文档库 最新最全的文档下载
当前位置:文档库 › 第二章数值方法的总结

第二章数值方法的总结

第二章数值方法的总结
第二章数值方法的总结

第二章数值方法的总结

1 高斯消去法能够顺利进行的条件是系数矩阵A 的各阶顺序主子式均不为0,遇到主元素比较小的情况,高斯消去法结果会失真。

2 列主元素高斯消去法可以通过先选主元,后消元的方法克服这一困难,这一方法是调整方程的顺序,未知量的顺序没变。

3 如果对方程两边乘上一个很大的数,会使得按列选主元失去意义,可采用全部选主元的方法,当采用全部选主元的话,未知量的顺序要记录下来,工作量会加大。

4 LU 分解需要注意L,U 矩阵中未知量的顺序。

5 用一个每秒钟计算一亿次浮点运算的计算机求解一个20阶的线性方程组,用克拉姆法则,和行列式展开算至少需要30万年,而高斯消去法只不过用几秒钟 而已。所以高效率的数值方法及其重要。

6 对于矩阵603020302015201512A ?? ?= ? ???

,求它的Doolittle,Crout,cholesky 分解

100603020603020130201510055220151211001133A LU ???

? ? ?

?? ? ??? ?===

??? ? ??? ??? ? ????? 111001600023110050011210011001133A LDU ∧?????? ? ? ? ? ? ? ?== ? ? ? ? ? ? ? ? ??????? 111600023305001

110012053A LU ∧∧???? ? ? ? ?== ? ? ? ? ? ?????

(这是Crout 分解,其中L LD ∧=)

111001000023110000001120011000011333A ????? ?? ? ?? ? ?= ??? ? ? ? ? ? ?????????=

00

00

00

3

T

L L

??

?

??

? ?=

? ?

?

?

??

7 ,这章主要的数值方法是1: 按列选主元的高斯消去法

2: 杜利特尔分解(LU分解)

3:乔列斯基分解(平方根法)

4:追赶法

8,在Matlab 中,有解方程组的符号。

数值计算方法学习心得

数值计算方法学习心得 ------一个代码的方法是很重要,一个算法的思想也很重要,但 在我看来,更重要的是解决问题的方法,就像爱因斯坦说的内容比 思维本身更重要。 我上去讲的那次其实做了挺充分的准备,程序的运行,pdf文档,算法公式的推导,程序伪代码,不过有一点缺陷的地方,很多细节 没有讲的很清楚吧,下来之后也是更清楚了这个问题。 然后一学期下来,总的来说,看其他同学的分享,我也学习到 许多东西,并非只是代码的方法,更多的是章胜同学的口才,攀忠 的排版,小冯的深入挖掘…都是对我而言比算法更加值得珍惜的东西,又骄傲地回想一下,曾同为一个项目组的我们也更加感到做项 目对自己发展的巨大帮助了。 同时从这些次的实验中我发现以前学到的很多知识都非常有用。 比如说,以前做项目的时候,项目导师一直要求对于要上传的 文件尽量用pdf格式,不管是ppt还是文档,这便算是对产权的一种 保护。 再比如代码分享,最基础的要求便是——其他人拿到你的代码 也能运行出来,其次是代码分享的规范性,像我们可以用轻量级Ubuntu Pastebin,以前做过一小段时间acm,集训队里对于代码的分享都是推荐用这个,像数值计算实验我觉得用这个也差不多了,其 次项目级代码还是推荐github(被微软收购了),它的又是可能更 多在于个人代码平台的搭建,当然像readme文档及必要的一些数据 集放在上面都更方便一些。

然后在实验中,发现debug能力的重要性,对于代码错误点的 正确分析,以及一些与他人交流的“正规”途径,讨论算法可能出 错的地方以及要注意的细节等,比如acm比赛都是以三人为一小组,讨论过后,讲了一遍会发现自己对算法理解更加深刻。 然后学习算法,做项目做算法一般的正常流程是看论文,尽量 看英文文献,一般就是第一手资料,然后根据论文对算法的描述, 就是如同课上的流程一样,对算法进一步理解,然后进行复现,最 后就是尝试自己改进。比如知网查询牛顿法相关论文,会找到大量 可以参考的文献。 最后的最后,想说一下,计算机专业的同学看这个数值分析, 不一定行云流水,但肯定不至于看不懂写不出来,所以我们还是要 提高自己的核心竞争力,就是利用我们的优势,对于这种算法方面 的编程,至少比他们用的更加熟练,至少面对一个问题,我们能思 考出对应问题的最佳算法是哪一个更合适解决问题。 附记: 对课程的一些小建议: 1. debug的能力不容忽视,比如给一个关于代码实现已知错误的代码给同学们,让同学们自己思考一下,然后分享各自的debug方法,一步一步的去修改代码,最后集全班的力量完成代码的debug,这往往更能提升同学们的代码能力。 2. 课堂上的效率其实是有点低的,可能会给学生带来一些负反馈,降低学习热情。 3. 总的来说还是从这门课程中学到许多东西。 数值分析学习心得体会

工程数值方法

工程数值方法 学习内容: Chapter 1 线性代数方程组的数值解法 Chapter 2 插值问题与数值微分 Chapter 3 数值积分方法 Chapter 4 常微分方程(组)初值问题的数值方法 Chapter 5 常微分方程(组)边值问题的数值方法 Chapter 6 椭圆型偏微分方程的数值方法 Chapter 7 加权残值方法 参考书目: [1]武汉大学、山东大学合编,计算方法,高教版,1979 [2]林成森编,数值计算方法(上、下),科学出版社,2000 [3]中科院研究生数学丛书,工程中的数值方法,科学出版社,2000 [4]曾绍林编,工程数学基础(研究生数学丛书),科学出版社,2001 [5]李庆扬编,数值分析基础教程,高等教育出版社,2002 [6]李庆扬编,数值分析(第4版),清华版,2003 [7]关治编,数值计算方法,清华版,2004 [8]李岳生、黄有谦编,数值逼近,高教版,1978 [9]李荣华编,微分方程数值解法,人教版,1980 [10]邱吉宝编著,加权残值法的理论与应用,宇航版,1992

