文档库 最新最全的文档下载
当前位置:文档库 › 低通抽样定理

低通抽样定理

低通采样

西安邮电大学 《通信原理》软件仿真实验报告 实验名称:低通型采样定理 院系:通信与信息工程学院 专业班级:通工 学生姓名: 学号: (班内序号) 指导教师:张明远 报告日期:2013年10月8日

●实验目的: 1、掌握低通型采样定理; 2、掌握理想采样、自然采样和瞬时采样的特点; 3*、掌握混叠失真和孔径失真。 ●知识要点: 1、低通型采样定理; 2、理想采样及其特点; 3、自然采样及其特点; 4、瞬时采样及其特点; 5*、混叠失真及孔径失真。 ●仿真要求: 建议时间参数:No. of Samples =4096;Sample Rate = 20000Hz 1、记录理想采样时信源、样值序列和恢复信号的波形和频谱; 信源为截止频率200Hz的低通型信号; 系统框图: δ,偏移量为0.05); 其中图符8为信号源(单位冲激信号即()t 图符9为截止频率250Hz,极点个数为6的模拟低通滤波器; 图符0为采样器,采样频率2000Hz; 图符1为保持电路,Hold Value = Zero,Gain = 1; 图符2为截止频率250Hz,极点个数为6的模拟低通滤波器; 频谱选择|FFT|; ●仿真波形及实验分析: 1.理想采样 信源的波形和频谱

样值序列的波形和频谱 恢复信号的波形和频谱 分析:从图可知:理想采样原始信号和恢复信号波形相同,在样值序列中各次谐波与原始信号频谱相同。 2、记录平顶采样时的波形和频谱,并分析不同占空比时其特点: 系统框图

信源波形和频谱 样值序列 恢复序列的波形和频谱:

从图可以看出理想采样时输出波形信号和原始信号相同,而样值序列个次谐波出现衰落。 (2)50%占空比平顶采样 图符31为保持电路,Hold Value = Last Sample; 图符42为截止频率200Hz,极点个数为6的模拟低通滤波器; 图符17为截止频率250Hz,极点个数为6的模拟低通滤波器; 图符18为频率为2000Hz,Pulse Width =1/2000*50%=0.00025的信号;样值序列波形和频谱: 恢复信号波形和频谱:

抽样定理

实验一抽样定理实验 一、实验目的 1、了解抽样定理在通信系统中的重要性 2、掌握自然抽样及平顶抽样的实现方法 3、理解低通采样定理的原理 4、理解实际的抽样系统 5、理解低通滤波器的幅频特性对抽样信号恢复的影响 6、理解低通滤波器的相频特性对抽样信号恢复的影响 7、理解平顶抽样产生孔径失真的原理 8、理解带通采样定理的原理 二、实验内容 1、验证低通采样定理原理 2、验证低通滤波器幅频特性对抽样信号恢复的影响 3、验证低通滤波器相频特性对抽样信号恢复的影响 4、验证带通抽样定理原理 5、验证孔径失真的原理

三、实验原理 抽样定理原理:一个频带限制在(0,H f)内的时间连续信号() m t,如 果以T≤H f21 秒的间隔对它进行等间隔抽样,则() m t将被所得到的抽样值完 全确定。(具体可参考《信号与系统》) 我们这样开展抽样定理实验:信号源产生的被抽样信号和抽样脉冲经抽样/保持电路输出抽样信号,抽样信号经过滤波器之后恢复出被抽样信号。抽样定理实验的原理框图如下: 被抽样信号 抽样脉冲 抽样恢复信号 图1抽样定理实验原理框图 被抽样信号抽样恢复信号 图2实际抽样系统 为了让学生能全面观察并理解抽样定理的实质,我们应该对被抽样信号进行精心的安排和考虑。在传统的抽样定理的实验中,我们用正弦波来作为被抽样信号是有局限性的,特别是相频特性对抽样信号恢复的影响的实验现象不能很好的展现出来,因此,这种方案放弃了。 另一种方案是采用较复杂的信号,但这种信号不便于观察,如错误!未找到引用源。所示:

被抽样信号抽样恢复后的信号 图3复杂信号抽样恢复前后对比 你能分辨错误!未找到引用源。中抽样恢复后信号的失真吗因此,我们选择了一种不是很复杂,但又包含多种频谱分量的信号:“3KHz正弦波”+“1KHz正弦波”,波形及频谱如所示: 图1被抽样信号波形及频谱示意图 对抽样脉冲信号的考虑 大家都知道,理想的抽样脉冲是一个无线窄的冲激信号,这样的信号在现实系统中是不存在的,实际的抽样脉冲信号总是有一定宽度的,很显

