文档库 最新最全的文档下载
当前位置:文档库 › 连续催化重整工艺技术进展_杨敏

连续催化重整工艺技术进展_杨敏

连续催化重整工艺技术进展_杨敏
连续催化重整工艺技术进展_杨敏

0 引言

催化重整装置是炼油与石油化工生产过程中十分重要的二次加工装置。在炼油生产中,其主要以常减压直馏石脑油为原料,在一定温度、压力下,利用催化剂促使烃类分子结构重新排列,正构的芳烃异构化,非芳烃转化为芳烃,生产高辛烷值汽油调和组分、苯、甲苯、二甲苯和副产大量氢气的工艺过程。

在这个能源日益危急的时代,随着开采难度的增加、原油劣质化程度的提高,重整装置充分利用油品的性质,生产高辛烷值的汽油和符合市场需求的芳烃,将油品的价值利用到最高。在环保压力越发严峻的今天,重整装置同时生产清洁的能源产品并为现代环保装置-加氢装置提供廉价的氢气。所以,催化重整装置在石化工业中起着越来越重要的作用。

1 连续重整工艺

按催化剂的再生方式,催化重整可以分为非连续再生重整(半再生重整及循环再生重整)和连续再生催化重整(连续重整)。

连续重整的主要优势在于催化剂是在反应器间连续移动,催化剂始终保持在接近新鲜催化剂的良好活性下。连续重整装置设有单独的催化剂再生循环系统,四反流出的催化剂先被提升到分离器进行碎剂分离,分离出破碎的催化剂,然后进入一个特殊结构的再生器中进行再生,其中经烧焦—氧氯化—干燥冷却—H 2还原,再生后的新鲜剂接着进入第一反应器,随着反应的深入,催化剂依次流经二反、三反和四反,第四反应器流出的催化剂又送至再生系统进行再生,从而实现了积碳催化剂的连续再生。由于催化剂能连续不断的再生,所以操作较稳定、装置运转周期长。同时连续重整对不同原料有较大的灵活性,能生产高辛烷值的汽油,重整油收率也较高。因此连续重整在调整汽油结构、提高汽油质量方面起到了非常重要的作用。目前各炼厂普遍采用连续重整工艺。

1.1 国外连续重整工艺

国外连续重整起步很早,发展也较快,拥有自主专利技术的主要有美国环球油公司(UOP)和法国油品研究院(IFP)2家。下面就着重介绍这两家公司的连续重整工艺发展史。

上世纪70年代初,UOP 连续重整技术CCR Platforming

连续催化重整工艺技术进展

杨敏(北海炼化有限公司, 广西 北海 536000)

摘要:本文重点从连续重整工艺和催化剂两方面阐述了国内外连续重整技术的进展,并针对我国连续重整工艺发展情况,提出了几点看法。

关键词:连续重整;催化剂;工艺;进展

的第一套装置建成,装置的总体布局是反应器和再生器并列布置,反应部分为三个或四个反应器重叠布置,催化剂在反应器和再生器内依靠重力缓慢向下移动,催化剂在反应器和再生器间靠气体提升,催化剂磨损低、粉尘少。由于反应器叠置,所以占地少,但是反应器造价高、检修较费时。

不久,法国IFP 的Octanizing 连续催化重整技术也在1973年实现了工业化,它的工艺性能与美国UOP 公司的CCR 相媲美,所不同的是四个反应器平行布置,反应器与反应器、反应器与再生器之间开始采用专用气体提升系统输送。

1988年,UOP 第二代连续重整采用新型径向反应器(反应产物沿中心管向上流动),在保持反应器内物流均匀分布时,有效降低了反应压力,大大提高了重整生成油收率和芳烃产率。再生系统采用高压再生(0.25MPa),既提高了烧焦能力又不增加设备体积,同时取消了部分阀门,降低了催化剂磨损率。而且UOP 开发了专用闭锁料斗控制系统,它能将催化剂连续定时地从再生器送到提升管,起到了常规再生系统中流量控制作用。这些举措使得重整反应在相当苛刻的条件下也可以进行,极大地提高了装置操作性能。

UOP 第三代采用Cyclemax 再生工艺,改变了再生器内部约翰逊网的结构,将一段还原改为两段低纯氢还原,采用了无磨损提升阀组,并将部分工艺条件由高温临氢环境变为低温氮气环境等,降低了设备要求、简化了工艺流程、优化了控制、改善了操作条件,克服了以往的诸多缺点,再生工艺得到了极大的改进。

1990年,IFP 公司第二代连续重整技术实现工业化。IFP 在再生部分做了很大的改进,将催化剂再生压力从1.3MPa 降至0.55MPa、再生器结构从轴向改为径向,用连续再生替代之前的分批再生。随后,IFP 又将烧焦气循环回路与催化剂氧氯化用气及焙烧气体循环回路彼此分开,优化再生控制方案,实现了催化剂在低水、低氯的情况下进行缓慢烧焦,在高氧含量的情况下进行氧氯化及焙烧。

1.2 国内连续重整工艺

20世纪80年代我国开始引进国外连续催化重整装置,我国重整装置的技术改革是在吸取国外先进连续催化重整技术中开始的。齐鲁石化60万吨/年连续重整装置于2000年1月建

理论 ? 实践

成投产,尽管此套装置使用的是国外专利技术,但是工艺包及工程设计都是由我国自主编制的。

2001年3月23日,石油化工科学研究院(SEI)与洛阳石油化工工程公司(RIPP)开发的500kt/a 低压组合床重整装置在长岭炼化一次开车成功。该工艺采取固定床和移动床相结合,且催化剂与反应物逆向流动,使催化剂的活性状态与反应的难易程度相匹配,有效克服了传统连续重整工艺存在的弊端。该技术中的低压组合床重整工艺和催化剂连续再生技术取得了自主知识产权。

随后,SEI 扔与RIPP 再次携手开发了新一代国产化连续重整成套技术,并于2005年8月在洛阳石化700kt/a 重整装置改造中首次成功应用,此举标志着我国拥有了具有自主知识产权的连续重整成套技术。

2009年4月12日,是我国连续重整技术新的里程碑,因为国产化“超低压连续重整成套技术”装置在广州石化一次开车成功。此套装置四台反应器两两重叠布置,将UOP 和IFP 连续重整工艺在这方面的优缺点实现了互补;采用目前最低反应压力,保证芳烃和氢气等产率的最大化;氯化区及焙烧区保持高氧环境,更利于催化剂活性恢复;再生气经换热冷却及干燥脱水后,实现“干、冷”循环;氯化区的高氯气体不进入烧焦区,减少了再生器的腐蚀,使得再生系统可以在低碳条件下操作;闭锁料斗的高压区充分利用再生器上部的缓冲区,保证操作、压力更加平稳。新开发出的国产超低压连续重整技术具有自主知识产权、先进可靠、投资省,还可节省大量外汇。它的建成投产打破长期以来国外公司对连续重整技术的垄断,在我国连续重整发展史上具有重要意义。该技术现已成功应用于国内北海、塔河、九江石化等多套连续重整装置。

2 催化重整催化剂

催化重整反应多而杂,主要反应有环烷烃脱氢生成芳烃、C5环烷烃异构脱氢生成芳烃、烷烃(或烯烃)脱氢环化生成芳烃、烷烃异构化反应、烷烃及环烷烃裂化加氢反应等,这些反应大多不是单一的某种反应,需要两种不同的活性中心,即金属中心和酸性中心。金属中心主要由铂等金属提供,催化烃类的加氢和脱氢反应;酸性中心由含卤素的活性氧化铝提供,主要催化烃类的重排反应。因此,重整催化剂一般由氧化金属铂、铝、卤素和其他助剂组成。催化重整工艺发展离不开催化剂进步,使用先进高效的催化剂是提高连续重整效益的关键。

2.1 国外连续重整催化剂发展历程

UOP 公司连续重整催化剂的发展历程代表了国外连续重整催化剂的研究进展。UOP 自1971年研发了第一代连续重整催化剂以来,催化剂的发展突飞猛进,截止目前连续重整催化剂已经历五个阶段的发展历程:第一阶段开发的R-16与R-17系列催化剂具有活性高的特点,但存在水热稳定性低、选择性

