文档库 最新最全的文档下载
当前位置:文档库 › 新环状势的狄拉克与薛定谔方程束缚态解

新环状势的狄拉克与薛定谔方程束缚态解

新环状势的狄拉克与薛定谔方程束缚态解
新环状势的狄拉克与薛定谔方程束缚态解

最新薛定谔方程及其解法

关于薛定谔方程 一.定义及重要性 薛定谔方程(Schrdinger equation)是由奥地利物理学家薛定谔提 出的量子力学中的一个基本方程,也是量子力学的一个基本假定, 其正确性只能靠实验来检验。是将物质波的概念和波动方程相结合 建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都 有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式 以及对应的能量,从而了解微观系统的性质。 薛定谔方程是量子力学最基本的方程,亦是量子力学的一个基 本假定,它的正确性只能靠实验来检验。 二.表达式 三.定态方程 ()() 2 2 2 V r E r m η ψψ + ?? -?= ?? ?? 所谓势场,就是粒子在其中会有势能的场,比如电场就是一个带电粒子的势场;所谓定态,就是假设波函数不随时间变化。 其中,E是粒子本身的能量;v(x,y,z)是描述势场的函数,假设不随时间变化。

2 2 22222 z y x ??????++=? 可化为 d 0)(222 =-+ψψv E h m dx 薛定谔方程的解法 一. 初值解法;欧拉法,龙格库塔法 二. 边值解法;差分法,打靶法,有限元法 龙格库塔法(对欧拉法的完善) 给定初值问题 ). ()()((3) ) ,(),()( ,,(2) )(),( 311212 2111021h O t y t y hk y h t f k y t f k k c k c h y y y c c a y b t a y t f dt dy i i i i i i i i =-???????++==++==?????=≤≤=++的局部截断误差使以下数值解法的值及确定常数ββα βα

薛定谔方程与提出背景

薛定谔方程 在一维空间里,一个单独粒子运动于位势中的含时薛定谔方程为 ;(1) 其中,是质量,是位置,是相依于时间的波函数,是约化普朗克常数,是位势。类似地,在三维空间里,一个单独粒子运动于位势中的含时薛定谔方程为 。(2) 假若,系统有个粒子,则波函数是定义于 -位形空间,所有可能的粒子位置空间。用方程表达, 。 其中,波函数的第个参数是第个粒子的位置。所以,第个粒子的位置是。 不含时薛定谔方程 不含时薛定谔方程不相依于时间,又称为本征能量薛定谔方程,或定态薛定谔方程。顾名思义,本征能量薛定谔方程,可以用来计算粒子的本征能量与其它相关的量子性质。 应用分离变量法,猜想的函数形式为 ; 其中,是分离常数,是对应于的函数.稍回儿,我们会察觉就是能量. 代入这猜想解,经过一番运算,含时薛定谔方程 (1) 会变为不含时薛定谔方程: 。 类似地,方程 (2) 变为

。 历史背景与发展 爱因斯坦诠释普朗克的量子为光子,光波的粒子;也就是说,光波具有粒子的性质,一种很奇奥的波粒二象性。他建议光子的能量与频率成正比。在相对论里,能量与动量之间的关系跟频率与波数之间的关系相同,所以,连带地,光子的动量与波数成正比。 1924年,路易·德布罗意提出一个惊人的假设,每一种粒子都具有波粒二象性。电子也有这种性质。电子是一种波动,是电子波。电子的能量与动量决定了它的物质波的频率与波数。1927年,克林顿·戴维和雷斯特·革末将缓慢移动的电子射击于镍晶体标靶。然后,测量反射的强度,侦测结果与X射线根据布拉格定律 (Bragg's law) 计算的衍射图案相同。戴维森-革末实验彻底的证明了德布罗意假说。 薛定谔夜以继日地思考这些先进理论,既然粒子具有波粒二象性,应该会有一个反应这特性的波动方程,能够正确地描述粒子的量子行为。于是,薛定谔试着寻找一个波动方程。哈密顿先前的研究引导著薛定谔的思路,在牛顿力学与光学之间,有一种类比,隐蔽地暗藏于一个察觉里。这察觉就是,在零波长极限,实际光学系统趋向几何光学系统;也就是说,光射线的轨道会变成明确的路径,遵守最小作用量原理。哈密顿相信,在零波长极限,波传播会变为明确的运动。可是,他并没有设计出一个方程来描述这波行为。这也是薛定谔所成就的。他很清楚,经典力学的哈密顿原理,广为学术界所知地,对应于光学的费马原理。借着哈密顿-雅可比方程,他成功地创建了薛定谔方程。薛定谔用自己设计的方程来计算氢原子的谱线,得到了与用玻尔模型计算出的能级相同的答案。 但是,薛定谔对这结果并不满足,因为,索末菲似乎已经正确地计算出氢原子光谱线精细结构常数的相对论性的修正。薛定谔试着用相对论的能量动量关系式,来寻找一个相对论性方程(现今称为克莱因-高登方程),可以描述电子在库仑位势的量子行为。薛定谔计算出这方程的定态波函数。可是,相对论性的修正与索末菲的公式有分歧。虽然如此,他认为先前非相对论性的部分,仍旧含有足够的新结果。因此,决定暂时不发表相对论性的修正,只把他的波动方程与氢原子光谱分析结果,写为一篇论文。1926年,正式发表于物理学界[2]。从此,给予了量子力学一个新的发展平台。 薛定谔方程漂亮地解释了的行为,但并没有解释的意义。薛定谔曾尝试解释代表电荷的密度,但却失败了。1926年,就在薛定谔第四篇的论文发表之后几天,马克斯·玻恩提出概率幅的概念,成功地解释了的物理意义[3]。可是,薛定谔本人一直不承认这种统计或概率的表示方法,和它所伴随的非连续性波函数坍缩。就像爱因斯坦的认为量子力学是基本为确定性理论的统计近似,薛定谔永远无法接受哥本哈根诠释。在他有生最后一年,他写给马克斯·玻恩的一封信,薛定谔清楚地表明了这看法。 含时薛定谔方程导引

