师: 张兆春评阅日期: 课程考核成绩

量子阱及量子阱半导体激光器简述 陈卓 (上海大学材料科学与工程学院电子信息材料系,上海200444) 摘要: 本文接续课堂所讲的半导体激光二极管进行展开。对量子阱结构及其特性以及量子阱激光器的结构特点进行阐释。最后列举了近些年对量子阱激光器的相关研究,包括阱层设计优化、外部环境的影响(粒子辐射)、电子阻挡层的设计、生长工艺优化等。 关键词:量子阱量子尺寸效应量子阱激光器工艺优化

一、引言 半导体激光器自从1962年诞生以来,就以其优越的性能得到了极为广泛的应用[1],它具有许多突出的优点:转换效率高、覆盖波段范围广、使用寿命长、可直接调制、体积小、重量轻、价格便宜、易集成等。随着新材料新结构的不断涌现和制造工艺水平的不断提高,其各方面的性能也进一步得到改善,应用范围也不在再局限于信息传输和信息存储,而是逐渐渗透到材料加工、精密测量、军事、医学和生物等领域,正在迅速占领过去由气体和固体激光器所占据的市场。 20世纪70年代的双异质结激光器、80年代的量子阱激光器和90年代出现的应变量子阱激光器是半导体激光器发展过程中的三个里程碑。[2]制作量子阱结构需要用超薄层的薄膜生长技术,如分子外延术(MBE)、金属有机化合物化学气相淀积(MOCVD)、化学束外延(CBE)和原子束外延等。[3]我国早在1974年就开始设计和制造分子束外延(MBE)设备,而直到1986年才成功的制造出多量子阱激光器,在1992年中科院半导体所(ISCAS)使用国产的MBE设备制成的GRIN-SCH InGaAs/GaAs应变多量子阱激光器室温下阈值电流为1.55mA,连续输出功率大于30mW,输出波长为1026nm。[4] 量子阱特别是应变量子阱材料的引入减少了载流子的一个自由度,改变了K 空间的能带结构,极大的提高了半导体激光器的性能,使垂直腔表面发射激光器成为现实,使近几年取得突破的GaN蓝绿光激光器成为新的研究热点和新的经济增长点,并将使半导体激光器成为光子集成(PIC)和光电子集成(OEIC)的核心器件。 减少载流子一个自由度的量子阱已经使半导体激光器受益匪浅,再减少一个自由度的所谓量子线(QL)以及在三维都使电子受限的所谓量子点(QD)将会使半导体激光器的性能发生更大的改善,这已经受到了许多科学家的关注,成为半导体材料的前沿课题。 二、量子阱的结构与特性 1、态密度、量子尺寸效应与能带 量子阱由交替生长两种半导体材料薄层组成的半导体超晶格产生。超晶格结构源于60年代末期贝尔实验室的江崎(Esaki)和朱肇祥提出超薄层晶体的量子尺寸效应。当超薄有源层材料后小于电子的德布罗意波长时,有源区就变成了势阱区,两侧的宽带系材料成为势垒区,电子和空穴沿垂直阱壁方向的运动出现量子化特点。从而使半导体能带出现了与块状半导体完全不同的形状与结构。1970年首次在GaAs半导体上制成了超晶格结构。江崎(Esaki)等人把超晶格分为两类:成分超晶格和掺杂超晶格。理想超晶格的空间结构及两种材料的能带分布分别如图1和图2。

激光二极管驱动基础

Application Note AN-LD13 Rev. A Laser Diode Driver Basics April, 2013 Page 1 In the most ideal form, it is a constant current source — linear, noiseless, and accurate — that delivers exactly the current to the laser diode that it needs to operate for a particular application. The user chooses whether to keep laser diode or photodiode current constant and at what level. Then the control system drives current to the laser diode safely and at the appropriate level. The block diagram in Figure 1 shows a very basic laser diode driver (or sometimes known as a laser diode power supply). Each symbol is de? ned in Table 1. Laser diode drivers vary widely in feature set and performance. This block diagram is a representative sample, meant to familiarize the users with terminology and basic elements, not an exhaustive evaluation of what is available on the market. GND Figure 1. Block Diagram, Laser Diode Driver in Dashed Box

