文档库 最新最全的文档下载
当前位置:文档库 › 桥梁健康监测系统设计

桥梁健康监测系统设计

桥梁健康监测系统设计
桥梁健康监测系统设计

桥梁健康监测系统设计《物联网》课程设计

班级:

成员:

指导老师:

摘要

桥梁因造价昂贵,服役时间长且维系人们的生命安全而倍受关注。为了避免因难于察觉结构和系统损伤引发灾难性的突发事故,桥梁结构健康监测受到了全世界的广泛关注。为保证桥梁结构的安全性、适用性和耐久性,减少或避免人民生命和国家财产的重大损失,保障公路交通运输网络的安全畅通,为这些大跨径桥梁构建健康与安全监测系统,加强对桥梁健康状况的监测和评估,促进国民经济繁荣和发展具有重要意义。本文设计了一种包括嵌入式处理中心,Zigbee传感器网络,GPRS 数据传输系统和信号处理及分析系统的智能桥梁健康监测数据采集系统。

1

目录

摘要 (1)

一、研究意义 (3)

二、总体设计方案 (4)

2.1 桥梁健康监测的基本内涵 (4)

2.2 桥梁健康监测系统的监测内容 (4)

2.3 桥梁健康监测选用方法 (5)

2.4总体设计流程图 (6)

三、硬件电路 (7)

3.1器件选用 (7)

3.1.1 传感器选择 (7)

3.1.2 无线传感器网络节点选择 (7)

3.1.3 主控制器选择 (9)

3.2电路设计 (10)

3.2.1 Zigbee网络架构选择 (10)

3.2.2 数据远程传输 (12)

四、软件流程图 (13)

4.1协调器的软件设计 (14)

4.2路由节点软件设计 (15)

4.3终端节点的软件设计 (16)

4.4主控制器软件设计 (17)

4.5上位机程序结构及界面 (18)

4.6振动分析性能 (18)

五、总结 (19)

2

一、研究意义

交通是经济的命脉,而桥梁则是交通工程的枢纽。然而桥梁在建造和使用过程中,由于受到环境、有害物质的侵蚀,车辆、风、地震、疲劳、人为因素等作用,以及材料自身性能的不断退化,导致结构各部分在远没有达到设计年限前就产生不同程度的损伤和劣化。这些损伤如果不能及时得到检测和维修,轻则影响行车安全和缩短桥梁使用寿命,重则导致桥梁突然破坏和倒塌。为保证桥梁结构的安全性、适用性和耐久性,减少或避免人民生命和国家财产的重大损失,保障公路交通运输网络的安全畅通,为这些大跨径桥梁构建健康与安全监测系统,加强对桥梁健康状况的监测和评估,促进国民经济繁荣和发展具有重要意义。

3

二、总体设计方案

2.1 桥梁健康监测的基本内涵

桥梁健康监测的基本内涵即是运用现代的传感技术,实时地对桥梁结构及部件的材料质量和工作性能方面所存在的缺

损状况进行详细检测、试验、判断和评价的过程,为大桥在特殊气候、交通条件下或桥梁运营状况严重异常时触发预警信号,为桥梁维护、维修与管理决策提供依据和指导。

2.2 桥梁健康监测系统的监测内容

1,结构的固定模态及其相对应的结构阻尼;

2,桥梁在正常车辆荷载及风载作用下的结构响应和力学状态;

3,桥梁在突发事件(如强烈地震、意外大风或其它严重事故等)之后的损伤情况;

4,桥梁结构构件的真实疲劳状况;

5,桥梁重要非结构构件(如支座)和附属设施的工作状态;6,大桥所处的环境条件,如风速、温度、地面运动等。

4

2.3 桥梁健康监测选用方法

监测方法大体可分为基于动力和联合静动力的健康监测方法,基于动力学的方法又可以分为如下四类:①空间域方法,②模态域方法,③时域方法,④频域方法。各种方法各有优缺点,将两三种方法结合起来检测和评估结构的损伤具有很强的发展趋势。考虑到结构固有频率是最容易和最能准确测量的动力参数,且测试简单,精度高,受测量噪声影响小,所以本系统设计采用结构参数识别技术中的基于结构测试固有频率的损伤识别方法。

该方法是以结构试验为基础,将测取的结构某些部位的反应与原先的模型,分析结果进行综合比较,通过某种条件优化约束,不断地修正模型的刚度参数,使理论值与相应的试验值最大程度地达到吻合,从而得到结构刚度变化的信息,实现结构的损伤判别与定位。

5

2.4总体设计流程图

6

三、硬件电路

3.1器件选用

3.1.1 传感器选择

振动传感器按所测机械量可分为加速度、速度和位移传感器。

桥梁的振动是非常微小的,桥梁振动都是超低频,于是我们需要的是一种高灵敏度传感器。如今有许多桥梁工程用到了加速度传感器,为了使得桥梁得到更高的稳定性,我们最好是能及时的检测到桥梁的振动源在什么地方,并且能够及时的得到振动源的频率。

跨度桥梁的动力特性是研究桥梁振动的基础。车速对桥梁的振动影响比较小,而平整度对桥梁的振动影响很大,路面等级越低,桥梁振动越剧烈。于是桥梁上的振动检测加速度传感器是相当的重要。综合考虑我们选择加速度传感器。

3.1.2 无线传感器网络节点选择

传感器节点是的网络组成的重要部分,所有的设备控制、任务调度、能量计算和功能协调、通信协议、数据整合和数据转储程序都在这个模块的支持下完成。

传感器节点通常是一个微型嵌入式系统,它的处理能力、存储能力和通信能力相对较弱,通过携带能量有限的电池供电。传感器节点一般由传感器模块、处理器模块、无线通信模块和能量供应模块四部分组成。如图3.1所示。传感器模块负责监测区域内信息的采集和数据转换;处理器模块负责控制整个传

7

感器节点的操作,存储和处理本身的数据及其它节点发送来的数据;无线通信模块负责与其他传感器节点进行无线通信,交

换控制消息和收发采集数据;能量模块为传感器节点提供运行所需的能量。

图3.1 无线传感器体节点系结构

无线传感网络的无线通信技术可以采用ZigBee技术、蓝牙、Wi-Fi和红外等技术。基于ZigBee技术是一种具有功耗低、系统简单、组网方式灵活、成本低、低等待时间等特性的双向无线通信技术或无线网络技术,是一组基于IEEE802.15.4无线标准研制开发的有关组网、安全和应用软件方面的通信技术,具有在固定的时间间隔传输数据的低速率特性,满足健康监测中,以一定的采集频率,将各个传感器节点周期性采集到监测数据,传送至监控中心进行分析和处理。相比其他无线网络技术,ZigBee技术更适合在桥梁健康监测中应用。