Chapter 1 线性代数方程组的数值解法 线性代数方程组的求解是工程实践中最常遇到的问题。据不完全统计,在工程实践中提出的计算问题中,有近一半涉及到求解线性方程组。例如:结构有限元分析问题,大地测量问题,气象预报问题,电力传输网分析问题,各种电路分析问题,数据拟合问题,以及非线性方程组与微分方程的数值求解问题等等。因此,学习并掌握线性代数方程组求解的基本理论与方法无疑是十分必需的。 本章将介绍目前一些利用计算机求解线性代数方程组常用的、且简单有效的数值方法。 求解线性方程组的数值方法尽管很多,但归并起来可分为两大类: (1)直接法(精确法) 凡经有限次的四则运算,若运算中没有舍入误差即可求得方程组精确解 LDL 的方法。如:克莱姆(Cramer)法则方法、消元法、LD分解法、T 分解法等等。 (2)迭代法(近似法) 将求解方程组的问题转化为构造一个无限迭代的序列,在实现该序列过 程中的每一步计算结果,均是把前一步所得的结果施行相同的计算步骤 进行修正而获得的,而这一无限序列的极限就是原方程组的精确解答。 如:简单迭代法、赛德尔迭代法、牛顿法、共轭斜量法等等。 需要指出的,在一般情况下,我们使用直接法和迭代法两类方法都不可能完全获得原方程组的精确解答。原因很显然:(1)实际中在使用直接法时不可能没有数值计算的舍入误差,故此时所谓精确方法的解并不是绝对精确的;(2)实际中在使用迭代法时,不可能将极限过程无限进行到底,而只能进行有限次的迭代,故获得是满足精度要求的近似解答。 关于这两类方法求解的误差分析,我们将在每类方法的介绍之后进行简要讨论。

数值计算方法大作业

目录 第一章非线性方程求根 (3) 1.1迭代法 (3) 1.2牛顿法 (4) 1.3弦截法 (5) 1.4二分法 (6) 第二章插值 (7) 2.1线性插值 (7) 2.2二次插值 (8) 2.3拉格朗日插值 (9) 2.4分段线性插值 (10) 2.5分段二次插值 (11) 第三章数值积分 (13) 3.1复化矩形积分法 (13) 3.2复化梯形积分法 (14) 3.3辛普森积分法 (15) 3.4变步长梯形积分法 (16) 第四章线性方程组数值法 (17) 4.1约当消去法 (17) 4.2高斯消去法 (18) 4.3三角分解法 (20)

4.4雅可比迭代法 (21) 4.5高斯—赛德尔迭代法 (23) 第五章常积分方程数值法 (25) 5.1显示欧拉公式法 (25) 5.2欧拉公式预测校正法 (26) 5.3改进欧拉公式法 (27) 5.4四阶龙格—库塔法 (28)

数值计算方法 第一章非线性方程求根 1.1迭代法 程序代码: Private Sub Command1_Click() x0 = Val(InputBox("请输入初始值x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = (Exp(2 * x0) - x0) / 5 If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求f(x)=e2x-6x=0在x=0.5附近的根(ep=10-10)

1.2牛顿法 程序代码: Private Sub Command1_Click() b = Val(InputBox("请输入被开方数x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = x0 - (x0 ^ 2 - b) / (2 * b) If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求56的值。(ep=10-10)

数值分析第二章复习与思考题

第二章复习与思考题 1.什么是拉格朗日插值基函数?它们是如何构造的?有何重要性质? 答:若n 次多项式()),,1,0(n j x l j =在1+n 个节点n x x x <<< 10上满足条件 (),,,1,0,, ,0, ,1n k j j k j k x l k j =?? ?≠== 则称这1+n 个n 次多项式()()()x l x l x l n ,,,10 为节点n x x x ,,,10 上的n 次拉格朗日插值基函数. 以()x l k 为例,由()x l k 所满足的条件以及()x l k 为n 次多项式,可设 ()()()()()n k k k x x x x x x x x A x l ----=+- 110, 其中A 为常数,利用()1=k k x l 得 ()()()()n k k k k k k x x x x x x x x A ----=+- 1101, 故 ()()()() n k k k k k k x x x x x x x x A ----= +- 1101 , 即 ()()()()()()()()∏ ≠=+-+---=--------=n k j j j k j n k k k k k k n k k k x x x x x x x x x x x x x x x x x x x x x l 0110110)( . 对于()),,1,0(n i x l i =,有 ()n k x x l x n i k i k i ,,1,00 ==∑=,特别当0=k 时,有 ()∑==n i i x l 0 1. 2.什么是牛顿基函数?它与单项式基{ }n x x ,,,1 有何不同? 答:称()()()(){ }10100,,,,1------n x x x x x x x x x x 为节点n x x x ,,,10 上的牛顿基函数,利用牛顿基函数,节点n x x x ,,,10 上的n 次牛顿插值多项式()x P n 可以表示为 ()()()()10010---++-+=n n n x x x x a x x a a x P 其中[]n k x x x f a k k ,,1,0,,,,10 ==.与拉格朗日插值多项式不同,牛顿插值基函数在增加节点时可以通过递推逐步得到高次的插值多项式,例如 ()()()()k k k k x x x x a x P x P --+=++ 011,