实验三 定态薛定谔方程的矩阵解法

实验三 定态薛定谔方程的矩阵解法 一.实验目的 1.掌握定态薛定谔方程的矩阵解法。 2.掌握几种矩阵特征值问题数值解法的原理,会调用相应的子程序求解具体问题。 二.实验内容 1.问题描述 以/2ω/()m ω为长度单位,一维谐振子的哈密顿量为 2 202d H x dx =-+, 其本征值为21n E n =+,本证波函数为 2 /2)()n n x H x ?=-, 其中()n H x 为厄米多项式,满足递推关系 11()2()2()n n n H x xH x nH x +-=-。 用矩阵方法求 2 22d H x x dx =-++ 的本证能量和相应的波函数。 2.问题分析 H E ψψ= 0()|j j j t c ψ?∞ ==>∑ 0||i i j i j i j c E c x Ec ??∞ =+<>=∑ 11|j j j x ???-+>=>>

11||||j j j j x x ????-+<>= <>= 0010010 112111,211,11,1 n n n n n n n n n n n n E x c c x E x c c E x E x c c x E c c -------?????????????????????????=??????????????????????? ? 3.程序编写 子程序及调用方法见《FORTRAN 常用算法程序集(第二版)》第三章 徐士良,P97 4.实验要求 ◆用恰当的算法求解以上实对称三对角矩阵的特征值问题。 ◆取n=8,给出H 的全部特征值和相应的特征向量。 5.实验步骤 ● 启动软件开发环境Microsoft Developer Studio 。 ● 创建新工作区shiyan03。 ● 创建新项目xm3。 ● 创建源程序文件xm3.f90,编辑输入源程序文本。 ● 编译、构建、运行、调试程序。 6.实验结果 程序设计:

薛定谔方程

第一章 薛定谔方程 §1.1.波函数及其物理意义 1. 波函数: 用波函数描述微观客体的运动状态。 例:一维自由粒子的波函数 推广 :三维自由粒子波函数 2. 波函数的强度——模的平方 3. 波函数的统计解释 用光栅衍射与电子衍射对比的方式理解波函数的统计解释。 t 时刻,出现在空间(x,y,z )点附近单位体积内的粒子数与总粒子数之比。 t 时刻,粒子出现在空间(x,y,z )点附近单位体积内的概率。 t 时刻,粒子在空间分布的概率密度 4、 波函数的归一化条件和标准条件 归一化条件 粒子在整个空间出现的概率为1 标准条件:一般情况下, 有关特殊情况波函数所满足的条件参看曾谨言教程。 对微观客体的数学描述: 脱离日常生活经验,避免借用经典语言引起的表观矛盾 §1.2. 薛定谔方程 是量子力学的基本假设之一,只能建立,不能推导,其正确性由实验检验。 1. 建立 (简单→复杂, 特殊→一般) 一维自由粒子的振幅方程 非相对论考虑 2. 一维定态薛定谔方程 2 |),,,(|t z y x ψ1d d d d d ||2===?=ψ???N N N N V V N N V V V . 是单值、有限、连续的ψ0)(2d )(d 222=ψ+ψx mE x x 0)()(2d )(d 222=ψ-+ψx U E m x x