考虑到项目以下几个特点:⑴需要进行数据采集和控制的节点较多;⑵应用对数据传输速率和成本要求不高;⑶野外布

8

置网络节点,进行简单的数据传输。我们决定采用TI公司的CC2530模块。CC2530是用于2.4-GHz IEEE 802.15.4、ZigBee应用的片上系统(SoC)解决方案。它能够以非常低的总的材料成本建立强大的网络节点。CC2530结合了领先的RF收发器的优良性能,业界标准的增强型8051 CPU,系统内可编程闪存,8KB RAM等强大的功能。

3.1.3 主控制器选择

出于对stm32的以下优越性能的考虑,采用stm32模块做主控制器。

1、搭载ARM公司最新的、具有先进架构的Cortex-M3内核

2、出色的实时性能

3、优越的功效

4、高级的、创新型外设

5、最大的集成性

6、易于开发,加速了面市时间

7、性价比高

8、稳定性强

9

3.2电路设计

3.2.1 Zigbee网络架构选择

ZigBee技术具有强大的组网能力,可以形成星型、树型和网状三种拓扑结构。

1)星型网络:由一个协调器和多个终端设备组成的单跳网络,只存在协调器与各个终端设备之间的通信,而各终端设备间的通信由协调器进行转发。

2)树型网络:由一个协调器和一个或多个星状结构连接而成,设备除能与父节点或子节点进行点对点直接通信外,其他只能通过树状路由完成消息传递。

3)网状网络:基于树状网络,区别在于网状网络中允许所有具有路由功能的节点直接互连,由路由器中的路由表配合实现消息的网状路由,以更多的存储空间开销为代价减少了消息延时,增强可靠性。

依据实际需要我们选择树型网络。

树形拓扑包括一个Co-ordinator(协调者)以及一系列的Router(路由器)和End Device(终端)节点。其中,协调器节点负责发起并维护一个无线网络,识别网络中的设备加入网络;路由器节点支撑网络链路结构,完成数据包的转发;终端节点是网络的感知者和执行者,负责数据采集和可执行的网络动作。这就要求zigbee网络节点需扮演终端感知者、网络支持者、网络协调者3种角色。Co-ordinator 连接一系列的Router 和End Device,他的子节点的Router也可以连接一系列Router 和End Device。这样可以重复多个层级。树形拓扑的结构如图3.2所示:

10

图3.2 树形拓扑结构图

树形拓扑中的通讯规则:

每一个节点都只能和他的父节点和子节点之间通讯。

如果需要从一个节点向另一个节点发送数据,那么信息将沿着树的路径向上传递到最近的祖先节点然后再向下传递到

目标节点。这种拓扑方式的缺点就是信息只有唯一的路由通道。另外信息的路由是由协议栈层处理的,整个的路由过程对于应用层是完全透明的。

11

3.2.2 数据远程传输

据远程传输子系统是嵌入式桥梁健康监测数据采集系统的数据传输通道,用它通过GPRS网络将现场数据中心的桥梁数据信息直接反馈给业主用户或上传远程数据服务器以便对桥梁进一步观测与评估。现场数据预处理子系统在设计中加入通用GPRS模块,利用GPRS网络进行数据传输是远程数据传输的核心思想。系统采用GPRS方式进行数据传输的示意图如下图所示。

12

13

四、软件流程图

由上图可见,本系统软件设计包括传感器终端节点设计,路由节点,协调器节点,主控制器和上位机五部分。终端节点和路由节点和协调器节点组成ZigBee 监测网络。

节点软件系统大致分为主程序处理模块、初始化模块、建立网络及通信模块、数据采集转换模块等。主程序处理模块用来调用其他模块完成应该实现的功能;初始化模块用来初始化RAM 、硬件电路的LED

、串口等并设置模块参数,例如:内部

14

各种寄存器的设置,工作模式的设置(波特率)等,完成后中断,循环等待中断;建立网络及通信模块用来建立网络并建立节点间的联系;数据采集模块是采集并处理模数转换后的传感器数据。计算机程序是上位机程序,实现数据的实时显示和在SQL Server 2000数据库中的存储、调用。

4.1协调器的软件设计

协调器子进程流程如下图所示。协调器子进程首先进行初始化,然后打开协调器的电源,初始化Zigbee 模块并建立一个新的Zigbee 网络,接着系统进入无线监控状态,等待节点响应。如果是传感器返回监测环境数据,则进行数据封包和串口发送;如果是节点入网请求,刚为其分配网络地址,并向其广播数据采集命令。

4.2路由节点软件设计

在嵌入式桥梁健康监测数据采集系统中,路由节点仅用作路由,其软件设计比较简单。路由节点软件的程序流程如下图所示,程序首先初始化Zigbee芯片CC2530,然后初始化协议栈,发送加入网络信号。这个信号将被前面的路由节点或直接被网络协调器接收到,它们给出应答并给路由分配地址。默认的地址编号序列为0x0001,0x0002依次进行。

15

16

4.3终端节点的软件设计

与路由节点的软件稍有区别,数据采集终端节点需要在检测成功加入已存在的网络后按照设定频率进行。数据采集终端节点软件的程序流程如下图所示,程序同样先初始化CC2530,然后打开传感器电源,然后初始化Zigbee 协议栈。发送加入网络信号,等待协调器或者路由器给自己分配网络地址。当加入网络成功后,RFD 数据采集终端节点按照协调器设定的采集频率进行传感器数据采集并封包,然后将传感器数据包发送给协调器,并接收应答信号。如果协调器接收到有效的

传感器数据,终端节点便回到空闲状态;如果接收到的数据有误或者没有收到数据,终端节点会立即重新采集一次数据发送给主机协调器,直到发送成功为止。

4.4主控制器软件设计

现场预处理子系统的软件设计流程图如下图所示。系统启动后首先初始化数据库,包括生成数据库文件(首次运行)和建立数据表。然后设定网络采集频率,然后调用协调器子进程,并且主机进入串口数据监控状态,等待监测数据信号。如果监测到数据信号,则对数据进行解析、打包并进行数据库存储。通过GPRS传送到计算机。计算对数据处理后显示在计算机屏幕上。

运行在PC机上的软件主要由数据收发模块,数据显示模块,数据处理模块和数据存储模块,显示模块组成。数据收发模块用于接收网络中所有节点传输来的数据,同时将各种管理命令发布到指定节点。数据显示模块将各节点检测的数据以表格的形式显示给当前用户,用户亦可根据实时数据选用曲线形式显示,对健康状况实时监测。数据处理模块,数据处理模块主要完成串口数据处理转换,主要包括采集数据、查询命令转换。同时结合各种损伤算法,对各节点数据进行单独处理和融合处理。数据存储模块,对数据进行高效管理,并为历史查询和计算分析服务,以数据库管理系统作为后台数据库,方便用户查询实时和历史数据。

17

4.5上位机程序结构及界面

采用Microsoft Visual Studio或Labview设计。

4.6振动分析性能

由于损伤使结构刚度发生改变,而结构刚度的改变将导致其固有的频率发生变化,因此根据测量结构固有频率的变化便可监测到损伤的存在。然而,对损伤位置和损伤程度的识别则需要结合结构的理论分析模型来完成。对于单一的损伤,依据两阶模态固有频率的变化之比是损伤位置的函数,而与损伤程度无关。