低、易积碳等缺陷;第二阶段开发的R-30、R-32、R-34系列催化剂改善了第一代催化剂的选择性;第三阶段的R-130、R-160、R-170系列催化剂不仅极大的提高了水热稳定性,而且进一步提高了反应选择性;催化剂发展到第四阶段在积炭速率方面有了突破性的改进,但均适当的牺牲了部分活性,R-230、R-260、R-270系列催化剂总体达到了水热稳定性、选择性、积碳速率、活性都较好的状态,;第五阶段开发了高产率的R-254、R-284系列的催化剂。R-16系列催化剂的活性组元是Rt-Re,R-17系列催化剂的活性组元是Pt-Ge,其他系列催化剂的活性组元都是Pt -Sn。金属Pt 的活性很高,Sn 的引入提高了Pt 的分散度,而且使高温中心数量显著增加,Pt -Sn 组合是目前最为完美的重整催化剂金属组合。

催化剂在推层出新,新一代催化剂总是能明显弥补上一代的不足,同时为了适应多元化的发展,催化剂向系列化发展了,以适应多种情况的需要。下面主要介绍新一代高产率催化剂R-254和R-284。

R-254使用与R-274相同的助金属,但改变了添加助金属到氧化铝载体上的程序,这使得R-254保持R-274高选择性的同时,提高了活性。UOP 公司对R-254新催化剂和R-274进行了对比试验,选用某厂连续重整装置具有代表性的原料,操作条件:压力0.9MPa,空速2.8,氢油比为2.0,RON 为102。试验结果表明,R-254和R274催化剂的产品产率和生焦量相近,但R-254的活性比R-274高4℃。其次,还证实助金属能有效降低C3+C4(减少酸裂化)和C1+C2产率(减少金属裂化)。

R-284综合了R-264和R-274的优点,其保持R-264催化剂密度、金属含量、氯化物含量,添加了与R-274催化剂相同的助金属。同时作为UOP 公司新一代高产率催化剂,其选用高密度Al 2O 3载体,

并按配方生产。R-284催化剂比R-254活性高出2℃,液体产率也更高,该催化剂适用于各类装置。

2.2 国内连续重整催化剂发展历程

石科院研究的连续重整催化剂PS-Ⅱ(3861)于1986年工业化成功,,并于1990年成功应用在抚油三厂的40万吨/年连续重整装置上,法国IFP 确认其催化性能良好,可用于引进的使用法国IFP 技术的连续重整装置。PS-Ⅱ填补了国产连续重整催化剂的空白,从此,我国成功开发了一系列连续重整催化剂。

我国的连续重整催化剂根据其发展历程分为四代:第一代是活性、选择性、再生性能、抗磨性能都较好的PS-II 和PS-III 型催化剂;第二代PS-IV 和PS-V 型催化剂载体使用球形的特殊孔结构,提高了催化剂水热稳定性和活性;第三代PS-VI 催化剂在保持第二代催化剂比表面积不变的基础上,优化了金属功能和酸性功能的相互作用,大幅降低了催化剂积炭速率而且增加了催化剂选择性;第四代催化剂增加了金属

铂,进一步降低了催化剂积炭速率。前两代催化剂的金属组元

是Pt-Sn,后两代催化剂的金属组元是Pt、Sn、A、B。通过四代

连续重整催化剂的研发,我国许多连续重整装置用上了性价比

更高的国产剂,国产剂正向着国际化的水平前进。下面主要介

绍后两代催化剂。

PS-VI催化剂是RIPP研制开发的具有低积炭速率、高液

体选择性特点的连续重整催化剂。催化剂在不降低比表面积的

前提下,采用了合适的竞争吸附剂及助剂引入方式,使用独特

的工艺处理引入新的助剂A+B来降低催化剂强酸量,大幅增

加单铂中心,完美调和了金属功能和酸性功能,增加了催化剂

的选择性,而且大幅下降了积碳速率,使催化剂具有低积炭速

率、高选择性。与国外同类催化剂R1比较,该催化剂粉尘量大

幅下降,C5+液收、氢气产率也显著增加,工业运转寿命能增加

一半以上。

PS-VII催化剂是新一代高铂型催化剂,是在PS-VI催

化剂的基础上优化而来,表1是PS-VI与PS-Ⅶ型连续重整催

化剂主要组成及物化性质。从表1中可以看出,PS-VII催化剂

比PS-VI催化剂金属铂、锡含量更高,而且持氯能力好,比表

面积大。因此,PS-Ⅶ催化剂比PS-VI催化剂有更高的活性、

更好地选择性,积碳速率也大幅度降低。

表1 PS-VI与PS-VII催化剂的主要组成及物化性质

3 对我国重整工艺发展的几点看法

3.1 扩宽原料来源,消除发展瓶颈

我国原油的直馏石脑油收率较低,而以石脑油为裂解原料的

乙烯装置比例却在逐年上升,要在优化炼油与化工资源互补的基

础上,扩管重整石脑油来源以消除原料不足带来的短板效应。

裂解芳烃抽余油中环烷烃含量非常高,我国许多炼厂芳潜

高达百分之六十以上,远远大于石脑油芳潜量,所以裂解芳烃

抽余油是非常理想的重整原料。部分炼厂的减压柴油或掺入一

定比例重油催化裂化柴油后的减压柴油,经过加氢裂化得到的

石脑油芳潜在百分之五十左右,亦是不错的重整原料选择。催

化汽油中间段的辛烷值最低,通过对中间段进行重整可提高辛

烷值,还可解决汽油的硫和烯烃含量高的难题。焦化汽油辛烷

值、稳定性很低,硫氮等杂质还较高,但经过深度加氢精致后还

是能作为重整原料的,同时正因为焦化汽油的廉价,所以掺入

量越多,效益越可观。

3.2 持续催化剂改进,推动重整革新

重整主反应是吸热、体积减小的反应,所以不断提高反应

温度、降低反应压力是推动重整反应的重点,由此带来的催化

剂选择性、活性、水热稳定性以及强度等提高也是未来催化剂

发展的难点。同时日益增长的运行周期,也是重整催化剂技术

进步强有力的推动者。

国产催化剂虽然在我国市场占有率较高,但由于国产剂发

展较晚,催化剂在系列化、多样化和制备方法等方面还存在一

些差距。目前还没有发现比Pt-Sn双金属组元更好地组合,在

此基础上,可引入适合的助金属以改变酸性功能和金属功能,

改进催化剂制备方法以提高催化剂活性和选择性,调节载体性

能以提高收率、降低催化剂积炭速率。

3.3 优化重整技术,实现长久效益最大化

汽油中的芳烃特别是苯可以引发癌症,目前汽油产品对苯

含量都提出了严格要求,但尚未提及芳烃。为了实现石化行业

的可持续发展,生产无苯低芳烃的高辛烷值汽油将是未来的发

展趋势。所以,开发先进的降苯、芳烃工艺,对生产汽油组分的

催化重整装置进行芳烃含量的控制已经亟不可待。

现有的重整反应遵循同碳量转化的原则,这在一定程度上

限制了产品的分布和效益,为了实现石脑油价值的最大化,可

以朝着改变碳分子数的方向来改进重整技术,如最大限地将石

脑油转化为特定的高效益产品(目前有二甲苯、对二甲苯)等。

与此同时,在现工艺条件下优化反应路径提高重整反应效

率,开发先进的控制技术促进装置更平稳生产,加快脚步开发

先进的工程软件部分甚至全部代替人工化,也是促进我国催化

重整行业快速发展的有效措施。

参考文献:

[1]马爱增,潘锦程,杨森年.高铂型低积碳速率连续重

整催化剂 PS-Ⅶ 的研究和评价[J].炼油技术与工程,2004,

34(12):45-47.

[2]UOP LLC.Right on target[J].Hydrocarbon Engineering,

2011(11):49-54.

[3]UOP LLC.Right on target[J].Hydrocarbon Engineering,

2011(11):49-54.

[4] 邵文.中国石油催化重整装置的现状分析[J]. 炼油

技术与工程,2006,36(7):1-4.

