文档库 最新最全的文档下载
当前位置:文档库 › 01第一章 集合与简易逻辑【讲义】

01第一章 集合与简易逻辑【讲义】

01第一章 集合与简易逻辑【讲义】
01第一章 集合与简易逻辑【讲义】

第一章 集合与简易逻辑

一、基础知识

定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ?。例如,通常用N ,Z ,Q ,B ,Q +分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用?来表示。集合分有限集和无限集两种。

集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。例如{有理数},}0{>x x 分别表示有理数集和正实数集。

定义2 子集:对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B 中的元素,则A 叫做B 的子集,记为B A ?,例如Z N ?。规定空集是任何集合的子集,如果A 是B 的子集,B 也是A 的子集,则称A 与B 相等。如果A 是B 的子集,而且B 中存在元素不属于A ,则A 叫B 的真子集。

定义3 交集,}.{B x A x x B A ∈∈=且

定义4 并集,}.{B x A x x B A ∈∈=或

定义5 补集,若},{,1A x I x x A C I A ?∈=?且则称为A 在I 中的补集。

定义6 差集,},{\B x A x x B A ?∈=且。

定义7 集合},,{b a R x b x a x <∈<<记作开区间),(b a ,集合

},,{b a R x b x a x <∈≤≤记作闭区间],[b a ,R 记作).,(+∞-∞

定理1 集合的性质:对任意集合A ,B ,C ,有:

(1));()()(C A B A C B A = (2))()()(C A B A C B A =;

(3));(111B A C B C A C = (4)).(111B A C B C A C =

【证明】这里仅证(1)、(3),其余由读者自己完成。

(1)若)(C B A x ∈,则A x ∈,且B x ∈或C x ∈,所以)(B A x ∈或)(C A x ∈,即)()(C A B A x ∈;反之,)()(C A B A x ∈,则)(B A x ∈或)(C A x ∈,即A x ∈且B x ∈或C x ∈,即A x ∈且)(C B x ∈,即).(C B A x ∈

(3)若B C A C x 11 ∈,则A C x 1∈或B C x 1∈,所以A x ?或B x ?,所以)(B A x ?,又I x ∈,所以)(1B A C x ∈,即)(111B A C B C A C ?,反之也有

.)(111B C A C B A C ?

定理2 加法原理:做一件事有n 类办法,第一类办法中有1m 种不同的方法,第二类办法中有2m 种不同的方法,…,第n 类办法中有n m 种不同的方法,那么完成这件事一共有n m m m N +++= 21种不同的方法。

定理3 乘法原理:做一件事分n 个步骤,第一步有1m 种不同的方法,第二步有2m 种不同的方法,…,第n 步有n m 种不同的方法,那么完成这件事一共有n m m m N ???= 21种不同的方法。

二、方法与例题

1.利用集合中元素的属性,检验元素是否属于集合。

例1 设},,{2

2Z y x y x a a M ∈-==,求证:

(1))(,12Z k M k ∈∈-;

(2))(,24Z k M k ∈∈-;

(3)若M q M p ∈∈,,则.M pq ∈

2.利用子集的定义证明集合相等,先证B A ?,再证A B ?,则A =B 。

例2 设A ,B 是两个集合,又设集合M 满足

B A M B A B A M B M A ===,,求集合M (用A ,B 表示)。

3.分类讨论思想的应用。

例3 }02{},01{},023{222=+-==-+-==+-=mx x x C a ax x x B x x x A ,若

C C A A B A == ,,求.,m a

4.计数原理的应用。

例4 集合A ,B ,C 是I ={1,2,3,4,5,6,7,8,9,0}的子集,(1)若I B A = ,求有序集合对(A ,B )的个数;(2)求I 的非空真子集的个数。

5.配对方法。

例5 给定集合},,3,2,1{n I =的k 个子集:k A A A ,,,21 ,满足任何两个子集的交集非空,并且再添加I 的任何一个其他子集后将不再具有该性质,求k 的值。