对采集回来的加速度信号进行傅里叶变换,可知道桥梁振动的频率信息,从而判断桥梁损伤状况。通过对加速度的幅值信号进行分析处理,可以知道桥梁受力状况,并对过高受力进行报警处理。对加速度信号进行积分,二次积分可知道桥梁的能量状况和形变状况,为桥梁全面分析提供了保障。

18

五、总结

桥梁健康监测为大桥在特殊气候、交通条件下或桥梁运营状况严重异常时触发预警信号,为桥梁维护、维修与管理决策提供依据和指导。在桥梁健康监测中采用Zigbee无线传感器系统平台硬件节点易于安装拆除、软件实时可靠,应用该网络系统平台既省去了布设导线的费用、又节省安装时间。在桥梁结构健康监测中具有广阔的发展前景。

通过这次项目小制作,对系统设计流程有了大体的了解。在开始接触桥梁健康健康监测这个题目的时候,感到很陌生,跨专业太大,无从下手。在查找参考了大量的文献资料后对桥梁健康监测有了一个大概的认识。这其中涉及的组网是这次项目小制作的核心,研究了许多组网方案,由于在这方面技术的跟新发展很迅速,参阅的资料很少有最新的组网设计应用,最终我们选择了基于TI公司的CC2530无线模块作为组网节点。由于没有具体数据,上位机的设计只能停留于纸面。对于振动的性能分析也只限于理论分析思考。此次项目小制作让我明白了思路即出路,有什么不懂不明白的地方要及时请教或上网查询,要认真钻研,动脑思考,同时要注重团队合作精神,一个人的思考和能力都有局限性,通过合作能为事情解决提供坚实的后盾。

19

桥梁健康监测系统设计

桥梁健康监测系统设计《物联网》课程设计 班级: 成员: 指导老师:

摘要 桥梁因造价昂贵,服役时间长且维系人们的生命安全而倍受关注。为了避免因难于察觉结构和系统损伤引发灾难性的突发事故,桥梁结构健康监测受到了全世界的广泛关注。为保证桥梁结构的安全性、适用性和耐久性,减少或避免人民生命和国家财产的重大损失,保障公路交通运输网络的安全畅通,为这些大跨径桥梁构建健康与安全监测系统,加强对桥梁健康状况的监测和评估,促进国民经济繁荣和发展具有重要意义。本文设计了一种包括嵌入式处理中心,Zigbee传感器网络,GPRS 数据传输系统和信号处理及分析系统的智能桥梁健康监测数据采集系统。

目录 摘要 (1) 一、研究意义 (2) 二、总体设计方案 (3) 2.1 桥梁健康监测的基本内涵 (3) 2.2 桥梁健康监测系统的监测内容 (4) 2.3 桥梁健康监测选用方法 (4) 2.4总体设计流程图 (6) 三、硬件电路 (7) 3.1器件选用 (7) 3.1.1 传感器选择 (7) 3.1.2 无线传感器网络节点选择 (7) 3.1.3 主控制器选择 (9) 3.2电路设计 (9) 3.2.1 Zigbee网络架构选择 (9) 3.2.2 数据远程传输 (11) 四、软件流程图 (13) 4.1协调器的软件设计 (14) 4.2路由节点软件设计 (14) 4.3终端节点的软件设计 (15) 4.4主控制器软件设计 (16) 4.5上位机程序结构及界面 (18) 4.6振动分析性能 (18) 五、总结 (19) 一、研究意义

交通是经济的命脉,而桥梁则是交通工程的枢纽。然而桥梁在建造和使用过程中,由于受到环境、有害物质的侵蚀,车辆、风、地震、疲劳、人为因素等作用,以及材料自身性能的不断退化,导致结构各部分在远没有达到设计年限前就产生不同程度的损伤和劣化。这些损伤如果不能及时得到检测和维修,轻则影响行车安全和缩短桥梁使用寿命,重则导致桥梁突然破坏和倒塌。为保证桥梁结构的安全性、适用性和耐久性,减少或避免人民生命和国家财产的重大损失,保障公路交通运输网络的安全畅通,为这些大跨径桥梁构建健康与安全监测系统,加强对桥梁健康状况的监测和评估,促进国民经济繁荣和发展具有重要意义。 二、总体设计方案 2.1 桥梁健康监测的基本内涵

桥梁安全预警监测系统解决方案

桥梁安全预警监测系统解决方案 2012年12月

目录 1. 项目概述 ---------------------------------------------------------------------------------------------------------- 2 1.1. 项目背景------------------------------------------------------------------------------------------------- 2 1.2. 项目目标------------------------------------------------------------------------------------------------- 2 2. 总体设计 ---------------------------------------------------------------------------------------------------------- 3 2.1. 建设原则------------------------------------------------------------------------------------------------- 3 2.2. 方案说明------------------------------------------------------------------------------------------------- 4 2.3. 系统架构------------------------------------------------------------------------------------------------- 5 2.4. 总体功能------------------------------------------------------------------------------------------------- 6 3. 技术方案 ---------------------------------------------------------------------------------------------------------- 6 3.1. 桥梁裂缝监测 ------------------------------------------------------------------------------------------ 7 3.2. 桥梁防撞监测 ------------------------------------------------------------------------------------------ 8 3.3. 桥梁周边环境监测------------------------------------------------------------------------------------ 8 3.4. 设备防盗监控 ------------------------------------------------------------------------------------------ 9 3.5. 网络传输------------------------------------------------------------------------------------------------- 9 3.6. 监控中心----------------------------------------------------------------------------------------------- 10 4. 系统实现 -------------------------------------------------------------------------------------------------------- 10 4.1. 设备选型----------------------------------------------------------------------------------------------- 10 4.2. 软件部署----------------------------------------------------------------------------------------------- 16 5. 实现措施 -------------------------------------------------------------------------------------------------------- 17 5.1. 实施准备----------------------------------------------------------------------------------------------- 17 5.2. 实施人员----------------------------------------------------------------------------------------------- 18 5.3. 实施设备----------------------------------------------------------------------------------------------- 18 5.4. 实施方案----------------------------------------------------------------------------------------------- 18 6. 供货范围 -------------------------------------------------------------------------------------------------------- 19

桥梁道路监测管理系统

第一章桥梁道路监测管理系统 1.1系统总体方案 1.1.1系统的总体方案 1.1.1.1系统建立的目的和意义 危害桥梁正常承载的主要因素包括: (1)结构内力状态的改变 (2)结构损伤 (3)两种因素综合作用 运营健康监测系统必须能够对上述因素进行监测,因此,健康监测系统实施的目的是:(1)随时掌握桥梁结构的内力状态及损伤情况 (2)尽早发现桥梁结构面临的危险状况 (3)为桥梁结构的养护维修提供依据 除了对结构运营状态进行监测外,对桥梁的日常管理养护等工作也纳入综合管理系统,以变实现:管养工作制度化、管养技术现代化、管养决策科学化。 运营健康监测和综合管理系统实施的重要意义在于: (1)能够随时掌握桥梁结构的内力状态及损伤情况 (2)能够在桥梁结构危险萌芽阶段发出预警 (3)对保障桥梁安全运营具有重要意义 (4)能够尽量长地延长桥梁的运营寿命 (5)对降低桥梁总体运营成本具有显著效果 1.1.1.2结构健康监测系统建立的原则 健康监测系统的最主要目的就是发现可能导致结构破坏的病害情况,因此,健康监测系统的建立应遵循以下逻辑原则: (1)研究桥梁结构的各部分将可能面临什么样的病害?这些病害发生的概率是多少?这些病害将导致结构的局部破坏还是整体破坏?