地下工程数值方法

《地下工程数值方法》 读书报告 专业:地下工程 姓名:张恒 学号:09017011

地下工程数值方法探讨 (张恒 09017011) 摘要:岩体工程中的岩土力学数值分析方法得到了迅速发展,出现了各种各样的数值分析方法。归纳和总结了前人关于数值分析方法的研究成果,对各种方法的研究现状和最新进展进行评述,并作了岩体工程问题的现代数值分析方法总的概论,最后提出了解决问题的思路、方法和建议。 关键字:地下工程,数值方法,数值模拟 1 引言 数值模拟是解决岩土工程问题的有效手段,它已越来越多地应用于岩土体稳定性、岩土工程设计和岩土工程基本问题分析中。为了获得岩土工程的设计参数或对岩体力学状态的评估,比较有效的方法有类比法、解析法、现场测试法、物理模拟法和数值模拟法。类比法适用于有历史经验记录的类似现场,而对历史经验较少的现场,它得到的结论是不可靠的,甚至是错误的;现场测试工作往往只能在一个很小的范围内进行,很难以小范围的测试代表复杂的大范围的工程岩土体;解析法只能在简化的前提下,给出一些最简单问题的解,它对复杂介质、复杂边界或动态问题,常常无能为力。因此,数值方法的出现和不断发展是一种必然。 岩土体不同于一般固体力学研究的对象,有限单元法、边界单元法、有限差分法等均能成功地应用于均质(或较均质)、物理力学性质清楚的材料(如金属)的力学分析,也能够较成功地分析较均质的岩土体的应力应变问题。数值方法甚至通过方法本身的发展,如引入节理单元、增强非线性分析能力等手段,可分析含不连续界面和多介质的较复杂的岩土体的力学行为。但随着岩土力学学科的发展和人们对岩土体科学认识的进一步深化,仅依靠固体力学中常用的数值分析方法已不能满足岩土力学数值分析的要求。显然,岩土力学的数值模拟问题比其它工程力学问题复杂得多,迫切需要建立更加简洁有效的新的数值方法。 正因为上述原因,岩土力学数值方法的研究一直是岩土力学学科中被关注的热点,近年来相继出现了一系列新的数值方法,如有限元中的节理单元法(joint element,JE)、离散单元法(discrete element method,DEM)、块体理论(block theory,BT)、不连续变形分析(discontinuous deformation analysis,DDA)、

数值分析第1章习题

一 选择题(55分=25分) (A)1. 3.142和3.141分别作为π的近似数具有()和()为有效数字(有效数字) A. 4和3 B. 3和2 C. 3和4 D. 4和4 解,时,, m-n= -3,所以n=4,即有4位有效数字。当时,, ,m-n= -2,所以n=3,即有3位有效数字。 (A)2. 为了减少误差,在计算表达式时,应该改为计算,是属于()来避免误差。(避免误差危害原则) A.避免两相近数相减; B.化简步骤,减少运算次数; C.避免绝对值很小的数做除数; D.防止大数吃小数 解:由于和相近,两数相减会使误差大,因此化加法为减法,用的方法是避免误差危害原则。 (B)3.下列算式中哪一个没有违背避免误差危害原则(避免误差危害原则) A.计算 B.计算 C.计算 D.计算 解:A会有大数吃掉小数的情况C中两个相近的数相减,D中两个相近的数相减也会增大误差 (D)4.若误差限为,那么近似数0.003400有()位有效数字。(有效数字) A. 5 B. 4 C. 7 D. 3 解:即m-n= -5,,m= -2,所以n=3,即有3位有效数字 (A)5.设的近似数为,如果具有3位有效数字,则的相对误差限为()(有效数字与相对误差的关系) A. B. C. D. 解:因为所以,因为有3位有效数字,所以n=3,由相对误差和有效数字的关系可得a的相对误差限为 二 填空题:(75分=35分)

1.设则有2位有效数字,若则a有3位有效数字。(有效数字) 解:,时,,,m-n= -4,所以n=2,即有2位有效数字。当时, ,m-n= -5,所以n=3,即有3位有效数字。 2.设 =2.3149541...,取5位有效数字,则所得的近似值x=2.3150(有效数字)解:一般四舍五入后得到的近似数,从第一位非零数开始直到最末位,有几位就称该近似数有几位有效数字,所以要取5位有效数字有效数字的话,第6位是5,所以要进位,得到近似数为2.3150. 3.设数据的绝对误差分别为0.0005和0.0002,那么的绝对误差约为 0.0007 。(误差的四则运算) 解:因为,, 4.算法的计算代价是由 时间复杂度 和 空间复杂度 来衡量的。(算法的复杂度) 5.设的相对误差为2%,则的相对误差为 2n% 。(函数的相对误差) 解:, 6.设>0,的相对误差为δ,则的绝对误差为 δ 。(函数的绝对误差) 解:,, 7.设,则=2时的条件数为 3/2 。(条件数) 解:, 三 计算题(220分=40分) 1.要使的近似值的相对误差限小于0.1%,要取几位有效数字?(有效数字和相对误差的关系) 解:设取n位有效数字,由定理由于知=4所以要使相对误差限小于0.1%,则,只要取n-1=3即n=4。所以的近似值取4位有效数字,其相对误差限小于0.1%。 2.已测得某场地长的值为,宽d的值为,已知试求面积的绝对误差限和