催化裂化的工艺特点及基本原理

教案 叶蔚君 5.1催化裂化的工艺特点及基本原理 [引入]: 先提问复习,再从我国催化裂化汽油产量所占汽油总量的比例引入本章内容。 [板书]:催化裂化 一、概述 1、催化裂化的定义、反应原料、反应产物、生产目的 [讲述]: 1.催化裂化的定义(重质油在酸性催化剂存在下,在470~530O C的温度和0.1~0.3MPa的条件下,发生一系列化学反应,转化成气体、汽油、柴油等轻质产品和焦炭的过程。)、 反应原料:重质油;(轻质油、气体和焦炭)、(轻质油); [板书]2.催化裂化在炼油厂申的地位和作用: [讲述]以汽油为例,据1988年统计,全世界每年汽油总消费量约为6.5亿吨以上,我国汽油总产量为1750万吨,从质量上看,目前各国普通级汽油一般为90-92RON、优质汽油为96-98RON,我国1988年颁布车用汽油指标有两个牌号,其研究法辛烷值分别为不低于90和97。 但是,轻质油品的来源只靠直接从原油中蒸馏取得是远远不够的。一般原油经常减压蒸馏所提供的汽油、煤油和柴油等轻质油品仅有10-40%,如果要得到更多的轻质产品以解决供需矛盾,就必须对其余

的生质馏分以及残渣油进行二次加工。而且,直馏汽油的辛烷值太低,一般只有40-60MON,必须与二次加工汽油调合使用。 国内外常用的二次加工手段主要有热裂化、焦化、催化裂化和加氢裂化等。而热裂化由于技术落后很少发展,而且正逐渐被淘汰,焦化只适用于加工减压渣油,加氢裂化虽然技术上先进、产品收率高、质量好、灵活性大,但设备复杂,而且需大量氢气,因此,技术经济上受到一定限制,所以,使得催化裂化在石油的二次加工过程中占居着重要地位(在各个主要二次加工工艺中居于首位)。特别是在我国,车用汽油的组成最主要的是催化裂化汽油,约占近80%。因此,要改善汽油质量提高辛烷值,首先需要把催化裂化汽油辛烷值提上去。目前我国催化裂化汽油辛烷值RON偏低,必须采取措施改进工艺操作,提高催化剂质量,迅速赶上国际先进水平。 [板书]3催化裂化过程具有以下几个特点 [讲述] (1)轻质油收率高,可达70%-80%,而原料初馏的轻质油收率仅为10%~40%。所说轻质油是指汽抽、煤油和柴油的总和。 (2)催化汽油的辛烷值较高,研究法辛烷值可达85以上。汽油的安定性也较好。 (3)催化柴油的十六烷值低,常与直馏柴油调合使用或经加氢精制提高十六烷值。 (4)催化裂化气体产品产率约为10%~20%左右,其中90%左右是C3,C4(称为液化石油气)。C3、C4组分中合大量烯烃。因此这部分产品是优良的

炼厂基本工艺流程

海科公司主要装置知识汇总 常减压装置: 原料:原油 产品:汽油(7-8%)、柴油(20-30%)、蜡油(20-30%)、渣油(40%左右) 常减压蒸馏:将原油按其各组分的沸点和饱和蒸汽压的不同而进行分离的一种加工手段。这是一个物理变化过程,分为常压过程和减压过程。我公司大常减压装置加工能力是100万吨/年。 精馏过程的必要条件: 1)主要是依靠多次气化及多次冷凝的方法,实现对液体混合物的分离。因此,液体混合物中各组分的相对挥发度有明显差异是实现精馏过程的首要条件。 2)塔顶加入轻组分浓度很高的回流液体,塔底用加热或汽提的方法产生热的蒸汽。 3)塔内要装设有塔板或者填料,使下部上升的温度较高、重组分含量较多的蒸气与上部下降的温度较低、轻组分含量较多的液体相接处,同时进行传热和传质过程。 原油形状:天然石油通常是淡黄色到黑色的流动或半流动的粘稠液体,也有暗绿色、赤褐色的,通常都比水轻,比重在0.8-0.98之间,但个别也有比水重的,比重达到1.02。许多石油都有程度不同的臭味,这是因为含有硫化物的缘故。 石油主要由C和H两种元素组成,由C和H两种元素组成的碳氢化合物,是石油炼制过程中加工和利用的主要对象。 主要元素:C、H、S、O、N

微量元素:Ni、V、Fe、Cu、Ga、S、Cl、P、Si 常减压装置的原理:根据石油中各种组分的沸点不同且随压力的变化而改变的特点,通过蒸馏的办法将其分离成满足产品要求或后续装置加工要求的各种馏分。因此,原油蒸馏的基本过程是:加热、汽化、冷凝、冷却以及在这些过程当中所发生的传质、传热过程。 常减压蒸馏是石油加工的第一个程序,第一套生产装置。根据原油的品质情况和生产的目的不同,常减压蒸馏装置通常有三种类型,一种是燃料型,另一种是燃料润滑油型,还有一种是化工型。 燃料型生产装置,主要生产:石脑油、煤油、柴油、催化裂化原料或者加氢裂化、加氢处理原料、减粘原料、焦化原料、氧化沥青原料或者直接生产道路沥青;燃料润滑油型生产装置,主要生产除燃料之外,还在减压蒸馏塔生产润滑油基础油原料;化工型生产装置主要生产的是裂解原料。 原油预处理(电脱盐)部分、换热网络(余热回收)及加热炉部分、常压蒸馏部分、减压蒸馏部分。 三塔流程:初馏塔、常压蒸馏塔、减压蒸馏塔 焦化联合装置: 我公司延迟焦化装置规模37.5万吨/年,加氢精制装置40万吨/年,干气制氢装置规模3000Nm3/年。 焦化联合装置配套配合生产,焦化部分采用国内成熟的常规焦化技术,运用一炉两塔工艺,井架式水力除焦系统,无堵焦阀,尽量多产汽、柴油。加氢部分采用国内成熟的加氢精制工艺技术,催化剂采用中国石油化工集团公司抚顺石油化工研究所开发的FH-UDS、FH-UDS-2加氢精制催化剂。反应部分采用炉前

重整总工艺

一、重整装置采取了下述节能措施: 1) 合理利用余热资源。本装置中重整反应加热炉由于其操作温度高,且为纯辐射炉,烟气排放温度高,为回收余热,在加热炉顶设计一套蒸汽发生系统,以回收余热,产生3.5MPa蒸汽,加热炉热效率可以达到90%以上。稳定塔底重沸炉对流室烟道出口气体,进入空气预热器,预热后的空气做为加热炉的燃烧空气,使加热炉的整体热效率达到90%以上。 2) 重整反应加热炉炉管采用倒“U”布置,减少加热炉与重整反应器之间的管线长度,降低了重整临氢系统压降,从而降低了装置的能耗。 3) 重整进料换热器采用纯逆流板式换热器,以提高传热效率,减小冷热端温差,减少进料加热炉的热负荷,降低装置能耗。 4) 选用高效塔板,提高分离效率,降低回流比,减少塔底加热炉热负荷,以达到节能的目的。 5) 选用高效率泵及电机,以节省能量。 6) 高温管线和设备都采取了保温措施。 二、根据重整装置的特点和安全生产要求,拟设:控制系统DCS、安全联锁保护系统SIS、加热炉燃烧管理系统BMS、机组控制系统CCS、机组诊断系统MDS、火气监控系统F&GS。仪表设备管理系统AMS。催化剂再生单元由重整装置专利商AXENS公司提供逻辑控制系统CCRCS。 三、3)进出装置的重要液体物料计量选用质量流量计。 4)一般流量测量选用标准节流装置,大口径气体测量采用文丘里管。5)净化风、水蒸气、燃料气、氮气流量计量选用V型流量计。 6)大管道水流量计量选用电磁式或超声波流量计。