3. 三维定态薛定谔方程 4. 一般形式薛定谔方程 5. 多粒子体系的薛定谔方程 讨论: 1、薛定谔方程也称波动方程,描述在势场U 中粒子状态随时间的变化规律。 2 、建立方程而不是推导方程,正确性由实验验证。薛定谔方程实质上是一种基本假设,不能从其他更基本原理或方程推导出来,它的正确性由它解出的结果是否符合实验来检验。 3、薛定谔方程是线性方程。是微观粒子的基本方程,相当于牛顿方程。 4、自由粒子波函数必须是复数形式,否则不满足自由粒子薛定谔方程。 5、薛定谔方程是非相对论的方程。 量子力学的中心任务就是求解薛定谔方程。 求解问题的思路: 1. 写出具体问题中势函数U (r )的形式代入方程 2. 用分离变量法求解 3. 用归一化条件和标准条件确定积分常数 4. 讨论解的物理意义, 薛定谔的另一伟大科学贡献 《What is life ?》 薛定谔(Schroding,1897-1961)奥地利人,因发现原子理论的有效的新形式一波动力学与狄拉克(Dirac,1902-1984)因创立相对论性的波动方程一狄拉克方程,共同分享了1933年度诺贝尔物理学奖 定态薛定谔方程 一.定态薛定谔方程条件:V (r,t )=V(r), 与t 无关。用分离变量法, 令Ψ=φ(r)f(t),代入薛定谔方程,得两个方程: 此称定态薛定谔方程 整个定态波函数形式: ),,,(),,,()],,,(2[),,,(2121212221t r r t r r V t r r m t r r t i i i i ψ+ψ?-=ψ??∑)t (Ef t )t (f i =?? Et i ce )t (f -=)r (E )r ()r (V )r (m ?=?+??-222Et i e )r ( -?=ψ

大学物理-一维定态薛定谔方程的应用

一维定态薛定谔方程 的应用 授课人: 物理科学与技术学院

势 阱 日常生活中的各种井(阱) 物理学中研究微观粒子运动状态时常用的模型,因其势能函数曲线的形状如同井而得名 水井 窨井 陷阱 U x O a U

() U x x O a ∞ ∞00()0 , x a U x x x a ≤≤?=?∞<>? 这是一个理想化的物理模型, 应用定态薛定谔方程求解波函数, 有利于进一步理解在微观系统中 能量量子化和概率密度等概念 这样的势能函数称为 一维无限深势阱

建立定态薛定谔方程并求解 假设微观粒子质量为 ,由 m 22 2d ()()()2d U x x E x m x ψψ??-+=???? x a U x 0()0≤≤=阱内( ) : 22 2d ()()2d x E x m x ψψ-= x x a U x 0 , ()<>→∞ 阱外( ): 令: 2 22mE k =得通解: ()sin() x A kx ψ?=+ 微观粒子的能量不可能达到 无穷大,所以粒子不可能在阱外出现,或者说粒子在阱外出现的概率为零。 ()0 x ψ≡222 d 0d k x ψψ+=

利用标准条件确定 和 k ?因 在整个 轴上必须连续 x ()x ψsin() 0()0 0 0 A kx x a x x x ?ψ+≤≤?=? <>?,(0)sin 0 A ψ?== a A ka ()sin()0 ψ?=+=求归一化的波函数 一维无限深势阱中 微观粒子的波函数 2220π()d sin d a n x x A x x a ψ+∞-∞=??221 A a =?= 2A a = n a x x a x a x x a π2sin 0()00 , ψ? ≤≤?=??<>?() π ()sin 1,2,3n x A x n a ψ==??, 0?=π n k a =()1,2,3n =???,

非线性薛定谔方程数值解的MATLAB仿真

[键入作者姓名] [键入文档标题] ——利用分步快速傅里叶变换对光纤中光信号的传输方程进行数值求解

1、非线性薛定谔方程 非线性薛定谔方程(nonlinear Schrodinger equation ,NLSE)是奥地利物理学家薛定谔于1926 年提出的,应用在量子力学系统中。由于量子力学主要研究粒子的动力学运动状态,所以不能运用牛顿力学公式来表示。通常在量子力学中,研究系统的状态一般通过波函数(x ,t)来表示。而对波函数的研究主要是求解非线性薛定谔方程。本文主要研究光脉冲在光纤中传输状态下的演变。 一般情况下,光脉冲信号在光纤中传输时,同时受到光纤的色散和非线性效应的影响。通过Maxwell 方程,考虑到光纤的色散和非线性效应,可以推导出光信号在光纤中的传输方程,即非线性薛定谔方程。NLSE 是非线性偏微分方程,一般很难直接求出解析解,于是通过数值方法进行求解。具体分为两大类:(1)分布有限差分法(split-step finite differencemethod ,SSFD);(2)分步傅里叶变换法(split-step Fourier transform method ,SSFT)。一般情况,在达到相同精度,由于分步傅里叶变换法采用运算速度快的快速傅里叶变换,所以相比较有限差分法运算速度快一到两个数量级。于是本文介绍分步傅里叶变换法来对光纤中光信号的传输方程,即非线性薛定谔方程进行数值求解。并通过MATLAB 软件对结果数值仿真。 非线性薛定谔方程的基本形式为: 22||t xx iu u u u =+ 其中u 是未知的复值函数. 目前,采用分步傅立叶算法(Split step Fourier Method)求解非线性薛定谔方程的数值解应用比较多。分步傅立叶方法最早是在1937年开始应用的,这种方法己经被证明是相同精度下数值求解非线性薛定愕方程最快的方法,部分原因是它采用了快速傅立叶变换算法(Fast Fourier Transform Algorithm)。基于MATLAB 科学计算软件以及MATLAB 强大的符号计算功能,完全可以实现分步傅立叶数值算法来对脉冲形状和频谱进行仿真。 一般情况下,光脉冲沿光纤传播时受到色散和非线性效应的共同作用,假设当传输距离 很小的时候,两者相互独立作用,那么,根据这种思想可建立如下分步傅立叶数值算法的数 学模型: 把待求解的非线性薛定谔方程写成以下形式: ??()U D N U z ?=+? (I ) (II )