(2)研究结构构件的病害有什么表现?这些表现是否能够为监测系统所监测? (3)研究选用何种传感器来监测结构安全?传感器精度是否满足安全预警的要求?传感器布置位置是否恰当,数量是否合理? (4)研究如何对监测信号进行信号处理及分析?如何从监测信号中提取与结构安全直接相关易于为管理人员所理解的结构安全信息或预警信息? 从这些逻辑原则可以看出,如何定义结构可能遭遇的危险是整个健康监测系统的基础,我们称这个过程为“结构危险性分析” 1.1.1.3结构危险性分析 该系统通过危险性分析来确定监测哪些构件及监测方式的方法,避免了健康监测系统中常见的目的性不强、针对性不明确的问题。 所谓结构危险性分析就是系统地分析桥梁中各部分结构所面临的危险、各项危险发生的概率、危险所导致后果严重程度以及各项危险的可监测性等问题。 广雅大桥的主要结构构件包括:系杆、吊杆、主梁、拱肋、非通航孔桥和下部结构。应根据这些构件的受力特点、材料特性、使用环境等对其进行充分的危险性分析才能够确保健康监测系统的针对性和实用性。 危险性分析通常需要通过大量类似结构的调查并综合考虑本工程的环境及受力特点同时结合必要的结构分析计算才能够得到比较可靠的结论。 通过结构危险性分析我们可以非常明确我们需要监测那些构件、这些构件的重点监测部位、监测内容及监测频率等。 健康监测的监测手段大体可以分为:力学指标监测,损伤直接检测(包括人工目视巡检及无损监测)两种手段。在指定各构件采用的监测手段一般应综合考虑危险性的程度、监测的经济性和有效性等问题。 健康监测的监测手段大体可以分为:传感器在线监测,人工巡检(包括人工目视巡检)两种手段;一般而言传感器在线监测具有连续把握监测对象的特点,但其经济代价大,且对诸如钢材锈蚀、混凝土开裂等病害难以监测到;人工定期巡检能够比较容易发现结构的早期病害造成的外观变化,且一次性投入相对较小,但其不具有连续及实时性。 1.1.1.3.1吊杆的危险性分析及监测策略 吊杆锈蚀断丝是该桥的主要病害,其断丝隐蔽性强,应考虑对其进行监测。

现代桥梁健康安全监测系统++

目录 一、传统桥梁结构检查与评估概述 (1) 二、现代桥梁健康监测系统概述 (2) 三、健康监测系统研究现状 (3) 四、健康监测系统实施现状 (5) $ 五、健康监测系统应用效果与存在问题 (9) 六、健康监测系统改善建议与发展前景 (10) "

一、传统桥梁结构检查与评估概述 桥梁在建成后,由于受到气候、腐蚀、氧化或老化等因素,以及长期在静载和活载的作用下易于受到损坏,相应地其强度和刚度会随时间的增加而降低。这不仅会影响行车的安全,并会使桥梁的使用寿命缩短。为保证大桥的安全与交通运输畅通,加强对桥梁的维护管理工作极为重要。桥梁管理的目的在于保证结构的可靠性,主要指结构的承载能力、运营状态和耐久性能等,以满足预定的功能要求。桥梁的健康状况主要通过利用收集到的特定信息来加以评估,并作出相应的工程决策,实施保养、维修与加固工作。评估的主要内容包括:承载能力、运营状态、耐久能力以及剩余寿命预测。承载能力评估与结构或构件的极限强度、稳定性能等有关,其评估的目的是要找出结构的实际安全储备,以避免在日常使用中产生灾难性后果。运营状态评估与结构或构件在日常荷载作用下的变形、振动、裂缝等有关。运营状态评估对于大桥工件条件的确认和定期维修养护的实施十分重要。耐久能力评估侧重于大桥的损伤及其成因,以及其对材料物理特性的影响。 传统上,对桥梁结构的评估通过人工目测检查或借助于便携式仪器测量得到的信息进行。人工桥梁检查分为经常检查、定期检查和特殊检查。但是人工桥梁检查方法在实际应用中有很大的局限性。美国联邦公路委员会的最近调查表明,根据目测检查而作出的评估结果平均有56%是不恰当的。传统检测方式的不足之处主要表现在: (i)需要大量人力、物力并有诸多检查盲点。现代大型桥梁结构布置极其复杂,构件多且尺寸大,加之大部分的构件和隐蔽工程部位难于直接接近检查,因此,这对现代大型桥梁尤其突出; (ii)主观性强,难于量化。检查与评估的结果主要取决于检查人员的专业知识水平以及现场检测的经验。经过半个多世纪的发展,虽然桥梁的分析设计与施工技术已日趋完善,但对某些响应现象,尤其是损伤的发展过程,尚处于经验积累中,因此定量化的描述是很重要的; (iii)缺少整体性。人工检查以单一构件为对象,而用于现代机械、光学、超声波和电磁波等技术的检测工具,都只能提供局部的检测和诊断信息,而不能