7)再生部分催化剂料位测量选用放射性料位计。 8)大口径气体控制阀选用蝶阀。 9)含催化剂介质的控制阀选用球阀。 10)温度调节回路的输入安全栅采用带温度变送功能的隔离式安全栅四、主要设备说明 反应(再生)器 预处理部分有2台反应器,预加氢反应器(R-101)和脱氯反应器(R-102)均采用热壁板焊结构,结构尺寸和设计参数完全相同。设计压力和设计温度分别为4.9MPa和375℃,操作介质为混合石脑油。反应器内直径为φ2800mm,切线高度为7800mm。设备的主体材料选用0Cr18Ni10Ti+15CrMoR 复合钢板,本设备为固定床式反应器,内部设有一个催化剂床层,以及入口分配器、出口收集器等内构件,内构件材质选用0Cr18Ni10Ti。两端封头采用半球形,支撑采用裙式支座,顶部封头上设有油气进口,底部封头上设有油气出口及催化剂卸料口等,所有开口接管均采用整体锻件补强结构。 重整反应部分有4台独立布置的反应器,重整第一反应器(R-201)的内直径φ2200mm,筒体长度约4605 mm;重整第二反应器(R-202)的内直径φ2200mm,筒体长度约4605 mm;重整第三反应器(R-203)的内直径φ2400mm,筒体长度约5890mm;重整第四反应器(R-204)的内直径φ2800mm,筒体长度约6791mm。四台反应器的设计温度均为549℃,对应的设计压力分别为:0.94MPa、0.87MPa、0.80MPa、0.73MPa。重整反应器均采用热壁板焊结构,其主体材质为 2.25Cr-1Mo,反应器内的中心管和扇

炼油生产安全技术—催化裂化的装置简介类型及工艺流程

编订:__________________ 单位:__________________ 时间:__________________ 炼油生产安全技术—催化裂化的装置简介类型及工 艺流程 Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8978-61 炼油生产安全技术—催化裂化的装置简介类型及工艺流程 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、装置简介 (一)装置发展及其类型 1.装置发展 催化裂化工艺产生于20世纪40年代,是炼油厂提高原油加工深度的一种重油轻质化的工艺。 20世纪50年代初由ESSO公司(美国)推出了Ⅳ型流出催化装置,使用微球催化剂(平均粒径为60—70tan),从而使催化裂化工艺得到极大发展。 1958年我国第一套移动床催化裂化装置在兰州炼油厂投产。1965年我国自己设计制造施工的Ⅳ型催化装置在抚顺石油二厂投产。经过近40年的发展,催化裂化已成为炼油厂最重要的加工装置。截止1999年底,我国催化裂化加工能力达8809。5×104t/a,占

一次原油加工能力的33.5%,是加工比例最高的一种装置,装置规模由(34—60)×104t/a发展到国内最大300×104t/a,国外为675×104t/a。 随着催化剂和催化裂化工艺的发展,其加工原料由重质化、劣质化发展至目前全减压渣油催化裂化。根据目的产品的不同,有追求最大气体收率的催化裂解装置(DCC),有追求最大液化气收率的最大量高辛烷值汽油的MGG工艺等,为了适应以上的发展,相应推出了二段再生、富氧再生等工艺,从而使催化裂化装置向着工艺技术先进、经济效益更好的方向发展。 2.装置的主要类型 催化裂化装置的核心部分为反应—再生单元。反应部分有床层反应和提升管反应两种,随着催化剂的发展,目前提升管反应已取代了床层反应。 再生部分可分为完全再生和不完全再生,一段再生和二段再生(完全再生即指再生烟气中CO含量为10—6级)。从反应与再生设备的平面布置来讲又可分为高低并列式和同轴式,典型的反应—再生单元见图

重整工艺题

一、问答题 1、造成稳定汽油辛烷值低的原因有哪些?应如何处理? 答:造成稳定汽油辛烷值低的原因:?反应温度低。?重整空速过大。?精制油含硫及其他杂物含量不合格。?催化剂活性下降。?重整原料油芳烃潜含量低。?催化剂氯含量低。?进料换热器内漏。 处理的方法:?提高反应温度。?降低重整进料量。?调整预加氢操作条件,调整汽提塔的操作。?找出活性下降原因并对症处理,或提高反应温度。?联系调度,更换原料或重整重新调整操作;?加大注氯量。(7)停工检修。 2、在生产过程中,如何保护好重整催化剂? 答:?操作平稳,反应温度、压力没有大的波动;?严格控制重整原料中的杂质含量,确保符合工艺指标;?在循环氢压机停机时,加热炉熄火。停止重整进料;?空速不能过低;?氢油比不能太小;?做好水-氯平衡的工作。 3、重整催化剂为什么要预硫化? 答:因为刚还原后的催化剂,具有很高的氢解活性,如不进行硫化,将在进油初期发生强烈的氢解反应,放出大量的反应热,使催化剂床层温度迅速升高,出现超温现象。出现这种情况,轻则造成催化剂大量积炭,损害催化剂的活性和稳定性,重则烧坏催化剂和反应器。对催化剂进行硫化,目的在于抑制催化剂过度的氢解反应,以保护催化剂的活性和稳定性,改善催化剂初期选择性。 4、重整原料干点高对催化剂有何影响? 答:重整原料一般控制干点≯180℃,当干点过高时,进料中的大分子烃类含量大,由于大分子烃为易于裂解,同时产生缩合生炭反应,促使催化剂积炭加快,影响运转周期。另外还有可能造成重整稳定汽油产品干点超高而产品质量不合格。5、在正常生产情况下脱水塔底脱硫罐投用的操作步骤? 答:1)稍开脱硫罐的入口阀进行预热及充压。2)当脱硫罐压力与脱水塔压力平衡时,开罐底置换阀,将罐内的粉尘及气体置换干净。3)待出口温度与入口温度相接近后,关闭置换阀,开出口阀和开大入口阀,然后慢慢关闭旁路阀。 6、重整循环氢纯度下降,原因有哪些? 答:1)原料性质发生变化,如原料芳潜降低等。2)反应温度提高。3)反应压力降低。4)高分罐冷后温度过高。5)重整催化剂活性下降或催化剂中毒。6)重整催化剂氯含量过高或气中水过低。7)采样或化验分析原因。 7、调节阀改付线的切换步骤? 答:1)外操联系内操,根据表的测量值的变化情况,边开付线边关上游阀,保持表的测量值相对稳定,直至上游阀关闭为止。2)关闭下游阀。3)调节付线阀保持表测量值不变。 8、装置停水有何现象? 答:(1)循环水低压报警;(2)各水冷后温度升高;(3)各塔顶回流罐,分液罐排气增大或压力超高;(4)凝汽式蒸汽透平机真空度下降。 9、预分馏塔初馏点低应怎样调节? 答:当预分馏塔底油初馏点低时,可按以下方法调节:1)提高炉出口温度,以提高塔底温度;2)降低塔顶回流;3)降低塔的操作压力。但一般情况下回流与塔压不动,而是提高炉出口温度。 10、写出切换泵的操作步骤?

催化裂化装置的主要设备催化裂化装置的主要设备

催化裂化装置的主要设备 催化裂化装置的主要设备 百克网:2008-5-30 14:50:14 文章来源:本站 催化裂化装置设备较多,本节只介绍几个主要设备。 一、提升管反应器及沉降器 (一)提升管反应嚣 提升管反应器是进行催化裂化化学反应的场所,是本装置的关键设备。随装置类型不同提升管反应器类型不同,常见的提升管反应器类型有两种: (1)直管式:多用于高低并列式提升管催化裂化装置。 (2)折叠式:多用于同轴式和由床层反应器改为提升管的装置。 图5—8是直管式提升管反应器及沉降器示意图 提升管反应器是一根长径比很大的管子,长度一般为30~36米,直径根据装置处理量决定,通常以油气在提升管内的平均停留时间1~4秒为限确定提升管内径。由于提升管内自下而上油气线速不断增大,为了不使提升管上部气速过高,提升管可作成上下异径形式。 在提升管的侧面开有上下两个(组)进料口,其作用是根据生产要求使新鲜原料、回炼油和回炼油浆从不同位置进入提升管,进行选择性裂化。