非线性薛定谔方程的孤子解和怪波解

非线性薛定谔方程的孤子解和怪波解 摘要:光纤中光波的传输模型一直是当前研究的热点理论模型之一,从非线性薛定谔方程到金格堡-朗道方程,都试图对其进行更好的阐释,其次对于非线性动力学系统中,非线性薛定谔方程的解有呈现出非常多有趣的特征,对于其中特定解的研究能够让我们了解脉冲演化的本质,所以本文主要从孤子解的传输入手,并且简单介绍了怪波解的解形式。 薛定谔方程又称薛定谔波动方程,是量子力学的一个基本方程,同时又是量子力学的基本假设之一,由奥地利物理学家薛定谔1926年在《量子化就是本征值问题》中提出的,它在量子力学中的地位非常重要,相当于牛顿定律对于经典力学一样。 随着人们对世界的不断探索,非线性现象逐渐走进人们的视野,这种现象一般大都用非线性偏微分方程的数学模型来描述,显然线性方程已经不能满足人们的需求。 1973年,Hasegawa从含有非线性项的色散方程中推导出了非线性薛定谔方程。非线性薛定谔方程(NLS)是普适性很强的一个基本方程,最简单的形式是: 其中为常数。因为这个方程在几乎所有的物理分支及其他科学领域得到了广泛的应用,如超导,光孤子在光纤中传播,光波导,等离子体中的Langnui波等,所以许多学者对此方程的研究投入了很大的热情,至今还在生机勃勃的向前发展着。 1 分步傅里叶法计算演化过程 对于处理非线性性薛定谔方程,常用的数值仿真方式为分步傅里叶方法,为了简单起见,只考虑二阶色散和自相位调制,不考虑高阶色散、自陡以及四波混频等高阶非线性效应。上述方程中做 2 β为二阶色散,γ表示Kerr效应系数,g和α分别代表光纤中的增益和损耗。对上述方程转化到频域,先不考虑增益和损耗。可以得到 2 k k k k k dA i A i a a dz βγ =?+F. 其中2 2 2 k i β β ?=Ω 令() exp k k A B i z β =?可以得到 () 2exp k k k k dB i a a i z dz γβ =-? F 以上方程可以用四阶龙格库塔直接求解,但是速度较慢,所以我们需要做差分处理。 ()() ()()() 2 exp k k k k k B z z B z i a z a z i z z γβ +?- =-? ? F 再利用() exp k k A B i z β =?可以得到 ()()()() ()()() 2 2 exp exp exp k k k k k k k k A z z A i a z a z z i z a z i a z z i z γβ γβ ?? +?=+??? ?? ?? ?? ≈????? ?? F F 然后做傅里叶反变换就可以得到最终的结果 ()()()() 2 1exp exp - k k k k a z z a z i a z z i z γβ ?? +?=????? ?? F F