Matlab笔记——数据预处理——剔除异常值及平滑处理

012. 数据预处理(1)——剔除异常值及平滑处理测量数据在其采集与传输过程中,由于环境干扰或人为因素有可能造成个别数据不切合实际或丢失,这种数据称为异常值。为了恢复数据的客观真实性以便将来得到更好的分析结果,有必要先对原始数据(1)剔除异常值; 另外,无论是人工观测的数据还是由数据采集系统获取的数据,都不可避免叠加上“噪声”干扰(反映在曲线图形上就是一些“毛刺和尖峰”)。为了提高数据的质量,必须对数据进行(2)平滑处理(去噪声干扰); (一)剔除异常值。 注:若是有空缺值,或导入Matlab数据显示为“NaN”(非数),需要①忽略整条空缺值数据,或者②填上空缺值。 填空缺值的方法,通常有两种:A. 使用样本平均值填充;B. 使用判定树或贝叶斯分类等方法推导最可能的值填充(略)。 一、基本思想: 规定一个置信水平,确定一个置信限度,凡是超过该限度的误差,就认为它是异常值,从而予以剔除。

二、常用方法:拉依达方法、肖维勒方法、一阶差分法。 注意:这些方法都是假设数据依正态分布为前提的。 1. 拉依达方法(非等置信概率) 如果某测量值与平均值之差大于标准偏差的三倍,则予以剔除。 3x i x x S -> 其中,11 n i i x x n ==∑为样本均值,1 2 211()1n x i i S x x n =?? ??? =--∑为样本的标准偏差。 注:适合大样本数据,建议测量次数≥50次。 代码实例(略)。 2. 肖维勒方法(等置信概率) 在 n 次测量结果中,如果某误差可能出现的次数小于半次时,就予以剔除。 这实质上是规定了置信概率为1-1/2n ,根据这一置信概率,可计算出肖维勒系数,也可从表中查出,当要求不很严格时,还可按下列近似公式计算:

数值计算方法第二章

第二章 非线性方程数值解法 在科学计算中常需要求解非线性方程 ()0f x = (2.1) 即求函数()f x 的零点.非线性方程求解没有通用的解析方法,常采用数值求解算法.数值解法的基本思想是从给定的一个或几个初始近似值出发,按某种规律产生一个收敛的迭代序列0{}k k x +∞=,使它逐步逼近于方程(2.1)的某个解.本章介绍非线性方程实根的数值求解算法:二分法、简单迭代法、Newton 迭代法及其变形,并讨论它们的收敛性、收敛速度等. §2.1 二分法 一、实根的隔离 定义 2.1 设非线性方程(2.1)中的()f x 是连续函数.如果有*x 使*()0f x =,则称*x 为方程(2.1)的根,或称为函数()f x 的零点;如果有*()()()m f x x x g x =-,且()g x 在*x 邻域内连续,*()0g x ≠,m 为正整数,则称*x 为方程(2.1)的m 重根.当1m =时,称*x 为方程的单根. 非线性方程根的数值求解过程包含以下两步 (1) 用某种方法确定有根区间.称仅存在一个实根的有根区间为非线性方程的隔根区间,在有根区间或隔根区间上任意值为根的初始近似值; (2) 选用某种数值方法逐步提高根的精度,使之满足给定的精度要求. 对于第(1)步有时可以从问题的物理背景或其它信息判断出根的所在位置,特别是对于连续函数()f x ,也可以从两个端点函数值符号确定出有根区间. 当函数()f x 连续时,区间搜索法是一种有效的确定较小有根区间的实用方法,其具体做法如下 设[,]a b 是方程(2.1)的一个较大有根区间,选择合适的步长()/h b a n =-,k x a kh =+,(0,1,,)k n =L .由左向右逐个计算()k f x ,如果有1()()0k k f x f x +<,则区间1[,]k k x x +就是方程的一个较小的有根区间. 一般情况下,只要步长h 足够小,就能把方程的更小的有根区间分离出来;如果有根区间足够小,例如区间长度小于给定的精度要求,则区间内任意一点可

工程中的数值分析

. 《工程中的数值分析》开放性考试

工程中的数值分析题目: 建筑与土木工程系分院: 14土木工程本一班级: 陈凯名:姓14219114125号:学 日14122016 完成日期:年月 温州大学瓯江学院教务部. . 二○一二年十一月制 实现二分法的和算法及Excel1.1 由闭区间上连续函数的性质f(b)<0f(a)·[a,b]上连续,且在原理:设函数 f(x)二分法的基本思想内至少有一个实根.(a,b),方程(2.2)在区间及定理2-1可知,,进一步缩小有根区间:逐步二分区间[a,b],通过判断两端点函数值的符号是. ,从而求出满足精度要求的根的近似值将有根区间的长度缩小到充分小算法:给定精确度ξ,用二分法求函数f(x)零点近似值的步骤如下: 确定区间[a,b],验证f(a)·f(b)<0,给定精确度.求区间(a,b)的中点c.计算f(c). (1)若f(c)=0,则c就是函数的零点;

(2)若f(a)·f(c)<0,则令b=c; (3)若f(c)·f(b)<0,则令a=c. (4)判断是否达到精确度ε:即若|a-b|<,则得到零点近似值a(或b),否则重复2-4. Excel实现:单元格内分别输入区间[a,b]的左右端点值,中点值=(a+b)/2,依次计算出各点代入公式的f(x)值,用IF函数比较单元格内输入“=IF(f(中点值)<0”,中点值,a)如果f(中点值)<0,则下个左端点取原来的中点值 (a+b)/2. 同理“=IF(f(中点值)<0,b,中点值)”下个右端点取原来的右点值b. 如此循环往下,直至某个中点值代入f(x)得到的解满足题目要求的近似解或者零点即f(c)=0则该值则为零点。 . . 1.2不动点迭代法的原理和算法及Excel实现,并分析不同迭代格式的收敛性原理:将线性方程f(x)=0化为一个同解方程x=φ(x),并且假设φ(x)为连续函数,任取初值x,代入方程得到 x=φ(x),x=φ(x)····x=φ k+121001(x),k=0,1,2,····k称为求解非线性方程组的简单迭代法,称φ(x)为迭代函数,x称为第k步迭代k值. 若{x}收敛,则称迭代法收敛,否则称迭代法发散. k算法: (1)确定初值