进料口以下的一段称预提升段(见图5—9),其作用是:由提升管底部吹入水蒸气(称预提升蒸汽),使由再生斜管来的再生催化剂加速,以保证催化剂与原料油相遇时均匀接触。这种作用叫预提升。 为使油气在离开提升管后立即终止反应,提升管出口均设有快速分离装置,其作用是使油气与大部分催化剂迅速分开。快速分离器的类型很多,常用的有:伞帽型,倒L型、T型、粗旋风分离器、弹射快速分离器和垂直齿缝式快速分离器(分州如图5—10中a、b、c、d、e、f所示)。 为进行参数测量和取样,沿提升管高度还装有热电偶管、测压管、采样口等。除此之外,提升管反应器的设计还要考虑耐热,耐磨以及热膨胀等问题。 (二)沉降器 沉降器是用碳钢焊制成的圆筒形设备,上段为沉降段,下段是汽提段。沉降段内装有数组旋风分离器,顶部是集气室并开有油气出口。沉降器的作用是使来自提升管的油气和催化剂分离,油气经旋风分离器分出所夹带的催化荆后经集气室去分馏系统;由提升管快速分离器出来的催化剂靠重力在沉降器中向下沉降,落入汽提段。汽提段内设有数层人字挡板和蒸汽吹入口,其作用是将催化剂夹带的油气用过热水蒸气吹出(汽提),并返回沉降段,以便减少油气损失和减小再生器的负荷。 沉降器多采用直筒形,直径大小根据气体(油气、水蒸气)流率及线速度决定,沉降段线速一般不超过0.5~0.6米/秒。沉降段高度由旋风分离器科腿压力平衡所需料腿长度和所需沉降高度确定,通常为9~12米。汽提段的尺寸一般由催化剂循环量以及催化剂在汽提段的停留时间决定,停留时间一般是1.5~3分钟。 二、再生器

催化裂化的装置简介及工艺流程

催化裂化的装置简介及工艺流程 概述 催化裂化技术的发展密切依赖于催化剂的发展。有了微球催化剂,才出现了流化床催化裂化装置;分子筛催化剂的出现,才发展了提升管催化裂化。选用适宜的催化剂对于催化裂化过程的产品产率、产品质量以及经济效益具有重大影响。 催化裂化装置通常由三大部分组成,即反应 / 再生系统、分馏系统和吸收稳定系统。其中反应--再生系统是全装置的核心,现以高低并列式提升管催化裂化为例,对几大系统分述如下: (一)反应—再生系统 新鲜原料(减压馏分油)经过一系列换热后与回炼油混合,进入加热炉预热到370C 左右,由原料油喷嘴以雾化状态喷入提升管反应器下部,油浆不经加热直接进入提升管,与来自再生器的高温(约650C ~700C )催化剂接触并立即汽化,油气与雾化蒸汽及预提升蒸汽一起携带着催化剂以7 米/ 秒~8 米/ 秒的高线速通过提升管,经快速分离器分离后,大部分催化剂被分出落入沉降器下部,油气携带少量催化剂经两级旋风分离器分出夹带的催化剂后进入分馏系统。 积有焦炭的待生催化剂由沉降器进入其下面的汽提段,用过热蒸气进行汽提以脱除吸附在催化剂表面上的少量油气。待生催化剂经待生斜管、待生单动滑阀进入再生器,与来自再生器底部的空气(由主风机提供)接触形成流化床层,进行再生反应,同时放出大量燃烧热,以维持再生器足够高的床层温度(密相段温度约650E ~680C )。再生器维持0.15MPa~0.25MPa表)的顶部压力,床层线速约0.7 米/秒~1.0 米/秒。再生后的催化剂经淹流管,再生斜管及再生单动滑阀返回提升管反应器循环使用。 烧焦产生的再生烟气,经再生器稀相段进入旋风分离器,经两级旋风分离器分出携带的大部分催化剂,烟气经集气室和双动滑阀排入烟囱。再生烟气温度很高而且含有约5%~10%CO为了利用其热量,不少装置设有 CO锅炉,利用再生烟气产生水蒸汽。对于操作压力较高的装置,常设有烟气能量回收系统,利用再生烟气的热能和压力作功,驱动主风机以节约电能。 (二)分馏系统 分馏系统的作用是将反应/ 再生系统的产物进行分离,得到部分产品和半成品。

炼油化工装置的具体工艺流程

炼油化工装置的具体工艺流程 一般炼油厂主要由炼油工艺装置和辅助设施构成。炼油工艺装置的作用是将原油加工成液体的轻质燃料和重质燃料,其中轻质燃料包括汽油、煤油、轻柴油,重质燃料包括重柴油和锅炉专用燃料等。此外,通过炼油工艺装置,还能将原油分解成润滑油、气态烃、液态烃、化工原料、沥青、石油焦、石蜡等。根据产品类别分类的话,就分为了燃料型、燃料-化工型、燃料-润滑油型。 一、常减压蒸馏的主要工艺流程 常减压蒸馏主要分为4个步骤,分别为:原油脱盐脱水、初馏、常压蒸馏、减压蒸馏。 1原油脱盐脱水

从地下采出的原油中含有一定比例的水分,这部分水分中含有矿物质盐类。如果原油中水分过大的话,不利于蒸馏塔稳定,容易损坏蒸馏塔。此外,水分过大势必需要延迟加热时间,增加了热量的吸取,增加了原料成本。水分中含有的矿物质盐会在蒸馏过程中产生腐蚀性的盐垢,附着在管道上,这样就会无形当中增加了原油的流动阻力,减慢了流动速度,增加了燃料消耗,所以需要对原油进行脱盐脱水处理。 2初馏 经过了第一步的脱盐脱水操作之后,原油要经过换热器提高温度,当温度达到200℃~250℃时,才可以进入初馏塔装置。在这里,将原油里剩余的水分、腐蚀性气体和轻汽油排出,这样就减少了塔的负担,保证了塔的稳定状态,起到了提高产品质量和尽可能多的回收原油的效果。 3常压蒸馏 从上一步骤出来的油叫拔顶油。经过输送泵进入常压炉后加热,加热要求是360℃左右,然后进入常压塔。从塔顶分离出来的油和气,经过冷凝和换热后,一些就成为汽油,一些就成为了煤油和柴油。 4减压蒸馏 减压蒸馏的主要工艺装置是减压塔,减压塔是将从常压塔里出来的重油,通过减压的方式进行二次加工和深加工。 二、催化裂化的主要工艺流程 催化裂化装置的原材料是需要二次加工和深加工的重质油。通过这道工序,可以将重质油裂解为我们需要的轻质油。 催化裂化的主要步骤为:反应-再生系统、分馏系统、吸收-稳定系统。

催化重整技术进展简介

催化重整技术进展简介 摘要:简要介绍了重整技术的发展历程和主要专利技术提供商,介绍了世界范围内的18种主要催化重整工艺技术,出了专利商、第一次投产应用时间、工艺技术特点和所用催化剂。 催化重整是生产芳烃和汽油调合组份的主要工艺。全球大约38%的苯和87%的二甲苯来自催化重整装置。在发达国家的调合汽油中,重整汽油占很大比重,我国与发达国家相比,催化裂化汽油占比高,重整汽油占比低,所以我国调和汽油中烯烃含量高。与此同时,重整装置的的副产品--氢气还是炼厂加氢装置的廉价氢源,尽管现代炼厂都使用PSA高纯氢,但是重整氢也是PSA制氢装置的重要来源。因此催化重整装置在炼厂中处于非常重要的核心地位。 催化重整技术的诞生起源于二战期间对于高辛烷值汽油的迫切需求,自诞生到现在已逾70多年,目前催化重整技术已经非常成熟而且稳定,并在不断进步中,我国的可研和工程技术人员根据我国自身特点,也开发了自己的催化重整技术用于实际生产中。 最早的重整技术是固定床技术。1940年,Mobil公司率先将金属氧化物(MoO2/Al2O3)作为催化剂用于固定床重整。 1949年,UOP公司经过多年努力开发出了以贵金属Pt为活性组元的重整催化剂(Pt/Al2O3)并于同年在美国密执安州马斯基根的“老荷兰”炼油厂建成了全球第一套铂重整装置。 1967年,美国Chevron公司开发出Pt-Re双金属催化剂。 1972年,ZSM-5分子筛由美国Mobil公司首次开发成功。ZSM-5是一种具有高硅铝比、三维直通孔道结构的中孔分子筛,由于具有独特的孔道结构,ZSM-5在重整反应中表现出较好的择形催化作用。 80年代以来国内外以ZSM-5分子筛、丝光沸石、β沸石以及L型分子筛催化剂为代表的重整催化剂的研究发展极为迅速,标志着催化重整催化剂的发展进入了一个新的阶段。