§16.3 一维定态薛定谔方程的建立和求解举例

§16.3 一维定态薛定谔方程的建立和求解举例 (一)一维运动自由粒子的薛定谔方程 波函数随时间和空间而变化的基本方程,是薛定谔于1926年提出的,称为薛定谔波动方程,简称波动方程或薛定谔方程,它成为量子力学的基本方程. 将(16.2.14)式分别对t 和x 求导,然后从这两式消去E 、p 、和ψ,便可得到一维运动自由粒子的薛定谔方程: ψ-=?ψ?)/iE (t 即ψ=?ψ?E t i (16.3.1) ψ=?ψ ?22)/ip (x 2 ψ=ψ ?-2222p ????? ?????<<的薛定谔方程自由粒子轴运动的沿)c x (v 方程(16.3.3)中不含有能量E 和动量p ,表明此方程是不受E 和p 的数值限制的普遍方程. 请同学们自己试一试,如果上述波函数不用复数表式(16.2.14),改用类似于(16.2.1)式的余弦函数或正弦函数表式,就不会得到合乎要求的薛定谔方程(16.3.3)式?. 这薛定谔方程不是根据直接实验结果归纳而得,也不是由经典波动理论或其他理论推导出来的,它是在物质波假设的基础上,参照经典波动方程而建立起来的.薛定谔方程在微观领域中得到广泛的应用,它推导出来的结果,都与相关实验结果符合得很好,这才是薛定谔方程正确反映微观领域客观规律的最有力的证明. (二)一维运动自由粒子的定态薛定谔方程?? 上述薛定谔方程(16.3.3)是偏微分方程,从此方程可解出波函数ψ(x ,t ).在量子力学中最重要的解,是可把波函数ψ(x,t )分离成空间部分u (x )和时间部分f (t )两函数的乘积的特解,即 〔一维运动自由粒子的定态波函数〕 ψ(x,t )=u (x )f (t )(16.3.4) 将此式代入(16.3.3)式得: 22 2dx u d )t (f )m 2/(dt df )x (u i -= 两边除以ψ=uf 得: 22 2dx u d u 1)m 2/(dt df f 1i -= 此式左边是时间t 的函数,右边是坐标x 的函数.已知t 与x 是互相独立的自变量,左右两边相等,必须是两边都等于同一常量E ,即 ? 郭敦仁《量子力学初步》16—17页,人民教育出版社1978年版. ? 郭敦仁《量子力学初步》21—22页,人民教育出版社1978年版. ? 周世勋编《量子力学》32—33页,上海科学技术出版社1961年版.

薛定谔方程及其解法

关于薛定谔方程 一. 定义及重要性 薛定谔方程(Schrdinger equation )是由奥地利物理 学家薛定谔提出的量子力学中的一个基本方程,也是量子力学的一个基本假定,其正确性只能靠实验来检验。是将物质波的概念和波动方程相结合建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式以及对应的能量,从而了解微观系统的性质。 薛定谔方程是量子力学最基本的方程,亦是量子力学的一个基本假定,它的正确性只能靠实验来检验。 二. 表达式 三. 定态方程 ()()2 22V r E r m ηψψ+??-?=???? 所谓势场,就是粒子在其中会有势能的场,比如电场就是一个带电粒子的势场;所谓定态,就是假设波函数不随时间变化。 其中,E 是粒子本身的能量;v(x ,y ,z)是描述势场的函数,假设不随时间变化。

2 2 22222z y x ?? ????++=? 可化为d 0)(222=-+ψψ v E h m dx 薛定谔方程的解法 一. 初值解法;欧拉法,龙格库塔法 二. 边值解法;差分法,打靶法,有限元法 龙格库塔法(对欧拉法的完善) 给定初值问题 ).()()((3) ) ,() ,() ( ,,(2) )() ,( 3112122111021h O t y t y hk y h t f k y t f k k c k c h y y y c c a y b t a y t f dt dy i i i i i i i i =-???????++==++==????? =≤≤=++的局部截断误差使以下数值解法 的值及确定常数ββα βα

非线性薛定谔方程数值解的MATLAB仿真

admin [非线性薛定谔方程数值解的MATLAB仿真]——利用分步快速傅里叶变换对光纤中光信号的传输方程进行数值求解

1、非线性薛定谔方程 非线性薛定谔方程(nonlinear Schrodinger equation ,NLSE)是奥地利物理学家薛定谔于1926 年提出的,应用在量子力学系统中。由于量子力学主要研究粒子的动力学运动状态,所以不能运用牛顿力学公式来表示。通常在量子力学中,研究系统的状态一般通过波函数(x ,t)来表示。而对波函数的研究主要是求解非线性薛定谔方程。本文主要研究光脉冲在光纤中传输状态下的演变。 一般情况下,光脉冲信号在光纤中传输时,同时受到光纤的色散和非线性效应的影响。通过Maxwell 方程,考虑到光纤的色散和非线性效应,可以推导出光信号在光纤中的传输方程,即非线性薛定谔方程。NLSE 是非线性偏微分方程,一般很难直接求出解析解,于是通过数值方法进行求解。具体分为两大类:(1)分布有限差分法(split-step finite differencemethod ,SSFD);(2)分步傅里叶变换法(split-step Fourier transform method ,SSFT)。一般情况,在达到相同精度,由于分步傅里叶变换法采用运算速度快的快速傅里叶变换,所以相比较有限差分法运算速度快一到两个数量级。于是本文介绍分步傅里叶变换法来对光纤中光信号的传输方程,即非线性薛定谔方程进行数值求解。并通过MATLAB 软件对结果数值仿真。 非线性薛定谔方程的基本形式为: 22||t xx iu u u u =+ 其中u 是未知的复值函数. 目前,采用分步傅立叶算法(Split step Fourier Method)求解非线性薛定谔方程的数值解应用比较多。分步傅立叶方法最早是在1937年开始应用的,这种方法己经被证明是相同精度下数值求解非线性薛定愕方程最快的方法,部分原因是它采用了快速傅立叶变换算法(FastFourier Transform Algorithm)。基于MATLAB 科学计算软件以及MATLAB 强大的符号计算功能,完全可以实现分步傅立叶数值算法来对脉冲形状和频谱进行仿真。 一般情况下,光脉冲沿光纤传播时受到色散和非线性效应的共同作用,假设当传输距离 很小的时候,两者相互独立作用,那么,根据这种思想可建立如下分步傅立叶数值算法的数 学模型: 把待求解的非线性薛定谔方程写成以下形式: ??()U D N U z ?=+? (I ) (II )