量子阱半导体激光器

量子阱半导体激光器的原理及应用 刘欣卓(06009406) (东南大学电子科学与工程学院南京 210096) 光电调制器偏置控制电路主要补偿了激光调制器的温漂效应,同时兼顾了激光器输出功率的变化。链路采用的激光器带有反馈PD,输出对应的电压信号。该信号经过放大后直接作为控制系统的输入,将两者的电压相减控制稳定后再放大。反馈光信号经过光电转换和滤波放大两个环节。最后一节采用低通滤波器排除射频信号的影响。放大环节有两个作用。其一:补偿采样过程中1%的比例;其二:通过微调放大倍数实现可调的偏置。偏 置控制主要是一个比例积分环节,输出作为调制器的偏置。 关键词:光电调制器;模拟偏置法;误差 High-speed Optical Modulator Bias Control LIU XinZhuo 2) (06009406) (1)Department of Electronic Engineering, Southeast University, Nanjing, 210096 Abstract: The optical modulator bias control circuit compensates for the drift of the laser modulator effect. It also takes into account the changes in the laser output power. Link uses the laser with feedback PD and the output corresponds to voltage signal. The signal after amplification is acted as the input of the control system. After the two voltage signals reduction and stability, the output may be amplified. The feedback optical signal includes photoelectric conversion and filtering amplification. The last part of circuit excludes the influence of the RF signal through a low pass filter. We know that enlarge areas have two roles. First: it can compensate for sampling ratio of 1%of the process; Second: it can realize adjustable bias by fine-tune magnification. The bias control is a proportional integral part of the output of the modulator bias. Abstract: Specific charge of electron; magnetic focusing; magnetic control tube; Zeeman effects; error 作者的个人学术信息: 刘欣卓,1991年,女,南京市。大学本科,电 子科学与工程学院。liuxinzhuo@https://www.wendangku.net/doc/e815372783.html,. 1.量子阱半导体激光器的发展历程 1.1激光器研制的现状 随着光子技术的发展,光子器件及其集成技术在各领域的应用前景越来越广阔,尤其在一些数据处理速率要求极高的领域,光子器件正逐步取代电子器件。可以预见,不久的将来,光子器件及光子集成线路在各行业所占的比重将不亚于目前集成电路在各领域的地位及作用。而激光器作为光子器件的核心之一,对其新型结构的研制更是早就提上了日程,并取得了一定的进展。 为了研制出阈值电流低、量子效率高、工作于室温环境、短波长、长寿命和光束质量好等要求的半导体激光器, 研究人员致力于寻找新工作原理、新材料、新结构以及各种新的技术。在此,半导体激光器(LD),特别是量子阱半导体激光器(QWLD)正逐步作为光通信和光互连中的重要光源。 1. 2半导体激光器 半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,较常规激光器而言,产生激光的具体过程比较特殊。 半导体激光器工作物质的种类有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)

量子阱半导体激光器的的基本原理及其应用

量子阱半导体激光器的的基本原理及其应用 无研01 王增美(025310) 摘要:本文主要阐述了量子阱及应变量子阱材料的能带结构,以及能态密度和载流子有效质量的变化对激光器阈值电流等参数的影响,简要说明了量子阱激光器中对光场的波导限制。最后对量子阱半导体激光器的应用作了简要的介绍,其中重点是GaN 蓝绿光激光器的发展和应用。 引言 半导体激光器自从1962年诞生以来,就以其优越的性能得到了极为广泛的应用,随着新材料新结构的不断涌现和制造工艺水平的不断提高,其各方面的性能也不断得到改善,应用范围也不在再局限于信息传输和信息存储,而是逐渐渗透到材料加工、精密测量、军事、医学和生物等领域,正在迅速占领过去由气体和固体激光器所占据的市场。 20世纪70年代的双异质结激光器、80年代的量子阱激光器和90年代出现的应变量子阱激光器是半导体激光器发展过程中的三个里程碑。制作量子阱结构需要用超薄层的薄膜生长技术,如分子外延术(MBE )、金属有机化合物化学气相淀积(MOCVD )、化学束外延(CBE )和原子束外延等。我国早在1974年就开始设计和制造分子束外延(MBE )设备,而直到1986年才成功的制造出多量子阱激光器,在1992年中科院半导体所(ISCAS )使用国产的MBE 设备制成的GRIN-SCH InGaAs/GaAs 应变多量子阱激光器室温下阈值电流为1.55mA ,连续输出功率大于30mW ,输出波长为1026nm [4]。 量子阱特别是应变量子阱材料的引入减少了载流子的一个自由度,改变了K 空间的能带结构,极大的提高了半导体激光器的性能,使垂直腔表面发射激光器成为现实,使近几年取得突破的GaN 蓝绿光激光器成为新的研究热点和新的经济增长点,并将使半导体激光器成为光子集成(PIC )和光电子集成(OEIC )的核心器件。 减少载流子一个自由度的量子阱已经使半导体激光器受益匪浅,再减少一个自由度的所谓量子线(QL )以及在三维都使电子受限的所谓量子点(QD )将会使半导体激光器的性能发生更大的改善,这已经受到了许多科学家的关注,成为半导体材料的前沿课题。 量子阱和应变量子阱半导体激光器的基本原理 1、半导体超晶格 半导体超晶格是指由交替生长两种半导体材料薄层组成的一维周期性结构,薄层的厚度与半导体中电子的德布罗意波长(约为10nm )或电子平均自由程(约为50nm )有相同量级。这种思想是在1968年Bell 实验室的江崎(Esaki )和朱肇祥首先提出的,并于1970年首次在GaAs 半导体上制成了超晶格结构。江崎等人把超晶格分为两类:成分超晶格和掺杂超晶格。理想超晶格的空间结构及两种材料的能带分布分别如图1和图2: 2、 量子阱及量子阱材料的能带结构 图1