浅谈中国催化裂化工艺流程的新进展

浅谈中国催化裂化工艺流程的新进展 中国催化裂化工艺的快速发展已逐步与世界接轨,越来越先进,逐渐的有了对比性。不仅是与国内各企业间的对比,还包括与外国的对比,工艺之间的差距对比,工艺之间的提升技术间的对比,除此之外,还包括各类催化剂的对比,并指出了以后的发展方向及进步目标。 标签:催化裂化;技术;发展;工艺;催化剂 催化裂化技术的逐步发展,使人们对它的理解也越来越透彻,并研究出了多种催化裂化技术和相应的产品。比如温控技术,工艺提升技术,速冻技术,速降管冷降技术,反应停止技术,高温骤降技术,油水迅速分离技术等。重质油国家重点实验室的高金森教授及其团队研究出了帮助提速管反应降碱有机技术。这项技术以平常原油裂化技术为前提,设置了一套新的设备。这组机器实现了轻改装,动力大,耗资小的目标。这项技术降把劣质汽油与主要燃油混合在一起同时注入分馏机器中,在辅助提升装置下运用分别沉淀装置进行沉淀分离。这项技术在华北原油公司每年有120万吨的原材料需要进行处理,原油裂化催化技术装备及滨海石材公司每年有25万吨投入生产。原油催化裂化设备的成功投入使用,使原油中各类有机物的含量由45%到50%降低到30%,而且烷烃值保持不变。稍微调整劣油的反应条件就可以将原油中的烯烃含量降低到15%以下。这样既满足了欧式汽车队原油的要求也完成了汽车性能的提升。 1 国内催化裂化技术工艺的发展前景 UOP技术的投入在很大程度上扩大了炼油厂,而且这对燃油的要求非常严厉。因此,它在现代化工厂中起着不可替代的作用。拥有UOP技术的产品能极大程度上将炼油厂的资金发挥到位。利用高科技沉降技术和能源再生技术实现对各机器的控制。 (1)高效煤炭脱氧催化剂。这种催化剂具有耐硫、防高温、脱氧率高、机器作用效率高、脱氧处理费较低等的优点。(2)脱氧过程运用液态化技术,它具有气固密集接触,热传导效率高,气态可直接处理,功能强大、操作简便、在高氧条件下也可以进行的特点。它的工艺作用范围广,适合处理含氧量在4%-20%的煤炭层,这符合我国煤矿脱氧排燃气的特点。原材料的来源主要是煤矿。 这套设备在气体裂化催化车间内以NaOH再生液体作为催化裂化的氧化剂去除雾气中大部分的SO2和灰尘,并且在车间外使用Ca(OH)2溶液对催化裂化溶液进行重复置换,从而产生可以稳定存在的亚硫酸钙结晶和溶液。除此之外,还要增加一套致酸设备,用其来处理重生中的有用产品,其中含有少量水分的石膏,这可以解决重复污染。刚刚创立的裂化催化致酸双重复合车间作为这项设备的核心技术,在相对标准的致酸条件下生成酸性物质,使全部系统不需要处理废水。

催化裂化工艺介绍

1.0催化裂化 催化裂化是原料油在酸性催化剂存在下,在500℃左右、1×105~3×105Pa 下发生裂解,生成轻质油、气体和焦炭的过程。催化裂化是现代化炼油厂用来改质重质瓦斯油和渣油的核心技术,是炼厂获取经济效益的重要手段。 催化裂化的石油炼制工艺目的: 1)提高原油加工深度,得到更多数量的轻质油产品; 2)增加品种,提高产品质量。 催化裂化是炼油工业中最重要的一种二次加工工艺,是重油轻质化和改质的重要手段之一,已成为当今石油炼制的核心工艺之一。 1.1催化裂化的发展概况 催化裂化的发展经历了四个阶段:固定床、移动床、流化床和提升管。见下图: 固定床移动床 流化床提升管(并列式)在全世界催化裂化装置的总加工能力中,提升管催化裂化已占绝大多数。

1.2催化裂化的原料和产品 1.2.0原料 催化裂化的原料范围广泛,可分为馏分油和渣油两大类。 馏分油主要是直馏减压馏分油(VGO),馏程350-500℃,也包括少量的二次加工重馏分油如焦化蜡油等,以此种原料进行催化裂化称为馏分油催化裂化。 渣油主要是减压渣油、脱沥青的减压渣油、加氢处理重油等。渣油都是以一定的比例掺入到减压馏分油中进行加工,其掺入的比例主要受制于原料的金属含量和残炭值。对于一些金属含量低的石蜡基原有也可以直接用常压重油为原料。当减压馏分油中掺入渣油使通称为RFCC。以此种原料进行催化裂化称为重油催化裂化。 1.2.1产品 催化裂化的产品包括气体、液体和焦炭。 1、气体 在一般工业条件下,气体产率约为10%-20%,其中含干气和液化气。 2、液体产物 1)汽油,汽油产率约为30%-60%;这类汽油安定性较好。 2)柴油,柴油产率约为0-40%;因含较多芳烃,所有十六烷值较低,由重油催化裂化得到的柴油的十六烷值更低,这类柴油需经加氢处理。 3)重柴油(回炼油),可以返回到反应器内,已提高轻质油收率,不回炼时就以重柴油产品出装置,也可作为商品燃料油的调和组分。 4)油浆,油浆产率约为5%-10%,从催化裂化分馏塔底得到的渣油,含少量催化剂细粉,可以送回反应器回炼以回收催化剂。油浆经沉降出去催化剂粉末后称为澄清油,因多环芳烃的含量较大,所以是制造针焦的好原料,或作为商品燃料油的调和组分,也可作加氢裂化的原料。 3、焦炭 焦炭产率约为5%-7%,重油催化裂化的焦炭产率可达8%-10%。焦炭是缩合产物,它沉积在催化剂的表面上,使催化剂丧失活性,所以用空气将其烧去使催化剂恢复活性,因而焦炭不能作为产品分离出来。 1.3催化裂化工业装置的组成部分

催化裂化文献综述

文献综述 催化裂化是重质油在酸性催化剂存在下,在五百摄氏度左右、一万到三万帕下发生以裂化反应为主的一系列化学反应,生产轻质油、气体和焦炭的过程。由于催化裂化投资和操作费用低、原料适应性强、转化率高,自1942年第一套工业化流化催化裂化装置运转以来,它已发展成为炼油厂中的核心加工工艺,是重油轻质化的主要手段之一。催化裂化产品是主要的运输燃料调合组分。在世界范围内,FCC汽油占总汽油产量的25%~80%,FCC柴油占总柴油量的,10%~30%,而且是仅次于蒸汽裂解制取丙烯的又一大生产装置。面对日益严格的环保法规的要求,通过装置改造和与其它上下游工艺结合(如进料加氢,产品后处理等),催化裂化能以合适的费用生产合适的产品。即使从更长远的目标看,催化裂化装置所产汽油经加氢饱和后也应能成为燃料电池的一种燃料组分【1】。 催化裂化的原料和产品【2】 一原料 催化裂化的原料范围广泛,可分为馏分油和渣油两大类。馏分油主要是直馏减压馏分油,也包括少量的二次加工重馏分油如焦化蜡油、脱沥青油等;渣油主要是减压渣油、加氢处理渣油等。渣油都是以一定的比例掺入到减压馏分油中进行加工,其掺入的比例主要受制于原料的金属含量和残炭值。对于一些金属含量很低的石蜡基原油也可以直接用常压重油作为原料。当减压馏分油中掺入渣油时则通称为重油催化裂化,1995年之后我国新建的装置均为掺炼渣油RFCC【2】。 二产品 催化裂化的产品包括气体、液体和焦炭。其中气体主要是干气和液化气。液体产物分为:汽油、柴油、重柴油(回炼油)和油浆。 中国石油石油化工研究院开发的国Ⅳ汽油生产技术集成催化剂、催化剂级配、工艺及开工操作等多项核心技术,有效破解了高烯烃含量的催化汽油脱硫和辛烷值降低的技术难题,形成了具有自主知识产权的满足国Ⅳ标准的催化裂化汽油加氢改质技术。该技术作为中国石油具有自主知识产权的清洁汽油生产技术,填补了中国石油生产国Ⅳ清洁汽油的技术空白,可为企业汽油质量升级提供自主技术支持,具有巨大的社会效益和经济效益,工业应用前景广阔【7】。 催化裂化工艺流程 催化裂化装置一般由反应—再生系统、分馏系统和吸收—稳定系统三部分组成。一反应-再生系统 新鲜原料油经过换热后与回炼油混合,经加热炉加热至300~400℃后进入提升管反应器下部的喷嘴,用蒸汽雾化后进入提升管下部,与来自再生器的高温催化剂(600~750℃)接触,随即气化并进行反应。油气在提升管内的停留时间很短,一般2~4秒。反应后的油气经过旋风分离器后进入集气室,通过沉降器顶部出口进入分馏系统。积有焦炭的再生催化剂(待生催化剂)由沉降器进入下面的汽提段,用过热水蒸汽进行汽提,以脱除吸附在待生催化剂表面的少量油气,然后经过待生斜管、待生单动滑阀进入再生器,与来自再生器底部的空气接触反