薛定谔方程及其解法

一. 定义及重要性 薛定谔方程(Schrdinger equation )是由奥地利物理学家薛定谔提出的量子力学中的一个基本方程,也是量子力学的一个基本假定,其正确性只能靠实验来检验。是将物质波的概念和波动方程相结合建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式以及对应的能量,从而了解微观系统的性质。 薛定谔方程是量子力学最基本的方程,亦是量子力学的一个基本假定,它的正确性只能靠实验来检验。 二. 表达式 三. 定态方程 ()()2 22V r E r m ηψψ+??-?=???? 所谓势场,就是粒子在其中会有势能的场,比如电场就是一个带电粒子的势场;所谓定态,就是假设波函数不随时间变化。 其中,E 是粒子本身的能量;v(x ,y ,z)是描述势场的函数,假设不随时间变化。 可化为 薛定谔方程的解法 一. 初值解法;欧拉法,龙格库塔法

二.边值解法;差分法,打靶法,有限元法 龙格库塔法(对欧拉法的完善) 给定初值问题 有限元方法 有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。 有限元分析的基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件,从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。不同于求解(往往是困难的)满足整个定义域边界条件的函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。

第二章薛定谔方程习题

第二章 薛定谔方程 习题 (课本44页) 证明在定态中,概率流密度与时间无关。 证明:当一个系统处于定态时,其波函数),(t r ?可以写作, ?? ? ??-=Et i r t r ex p )(),(φ? 于是便有, ?? ? ??=Et i r t r ex p )(),(**φ? 根据概率流密度的定义式有, ????? ????? ??-??? ??-???? ????? ??-= ??????????????? ??-???? ??-????????? ?????? ??-=?-?≡????????ψψψψt iE t iE t iE t iE m i t iE t iE t iE t iE m i m i J exp exp exp exp 2exp exp exp exp 2) (2* ***** 即有,)(2)(2****φφφφ?????-?=?-?=m i m i J 显然,在定态中概率流密度与时间无关。从某种意义上说明上述波函数称为定态波函数是名副其实的。 由下列两定态波函数计算概率流密度:⑴ )exp(11ikr r = ?,⑵ )exp(1 2ikr r -=?。 从所得结果说明1?表示向外传播的球面波,2?表示向内(即向原点)传播的球面波。 解:在解本题之前,首先给出一个函数f 的梯度在球坐标系下的表达式,即 ? θθ? θ??+??+??=?f r e f r e r f e f r sin 1?1?? ⑴ 首先求解函数1?的概率流密度 r ikr ikr r ikr ikr ikr r ikr e mr k r ike r e e r e r ike r e e r e m i r ikr r ikr r ikr r ikr m i m i J ???2)exp()exp()exp()exp(2) (22221*1*111 =?????????? ??+--???? ??-+-=?? ? ???---?=?-?=---???? 可见,概率流密度1J 与r 同号,这便意味着1J 的指向是向外的,即1?表示向外传播的球面波。

波函数和薛定谔方程-力学量算符

波函数和薛定谔方程-力学量算符1.一维运动的粒子处在 的状态,其中,求: (1)粒子动量的几率分布函数; (2)粒子动量的平均值。 [解]首先将归一化,求归一化系数A。 (1)动量的几率分布函数是 注意到中的时间只起参数作用,对几率分布无影响,因此可有 令 代入上式得

(2) 动量p的平均值的结果从物理上看是显然的,因为对本题说来,粒子动量是和是的几率是相同的。讨论: ①一维的傅里叶变换的系数是而不是。 ②傅里叶变换式中的t可看成参变量。因此,当原来坐标空间的波函数不含时间变量时, 即相当于的情况,变换式的形式保持不变。 ③不难证明,若是归一化的,则经傅里叶变换得到也是归一化的。 2.设在时,粒子的状态为 求粒子动量的平均值和粒子动能的平均值。 [解]方法一:根据态迭加原理和波函数的统计解释。任意状态总可以分解为单色 平面波的线性和,即,展开式的系数表示粒子的动量为p时的几率。知道了几率分布函数后,就可按照 求平均值。