通信原理MATLAB验证低通抽样定理实验报告

通信原理实验报告 一、实验名称 MATLAB验证低通抽样定理 二、实验目的 1、掌握抽样定理的工作原理。 2、通过MATLAB编程实现对抽样定理的验证,加深抽样定理的理解。同时训练应用计算机分析问题的能力。 3、了解MATLAB软件,学习应用MATLAB软件的仿真技术。它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。 4、计算在临界采样、过采样、欠采样三种不同条件下恢复信号的误差,并由此总结采样频率对信号恢复产生误差的影响,从而验证时域采样定理。 三、实验步骤及原理 1、对连续信号进行等间隔采样形成采样信号,采样信号的频谱是原连续信号的频谱以采样频率为周期进行周期性的延拓形成的。 2、设连续信号的的最高频率为Fmax,如果采样频率Fs>2Fmax,那么采样信号可以唯一的恢复出原连续信号,否则Fs<=2Fmax会造成采样信号中的频谱混叠现象,不可能无失真地恢复原连续信号。 四、实验内容 1、画出连续时间信号的时域波形及其幅频特性曲线,信号为 x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t) 2、对信号进行采样,得到采样序列,画出采样频率分别为10Hz,20 Hz,50 Hz时的采样序列波形; 3、对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。 4、对信号进行谱分析,观察与3中结果有无差别。 5、由采样序列恢复出连续时间信号,画出其时域波形,对比与原连续时间信号的时域波形。 五、实验仿真图 (1) x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t)的时域波形及幅频特性曲线。clear; close all; dt=0.05; t=-2:dt:2 x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t); N=length(t); Y=fft(x)/N*2; fs=1/dt; df=fs/(N-1); f=(0:N-1)*df;

2021年信号与系统 抽样定理实验

*欧阳光明*创编 2021.03.07 信号与系统 欧阳光明(2021.03.07) 实验报告 实验六抽样定理 实验六抽样定理 一、实验内容:(60分) 1、阅读并输入实验原理中介绍的例题程序,观察输出的数据和图形,结合基本原理理解每一条语句的含义。 2、已知一个连续时间信号f(t)=sinc(t),取最高有限带宽频率f m=1Hz。 (1)分别显示原连续信号波形和F s=f m、F s=2f m、F s=3f m三种情况下抽样信号的波形; 程序如下: dt=0.1; f0=0.2; T0=1/f0;

fm=5*f0; Tm=1/fm; t=-10:dt:10; f=sinc(t); subplot(4,1,1); plot(t,f); axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('?-á?D?D?o?oí3é?ùD?o?'); for i=1:3; fs=i*fm;Ts=1/fs; n=-10:Ts:10; f=sinc(n); subplot(4,1,i+1);stem(n,f,'filled'); axis([min(n),max(n),1.1*min(f),1.1*max(f)]); end 运行结果如下: (2)求解原连续信号和抽样信号的幅度谱; 程序: dt=0.1;fm=1; t=-8:dt:8;N=length(t);

f=sinc(t); wm=2*pi*fm;k=0:N-1;w1=k*wm/N; F1=f*exp(- j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2*pi),abs(F1)); axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]); for i=1:3; if i<=2 c=0;else c=1;end fs=(i+c)*fm;Ts=1/fs; n=-6:Ts:6; N=length(n); f=sinc(n); wm=2*pi*fs; k=0:N-1; w=k*wm/N; F=f*exp(-1i*n'*w)*Ts; subplot(4,1,i+1);plot(w/(2*pi),abs(F)); axis([0,max(4*fm),0.5*min(abs(F)),1.1*max(abs(F))]); end 波形如下:

通信原理抽样定理及其应用实验报告

实验1 抽样定理及其应用实验 一、实验目的 1.通过对模拟信号抽样的实验,加深对抽样定理的理解; 2.通过PAM调制实验,使学生能加深理解脉冲幅度调制的特点; 3.学习PAM调制硬件实现电路,掌握调整测试方法。 二、实验仪器 1.PAM脉冲调幅模块,位号:H(实物图片如下) 2.时钟与基带数据发生模块,位号:G(实物图片见第3页) 3.20M双踪示波器1台 4.频率计1台 5.小平口螺丝刀1只 6.信号连接线3根 三、实验原理 抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原原信号。这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。 PAM实验原理:它采用模拟开关CD4066实现脉冲幅度调制。抽样脉冲序列为高电平时,模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开,无 信号输出 图1-2 PAM信道仿真电路示意图

四、可调元件及测量点的作用 32P01:模拟信号输入连接铆孔。 32P02:抽样脉冲信号输入连接铆孔。 32TP01:输出的抽样后信号测试点。 32P03:经仿真信道传输后信号的输出连接铆孔。 32W01:仿真信道的特性调节电位器。 五、实验内容及步骤 1.插入有关实验模块: 在关闭系统电源的条件下,将“时钟与基带数据发生模块”、“PAM脉冲幅度调制模块”,插到底板“G、H”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。 2.信号线连接: 用专用铆孔导线将P03、32P01;P09、32P02;32P03、P14连接(注意连接铆孔的箭头指向,将输出铆孔连接输入铆孔)。 3.加电: 打开系统电源开关,底板的电源指示灯正常显示。若电源指示灯显示不正常,请立即关闭电源,查找异常原因。 4.输入模拟信号观察: 将DDS信号源产生的正弦波(通常频率为2KHZ)送入抽样模块的32P01点,用示波器在32P01处观察,调节电位器W01,使该点正弦信号幅度约2V(峰一峰值)。5.取样脉冲观察: 当DDS信号源处于《PDM波1》状态,旋转SS01可改变取样脉冲的频率。示波器接在32P02上,可观察取样脉冲波形。 6.取样信号观察: 示波器接在32TP01上,可观察PAM取样信号,示波器接在32P03上,调节“PAM脉冲幅度调制”上的32W01可改变PAM信号传输信道的特性,PAM取样信号波形会发生改变。 7.取样恢复信号观察: PAM解调用的低通滤波器电路(接收端滤波放大模块,信号从P14输入)设有两组参数,其截止频率分别为2.6KHZ、5KHZ。调节不同的输入信号频率和不同的抽样时钟频率,用示波器观测各点波形,验证抽样定理,并做详细记录、绘图。(注意,