6.竞赛常用方法与例问题。

定理4 容斥原理;用A 表示集合A 的元素个数,则,B A B A B A -+=

C B A C B C A B A C B A C B A +---++=,

需要xy 此结论可以推广到n 个集合的情况,即∑

∑∑∑=≠≤<<≤=+-=n i k j i j i n k j i j i i n i i A A A A A A A

111 .)1(11 n i i n A =--+-

定义8 集合的划分:若I A A A n = 21,且),,1(j i n j i A A j i ≠≤≤?= ,则这些子集的全集叫I 的一个n -划分。

定理5 最小数原理:自然数集的任何非空子集必有最小数。

定理6 抽屉原理:将1+mn 个元素放入)1(>n n 个抽屉,必有一个抽屉放有不少于1+m 个元素,也必有一个抽屉放有不多于m 个元素;将无穷多个元素放入n 个抽屉必有一个抽屉放有无穷多个元素。

例6 求1,2,3,…,100中不能被2,3,5整除的数的个数。

例7 S 是集合{1,2,…,2004}的子集,S 中的任意两个数的差不等于4或7,问S 中最

多含有多少个元素?

例8 求所有自然数)2(≥n n ,使得存在实数n a a a ,,,21 满足:

}.2

)1(,

,2,1{}1}{-=≤<≤-n n n j i a a j i

例9 设A ={1,2,3,4,5,6},B ={7,8,9,……,n },在A 中取三个数,B 中取两个数组成五个元素的集合i A ,.201,2,20,,2,1≤<≤≤=j i A A i j i 求n 的最小值。

例10 集合{1,2,…,3n }可以划分成n 个互不相交的三元集合},,{z y x ,其中z y x 3=+,求满足条件的最小正整数.n

三、基础训练题

1.给定三元集合},,1{2x x x -,则实数x 的取值范围是___________。

2.若集合},,012{2R x R a x ax x A ∈∈=++=中只有一个元素,则a =___________。

3.集合}3,2,1{=B 的非空真子集有___________个。

4.已知集合}01{},023{2=+==+-=ax x N x x x M ,若M N ?,则由满足条件的实

数a 组成的集合P =___________。

5.已知}{},2{a x x B x x A ≤=<=,且B A ?,则常数a 的取值范围是___________。

6.若非空集合S 满足}5,4,3,2,1{?S ,且若S a ∈,则S a ∈-6,那么符合要求的集合S 有___________个。

7.集合}14{}12{Z k k Y Z n n X ∈±=∈+=与之间的关系是___________。

8.若集合}1,,{-=xy xy x A ,其中Z x ∈,Z y ∈且0≠y ,若A ∈0,则A 中元素之和是___________。

9.集合}01{},06{2=-==-+=mx x M x x x P ,且P M ?,则满足条件的m 值构成

的集合为___________。

10.集合},9{},,12{2R x x y y B R x x y x A ∈+-==∈+==+,则

=B A ___________。

11.已知S 是由实数构成的集合,且满足1)2;1S ?)若S a ∈,则

S a

∈-11。如果?≠S ,S 中至少含有多少个元素?说明理由。 12.已知B A C a x y y x B x a y y x A =+====},),{(},),{(,又C 为单元素集合,求实数a 的取值范围。

四、高考水平训练题

1.已知集合},,0{},,,{y x B y x xy x A =+=,且A =B ,则=x ___________,

=y ___________。

2.},9,1{)()(},2{,,},9,8,7,6,5,4,3,2,1{11==??=B C A C B A I B I A I

}8,6,4{)(1=B A C ,则=)(1B C A ___________。

3.已知集合}121{},0310{2-≤≤+=≥-+=m x m x B x x x A ,当?=B A 时,实

数m 的取值范围是___________。

4.若实数a 为常数,且=??