在时,动量有一定值的函数,即单色德布罗意平面波为,与的展开式比较可知,处在状态的粒子动量可以取 ,而, 粒子动量的平均值为 A可由归一化条件确定 故 粒子动能的平均值为 。 方法二:直接积分法

根据函数的性质,只有当函数的宗量等于零时,函数方不为零,故的可能值有 而 则有及。 讨论:①由于单色德布罗意平面波当时不趋于零,因此的归一化积分是发散的,故采用动量几率分布的概念来求归一化系数。 ②本题的不是平方可积的函数,因此不能作傅氏积分展开,只能作傅氏级数展 开,即这时对应于波函数的是分立谱而不是连续谱,因此计算积分, 得到函数。 ③在连续谱函数还未熟练以前,建议教学时只引导学生按方法一做,在第三章函 数讲授后再用函数做一遍,对比一下,熟悉一下函数的运算。 3.一维谐振子处在 的状态,求: (1)势能的平均值; (2)动量的几率分布函数; (3)动能的平均值 [解]先检验是否归一化。 是归一化的。 (1)

非线性薛定谔方程求解

CHAPTER IV NUMERICAL SOLUTIONS TO THE NONLINEAR SCHR?DINGER EQUATION 4.1Introduction In general,analytical solutions to the full Maxwell wave equation for a nonlinear optical system do not exist.Even numerical solutions to the wave equation are extremely difficult to implement due to the dimensionality of the problem.The vector form of the wave equation is a four-dimensional(three spatial,one temporal),second-order partial differential equation.Thus,approximations based on propagation conditions and experimental results are needed in order to solve an approximate scalar form of the wave equation,i.e.the nonlinear Schr?dinger equation.However,the approximations listed in the previous chapter do limit the generality and validity of the solutions.For example, the condition extreme nonlinearity,as for the case in supercontinuum generation,is a propagation regime where slowly varying envelope approximation may be violated. The purpose of this chapter is to provide an introduction to a very powerful method in numerically solving the NLSE,known as the split-step Fourier method (SSFM)[15].The chapter will begin with a list pointing the advantages of the SSFM

量子笔记1 —— 一维薛定谔方程

量子笔记1 —— 一维薛定谔方程 给出某种一维势,求解一维薛定谔方程的束缚定态解及其能级的题目是常见的量子力学的题型之一,这种题型的求解虽有其固有模式,但具体处理过程中也牵涉到很多技巧和要注意之处。下面我通过两个例子来试图对其解题模式和某些解题过程中的常见技巧和经验作出一个概括性的总结,作为量子力学复习的第一阶段的一个阶段性小结。 例一. 质量为μ的粒子在一维势场 ()()???><=''+-=0,V 0 0V V V 0 x x x x ,,αδ 中运动,其中α与0V 均为实数。(1)试给出存在束缚态的条件,并给出其能量本征值和相应的本征函数。(2)给出粒子处于0>x 区域中的概率,它是大于1/2,还是小于1/2,为什么? 解:在此势场中的束缚定态能量E<0, 令202E V 2,E 2 )()(-=-=μγμβ (1) 不包括x=0点的定态方程为 0),()(0),()(222222>=<=x x dx x d x x dx x d ψγψψβψ (2) )(x ψ满足条件 0)(),0()0(=±∞=-+ψψψ (3) )0(2)0()0(2ψμαψψ - ='-'-+ (4) 在势阱中,能量要小于势阱边缘的势能,否则就不能形成束缚态,而是游离态了。这里的势阱是一个δ势,所以要有束缚态,并需要求E<0。 本来一维定态薛定谔方程是ψψE V dx d m =+-)2(22 2 ,用熟了就可以直接像上面那样写了。特别的,当粒子限定在圆周上运动时,或者写自由转子的薛定谔方程时,只要将上式中的m 换成I ,x 换成?就可以了。其中2R I μ=是粒子的转动惯量。即)()()(R 222 22?ψ?ψ??μE V d d =??? ? ??+-

薛定谔方程及其解法 - 副本

薛定谔方程 一. 定义及重要性 薛定谔方程(Schrdinger equation )是由奥地利物理学家薛定谔提出的量子力学中的一个基本方程,也是量子力学的一个基本假定,其正确性只能靠实验来检验。是将物质波的概念和波动方程相结合建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式以及对应的能量,从而了解微观系统的性质。 薛定谔方程是量子力学最基本的方程,亦是量子力学的一个基本假定,它的正确性只能靠实验来检验。 二. 表达式 三. 定态方程 ()()2 22V r E r m ηψψ+??-?=???? 所谓势场,就是粒子在其中会有势能的场,比如电场就是一个带电粒子的势场;所谓定态,就是假设波函数不随时间变化。 其中,E 是粒子本身的能量;v(x ,y ,z)是描述势场的函数,假设不随时间变化。