抽样定理

第一章信源编码技术 实验一抽样定理实验 一、实验目的 1、了解抽样定理在通信系统中的重要性。 2、掌握自然抽样及平顶抽样的实现方法。 3、理解低通采样定理的原理。 4、理解实际的抽样系统。 5、理解低通滤波器的幅频特性对抽样信号恢复的影响。 6、理解低通滤波器的相频特性对抽样信号恢复的影响。 7、理解带通采样定理的原理。 二、实验器材 1、主控&信号源、3号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、实验原理框图 图1-

1 抽样定理实验框图 2、实验框图说明 抽样信号由抽样电路产生。将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。平顶抽样和自然抽样信号是通过开关S1切换输出的。 抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。这里滤波器可以选用抗混叠滤波器(8阶3.4kHz的巴特沃斯低通滤波器)或FPGA数字滤波器(有FIR、IIR两种)。反sinc滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。 要注意,这里的数字滤波器是借用的信源编译码部分的端口。在做本实验时与信源编译码的内容没有联系。 四、实验步骤 实验项目一抽样信号观测及抽样定理验证 概述:通过不同频率的抽样时钟,从时域和频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定理。 1、关电,按表格所示进行连线。 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。调节主控模块的W1使A-out输出峰峰值为3V。 3、此时实验系统初始状态为:被抽样信号MUSIC为幅度4V、频率3K+1K正弦合成波。抽样脉冲A-OUT为幅度3V、频率9KHz、占空比20%的方波。 4、实验操作及波形观测。 (1)观测并记录自然抽样前后的信号波形:设置开关S13#为“自然抽样”档位,用示波器分别观测MUSIC主控&信号源和抽样输出3#。

通信原理实验-抽样定理

学生实验报告

) 实际上,考虑到低通滤波器特性不可能理想,对最高频率为3400Hz的语言信号,通常采用8KHz 抽样频率,这样可以留出1200Hz的防卫带。见图4。如果fs<fH,就会出现频谱混迭的现象,如图5所示。 在验证抽样定理的实验中,我们用单一频率fH的正弦波来代替实际的语音信号。采用标准抽样频率fs=8KHZ。改变音频信号的频率fH,分别观察不同频率时,抽样序列和低通滤波器的输出信号,体会抽样定理的正确性。 验证抽样定理的实验方框图如图6所示。在图8中,连接(8)和(14),就构成了抽样定理实验电路。由图6可知。用一低通滤波器即可实现对模拟信号的恢复。为了便于观察,解调电路由射随、低通滤波器和放大器组成,低通滤波器的截止频率为3400HZ

2、多路脉冲调幅系统中的路际串话 ~ 多路脉冲调幅的实验方框图如图7所示。在图8中,连接(8)和(11)、(13)和(14)就构成了多路脉冲调幅实验电路。 分路抽样电路的作用是:将在时间上连续的语音信号经脉冲抽样形成时间上离散的脉冲调幅信号。N路抽样脉冲在时间上是互不交叉、顺序排列的。各路的抽样信号在多路汇接的公共负载上相加便形成合路的脉冲调幅信号。本实验设置了两路分路抽样电路。 多路脉冲调幅信号进入接收端后,由分路选通脉冲分离成n路,亦即还原出单路PAM信号。 图7 多路脉冲调幅实验框图 冲通过话路低通滤波器后,低通滤波器输出信号的幅度很小。这样大的衰减带来的后果是严重的。但是,在分路选通后加入保持电容,可使分路后的PAM信号展宽到100%的占空比,从而解决信号幅度衰减大的问题。但我们知道平顶抽样将引起固有的频率失真。 PAM信号在时间上是离散的,但是幅度上趋势连续的。而在PAM系统里,PAM信只有在被量化和编码后才有传输的可能。本实验仅提供一个PAM系统的简单模式。 3、多路脉冲调幅系统中的路标串话 路际串话是衡量多路系统的重要指标之一。路际串话是指在同一时分多路系统中,某一路或某几路的通话信号串扰到其它话路上去,这样就产生了同一端机中各路通话之间的串话。 在一个理想的传输系统中,各路PAM信号应是严格地限制在本路时隙中的矩形脉冲。但是如果传输PAM信号的通道频带是有限的,则PAM信号就会出现“拖尾”的现象。当“拖尾”严重,以至入侵邻路时隙时,就产生了路标串话。 在考虑通道频带高频谱时,可将整个通道简化为图9所示的低通网络,它的上截止频率为:f1=1/(2