数值分析实验报告总结

数值分析实验报告总结 随着电子计算机的普及与发展,科学计算已成为现代科 学的重要组成部分,因而数值计算方法的内容也愈来愈广泛和丰富。通过本学期的学习,主要掌握了一些数值方法的基本原理、具体算法,并通过编程在计算机上来实现这些算法。 算法算法是指由基本算术运算及运算顺序的规定构成的完 整的解题步骤。算法可以使用框图、算法语言、数学语言、自然语言来进行描述。具有的特征:正确性、有穷性、适用范围广、运算工作量少、使用资源少、逻辑结构简单、便于实现、计算结果可靠。 误差 计算机的计算结果通常是近似的,因此算法必有误差, 并且应能估计误差。误差是指近似值与真正值之差。绝对误差是指近似值与真正值之差或差的绝对值;相对误差:是指近似值与真正值之比或比的绝对值。误差来源见表 第三章泛函分析泛函分析概要 泛函分析是研究“函数的函数”、函数空间和它们之间 变换的一门较新的数学分支,隶属分析数学。它以各种学科

如果 a 是相容范数,且任何满足 为具体背景,在集合的基础上,把客观世界中的研究对象抽 范数 范数,是具有“长度”概念的函数。在线性代数、泛函 分析及相关的数学领域,泛函是一个函数,其为矢量空间内 的所有矢量赋予非零的正长度或大小。这里以 Cn 空间为例, Rn 空间类似。最常用的范数就是 P-范数。那么 当P 取1, 2 ,s 的时候分别是以下几种最简单的情形: 其中2-范数就是通常意义下的距离。 对于这些范数有以下不等式: 1 < n1/2 另外,若p 和q 是赫德尔共轭指标,即 1/p+1/q=1 么有赫德尔不等式: II = ||xH*y| 当p=q=2时就是柯西-许瓦兹不等式 般来讲矩阵范数除了正定性,齐次性和三角不等式之 矩阵范数通常也称为相容范数。 象为元素和空间。女口:距离空间,赋范线性空间, 内积空间。 1-范数: 1= x1 + x2 +?+ xn 2-范数: x 2=1/2 8 -范数: 8 =max oo ,那 外,还规定其必须满足相容性: 所以

工程的中的数值分析报告

《工程中的数值分析》开放性考试 题目:工程中的数值分析 分院:建筑与土木工程系 班级:14土木工程本一 姓名:陈凯 学号:14219114125 完成日期:2016年12月14日 温州大学瓯江学院教务部

二○一二年十一月制 1.1 二分法的和算法及Excel实现 原理:设函数f(x)在[a,b]上连续,且f(a)·f(b)<0由闭区间上连续函数的性质及定理2-1可知,方程(2.2)在区间(a,b)内至少有一个实根.二分法的基本思想是:逐步二分区间[a,b],通过判断两端点函数值的符号,进一步缩小有根区间,将有根区间的长度缩小到充分小,从而求出满足精度要求的根的近似值. 算法:给定精确度ξ,用二分法求函数f(x)零点近似值的步骤如下: 确定区间[a,b],验证f(a)·f(b)<0,给定精确度.求区间(a,b)的中点c.计算f(c). (1)若f(c)=0,则c就是函数的零点; (2)若f(a)·f(c)<0,则令b=c; (3)若f(c)·f(b)<0,则令a=c. (4)判断是否达到精确度ε:即若|a-b|<,则得到零点近似值a(或b),否则重复2-4. Excel实现:单元格内分别输入区间[a,b]的左右端点值,中点值=(a+b)/2,依次计算出各点代入公式的f(x)值,用IF函数比较单元格内输入“=IF(f(中点值)<0”,中点值,a)如果f(中点值)<0,则下个左端点取原来的中点值(a+b)/2. 同理“=IF(f(中点值)<0,b,中点值)”下个右端点取原来的右点值b. 如此循环往下,直至某个中点值代入f(x)得到的解满足题目要求的近似解或者零点即f(c)=0则该值则为零点。

数值计算方法总结计划复习总结提纲.docx

数值计算方法复习提纲 第一章数值计算中的误差分析 1 2.了解误差 ( 绝对误差、相对误差 ) 3.掌握算法及其稳定性,设计算法遵循的原则。 1、误差的来源 模型误差 观测误差 截断误差 舍入误差 2误差与有效数字 绝对误差E(x)=x-x * 绝对误差限x*x x* 相对误差E r (x) ( x x* ) / x ( x x* ) / x* 有效数字 x*0.a1 a2 ....a n10 m 若x x*110m n ,称x*有n位有效数字。 2 有效数字与误差关系 ( 1)m 一定时,有效数字n 越多,绝对误差限越小; ( 2)x*有 n 位有效数字,则相对误差限为E r (x)1 10 (n 1)。 2a1 选择算法应遵循的原则 1、选用数值稳定的算法,控制误差传播; 例 I n 11n x dx e x e I 0 1 1 I n1nI n1 e △ x n n! △x0 2、简化计算步骤,减少运算次数; 3、避免两个相近数相减,和接近零的数作分母;避免