量子阱半导体激光器

量子阱半导体激光器 摘要:本文主要叙述了量子阱半导体激光器发展背景、基本理论、主要应用与发展现状。一、发展背景 1962年后期,美国研制成功GaAs同质结半导体激光器,第一代半导体激光器产生。但这一代激光器只能在液氮温度下脉冲工作,无实用价值。直到1967年人们使用液相外延的方法制成了单异质结激光器,实现了在室温下脉冲工作的半导体激光器。1970年,贝尔实验室有一举实现了双异质结构的在室温下连续工作的半导体激光器。至此之后,半导体激光器得到了突飞猛进的发展。半导体激光器具有许多突出的优点:转换效率高、覆盖波段范围广、使用寿命长、可直接调制、体积小、重量轻、价格便宜、易集成等。其发展速度之快、应用范围之广、潜力之大是其它激光器所无法比拟的。但是,由于应用的需要,半导体激光器的性能有待进一步提高。 80年代,量子阱结构的出现使半导体激光器出现了大的飞跃。量子阱结构源于60年代末期贝尔实验室的江崎(Esaki)和朱肇祥提出超薄层晶体的量子尺寸效应。当超薄有源层材料后小于电子的德布罗意波长时,有源区就变成了势阱区,两侧的宽带系材料成为势垒区,电子和空穴沿垂直阱壁方向的运动出现量子化特点。从而使半导体能带出现了与块状半导体完全不同的形状与结构。在此基础上,根据需要,通过改变超薄层的应变量使能带结构发生变化,发展起来了应变量子阱结构。这种所谓“能带工程”赋予半导体激光器以新的生命力,其器件性能出现大的飞跃。具有量子阱结构的量子阱半导体激光器与双异质结半导体激光器(DH)相比,具有阈值电流密度低、量子效应好、温度特性好、输出功率大、动态特性好、寿命长、激射波长可以更短等等优点。目前,量子阱已成为人们公认的半导体激光器发展的根本动力。 其发展历程大概为:1976年,人们用GaInAsP/InP实现了长波长激光器。对于激光腔结构,Kogelnik和Shank提出了分布反馈结构,它能以单片形式形成谐振腔。Nakamura用实验证明了用光泵浦的GaAs材料形成的分布反馈激光器(DBR)。Suematsu提出了用于光通信的动态单模激光概念,并用整体激光器验证了这种想法。1977年,人们提出了所谓的面发射激光器,并于1979年做出了第一个器件。目前,垂直腔面发射激光器(VECSEL)已用于千兆位以太网的高速网络。自从Nakamura实现了GaInN/GaN蓝光激光器,可见光半导体激光器在光盘系统中得到了广泛应用,如CD播放器、DVD系统和高密度光存储器。1994年,一种具有全新机理的波长可变、可调谐的量子级联激光器研制成功,且最近,在此又基础上提出了微带超晶格红外激光器。另外,具有更好性能的低维超晶格—量子线、量子点激光器的研究也已经开始。 二、基本理论 1、量子阱及其能带结构

相关文档