实验一:低通采样定理和内插与抽取实现a

实验一:低通采样定理和内插与抽取实现 一.实验目的 1. 连续信号和系统的表示方法,以及坊真方法。 2.用MATLAB实现连续信号采用与重构的方法, 3. 采样信号的插值和抽取等重采样实现方法。 4. 用时域采样信号重构连续时域信号的原理和方法。 5. 用MATLAB绘图函数表示信号的基本方法,实验数据的可视化表示。二.原理 1 、时域抽样定理 令连续信号xa(t)的傅里叶变换为Xa(jΩ),抽样脉冲序列p(t)傅里叶变换为P(jΩ),抽样后的信号x^(t)的傅里叶变换为X^(jΩ)若采用均匀抽样,抽样周期Ts,抽样频率为Ωs=2πfs,由前面分析可知:抽样的过程可以通过抽样脉冲序列p(t)与连续信号xa(t)相乘来完成,即满足:x^(t)=xa(t) p(t),又周期信号f(t)傅里叶变换为: 故可以推得p(t)的傅里叶变换为: 其中: 根据卷积定理可知: 得到抽样信号x(t)的傅里叶变换为: 其表明:信号在时域被抽样后,他的频谱X(jΩ)是连续信号频谱X(jΩ)的形状以抽样频率Ω为间隔周期重复而得到,在重复过程中幅度被p(t)的傅里叶级数Pn 加权。因为Pn只是n的函数,所以X(jΩ)在重复的过程中不会使其形状发生变化。

假定信号x(t)的频谱限制在-Ωm~+Ωm的范围内, 若以间隔Ts对xa(t)进行抽样,可知抽样信号X^(t)的频谱X^(jΩ)是以Ωs为周期重复。显然,若在抽样的过程中Ωs<2Ωm,则X^(jΩ)将发生频谱混叠现象,只有在抽样的过程中满足Ωs>=2Ωm条件,X^(jΩ)才不会产生频谱的混叠,接收端完全可以由x^(t)恢复原连续信号xa(t),这就是低通信号抽样定理的核心内容。 2、信号的重建 从频域看,设信号最高频率不超过折叠频率: Xa(jΩ)=Xa(jΩ) |Ω|<Ωs/2 Xa(jΩ)=0 |Ω|>Ωs/2 则理想取样后的频谱就不会产生混叠,故有: 让取样信号x^(t)通过一带宽等于折叠频率的理想低通滤波器: H(jΩ)=T |Ω|<Ωs/2 H(jΩ)=0 |Ω|>Ωs/2 滤波器只允许通过基带频谱,即原信号频谱,故: Y(jΩ)=X^(jΩ)H(jΩ)=Xa(jΩ) 因此在滤波器的输出得到了恢复的原模拟信号: y(t)=xa(t) 从时域上看,上述理想的低通滤波器的脉冲响应为: 根据卷积公式可求得理想低通滤波器的输出为: 由上式显然可得:

抽样定理

实验一 抽样定理实验 一、实验目的 1、了解抽样定理在通信系统中的重要性 2、掌握自然抽样及平顶抽样的实现方法 3、理解低通采样定理的原理 4、理解实际的抽样系统 5、理解低通滤波器的幅频特性对抽样信号恢复的影响 6、理解低通滤波器的相频特性对抽样信号恢复的影响 7、理解平顶抽样产生孔径失真的原理 8、理解带通采样定理的原理 二、实验内容 1、验证低通采样定理原理 2、验证低通滤波器幅频特性对抽样信号恢复的影响 3、验证低通滤波器相频特性对抽样信号恢复的影响 4、验证带通抽样定理原理 5、验证孔径失真的原理 三、实验原理 抽样定理原理:一个频带限制在(0,H f )内的时间连续信号()m t ,如果以T ≤ H f 21 秒的间隔对它进行等间隔抽样,则()m t 将被所得到的抽样值完全确定。(具体可参考《信号与系统》) 我们这样开展抽样定理实验:信号源产生的被抽样信号和抽样脉冲经抽样/保持电路

输出抽样信号,抽样信号经过滤波器之后恢复出被抽样信号。抽样定理实验的原理框图如下: 抽样/ 保持 被抽样信号 抽样脉冲 低通滤波器抽样恢复信号 图1抽样定理实验原理框图 抽样/保持 被抽样信号 抽样脉冲 低通滤波器抽样恢复信号低通滤波器 图2实际抽样系统 为了让学生能全面观察并理解抽样定理的实质,我们应该对被抽样信号进行精心的安排和考虑。在传统的抽样定理的实验中,我们用正弦波来作为被抽样信号是有局限性的,特别是相频特性对抽样信号恢复的影响的实验现象不能很好的展现出来,因此,这种方案放弃了。 另一种方案是采用较复杂的信号,但这种信号不便于观察,如图所示: 被抽样信号抽样恢复后的信号 图3复杂信号抽样恢复前后对比 你能分辨图中抽样恢复后信号的失真吗? 因此,我们选择了一种不是很复杂,但又包含多种频谱分量的信号:“3KHz正弦波”+“1KHz正弦波”,波形及频谱如所示:

试验八抽样定理

实验八抽样定理 一实验目的 1 了解电信号的采样方法与过程以及信号恢复的方法。 2 验证抽样定理。 二原理说明 1 离散时间信号可以从离散信号源获得,也可以从连续时间信号经抽样而获得。抽样信号f S(t)可以看成是连续信号f(t)和一组开关函数s(t)的乘积。即: f S(t)= f(t)×s(t) 如图8-1所示。T S为抽样周期,其倒数f S =1/T S称为抽样频率。 图8-1 对连续时间信号进行的抽样 对抽样信号进行傅里叶分析可知,抽样信号的频谱包含了原连续信号以及无限多个经过平移的原信号频谱。平移后的频率等于抽样频率f S及其各次谐波频率2 f S、3f S、4f S、5f S ……。 当抽样信号是周期性窄脉冲时,平移后的频谱幅度按sinx/x规律衰减。抽样信号的频谱是原信号频谱周期性的延拓,它占有的频带要比原信号频谱宽得多。 2 正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连接起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。只要用一截止频率等于原信号频谱中最高频率f max的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器的输出可以得到恢复后的原信号。 (a)连续信号的频谱 (b)高抽样频率时的抽样信号及频谱(不混叠) (c)低抽样频率时的抽样信号及频谱(混叠) 图8-2冲激抽样信号的频谱图 3 信号得以恢复的条件是f S>2B,其中f S为抽样频率,B为原信号占有的频带宽度。而f min =2B为最低的抽样频率,又称为“奈奎斯特抽样率”。当f S <2B时,抽样信号的频谱会了生混叠,从发生混迭后的频谱中,我们无法用低通滤波器获胜者得原信号频谱的全部内容。在实际使用中,仅包含有限频谱的信号是极少的,因此即使f S=2B,恢复后的信号失真还是难免的。图8-2画出了当抽样频率f S>2B(不混迭时)及f S<2B(混迭时)两种情况下冲激抽样信号的频谱图。 实验中选用f S <2B、f S =2B、f S >2B三种情况抽样频率对连续信号进行抽样,以验证抽样定理——要使信号采样后能不失真地还原,抽样频率f S必须大于信号频率中最高频率的两倍即f S >2 f max。 4 为了实现对连续信号的抽样和抽样信号的复原,可用实验原理框图8-3的方案。除

实验信号的抽样与恢复.doc

实验一信号的抽样与恢复(PAM) 一、实验目的 1、验证抽样定理 2、观察了解PAM信号形成的过程; 二、实验原理 由于模拟通信的有效性和可靠性很低,不能满足实际通信的需要,现在普遍采用数字通信,可大大提高可靠性和有效性。但是实际的信号一般都是模拟信号,所以模拟信号数字化是实现数字通信的基础,而模数转化的第一步就是信号的抽样。我们的目的就是用离散值来代替模拟信号,以便于在新道中传输,而且由这些离散值能准确无误地恢复原来的模拟信号。 利用抽样脉冲把一个连续信号变为离散时间样值的过程称为抽样,抽样后的信号称为脉冲调幅(PAM)信号。在满足抽样定理的条件下,抽样信号保留了原信号的全部信息,并且从抽样信号中可以无失真地恢复出原始信号。 抽样定理在通信系统、信息传输理论方面占有十分重要的地位。数字通信系统是以此定理作为理论基础。抽样过程是模拟信号数字化的第一步,抽样性能的优劣关系到通信设备整个系统的性能指标。 抽样定理指出,一个频带受限信号m(t),如果它的最高频率为fh,则可以唯一地由频率等于或大于2fh的样值序列所决定。抽样信号的时域与频域变化过程及原理框图如下。 抽样定理实验原理框图 抽样:一个频带限制在(0—Fm)范围内的信号f(t),如果用频率为fs>=2fm 的脉冲序列对其进行等间隔抽样,则抽样信号能完全确定原信号f(t),这也就是奈奎斯特定理。 此外实际中还有一类带通信号,频带限制在(f1—f2)范围内,此时抽样频率最小为fs=2B+2(f2-nB)/n,其中n为小于f2/B的最大整数。上面的定理也可以从频谱的角度来说明。

抽样信号为s(t)=f(t) (t) f(t) 相乘s(t) 冲激序列 2 恢复 由频谱图标显示的频谱图可知通过适当的滤波器既可恢复原信号。

实验1、抽样定理实验

∞ 2 f 实验 1 PAM 调制与抽样定理实验 一、实验目的 1. 掌握抽样定理原理,了解自然抽样、平顶抽样特性; 2. 理解抽样脉冲脉宽、频率对恢复信号的影响; 3. 理解恢复滤波器幅频特性对恢复信号的影响; 4. 了解混迭效应产生的原因。 二、实验原理 1. 抽样定理简介 抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽 样速率达到一定数值时,那么根据这些抽样值就能准确地还原原信号。这就是说,若要传输 模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。 图 1-1 信号的抽样与恢复 假设 m (t ) 、δT (t ) 和 m s (t ) 的频谱分别为 M (ω) 、δT (ω) 和 M s (ω) 。按照频率卷积定 理, m (t ) δT (t ) 的傅立叶变换是 M (ω) 和δT ( ω) 的卷积: M (ω) = 1 [M (ω) *δ (ω)] = 1 ∑ M (ω- n ω) s 2π T n =-∞ 该式表明,已抽样信号m s (t ) 的频谱 M s (ω) 是无穷多个间隔为ωs 的 M (ω) 相迭加而成。 需要注意,若抽样间隔 T 变得大于 1 , 则 M (ω) 和δ (ω) 的卷积在相邻的周期内存在 2 f H T 重叠(亦称混叠),因此不能由 M s (ω) 恢复 M (ω) 。可见,T = 1 是抽样的最大间隔,它被 H 称为奈奎斯特间隔。下图所示是当抽样频率 f s ≥2B 时(不混叠)及当抽样频率 f s <2B 时 (混叠)两种情况下冲激抽样信号的频谱。 s T