第二章线性方程组的数值解法 1.了解 Gauss 消元法、主元消元法基本思想及算法; 2.掌握矩阵的三角分解,并利用三角分解求解方程组; (Doolittle 分解; Crout分解; Cholesky分解;追赶法) 3.掌握迭代法的基本思想,Jacobi 迭代法与 Gauss-Seidel 4.掌握向量与矩阵的范数及其性质, 迭代法的收敛性及其判定。 本章主要解决线性方程组求解问题,假设n 行 n 列线性方程组有唯一解,如何得到其解? a 11x 1 a 12 x 2... a 1n x n b1 a 21x 1 a 22 x 2... a 2n x n b2 ... a n1x 1 a n 2 x 2... a nn x n b n 两类方法,第一是直接解法,得到其精确解; 第二是迭代解法,得到其近似解。 一、Gauss消去法 1、顺序G auss 消去法 记方程组为: a11(1) x1a12(1) x2... a1(1n) x n b1(1) a21(1) x1a22(1) x2... a2(1n) x n b2(1) ... a n(11) x1a n(12) x2... a nn(1) x n b n(1) 消元过程: 经n-1步消元,化为上三角方程组 a11(1) x1b1(1) a 21(2) x1a22(2 ) x2b2( 2 ) ... a n(1n) x1a n(n2) x2...a nn(n ) x n b n( n ) 第k步 若a kk(k)0 ( k 1)( k) a ik(k )(k )( k 1)( k )a ik(k )( k) a ij a ij a kk(k ) a kj b i b i a kk(k )b k k 1,...n 1 i, j k 1,....,n 回代过程:

(整理)数值分析计算方法超级总结

工程硕士《数值分析》总复习题(2011年用) [由教材中的习题、例题和历届考试题选编而成,供教师讲解和学生复习用] 一. 解答下列问题: 1)下列所取近似值有多少位有效数字( 注意根据什么? ): a) 对 e = 2.718281828459045…,取* x = 2.71828 b) 数学家祖冲之取 113355 作为π的近似值. c) 经过四舍五入得出的近似值12345,-0.001, 90.55000, 它们的有效 数字位数分别为 位, 位, 位。 2) 简述下名词: a) 截断误差 (不超过60字) b) 舍入误差 (不超过60字) c) 算法数值稳定性 (不超过60字) 3) 试推导( 按定义或利用近似公式 ): 计算3 x 时的相对误差约等于x 的相对 误差的3倍。 4) 计算球体积3 34r V π= 时,为使其相对误差不超过 0.3% ,求半径r 的相对 误差的允许范围。 5) 计算下式 341 8 )1(3)1(7)1(5)1(22345+-+---+---=x x x x x x P )( 时,为了减少乘除法次数, 通常采用什么算法? 将算式加工成什么形式? 6) 递推公式 ?????=-==- ,2,1,1102 10n y y y n n 如果取 * 041.12y y =≈= ( 三位有效数字 ) 作近似计算, 问计算到 10y 时误差为初始误差的多少倍? 这个计算过程数值稳定吗 ? 二. 插值问题: 1) 设函数 )(x f 在五个互异节点 54321,,,,x x x x x 上对应的函数值为 54321,,,,f f f f f ,根据定理,必存在唯一的次数 (A ) 的插值多项式 )(x P ,满足插值条件 ( B ) . 对此,为了构造Lagrange 插值多项式 )(x L ,由5个节点作 ( C ) 个、次数均为 ( D ) 次的插值基函数

数值分析第二章上机题之第二题

姓名:蒋元义、学号:、专业:测绘工程 一、在区间[-1,1]上分别取10,20n =用两组等距节点对龙格函数2 1 ()125f x x =+作多项式插值及三次样条插值,对每个n 值,分别画出插值函数即()f x 的图形。 解: 当N=10时,代码及图像如下: x=-1:0.2:1; y=1./(1+25*x.^2); x1=linspace(-1,1,10); p=interp1(x,y,x1,'linear'); p1=interp1(x,y,x1,'spline'); plot(x,y,'b'); hold on plot(x1,p,'r'); hold on plot(x1,p1,'k'); legend('龙格函数','多项式插值函数','三次样条插值函数'); grid on; title('N=10的插值函数及原函数图形'); xlabel('x 轴'); ylabel('y ‘轴');

当N=20时,代码及图像如下: x=-1:0.2:1; y=1./(1+25*x.^2); x1=linspace(-1,1,20); p=interp1(x,y,x1,'linear'); p1=interp1(x,y,x1,'spline'); plot(x,y,'b'); hold on plot(x1,p,'r'); hold on plot(x1,p1,'k'); legend('龙格函数','多项式插值函数','三次样条插值函数'); grid on; title('N=20的插值函数及原函数图形'); xlabel('x轴'); ylabel('y轴');