2 2 22222z y x ?? ????++=? 可化为d 0)(222=-+ψψ v E h m dx 薛定谔方程的解法 一. 初值解法;欧拉法,龙格库塔法 二. 边值解法;差分法,打靶法,有限元法 龙格库塔法(对欧拉法的完善) 给定初值问题 ).()()((3) ) ,() ,() ( ,,(2) )(),( 3112122111021h O t y t y hk y h t f k y t f k k c k c h y y y c c a y b t a y t f dt dy i i i i i i i i =-???????++==++==????? =≤≤=++的局部截断误差使以下数值解法 的值及确定常数ββα βα

mathematic求解薛定谔方程程序

5.编程求解薛定谔方程: BeginPackage["QuantumWell`"] Clear[PsiSym,PsiASym,Spectrum] PsiSym::usage= "PsiSym[x_ ,k ,a ] determines the symmetric eigenfunction for a potential well of depth -V0. The input parameter k fixes the energy and 2a the width of the well. Psisym is useful for a numerical representation of eigenfunctions." PsiASym::usage= "PsiASym[x_ ,k_ ,a_] determines the antisymmetric eigenfunction for a potential well of depth-V0. The input parameter k fixes the energy and 2a the width of the well. PsiASym is useful for a numerical representation of eigenfunctions." Spectrum::usage="Spectrum[V0_ ,a_]calculates the negative eigenvalues in a potential well. V0 is the potential depth and 2a the width of the well.The eigenvalues are returend as a list and are available in the variables lsymand lasym as replacement rules. The corresponding plots of eigenfunctions are stored in the variables Plsym and Plasym. The determining equation for the eieenvalues is plotted." (*-一define global variables-一*) Plsym::usage= "Variables containing the symmetric plots of the eigenfunctions." Plasym::usage ="Variables containing the antisymmetric plots of the eigenfunctions." lsym::usage= "List of symmetric eigenvalues." lasym::usage ="List of antisymmetric eigenvalues." k::usage ="Eigenvalue." Begin["`Private`"] (*一symmetric eigenfunctions一*) Psisym[x ,k ,a ]:=Module[{kapa, Al]},Kapa = k Tan [k a]; (*一normalization constant一*) A1=1/Sqrt[a Exp[-2 a kapa] (1+1/(kapa a)+kapa/(k^2 a)+Kapa^2/k^2)]; (*一define the three domains of solution一一*) Which[-Infinity

薛定谔方程与它的基本意义

薛定谔方程 维基百科,自由的百科全书 跳转到:导航, 搜索 汉漢▼ 量子力学 不确定性原理 入门·数学表述显示▼背景 经典力学·旧量子论·干涉 哈密顿量·狄拉克符号 显示▼基本概念 量子态·波函数·态矢量 态叠加原理·波粒二象性 量子测量·不确定性原理 泡利不相容原理·量子缠结 量子脱散·量子隧穿效应

埃伦费斯特定理 显示▼实验 双缝实验·薛定谔的猫 戴维孙-革末实验 施特恩-格拉赫实验 贝尔不等式实验 波普尔实验·量子擦除器 显示▼构想 薛定谔绘景·海森堡绘景相互作用绘景·矩阵力学求和的历史 显示▼方程 薛定谔方程·泡利方程 克莱因-高登方程 狄拉克方程 显示▼量子力学诠释 哥本哈根诠释·Ensemble 隐变量·交易诠释

多世界诠释·一致性历史 系综诠释·量子逻辑 显示▼进阶理论 量子场论·量子引力 万有理论 显示▼科学家 普朗克、玻尔、薛定谔、海森堡 泡利、德布罗意、埃伦费斯特、玻姆 玻恩、爱因斯坦、冯?诺伊曼 费曼、狄拉克、维恩、埃弗里特 索末菲、其他 本模板:查看?讨论?编辑?历史 薛定谔方程是由奥地利物理学家薛定谔提出的量子力学中的一个基本方程[1],也是量子力学的一个基本假定,其正确性只能靠实验来检验。就好像牛顿定律在经典力学的地位,薛定谔方程在量子力学里占有中心的地位。 薛定谔方程主要分为含时薛定谔方程与不含时薛定谔方程。含时薛定谔方程相依于时间,专门用来计算一个量子系统的波函数,怎样随着时间演变。不含时薛定谔方程不相依于时间,可以计算一个定态量子系统,对应于某本征能量的本征波函数。波函数又可以用来计算,在量子系统里,某个事件发生的几率幅。而几率幅的绝对值的平方,就是事件发生的几率密度。薛定谔方程的解答,清楚地描述量子系统里,量子尺寸粒子的统计性量子行为。量子尺寸的

相关文档
相关文档 最新文档