实验四抽样定理

实验四:抽样定理
一、实验目的
1、理解信号的抽样及抽样定理以及抽样信号的频谱分析。 2、掌握和理解信号抽样以及信号重建的原理。
二、实验原理
1、信号的抽样及抽样定理
抽样(Sampling),就是从连续时间信号中抽取一系列的信号样本,从而,得到一个离 散时间序列(Discrete-time sequence),这个离散序列经量化(Quantize)后,就成为所谓的 数字信号(Digital Signal)。今天,很多信号在传输与处理时,都是采用数字系统(Digital system)进行的,但是,数字系统只能处理数字信号,不能直接处理连续时间信号或模拟信 号(Analog signal)。为了能够处理模拟信号,必须先将模拟信号进行抽样,使之成为数字 信号,然后才能使用数字系统进行传输与处理。所以,抽样是将连续时间信号转换成离散时 间信号必要过程。模拟信号经抽样、量化、传输和处理之后,其结果仍然是一个数字信号, 为了恢复原始连续时间信号,还需要将数字信号经过所谓的重建(Reconstruction)和平滑 滤波(Smoothing)。图 4.1 展示了信号抽样与信号重建的整个过程。
Antialiasing
xa (t) filter
Sampler/ Holder
p(t)
A/D convertor
Digital Processor
图 4.1 模拟信号的数字处理过程
图 4.2 给出了信号理想抽样的原理图:
x(t)
×
xs (t)
D/A convertor
X( jω)
Antialiasing
filter y(t)
p(t)
ω
?ωm ωm
(a)
(b)
图 4.2 (a) 抽样原理图,(b) 带限信号的频谱
上图中,假设连续时间信号是一个带限信号(Bandlimited Signal),其频率范围为
? ωm ~ ωm ,抽样脉冲为理想单位冲激串(Unit Impulse Train),其数学表达式为:

p(t) = ∑δ (t ? nTs )
4.1
?∞
由图可见,模拟信号 x(t)经抽样后,得到已抽样信号(Sampled Signal)xs(t),且:
xs (t) = x(t) p(t)
4.2

带通采样定理

3.1.3 带通抽样定理 实际中遇到的许多信号是带通型信号,这种信号的带宽往往远小于信号中心频率。若带通信号的上截止频率为,下截止频率为,这时并不需要抽样频率高于两倍上截止频率,可按照带通抽样定理确定抽样频率。 [定理3-2] 带通抽样定理:一个频带限制在内的时间连续信号,信号带宽,令,这里为不大于的最大正整数。如果抽样频率满足条件 , (3.1-9) 则可以由抽样序列无失真的重建原始信号。 对信号以频率抽样后,得到的采样信号的频谱是的频谱经过周期延拓而成,延拓周期为,如图3-3所示。为了能够由抽样序列无失真的重建原始信号,必须选择合适的延拓周期(也就是选择采样频率),使得位于和的频带分量不会和延拓分量出现混叠,这样使用带通滤波器就可以由采样序列重建原始信号。 由于正负频率分量的对称性,我们仅考虑的频带分量不会出现混叠的条件。 在抽样信号的频谱中,在频带的两边,有着两个延拓频谱分量:和。为了避免混叠,延拓后的频带分量应满足 (3.1-10) (3.1-11) 综合式(3.1-10)和式(3.1-11)并整理得到 (3.1-12) 这里是大于等于零的一个正数。如果取零,则上述条件化为 (3.1-13) 这时实际上是把带通信号看作低通信号进行采样。 取得越大,则符合式(3.1-12)的采样频率会越低。但是有一个上限,因为,而为了避免混叠,延拓周期要大于两倍的信号带宽,即。 因此 (3.1-14) 由于为不大于的最大正整数,因此不大于的最大正整数为,故有 综上所述,要无失真的恢复原始信号,采样频率应满足 , (3.1-15)H f L f H f ),(H L f f )(t x L H f f B -=N B f M H -=/N B f H /s f m f f m f L s H 212≤≤+10-≤≤N m )(t x )(t x s f )(s nT x )(t x s f )(t x ),(H L f f ),(L H f f --),(H L f f ),(H L f f ),(s L s H mf f mf f +-+-))1(,)1((s L s H f m f f m f ++-++-L s L f mf f ≤+-H s H f f m f ≥++-)1(m f f m f L s H 212≤≤+m m H s f f 2≥m m m f f L s 2≤B f s 2≥B f B f f f m L L s L =≤≤222N B f H /B f L /1-N 10-≤≤N m )(t x s f m f f m f L s H 212≤≤+10-≤≤N m

5.信号抽样及抽样定理

1、结合抽样定理,利用MATLAB编程实现信号经过冲激脉冲抽样后得到的抽样信号及其频谱,并利用构建信号,并计算重建信号与原升余弦信号的误差。 解: wm=2; wc=1.2*wm; Ts=1; dt=0.1; t1=-10:dt:10; ft=sinc(t1/pi); N=5000; k=-N:N; W=2*pi*k/((2*N+1)*dt); n=-100:100; nTs=n*Ts; fst=sinc(nTs/pi); subplot(221); plot(t1,ft,':'),hold on; stem(nTs,fst),grid on; axis([-10,10,-0.4,1.1]); xlabel('Time(sec)'),ylabel('fs(t)'); title('Sa(t)抽样后信号'),hold off,