脑电数据预处理步骤讲解学习

脑电数据预处理步骤

1)脑电预览。首先要观察被试脑电基本特征,然后剔除原始信号中一些典型的干扰噪声、肌肉运动等所产生的十分明显的波形漂移数据。 2)眼电去除。使用伪迹校正(correction)的方法,即从采集的 EEG 信号中减去受眼电(EOG)伪迹影响的部分。首先寻找眼电的最大绝对值,用最大值的百分数来定义 EOG 伪迹。接着构建平均伪迹,将超过 EOG 最大值某个百分比(如10%)的眼电导联电位识别为 EOG 脉冲,对识别的 EOG 脉冲进行平均,由协方差估计公式(2-1)计算平均 EOG 脉冲和其它电极之间的 EEG 的传递系数 b: b=cov(EOG, EEG)/var(EOG) (2-1) 其中 cov 表示协方差(covariance),var 表示方差(variance)。 最后根据公式(2-2)对受眼动影响的电极在产生眼动的时间段的波形进行校正,点对点地用 EEG 减去 EOG: corrected EEG=original EEG-b×EOG (2-2) 实验中设置最小眨眼次数为 20 次,眨眼持续时间 400ms。 3)事件提取与脑电分段。ERP 是基于事件(刺激)的诱发脑电,所以不同刺激诱发的 ERP 应该分别处理。在听觉认知实验中,多种类型的刺激会重复呈现,而把同种刺激诱发的脑电数据提取出来的过程叫做事件提取。这样,连续的脑电数据就会根据刺激事件为标准划分为若干段等长数据。以实验刺激出现的起始点为 0 时刻点,根据实验出现的事件对应的事件码,将脑电数据划分成许多个数据段,每段为刺激前 100ms 到刺激后 600ms。对每个试次(一个刺激以及相应的一段加工过程)提取一段同样长度的数据段。 4)基线校正。此步骤用于消除自发脑电活动导致的脑电噪声,以 0 时刻点前的数据作为基线,假设 0 时刻点前的脑电信号代表接收刺激时的自发脑电,用 0时刻点后的数据减去 0 时刻点前的各点数据的平均值,可以消除部分的自发脑

数值计算方法学习心得

数值计算方法学习心得 在研究生一年级的上半学期,我们安排了计算方法的课程,通过课堂授课、网上学习、学术报告以及课堂监督等方式的引导,我们对计算方法有了全新的认识。我们知道,数学是一门重要的基础学科。离开了数学,科技便无法发展。而在数学这门学科中,数值计算方法有着其不可取代的重要地位。 在授课的过程中,首先利用前几讲课的时间对计算方法的基础进行补充,考虑到有部分专业的学生在本科时期没有接触过计算方法这门课程;计算方法主要研究实际问题,当今社会计算机高速的发展,为人们使用数值计算方法解决科学技术中的各种数学问题提供了有力的硬件条件。要将关于数值计算的实际问题借助于计算机来解决,那么实际的上机操作就显得十分重要。因此,老师在平时课堂授课的同时,也推广网上学习,通过课堂掌握知识、网上复习内容双重方式学习,更有利于我们掌握知识,另外对于我们上机操作也具有十分重要的指导意义。通过网上看教学视频,一方面我们对课上学习的内用加深了印象,另一方面由于课堂上时间有限,对于某些知识,我们在听课时不是很清楚,似懂非懂,在网上学习的帮助下,我们可以在课后及时对这些知识进行进一步的消化,对于我们吸收知识也是一种很好的方式。此外,网上学习具有可重复性的优点,这是课堂上所不具有的特点,在课堂上不懂的知识,在网上可以反复学习,在网上学习中遇到的问题也能够反馈到课堂。所以课堂授课与网上学习相辅相成,各有优点,弥补了各自的不足之处。 很多课应用却是另一码事,学是一码事,当然课程的学术报告也十分重要, 程中,我们学会了,遇到问题却不会解决,所以课程学术报告此时起了关键作用。

学术报告是基于每组学生各自的专业设置的,这样做一方面检验学生应用计算方法的能力,另一方面也是为了引导学生将计算方法与本专业联系起来,学会应用学过的知识对现象进行描述、建模以及采用编程的方法处理数据等。 本学期的计算方法课程相当充实,在老师课上精心的授课、学生课下利用网上资源认真复习、对课程学术报告的完成以及课堂监督下,同学们都受益匪浅,尤其是对于数据处理方法的学习、思维的形成都有极其重要的作用,对于后期的专业研究也有深远的影响。 本学期已经接近尾声,计算方法课程也已经结束,在此向老师表示敬意和感谢。.

数值分析第二章小结

第2章线性方程组的解法 --------学习小结 一、本章学习体会 通过本章知识的学习我首先了解到求解线性方程组的方法可分为两类:直接法和迭代法。计算机虽然运行速度很快,但面对运算量超级多的问题,计算机还是需要很长的时间进行运算,所以,确定快捷精确的求解线性方程组的方法是非常必要的。 本章分为四个小节,其中前两节Gauss消去法和直接三角分解法因为由之前《线性代数》学习的一定功底,学习起来还较为简单,加之王老师可是的讲解与习题测试,对这一部分有了较好的掌握。第三节矩阵的条件数与病态方程组,我 Ax 的系数矩阵A与左端向量b的元素往往是通首先了解到的是线性方程组b 过观测或计算而得到,因而会带有误差。即使原始数据是精确的,但存放到计算机后由于受字长的限制也会变为近似值。所以当A和b有微小变化时,即使求解过程精确进行,所得的解相对于原方程组也可能会产生很大的相对误差。对于本节的学习掌握的不是很好,虽然在课后习题中对课堂知识有了一定的巩固,但整体感觉没有很好的掌握它。第四节的迭代法,初次接触迭代法,了解到迭代法就是构造一个无线的向量序列,使他的极限是方程组的解向量。迭代法应考虑收敛性与精度控制的问题。三种迭代方法的基本思想我已经掌握了,但是在matlab 的编程中还存在很大的问题。 在本节的学习中我认为我最大的问题还是程序的编写。通过这段时间的练习,虽然掌握了一些编写方法和技巧。相比于第一章是对其的应用熟练了不少,但在程序编写上还存在很多问题。希望在以后的学习中能尽快熟练掌握它,充分发挥它强大的作用。 二、本章知识梳理