桥梁健康监测系统的简要介绍及设计分析

桥梁健康监测系统的简要介绍及设计分析 近年来,随着我国经济的飞速发展,交通运输日渐繁忙,作为公路交通咽喉的桥梁的地位日益突出。桥梁设计理论的验证以及对桥梁结构和结构环境未知问题的调查与研究扩充了桥梁健康监测的内涵。本文结合近十年来桥梁健康监测的研究状况以及大跨度桥梁工程的研究与发展,较系统地阐述桥梁健康监测的内涵。 标签:桥梁健康监测概念意义 随着人们对重要桥梁安全性、耐久性与正常使用功能的日渐关注,桥梁健康监测的研究与监测系统的开发应运而生。由于桥梁监测数据可以为验证结构分析模型、计算假定和设计方法提供反馈信息,并可用于深入研究大跨度桥梁结构及其环境中的未知或不确定性问题,因此,桥梁设计理论的验证以及对桥梁结构和结构环境未知问题的调查与研究扩充了桥梁健康监测的内涵。 对桥梁结构进行综合检测的最终目的是为了使桥梁管理人员对桥梁结构的当前状况有一个正确的认识。这就要求管理系统具有实时监测和智能化的自行评估的功能。 一、桥梁健康监测新概念 桥梁健康监测的基本内涵即是通过对桥梁结构状态的监控与评估,为大桥在特殊气候、交通条件下或桥梁运营状况严重异常时触发预警信号,为桥梁维护潍修与管理决策提供依据和指导。为此,监测系统对以下几个方面进行监控: 1、桥梁结构在正常环境与交通条件下运营的物理与力学状态; 2、桥梁重要非结构构件(加支座)和附属设施(如振动控制元件)的工作状态; 3、结构构件耐久性; 4、大桥所处环境条件;等等。 与传统的检测技术不同,大型桥梁健康监测不仅要求在测试上具有快速大容量的信息采集与通讯能力,而且力求对结构整体行为的实时监控和对结构状态的智能化评估。 然而,桥梁结构健康监测不仅仅只是为了结构状态监控与评估。由于大型桥梁(尤其是斜拉桥、悬索桥)的力学和结构特点以及所处的特定环境,在大桥设计阶段完全掌握和预测结构的力学特性和行为是非常困难的。大跨度索交承桥梁的设计依赖于理论分析并过风洞、振动台模拟试验预测桥梁的动力性能并验证其

桥梁结构健康监测

桥梁结构健康监测

目录 1. 桥梁结构健康监测的概念 0 2. 桥梁结构健康监测系统 0 2.1. 监测内容 0 2.2. 数据传输 (1) 2.3. 数据分析处理和控制 (2) 2.4. 大型桥梁结构健康监测系统 (2) 2.5. 桥梁结构健康监测的现状与发展方向 (3) 3. 桥梁结构健康监测系统的意义 (4) 3.1. 桥梁结构健康监测系统的主要作用包括: (4) 3.2. 桥梁健康监测意义 (4) 4. 现有桥梁结构监测系统存在的问题 (5) 5. 结语 (6)

桥梁结构健康监测 1.桥梁结构健康监测的概念 交通是社会的经济命脉,桥梁是交通的咽喉,交通不畅会制约社会的经济发展,所以保障桥梁的功能性、耐久性,尤其是安全性至关重要。为保证桥梁安全运行、避免严重事故发生,对桥梁结构进行健康监测应运而生,桥梁结构健康监测是以科学的监测理论与方法为基础,采用各种适宜的检验、检测手段获取数据,为桥梁结构设计方法、计算假定、结构模型分析提供验证;对结构的主要性能指标和特性进行分析,及早预见、发现和处理桥梁结构安全隐患和耐久性缺陷,诊断结构突发和累计损伤发生位置与程度,并对发生后果的可能性进行判断与预测。通过对桥梁结构健康状态的监测与评估,为桥梁在各种气候、交通条件下和桥梁运营状况异常时发出预警信号,为桥梁维护、维修与管理措施提供依据,并通过及时采取措施达到防止桥梁坍塌、局部破坏,保障和延长桥梁的使用寿命的目的。 2.桥梁结构健康监测系统 2.1.监测内容 数据采集与测量的内容主要为:变形(沉降、位移、倾斜)、应力、动力特性、温度、外观检测等。 1)变形监测 采取适宜的测量手段,对桥梁主体结构关键部位的沉降、位移、倾斜量进行监测。常用监测变形的方法有:导线测量法、几何水准测量法、GPS测定三维位移量法、自动极坐标实时差分测量法和自动全站仪三维坐标非接触量测等。 2)应力监测 桥梁运营状态中主体结构的应力变化是由于主体结构的外部条件和内部状态变化引起

健康监测系统设计方案

天津市海河大桥结构健康监测系统初步设计方案 天津市市政工程研究院 2009年3月

天津市海河大桥结构健康监测系统初步设计方案 1桥梁健康监测的必要性 由于气候、环境等自然因素的作用和日益增加的交通流量及重车、超重车过桥数量的不断增加,大跨度桥梁结构随着桥龄的不断增长,结构的安全性和使用性能必然发生退化。自1940年美国Tacoma悬索桥发生风毁事故以后,桥梁结构安全监测的重要性就引起人们的注意。但是受科技水平的限制和人们对自然认识的局限性,早期的监测手段比较落后,在工程应用上一直没有得到很好的发展。20世纪80年代以来,在北美、欧洲和亚洲的一些国家和地区,相继发生了桥梁结构的突然性断裂事件,这些灾难性事故不仅引起了公众舆论的严重关注,也造成国家财产的严重损失,威胁到人民生命安全。国外从20世纪80年代中后期开始建立各种规模的桥梁健康监测系统。例如,英国在总长522mM的三跨变高度连续钢箱梁桥Foyle桥上布设传感器,监测大桥运营阶段在车辆与风荷载作用下主梁的振动、挠度和应变等响应,同时监测环境风和结构温度场。国外建立健康监测的典型桥梁还有英国主跨194mM的Flintshire独塔斜拉桥、日本主跨为1991mM 的明石海峡大桥和主跨1100m的南备赞濑户大桥、丹麦主跨1624m的Great Belt East悬索桥、挪威主跨为530m的Skarnsunder斜拉桥、美国主跨为440m的Sunshine Skyway Bridge斜拉桥以及加拿大的Confederatio Bridge桥。中国自20世纪90年代起也在一些大型重要桥梁上建立了不同规模的长期监测系统,如香港的Lantau Fixed Crossing和青马大桥、内地的虎门大桥、徐浦大桥,江阴长江大桥等在施工阶段已安装健康监测用的传感设备,以备运营期间的实时监测。 导致桥梁结构发生破坏和功能退化的原因是多方面的,有些桥梁的破坏是人为因素造成的,但大多数桥梁的破坏和功能退化是自然因素造成的。自然原因中,循环荷载作用下的裂缝失稳扩展是造成许多桥梁结构发生灾难性事故的主要原因。近年来,国内发生的几起大桥坍塌或局部破坏事故在很大程度上是由于构件疲劳和监测养护措施不足,从而严重影响构件的承重能力和结构的使用,进而发生事故。理论研究和经验都表明,成桥后的结构状态识别和桥梁运营过程中的损伤检测,预警及适时维修,有助于从根本上消除隐患及避免灾难性事故的发生。 现代大跨桥梁设计方向是更长、更轻柔化、结构形式和功能日趋复杂化。虽然在设计阶段已经进行了结构性能模拟实验等科研工作,然而由于大型桥梁的力学和结构特点以及所处的特定气候环境,要在设计阶段完全掌握和预测结构在各种复杂环境和运营条件下的结构特性和行为是非常困难 的。为确保桥梁结构的结构安全、实施经济合理的维修计划、实现安全经济的运行及查明不可接受的响应原因,建立大跨桥梁结构健康监测系统是非常必要的。通过健康监测发现桥梁早期的病害,能大大节约桥梁的维修费用,避免出现因频繁大修而关闭交通所引起的重大经济损失。 桥梁健康监测就是通过对桥梁结构进行无损检测,实时监控结构的整体行为,对结构的损伤位置和程度进行诊断,对桥梁的服役情况、可靠性、耐久性和承载能力进行智能评估,为大桥在特殊气候、交通条件下或桥梁运营状况严重异常时触发预警信号,为桥梁的维修、养护与管理决策提供依据和指导。安装结构健康监测系统是提高桥梁的养护管理水平,保证桥梁安全运营的高效技术手段。 特别值得一提的是,桥梁的健康监测和施工监控系统均是通过检测和监测手段,测试桥梁结构的内力、变形、环境和荷载,因此,它们在传感器系统、数据传输系统和数据采集系统都具有很大的共享性和重复性。此外,两个阶段在时间顺序上具有衔接性,施工监控阶段的监测数据是健康监测阶段的基础。为了节约资源、降低工程造价,应充分发挥两个系统的共享性,对上述两个系统进行统筹规划和实施,即采取统一设计、统一施工和统一管理的方式,以实现海河大桥的健康监测和施工监控两位一体的工程实施。 2海河大桥工程简况 集疏港公路二期中段工程起点于津沽一线立交以北,向北过津沽公路、海河大桥南侧收费站,与现状海河大桥相邻向北跨越海河后沿现状临港路、东海路向北分别跨越进港铁路一线,新港二号路,三号路,进港铁路二线,新港四号路,泰达大街,会展中心入口,第五大街,第八大街,第九大街,丰田七号路,与疏港二线立交相接。该段桩号范围K9+342.802~K20+419.245,路线全长11.076公里,除起点引路约500M和海河大桥南侧收费站前后各约300M为道路外,其余将近9.8公里均为高架桥。从南向北依次有津沽公路支线上跨分离式立交一座,海河特大桥一座,临港立交、泰达大街立交、第九大街立交互通式立交三座,其他与现状及规划道路交叉位置为直线上跨。海河特大桥工程为海滨大道工程的一部分,设计速度V=80km/h,双向八车道。