Fsw=Ts*fst*exp(-j*nTs'*W); subplot(222); plot(W,abs(Fsw)),grid on; axis([-20 20 0 4]); xlabel('\omega'),ylabel('Fs(w)'); title('Sa(t)抽样信号频谱'); t=-10:dt:10; f=fst*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t)))); subplot(223); plot(t,f),grid on; axis([-10 10 -0.4 1.1]); xlabel('t'),ylabel('f(t)'); title('重建新号'); error=abs(f-ft); subplot(224); plot(t,error),grid on xlabel('t'),ylabel('error(t)'); title('误差');

低通抽样定理验证实验

实验二低通抽样定理验证实验 一、实验目的 1、熟悉使用System View软件,了解各部分功能模块的操作和使用方法。 2、通过实验进一步掌握低通抽样定理的原理。 二、实验内容 } 用System View建立一个低通抽样定理仿真电路,通过观察各个模块输出波形变化,理解低通抽样定理原理。 三、电路构成 图1 低通抽样定理验证实验原理图 参数设置:Token3:产生模拟信号(参数设置:Source――Periodic――Sinusoid,幅度1V,频率50HZ,相位0度) 《 Token4:Multiplier Token5:产生抽样信号(参数设置:Source——Periodic——Pulse Train,幅度1V,频率100Hz,脉冲宽度,偏移0V,相位0度,抽样速率可调) Token6:产生一个模拟低通滤波器,滤除高频信号,保留低频信号(参数设置:Operator——Filters/Systems——Linear Sys Filters,选择:Analog——Lowpass——Butterworth,Lowcuttoff=50Hz,No of Poles=3,截止频率=模拟信号最高频率) 四、实验结果 (1)原始的输入信号波形图 )

图2 原始的输入信号波形图(2)原始的输入信号的频谱图 图3 原始的输入信号频谱图 。 (3)被抽样以后的图形 图4 被抽样以后的图形 > (4)被抽样以后的频谱图

图5 被抽样以后的频谱图 分析:由于原始输入波形的离散化,使得输出频谱周期化。输出频谱如图5所示。 \ (5)经过低通滤波器后,还原出波形如图6 】 图6 还原出的波形 (6)经过低通滤波器后,还原后的频谱图 !

低通信号的抽样定理

实验一抽样定理 一.概述 抽样的分类: (1) 根据信号是低通型的还是带通型的,抽样定理分低通抽样定理和带通抽样定理。 (2) 根据用来抽样的脉冲序列是等间隔的还是非等同隔的,又分均匀抽样定理和非均匀抽样。 (3) 根据抽样的脉冲序列是冲击序列还是非冲击序列,又可分理想抽样和实际抽样。 二.实验原理及其框图 抽样定理是通信原理中十分重要的定理之一,是模拟信号数字化的理论基础。 低通型连续信号的抽样定理 一个频带限制在内的时间连续信号,若以的间隔对它进行等间隔抽样,则将被所得到的抽样值完全确定。 原理框图 图1 抽样 说明:抽样过程中满足抽样定理时,PCM系统应无失真。这一点与量化过程有本质区别。量化是有失真的,只不过失真的大小可以控制。

三.实验步骤 1、根据抽样原理,用Systemview 软件建立一个仿真电路,如下图所示: 图2 仿真电路 元件参数配制 Token 0: 被采样的模拟信号—正弦波(频率=100Hz,电平=1V,相位=0)Token 2: 乘法器 Token 5 抽样脉冲——窄脉宽矩形脉冲(脉宽=1us ) Token1,3: 模拟低通滤波器(截止频率=100 Hz ) Token 4,6,7: 观察点—分析窗(6频率=100Hz 电压=-1V) 2、运行时间设置 运行时间=0.3 秒采样频率=10,00 赫兹 3、运行系统 在Systemview 系统窗内运行该系统后,转到分析窗观察Token 5,6,8三个点的波形。 4、功率谱 在分析窗绘出该系统调制后的功率谱。 四、实验报告 1)观察实验波形:Token 0-被采样的模拟信号波形;Token 2-采样后波形;Token 3-恢复信号的波形。 2)整理波形,存入文档。

实验6抽样定理与信号恢复

实验6 抽样定理与信号恢复 一、实验目的 1. 观察离散信号频谱,了解其频谱特点; 2. 验证抽样定理并恢复原信号。(对比三个不同频率的抽样信号,在不同脉冲宽度条件下,通过不同截止频率的滤波器后,恢复原信号的效果)。 二、实验原理说明 1. 离散信号不仅可从离散信号源获得,而且也可从连续信号抽样获得。抽样信号 Fs (t )=F (t )·S (t ) 其中F (t )为连续信号(例如三角波),S (t )是周期为Ts 的矩形窄脉冲。Ts 又称抽样间隔,Fs=1Ts 称抽样频 率,Fs (t )为抽样信号波形。F (t )、S (t )、Fs (t )波形如图6-1。 将连续信号用周期性矩形脉冲抽样而得到抽样信号,可通过抽样器来实现,实验原理电路如图6-2所示。 ()∑∞ ∞ --?=m s s m m Sa Ts A j )(22 s F ωωπδτ ωτ ω ----(1) 它包含了原信号频谱以及重复周期为fs (f s =π ω2s 、幅度按S T A τSa (2 τωs m )规律变化的原信号频谱,即抽样信号的 频谱是原信号频谱的周期性延拓。因此,抽样信号占有的频带比原信号频带宽得多。 以三角波被矩形脉冲抽样为例。三角波的频谱

t -4T S -T S 0T S 4T S 8T S 12T S t t 2 /1τ1 τ2 /31τ2 /1τ1τ2 /31τ2 /1τ-(a) (b) (c) 图6-1 连续信号抽样过程 F (j ω)=∑∞ -∞ =-K k k sa E )2()2 ( 1 2τ πωδππ