炼油化工装置的具体工艺流程

炼油化工装置的具体工艺流程炼油工艺装置的作用是将原油加工成液体一般炼油厂主要由炼油工艺装置和辅助设施构成。的轻质燃料和重质燃料,其中轻质燃料包括汽油、煤油、轻柴油,重质燃料包括重柴油和锅炉专用燃料等。此外,通过炼油工艺装置,还能将原油分解成润滑油、气态烃、液态烃、化工原料、沥青、石油焦、石蜡等。根据产品类别分类的话,就分为了燃料型、燃料-化工型、燃料-润滑油型。 一、常减压蒸馏的主要工艺流程 常减压蒸馏主要分为4个步骤,分别为:原油脱盐脱水、初馏、常压蒸馏、减压蒸馏。 1原油脱盐脱水

从地下采出的原油中含有一定比例的水分,这部分水分中含有矿物质盐类。如果原油中水分过大的话,不利于蒸馏塔稳定,容易损坏蒸馏塔。此外,水分过大势必需要延迟加热时间,增加了热量的吸取,增加了原料成本。水分中含有的矿物质盐会在蒸馏过程中产生腐蚀性的盐垢,附着在管道上,这样就会无形当中增加了原油的流动阻力,减慢了流动速度,增加了燃料消耗,所以需要对原油进行脱盐脱水处理。 2初馏 经过了第一步的脱盐脱水操作之后,原油要经过换热器提高温度,当温度达到200℃~250℃时,才可以进入初馏塔装置。在这里,将原油里剩余的水分、腐蚀性气体和轻汽油排出,这样就减少了塔的负担,保证了塔的稳定状态,起到了提高产品质量和尽可能多的回收原油的效果。 3常压蒸馏 从上一步骤出来的油叫拔顶油。经过输送泵进入常压炉后加热,加热要求是360℃左右,然后进入常压塔。从塔顶分离出来的油和气,经过冷凝和换热后,一些就成为汽油,一些就成为了煤油和柴油。 4减压蒸馏 减压蒸馏的主要工艺装置是减压塔,减压塔是将从常压塔里出来的重油,通过减压的方式进行二次加工和深加工。 二、催化裂化的主要工艺流程

催化重整工艺过程

催化重整:在有催化剂作用的条件下,对汽油馏分中的烃类分子结构进行重新排列成新的分子结构的过程叫催化重整。 石油炼制过程之一,加热、氢压和催化剂存在的条件下,使原油蒸馏所得的轻汽油馏分(或石脑油)转变成富含芳烃的高辛烷值汽油(重整汽油),并副产液化石油气和氢气的过程。重整汽油可直接用作汽油的调合组分,也可经芳烃抽提制取苯、甲苯和二甲苯。副产的氢气是石油炼厂加氢装置(如加氢精制、加氢裂化)用氢的重要来源。 沿革20世纪40年代在德国建成了以氧化钼(或氧化铬)/氧化铝作催化剂(见金属氧化物催化剂)的催化重整工业装置,因催化剂活性不高,设备复杂,现已被淘汰。1949年美国公布以贵金属铂作催化剂的重整新工艺,同年11月在密歇根州建成第一套工业装置,其后在原料预处理、催化剂性能、工艺流程和反应器结构等方面不断有所改进。1965年,中国自行开发的铂重整装置在大庆炼油厂投产。1969年,铂铼双金属催化剂用于催化重整,提高了重整反应的深度,增加了汽油、芳烃和氢气等的产率,使催化重整技术达到了一个新的水平。 化学反应包括以下四种主要反应:①环烷烃脱氢;②烷烃脱氢环化;③异构化;④加氢裂化。反应①、②生成芳烃,同时产生氢气,反应是吸热的;反应③将烃分子结构重排,为一放热反应(热效应不大);反应④使大分子烷烃断裂成较轻的烷烃和低分子气体,会减少液体收率,并消耗氢,反应是放热的。除以上反应外,还有烯烃的饱和及生焦等反应,各类反应进行的程度取决于操作条件、原料性质以及所用催化剂的类型。 催化剂近代催化重整催化剂的金属组分主要是铂,酸性组分为卤素(氟或氯),载体为氧化铝。其中铂构成脱氢活性中心,促进脱氢反应;而酸性组分提供酸性中心,促进裂化、异构化等反应。改变催化剂中的酸性组分及其含量可以调节其酸性功能。为了改善催化剂的稳定性和活性,自60年代末以来出现了各种双金属或多金属催化剂。这些催化剂中除铂外,还加入铼、铱或锡等金属组分作助催化剂,以改进催化剂的性能。 过程条件原料为石脑油或低质量汽油,其中含有烷烃、环烷烃和芳烃。含较多环烷烃的原料是良好的重整原料。催化重整用于生产高辛烷值汽油时,进料为宽馏分,沸点范围一般为80~180℃;用于生产芳烃时,进料为窄馏分,沸点范围一般为60~165℃。重整原料中的烯烃、水及砷、铅、铜、硫、氮等杂质会使催化剂中毒而丧失活性,需要在进入重整反应器之前除去。对该过程的影响因素除了原料性质和催化剂类型以外,还有温度、压力、空速和氢油比。温度高、压力低、空速小和低氢油比对生成芳烃有利,但为了抑制生焦反应,需要使这些参数保持在一定的范围内。此外,为了取得最好的催化活性和催化剂选择性,有时在操作中还注入适当的氯化物以维持催化剂的氯含量稳定。 工艺流程主要包括原料预处理和重整两个工序,在以生产芳烃为目的时,还包括芳烃抽提和精馏装置。经过预处理后的原料进入重整工段(见图),与循环氢混合并加热至490~525℃后,在1~2MPa下进入反应器。反应器由3~4个串联,其间设有加热炉,以补偿反应所吸收的热量。离开反应器的物料进入分离器分离出富氢循环气(多馀部分排出),所得液体由稳定塔脱去轻组分后作为重整汽油,是高辛烷值汽油组分(研究法辛烷值90以上),或送往芳烃抽提装置生产芳烃。