桥梁健康监测系统研究现状与发展趋势

桥梁健康监测系统研究现状与发展趋势 摘要:大型桥梁健康监测是近年来国际上的研究热点。回顾桥梁健康监测的发展历程。介绍了桥梁结构健康监测系统的基本组成、检测功能及特点,结合国内外已建立健康监测系统的几座典型桥梁,阐述了健康监测系统的内容和设计准则。回顾和总结了桥梁健康监测近年来所取得的成就,并分析了存在的问题和难点。最后阐述了健康监测系统今后的主要研究问题和发展趋势。 关键词:桥梁;健康监测;发展趋势 0 引言 土木工程质量的优劣关系到国家昌盛、民族振兴、人民幸福、社会安定,关系到国民经济的健康发展,工程质量,人命关天,质量责任,重于泰山。因此建设工程质量越来越成为人们关注的热点。尤其是桥梁工程,更是如此。如今,交通量的日益增加与服役年限的延长,运营中的桥梁结构不可避免的存在表面和内部缺陷,使桥梁结构的抗力不断衰减,桥梁结构的安全性、适用性和耐久性受到严峻威胁。影响桥梁结构安全的不仅仅是交通量的增加,还有其他很多方面。比如建桥标准偏低。建设质量问题、超重超限车辆、自然灾害、材料与结构自然老化等等。而今桥梁安全事故频发,给人们的生命财产安全造成了极大的损失。众多垮桥事故表明,桥梁的安全问题已成为重大的社会问题,人们越来越重视现代桥梁的安全和寿命,研究安全、客观、可靠的桥梁安全监测技术迫在眉睫。 1桥梁健康监测系统 大型桥梁健康监测系统一般应包括以下几部分内容。1)传感系统。由传感器、二次仪表及高可靠性的工控机等部分组成。2)信号采集与处理系统。实现多种信息源、不同物理信号的采集与预处理,并根据系统功能要求对数据进行分解、变换以获取所需要的参数,以一定的形式存储起来。3)通信系统。将处理过的数据传输到监控中心。4)监控中心。利用可实现诊断功能的各种软硬件对接收到的数据进行诊断,包括结构是否受到损伤以及损伤位置、损伤程度等。桥梁健康监测系统的基本工作流程如图1所示。 图1桥梁健康监测系统的基本工作流程图