2.连续周期信号经周期矩形脉冲抽样后,抽样信号的频谱 Fs (j ω)= 式中 取三角波的有效带宽为31ω18f f s =作图,其抽样信号频谱如图6-3所示。 如果离散信号是由周期连续信号抽样而得,则其频谱的测量与周期连续信号方法相同,但应注意频谱的周期性延拓。 3. 抽样信号在一定条件下可以恢复出原信号,其条件是fs ≥2B f ,其中fs 为抽样频率,B f 为原信号占有频带宽度。由于抽样信号频谱是原信号频谱的周期性延拓,因此,只要通过一截止频率为fc (fm ≤fc ≤fs-fm ,fm 是原信号频谱中的最高频率)的低通滤波器就能恢复出原信号。 )()2 (212s m k s m k k Sa m Sa TS EA ωωωδπτωτπ--??∑∞-∞ =-∞=1 11112ττπω==f 或(a) 三角波频谱 f 1 1 11

低通采样定理

●实验目的: 1、掌握低通型采样定理; 2、掌握理想采样、自然采样和瞬时采样的特点; 3*、掌握混叠失真和孔径失真。 ●仿真设计电路及系统参数设置: 时间参数:No. of Samples = 4096,Sample Rate = 20000Hz; δ,偏移量为0.05); 其中图符0为信号源(单位冲激信号即()t 图符1为截止频率200Hz,极点个数为6的模拟低通滤波器; 图符2为采样器,采样频率2000Hz; 图符3为保持电路,Hold Value = Zero,Gain = 1; 图符4为截止频率250Hz,极点个数为5的模拟低通滤波器; 在自然采样中,用于采样的矩形脉冲序列幅度1V,频率为2000Hz;占空比50%; 瞬时采样中,保持电路Hold Value =Last Sample,Gain = 1; ●仿真波形及实验分析: 1、理想采样: 信源的波形与频谱:

样值序列的波形与频谱: 恢复信号的波形与频谱:

2、自然采样: 样值序列的波形与频谱: 恢复信号的波形与频谱: 调整占空比后(70%)的样值序列的波形与频谱:

调整占空比后(70%)的恢复信号的波形与频谱: 3、瞬时采样: 样值序列的波形与频谱:

恢复信号的波形与频谱: 调整占空比后(70%)的样值序列的波形与频谱: 调整占空比后(70%)的恢复信号的波形与频谱:

结果分析: 1、理想采样时的波形与原波形一样,频谱也与原波形的频谱一样; 2、自然采样时的波形是与矩形脉冲相乘,但还是呈原波形的形状,只是中间有了间隔; 而频谱形状出现某段的频谱衰减或消失; 3、占空比越大,自然采样出来波形中间的间隔就越小,频谱波形逐级衰减; 4、瞬时采样的波形与自然采样波形比较像,但与自然采样不同的是波形的顶部不是与原 波形相同,而是水平直线;频谱的顶部形状也会有变化,也会出现衰减和消失的现象

基于MATLAB信号与系统中抽样定理的仿真(最终版).

分类号编号 烟台大学文经学院 毕业论文(设计) 基于MATLAB信号与系统中抽样定理的仿真Signal and System Based on MATLAB simulation sampling theorem 系别:电子信息与计算机科学系 专业:通信技术 班级: 姓名: 学号: 指导老师:(讲师) 2013年 6 月 1 日 烟台大学文经学院

基于MATLAB信号与系统中抽样定理的仿真 姓名: 导师: 2013年 6 月 1 日 烟台大学文经学院

烟台大学文经学院毕业论文(设计)任务书系(部):电子信息与计算机科学系 姓名学号毕业届 别 专业通信技术 毕业论文(设计)题目基于MATLAB的信号与系统中抽样定理的仿真 指导教师学历硕士 研究 生 职称讲师所学专业物理电子学 具体要求(主要内容、基本要求、主要参考资料等): 主要内容:基于MATLAB的信号与系统中抽样定理的仿真,利用MATLAB在数字信号处理中的基本应用,并会对结果用所学知识进行分析。 基本要求:掌握MATLAB的基本操作,掌握基于MATLAB的通信系统的设计与实现的基本工作原理,理解系统中各信号抽样仿真的原理。 主要参考资料: [1] 楼顺天.基于MATLAB的系统分析与设计——信号处理[M].西安:西安电子科技 大学出版社 [2] 邹理和.数字信号处理[M].北京:国防工业出版社,1988.39~41滞后,这就是离散 系统最常用零阶保持器的主要原因之一。 进度安排: 2013年3月5日前,确定选题及指导教师 2013年3月5日至3月31日,进行毕业设计调研,完成大概设计 2013年4月1日至4月20日,进行毕业设计,写论文 2013年4月20日至4月25日,对内容和机构进行第一遍修改 2013年5月1日前,进行第二遍修改 2013年5月10日---6月1日设计作品验收、论文装订、毕业答辩 指导教师(签字): 年月日 系部、院(系)意见: 系(部)主任或教学院长签字: 年月日 备注:

相关文档