石油化工催化裂化装置工艺流程图.docx

炼油生产安全技术一催化裂化的装置简介类型及工艺流程 催化裂化技术的发展密切依赖于催化剂的发展。有了微球催化剂,才出现了流化床催化裂化装置;分子筛催化剂的出现,才发展了提升管催化裂化。选用适宜的催化剂对于催化裂化过程的产品产率、产品质量以及经济效益具有重大影响。 催化裂化装置通常由三大部分组成,即反应?再生系统、分馏系统和吸收稳定系统。其中反应--再生系统是全装置的核心,现以高低并列式提升管催化裂化为例,对几大系统分述如下: ㈠反应--再生系统 新鲜原料(减压馏分油)经过一系列换热后与回炼油混合,进入加热炉预热到370 C左右,由原料油喷嘴以雾化状态喷入提升管反应器下部,油浆不经加热直接进入提升管,与来自再生器的高温(约650 C ~700C )催化剂接触并立即汽化,油气与雾化蒸汽及预提升蒸汽一起携带着催化剂以7米/秒~8米/秒的高线速通过提升管,经快速分离器分离后,大部分催化 剂被分出落入沉降器下部,油气携带少量催化剂经两级旋风分离器分出夹带的催化剂后进入分馏系统。 积有焦炭的待生催化剂由沉降器进入其下面的汽提段,用过热蒸气进行汽提以脱除吸附在催 化剂表面上的少量油气。待生催化剂经待生斜管、待生单动滑阀进入再生器,与来自再生器底部的空气(由主风机提供)接触形成流化床层,进行再生反应,同时放出大量燃烧热,以维持再生器足够高的床层温度(密相段温度约650 C ~68 0 C )。再生器维持0.15MPa~0?25MPa (表)的顶部压力,床层线速约0.7米/秒~1.0米/秒。再生后的催化剂经 淹流管,再生斜管及再生单动滑阀返回提升管反应器循环使用。 烧焦产生的再生烟气,经再生器稀相段进入旋风分离器,经两级旋风分离器分出携带的大部 分催化剂,烟气经集气室和双动滑阀排入烟囱。再生烟气温度很高而且含有约5%~10%CO 为了利用其热量,不少装置设有Co锅炉,利用再生烟气产生水蒸汽。对于操作压力较高的 装置,常设有烟气能量回收系统,利用再生烟气的热能和压力作功,驱动主风机以节约电 能。 ㈡分馏系统 分馏系统的作用是将反应?再生系统的产物进行分离,得到部分产品和半成品。 由反应?再生系统来的高温油气进入催化分馏塔下部,经装有挡板的脱过热段脱热后进入分 馏段,经分馏后得到富气、粗汽油、轻柴油、重柴油、回炼油和油浆。富气和粗汽油去吸收稳定系统;轻、重柴油经汽提、换热或冷却后出装置,回炼油返回反应--再生系统进 行回炼。油浆的一部分送反应再生系统回炼,另一部分经换热后循环回分馏塔。为了取走 分馏塔的过剩热量以使塔内气、液相负荷分布均匀,在塔的不同位置分别设有4个循环回流:顶循环回流,一中段回流、二中段回流和油浆循环回流。 催化裂化分馏塔底部的脱过热段装有约十块人字形挡板。由于进料是460 C以上的带有催化 剂粉末的过热油气,因此必须先把油气冷却到饱和状态并洗下夹带的粉尘以便进行分馏和避免堵塞塔盘。因此由塔底抽出的油浆经冷却后返回人字形挡板的上方与由塔底上来的油 气逆流接触,一方面使油气冷却至饱和状态,另一方面也洗下油气夹带的粉尘。 ㈢吸收--稳定系统: 从分馏塔顶油气分离器出来的富气中带有汽油组分,而粗汽油中则溶解有C3 C4甚至C2 组分。吸收--稳定系统的作用就是利用吸收和精馏的方法将富气和粗汽油分离成干气 (≤ C2)、液化气(C3、C4)和蒸汽压合格的稳定汽油。 一、装置简介 (一)装置发展及其类型

石油化工催化裂化装置工艺流程

炼油生产安全技术—催化裂化的装置简介类型及工艺流程 催化裂化技术的发展密切依赖于催化剂的发展。有了微球催化剂,才出现了流化床催化裂化装置;分子筛催化剂的出现,才发展了提升管催化裂化。选用适宜的催化剂对于催化裂化过程的产品产率、产品质量以及经济效益具有重大影响。 催化裂化装置通常由三大部分组成,即反应?再生系统、分馏系统和吸收稳定系统。其中反应––再生系统是全装置的核心,现以高低并列式提升管催化裂化为例,对几大系统分述如下: ㈠反应––再生系统 新鲜原料(减压馏分油)经过一系列换热后与回炼油混合,进入加热炉预热到370℃左右,由原料油喷嘴以雾化状态喷入提升管反应器下部,油浆不经加热直接进入提升管,与来自再生器的高温(约650℃~700℃)催化剂接触并立即汽化,油气与雾化蒸汽及预提升蒸汽一起携带着催化剂以7米/秒~8米/秒的高线速通过提升管,经快速分离器分离后,大部分催化剂被分出落入沉降器下部,油气携带少量催化剂经两级旋风分离器分出夹带的催化剂后进入分馏系统。 积有焦炭的待生催化剂由沉降器进入其下面的汽提段,用过热蒸气进行汽提以脱除吸附在催化剂表面上的少量油气。待生催化剂经待生斜管、待生单动滑阀进入再生器,与来自再生器底部的空气(由主风机提供)接触形成流化床层,进行再生反应,同时放出大量燃烧热,以维持再生器足够高的床层温度(密相段温度约650℃~68 0℃)。再生器维持~ (表)的顶部压力,床层线速约米/秒~米/秒。再生后的催化剂经淹流管,再生斜管及再生单动滑阀返回提升管反应器循环使用。 烧焦产生的再生烟气,经再生器稀相段进入旋风分离器,经两级旋风分离器分出携带的大部分催化剂,烟气经集气室和双动滑阀排入烟囱。再生烟气温度很高而且含有约5%~10% CO,为了利用其热量,不少装置设有CO 锅炉,利用再生烟气产生水蒸汽。对于操作压力较高的装置,常设有烟气能量回收系统,利用再生烟气的热能和压力作功,驱动主风机以节约电能。 ㈡分馏系统 分馏系统的作用是将反应?再生系统的产物进行分离,得到部分产品和半成品。 由反应?再生系统来的高温油气进入催化分馏塔下部,经装有挡板的脱过热段脱热后进入分馏段,经分馏后得到富气、粗汽油、轻柴油、重柴油、回炼油和油浆。富气和粗汽油去吸收稳定系统;轻、重柴油经汽提、换热或冷却后出装置,回炼油返回反应––再生系统进行回炼。油浆的一部分送反应再生系统回炼,另一部分经换热后循环回分馏塔。为了取走分馏塔的过剩热量以使塔内气、液相负荷分布均匀,在塔的不同位置分别设有 4 个循环回流:顶循环回流,一中段回流、二中段回流和油浆循环回流。 催化裂化分馏塔底部的脱过热段装有约十块人字形挡板。由于进料是460℃以上的带有催化剂粉末的过热油气,因此必须先把油气冷却到饱和状态并洗下夹带的粉尘以便进行分馏和避免堵塞塔盘。因此由塔底抽出的油浆经冷却后返回人字形挡板的上方与由塔底上来的油气逆流接触,一方面使油气冷却至饱和状态,另一方面也洗下油气夹带的粉尘。 ㈢吸收––稳定系统:

炼油生产安全技术—催化重整的装置类型及工艺流程说明参考文本

炼油生产安全技术—催化重整的装置类型及工艺流程说明参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

炼油生产安全技术—催化重整的装置类型及工艺流程说明参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 一、装置简介 (一)装置发展及类型 1.装置发展 催化重整是炼油工艺中重要的二次加工方法之一,它 以石脑油、常减压汽油为原料,制取高辛烷值汽油组分和 苯、甲苯、二甲苯等有机化工原料,同时副产廉价氢气。 我国从20世纪50年代初期开始从事催化重整工艺的 研究开发,1965年大庆炼油厂第一套半再生催化重整装置 投产。我国初期所建装置基本为年加工能力15X104t/a 左右的半再生固定床装置,从80年代开始建连续重整装 置,目前最大一套为扬子石化芳烃厂加工能力为

139x104t/a的连续重整装置。20xx年底统计,国内现共有催化重整55套,总加工能力为1700X104t/a。其中,半再生装置4l套,总处理能力为801X104t/a,连续再生装置14套,总处理能力899X104t/a。 半再生催化重整发展趋势为应用含助剂的双金属催化剂,采用分段装填方式。对于连续再生重整,随着催化剂循环量的增大,再生器成为工艺研制及开发者的研究重点。目前,大多数新建装置都采用UOP和IFP的催化剂连续再生专利技术。 2.装置的主要类型 根据催化剂的再生方式不同,装置主要分为固定床半再生催化重整和催化剂连续再生的连续重整。随着工艺技术的发展和对芳烃及汽油产品各项技术指标的不断提高,连续重整装置将成为当今重整工艺发展的主要方向。 根据目的产品不同可分为以生产芳烃为目的、以生产

相关文档