浅议桥梁结构健康监测系统

文章编号:1009-6825(2011)17-0188-02 浅议桥梁结构健康监测系统 收稿日期:2011-02-24作者简介:王 兰(1983-),女,助理工程师,中交路桥技术有限公司,北京100029 王 明(1982-),男,工程师,中铁二十二局集团第一工程有限公司,北京100040 王兰 王明 摘 要:对桥梁结构健康监测的传感器系统、数据采集与传输系统、数据处理与控制系统及桥梁健康评估系统进行了论述,指出了目前国内外桥梁结构健康监测系统存在的差距,阐述了应用桥梁结构健康监测系统的意义,旨在保证桥梁运 营安全。 关键词:桥梁,健康监测,系统中图分类号:U446 文献标识码:A 尽管(截止到2006年)我们国家现有桥梁已经达到了50万余座, 但是有些地方的桥梁管理者对现有桥梁的管理仍然是“被动式”的,也就是当桥梁发生安全事故的时候才对桥梁进行维护(检测和加固)。这种被动式的管理不可避免的会带来桥梁安全事故的频繁发生,如近几年的重庆彩虹桥、宜宾小南门桥、苏州堰月桥以及辽宁盘锦的田庄台桥等塌桥事故。随着桥梁管理理念的发展和桥梁检测、 健康监测以及评估方法的进步,使得变“被动式”的桥梁管理为“主动式”桥梁安全管理成为可能。“主动式”的桥梁管理核心是建立桥梁维护管理制度,定期对 桥梁进行检测(对重大桥梁安装桥梁结构健康监测系统,对其进行“实时检测”),及时了解桥梁的安全状况,并采取相应的修理措 施,避免安全事故的发生。 1桥梁结构健康监测系统基本框架 一个较为完整的桥梁结构健康监测系统一般包括以下四个 子系统:传感器系统、数据采集与传输系统、数据处理与控制系统和桥梁健康评估系统。 1.1传感器系统 一般桥梁结构健康监测系统选用的传感器包括两大类:一类 是监测桥梁荷载(系统输入)的传感器,一类是监测桥梁结构反应(系统输出)的传感器。 监测桥梁荷载的传感器包括以下几种:温度计、风速仪、空气温湿度计和汽车动态称重系统等;监测桥梁结构响应的传感器包括以下几种:应变计、加速度计、GPS 、倾角仪、位移计、锚索计等。 根据不同的桥梁结构形式和工程预算的约束,不同的工程可以选择不同的传感器种类和数量。传感器系统设计主要是传感器种类和数量的选择,重点是传感器布点优化设计。 1.2数据采集与传输系统 数据采集设备一般包括五种:1)通用采集仪器,主要采集电类传感器信号,一般可针对具体的项目进行特殊设计。2)光纤光栅解调仪,光纤传感器是近些年来兴起的传感器种类,对于桥梁 监测系统光纤应变计和温度计得到了日益广泛的应用,采集光纤传感器信号使用光纤光栅解调仪。3)振弦采集仪,对于振弦原理 设计的传感器必须用振弦采集设备,如锚索计等。4)GPS 接收机, GPS 数据采集由专门的系统设备完成,GPS 天线通过同轴电缆连接至相应的GPS 接收机。5)动态称重主机, WIM 系统的数据通过高速称重主机接收压电传感器和地感线圈的信号来进行采集。 数据传输包括三个层次:1)从传感器到采集设备的局部传输网络;2)从采集设备到桥头交换机二级传输网络;3)从桥头交换 机到监控中心的骨干传输网络。数据采集与传输系统主要是与 传感器匹配的采集仪器的选择、通道数和采集频率的确定,以及数据传输方案的设计。 1.3数据处理与控制系统 在结构健康监测系统中,对系统监测数据的处理根据处理方 式、处理内容以及处理顺序的不同分为数据预处理和数据后处 理。系统的数据处理功能由数据库服务器与工控机共同来完成。数据采集系统中的原始监测数据的预处理是在各子系统采 集仪上完成, 包括通用数据采集仪、光纤解调仪、GPS 接收机、WIM 称重主机。预处理后的数据经桥头交换机通过光纤传回监控中心,监控中心的工控机接收预处理后的数据并实时显示。 经预处理后的数据实时的传输至监控中心,在各工控机中通过数据处理软件进行数据后处理,由于数据后处理涉及更为复杂的处理方式,因此有时可能需要进行人机交互的数据处理方式。 1.4桥梁结构健康评估系统 桥梁结构健康监测系统直接目的是为了桥梁结构评估。桥梁结构评估包括两个层次:一个层次是基于对监测数据的分析判定桥梁上是否发生了病害,并确定病害大致位置,辅以人工检查确定病害程度和性质。第二个层次是在上述病害下桥梁是否安全,是否需要维修加固。第一个层次是桥梁损伤识别的研究范畴;第二个层次一般有基于可靠度理论的分项系数评估方法和基于精细有限元分析的力学方法。桥梁健康评估系统是桥梁健康监测系统的核心。桥梁健康评估系统主要功能是根据采集的数据和分析结果对桥梁承载能力进行评估, 为桥梁维护提供决策依据。2桥梁结构健康监测系统国内外应用现状 20世纪60年代以来,由于发达国家桥梁严重退化,安全事故不断发生和事故后果的严重性,工程技术人员对桥梁结构监测展开了积极的探索。一方面是桥梁管理系统的研究,美国、英国、日本、加拿大和德国等一些发达国家最先开发了基于计算机的桥梁管理系统,美国从20世纪60年代起就开始使用桥梁管理系统,建成了大量的数据库,以便对桥梁进行科学管理。另一方面是监测系统的研究,到90年代国内外许多大型桥梁安装了健康监测系统,如日本的明石海峡大桥、丹麦的Great Belt 和中国的江阴桥等。 中国香港的青马大桥、汀九桥和汲水门桥三座桥梁同时安装了风与结构健康监测系统WASHMS (Wind And Structural Health Monitoring System ),为便于集中管理,相关部门建立了一个整体监控中心,三座桥梁共用一套整体的数据处理与控制系统和结构健康评价系统,三座桥梁的数据采集与传输作业的控制在监控中心 · 881·第37卷第17期2011年6月 山西 建筑 SHANXI ARCHITECTURE Vol.37No.17Jun.2011

采空区在线监测及预警系统的解决方案

采空区在线监测及预警系统的解决方案 一、系统简介 矿山安全技术研究所研制的采空区稳定性全自动化网络监测系统,通过监测采空区围岩和支护结构的应度地降力、应变、位移信号,对多种参数进行综合监测与集成分析,最大限度的实现各种监测指标的互补,从而大幅度降低了监测系统的成本,提高了灾害监测的准确性,实现了采空区灾害的实时监测与预警。 二、功能介绍 1、钻孔应力在线监测及预警系统 1-1系统介绍 应力监测是根据采空区地质构造,结合岩土力学结构知识,确定最易发生、最先发生事故的点并进行监测,积点成线、积线成网,从而实现对整个采空区的网状监测。 系统构成 系统分为监测终端模块和监测中心模块。监测终端模块安置在野外或井下,包括:压力传感器、分控设备、数据传输模块、供电模块等。 监测中心模块安置在办公室内,包括:服务器、监测软件、主控设备、传输设备等。 1-2、系统特点 1、实时性 监测中心与监测终端信道独立,终端数据可实时传输至监测中心,不会有信息滞后的情况产生。 2、在线性 系统采用B/S结构模式,通过web浏览器访问系统。保证即使在异地,也能随时掌握监测相关信息。 3、可靠性 服务器拥有独立的数据库系统,并且具有RAID双硬盘自动备份功能,同时支持网络备份。 4、先进性 我方拥有钻孔应力监测方法的国家专利;“矿山之星”为晶合注册商标;监测软件我方拥有独立的知识产权;曾多次被院士及教授专家组论证为:国内先进,国际领先。

钻孔应力地压监测及预警系统可用来监测矿山采空区导致的冒落或地面沉降、水电坝体稳定性监测、桥梁应力平衡健康性监测、山体滑坡(边坡稳定性监测)、大型地下工程安全性监测等等,可实现实时、在线、自动监测和预警。对于井下矿山主要应用于地压监测,对于露天矿山主要应用于边坡稳定监测,属于矿山六大系统之监测监控系统之地压监测。 采空区产生冒落、地面的沉降、变形、山体滑坡、坝体失稳等现象的根源在于原有应力体系的平衡被打破,岩体重新寻找应力平衡。简单来说,应力平衡被打破才能失稳,进而发生位移。应力的变化必定在位移这个结果发生之前,应力变化是因,位移变化是果。因此可以利用失稳前的应力变化来监测岩体的稳定性。对于边坡稳定性监测,可以自地表向边坡内进行钻孔,孔底须超过破裂滑动面若干距离,当山体滑坡前钢绞线的应力必定产生变化。