2.1、Gauss 消去法(次重点) Gauss 消去法基本思想:由消元和回代两个过程组成。 2.1.1顺序Gauss 消去法(对方程组的增广矩阵做第二种初等行变换) 定理 顺序Gauss 消去法的前n-1个主元素) (k kk a (k=1,2,```,n-1)均不为零的充分必要条件是方程组的系数矩阵A 的前 n-1个顺序主子式 )1,,2,1(0)1()1(1 ) 1(1)1(11-=≠=n k a a a a D kk k k K ΛΛM M Λ 消元过程:对于 k=1,2,···,n-1 执行 (1)如果 ,0)(=a k kk 则算法失效,停止计算,否则转入(2) 。 (2)对于i=k+1,k+2,···n,计算 a a k kk k ik k i m )() (,= n k j i m a a a k kj ik k ij k ij ,,1,,) ()() 1(Λ+=-=+ n k i m b b b k k ik k i k i ,,1,) ()() 1(Λ+=-=+ 回代过程: a b x n nn n n n ) () (/= ) (1,,2,1/)() (1 )() (?--=- =∑+=n n k a x a b x k kk j n k j k kj k k k 2.1.2 列主元素Gauss 消去法(把) (n k k i a k kj ,,1,) (?+=中绝对值最大的元素交换到第k 行的主对角线位置)(重点) 定理 设方程组的系数矩阵A 非奇异,则用列主元素Gauss 消去法求解方程组时,各个列主元素a (k=1,2,```,n-1)均不为零。 消元过程:对于 k=1,2,···,n-1 执行 (1)选行号k i ,使 )()(max k i n i k k k i k k a a ≤≤=。 (2)交换A 与b 两行所含的数值。 (3)对于i=k+1,k+2,···n,计算

数值计算方法第一章

第一章 绪 论 本章以误差为主线,介绍了计算方法课程的特点,并概略描述了与算法相关的基本概念,如收敛性、稳定性,其次给出了误差的度量方法以及误差的传播规律,最后,结合数值实验指出了算法设计时应注意的问题. §1.1 引 言 计算方法以科学与工程等领域所建立的数学模型为求解对象,目的是在有限的时间段内利用有限的计算工具计算出模型的有效解答。 由于科学与工程问题的多样性和复杂性,所建立的数学模型也是各种各样的、复杂的. 复杂性表现在如下几个方面:求解系统的规模很大,多种因素之间的非线性耦合,海量的数据处理等等,这样就使得在其它课程中学到的分析求解方法因计算量庞大而不能得到计算结果,且更多的复杂数学模型没有分析求解方法. 这门课程则是针对从各种各样的数学模型中抽象出或转化出的典型问题,介绍有效的串行求解算法,它们包括 (1) 非线性方程的近似求解方法; (2) 线性代数方程组的求解方法; (3) 函数的插值近似和数据的拟合近似; (4) 积分和微分的近似计算方法; (5) 常微分方程初值问题的数值解法; (6) 优化问题的近似解法;等等 从如上内容可以看出,计算方法的显著特点之一是“近似”. 之所以要进行近似计算,这与我们使用的工具、追求的目标、以及参与计算的数据来源等因素有关. 计算机只能处理有限数据,只能区分、存储有限信息,而实数包含有无穷多个数据,这样,当把原始数据、中间数据、以及最终计算结果用机器数表示时就不可避免的引入了误差,称之为舍入误差. 我们需要在有限的时间段内得到运算结果,就需要将无穷的计算过程截断, 从而产生截断误差. 如 +++=! 21 !111e 的计算是无穷过程,当用 ! 1 !21!111n e n ++++= 作为e 的近似时,则需要进行有限过程的计算,但产生了 截断误差e e n -.

工程数值方法读书报告

工程数值方法读书报告 Steven C.Chapra和Raymond P.Canale教授编写以及于艳华等翻译的这本《工程数值方法》是一本很优秀的教材,更是一本经典著作。之所以这样说,是因为本书并没有像其他专业类书籍一样刻板的介绍专业知识,而是采用一种引导的方式进行介绍,这是一种极富创意的方式,引导读者轻松掌握数值方法的相关知识。书中内容并不是晦涩难懂,许多例子都是中学时代接触过的问题,比如伞兵降落问题、牛顿力学问题等。对于学生来说,作者的这种问题引导方法,可以激发我们的兴趣。 本书内容涉及数值方法和计算机知识,对于解决现实问题具有重要意义。全书共8部分,分别介绍了建模、计算机与误差分析问题;方程求根;线性代数方程组;最优化;曲线拟合;数值微分和数值积分;常微分方程;偏微分方程。每一个部分又分别详细介绍了不同的数学问题求解方法。这8个部分基本上涵盖了各个工程中的基本数值问题的解决方法。通过阅读本书可以知道数值方法与计算机的结合提高了解决问题的能力,尤其是随着现代计算机性能的提高,之前的很多问题现在可以轻易的解决。使用计算机解决数值问题实际上就是通过对计算过程进行编程,实现了快速运算,代替了人工手算的枯燥和巨大计算量。本书使用的两个编程工具是Excel和MATLAB。Excel电子表格是一个特殊类型的数学软件,它准许用户在数据行和列中输入数据,并执行计算,其内建的数值计算功能比如方程求根、曲线拟合和最优化,正是我们所需要的。并且Excel还包含了VBA宏语言开发功能,是数值分析的一个很有用的帮手。MATLAB不同于Excel,它的主要对象是矩阵,可以在一个易用的交互式环境中方便地实现矩阵的数学处理。MATLAB所具有的各种函数和操作符,能够很方便的实现书中的许多数值方法,同样也可以按照用户的需要进行编程。MATLAB与Excel一起使用,优势互补,真正打开工程问题求解的大门。 数值方法是将数学问题进行公式化的表示,以便用算术运算对其进行求解的技术。将实际问题量化,并运用数学方法求解是解决问题的有效途径,也是科学

相关文档