桥梁健康监测系统调研报告

桥梁健康监测系统调研报告

一、传统桥梁结构检查与评估概述 桥梁在建成后,由于受到气候、腐蚀、氧化或老化等因素,以及长期在静载和活载的作用下易于受到损坏,相应地其强度和刚度会随时间的增加而降低。这不仅会影响行车的安全,并会使桥梁的使用寿命缩短。为保证大桥的安全与交通运输畅通,加强对桥梁的维护管理工作极为重要。桥梁管理的目的在于保证结构的可靠性,主要指结构的承载能力、运营状态和耐久性能等,以满足预定的功能要求。桥梁的健康状况主要通过利用收集到的特定信息来加以评估,并作出相应的工程决策,实施保养、维修与加固工作。评估的主要内容包括:承载能力、运营状态、耐久能力以及剩余寿命预测。承载能力评估与结构或构件的极限强度、稳定性能等有关,其评估的目的是要找出结构的实际安全储备,以避免在日常使用中产生灾难性后果。运营状态评估与结构或构件在日常荷载作用下的变形、振动、裂缝等有关。运营状态评估对于大桥工件条件的确认和定期维修养护的实施十分重要。耐久能力评估侧重于大桥的损伤及其成因,以及其对材料物理特性的影响。 传统上,对桥梁结构的评估通过人工目测检查或借助于便携式仪器测量得到的信息进行。人工桥梁检查分为经常检查、定期检查和特殊检查。但是人工桥梁检查方法在实际应用中有很大的局限性。美国联邦公路委员会的最近调查表明,根据目测检查而作出的评估结果平均有56%是不恰当的。传统检测方式的不足之处主要表现在: (i)需要大量人力、物力并有诸多检查盲点。现代大型桥梁结构布置极其复杂,构件多且尺寸大,加之大部分的构件和隐蔽工程部位难于直接接近检查,因此,这对现代大型桥梁尤其突出; (ii)主观性强,难于量化。检查与评估的结果主要取决于检查人员的专业知识水平以及现场检测的经验。经过半个多世纪的发展,虽然桥梁的分析设计与施工技术已日趋完善,但对某些响应现象,尤其是损伤的发展过程,尚处于经验积累中,因此定量化的描述是很重要的; (iii)缺少整体性。人工检查以单一构件为对象,而用于现代机械、光学、超声波和电磁波等技术的检测工具,都只能提供局部的检测和诊断信息,而不能提供整体全面的结构健康检测和评估信息;

大型桥梁结构智能健康监测系统集成技术研究(1)

第39卷第2期土 木 工 程 学 报Vol 139No 12  2006年2月CH I N A C I V I L E NGI N EER I N G JOURNAL Jan 12006 大型桥梁结构智能健康监测系统集成技术研究 李 惠1  周文松1  欧进萍1  杨永顺 2 (1.哈尔滨工业大学,黑龙江哈尔滨150090;2.山东省交通厅公路局,山东济南250002) 摘要:首先分析研究了桥梁健康监测系统的各个子系统的功能、特点、实现方法与硬软件系统,研究了完成桥梁健康 监测任务对各个子系统协同工作的要求。提出了以Lab W indows/Lab V I E W 为桥梁健康监测系统的核心软件,由它“指挥”、调用和驱动各个子系统的运行和数据的交互与通讯;以数据管理子系统的数据库作为桥梁健康监测系统的中心数据库,它不仅存储桥梁结构及其监测数据的全部信息,同时所有的数据交互均通过该数据库完成。建议采用B r ower/Server 系统模式将桥梁结构健康监测的各子系统相互结合,建立基于网络平台的开放式的实时在线智能健康监测系统。最后,为一座实际的三塔斜拉桥集成了一套健康监测系统。关键词:大跨桥梁;健康监测;系统集成;网络平台;智能中图分类号:U44517 U447 文献标识码:A 文章编号:10002131X (2006)022******* A study on system i n tegra ti on techn i que of i n telli gen t m on itor i n g system s for soundness of long 2span br i dges L i Hui 1  Zhou W ensong 1  O u J inping 1  Yang Yongshun 2 (1.Harbin I nstitute of Technol ogy,Harbin 150090,China 2.H ighway Bureau of Trans portati on Office,Shandong Pr ovincial,J inan 250002,China ) Abstract:This paper analyzed all the subsyste m s in their functi ons,characteristics,i m p le mentati ons,and their hard ware and s oft w are .A study was made on the require ment of concerted app licati on of these subsyste m s for the s oundness monit oring of l ong 2s pan bridges . It was suggested that Lab W indows/Lab V I E W is t o be used as the main syste m t o contr ol the running of the subsyste m s and the interchanging of infor mati on a mong the m.The database of a data menage ment syste m is used as the central database,which st ores not only the infor mati on of the bridge structure,but als o the monit oring inf or mati on . It was suggested t o use B r ower/Server syste m t o connect all the subsyste m s,and an open,real ti m e and online s oundness monit oring syste m based on the net w ork p latfor m can be f or med .Finally,a s oundness monit oring syste m f or a three 2t o wer cable 2stayed bridge was cited as an exa mp le . Keywords:l ong 2s pan bridge;s oundness monit oring syste m;syste m integrati on;net w ork p latf or m;intelligence E 2ma il:lihui@hit 1edu 1cn 基金项目:国家自然科学基金(50410133)、国家杰出青年科学基金 (50525823) 作者简介:李惠,教授收稿日期:2004206225 引 言 桥梁结构造价昂贵,投资规模大,运行或使用期长,在其长达几十年、甚至上百年的服役期间,环境侵蚀、材料老化和荷载的长期效应、疲劳效应与突变效应等不利因素的耦合作用将不可避免地导致结构和系统的损伤积累和抗力衰减,从而抵抗自然灾害、甚 至正常环境作用的能力下降,极端情况下可能引发灾 难性的突发事故 [1] 。健康监测系统可以较全面地把 握桥梁结构建造与服役全过程的受力与损伤演化规律,是保障大型桥梁的建造和服役安全的有效手段之一。结构健康监测系统研究已经成为航空航天、国防、复合材料、土木工程等领域的热点研究方向。各国均在新建的和已服役的重要工程结构上增设健康监测系统 [2-3] 。美国20世纪80年代中后期开始在多座 桥梁上布设监测传感器,监测环境荷载、结构振动和局部应力状态,用以验证设计假定、监视施工质量和实时评定服役安全状态。例如,佛罗里达州的Sunshine Sky way B ridge 桥上安装了500多个传感器。

桥梁健康监测系统方案

桥梁健康监测系统方案

目录 1 项目概况---------------------------------------------------------------- 1 1.1 桥梁概述----------------------------------------------------------- 1 1.2 监测目的----------------------------------------------------------- 1 1.3 监测依据----------------------------------------------------------- 1 1.4 监测内容----------------------------------------------------------- 1 2 基本思路--------------------------------------------------------------- 2 3 巴河特大桥健康监测断面及测点布置----------------------------------- 2 3.1 主梁关键截面竖向变形-------------------------------------------- 2 3.2 主梁关键截面应变监测-------------------------------------------- 3 3.3 箱梁温度、湿度--------------------------------------------------- 3 3.4 车辆荷载---------------------------------------------------------- 4 3.5 监测仪器设备------------------------------------------------------- 4 4 监测系统---------------------------------------------------------------- 4 4.1系统组成---------------------------------------------------------- 4 4.2 监测系统实施方案------------------------------------------------ 5

相关文档
相关文档 最新文档