????????=+-=∈a x ax x A a 则,1112___________。 5.集合}1,12,3{},3,1,{22+--=-+=m m m N m m M ,若}3{-=N M ,则=m ___________。

6.集合},27{},,35{++∈+==∈+==N y y b b B N x x a a A ,则B A 中的最小元素是___________。

7.集合}0,,{},,,{2222y x y x B xy y x y x A -+=+-=,且A =B ,则=+y x ___________。

8.已知集合}04{},021{<+=<-+=px x B x

x x

A ,且A

B ?,则p 的取值范围是___________。

9.设集合},05224),{(},01),{(22=+-+==--=y x x y x B x y y x A }),{(b kx y y x C +==,问:是否存在N b k ∈,,使得?=C B A )(,并证明你的结论。

10.集合A 和B 各含有12个元素,B A 含有4个元素,试求同时满足下列条件的集合C 的个数:1)B A C ?且C 中含有3个元素;2)?≠A C 。

11.判断以下命题是否正确:设A ,B 是平面上两个点集,}),{(222r y x y x C r ≤+=,若

对任何0≥r ,都有B C A C r r ?,则必有B A ?,证明你的结论。

五、联赛一试水平训练题

1.已知集合A B B x mx x m z z B x x A ??≠>+-==<=且,},2,1

1{},0{2,则实数m 的取值范围是___________。

2.集合}12,2,,3,2,1{+=n n A 的子集B 满足:对任意的B y x B y x ?+∈,,,则集合B 中元素个数的最大值是___________。

3.已知集合}2,,{},,,{2d a d a a Q aq aq a P ++==,其中0≠a ,且R a ∈,若P =Q ,则

实数=q ___________。

4.已知集合}1),{(},0,),{(y x xy y x B a a y x y x A +=+=>=+=,若B A 是平面上正八边形的顶点所构成的集合,则=a ___________。

5.集合},,,4812{Z n l m l n m u u M ∈++==,集合

},,,121620{Z r q p r q p u u N ∈++==,则集合M 与N 的关系是___________。

6.设集合}1995

,,3,2,1{ =M ,集合A 满足:M A ?,且当A x ∈时,A x ?15,则A 中元素最多有___________个。

7.非空集合}223{},5312{≤≤=-≤≤+=x x B a x a x A ,≤则使B A A ?成立的所有a 的集合是___________。

8.已知集合A ,B ,aC (不必相异)的并集},,2,1{n C B A =, 则满足条件的有序三元组(A ,B ,C )个数是___________。

9.已知集合}1),{(},1),{(},1),{(22=+==+==+=y x y x C ay x y x B y ax y x A ,问:

当a 取何值时,C B A )(为恰有2个元素的集合?说明理由,若改为3个元素集合,结论如何?

10.求集合B 和C ,使得}10,,2,1{ =C B ,并且C 的元素乘积等于B 的元素和。

11.S 是Q 的子集且满足:若Q r ∈,则0,,=∈-∈r S r S r 恰有一个成立,并且若

S b S a ∈∈,,则S b a S ab ∈+∈,,试确定集合S 。

12.集合S={1,2,3,4,5,6,7,8,9,0}的若干个五元子集满足:S 中的任何两个元素至多出现在两个不同的五元子集中,问:至多有多少个五元子集?

六、联赛二试水平训练题

1.321,,S S S 是三个非空整数集,已知对于1,2,3的任意一个排列k j i ,,,如果i S x ∈,j S y ∈,则i S y x ∈-。求证:321,,S S S 中必有两个相等。

2.求证:集合{1,2,…,1989}可以划分为117个互不相交的子集)117,,2,1( =i A i ,使得(1)每个i A 恰有17个元素;(2)每个i A 中各元素之和相同。

3.某人写了n 封信,同时写了n 个信封,然后将信任意装入信封,问:每封信都装错的情况有多少种?

4.设2021,,,a a a 是20个两两不同的整数,且整合}201{≤≤≤+j i a a j i 中有201个不同的元素,求集合}201{≤<≤-j i a a j i 中不同元素个数的最小可能值。

5.设S 是由n 2个人组成的集合。求证:其中必定有两个人,他们的公共朋友的个数为偶数。

6.对于整数4≥n ,求出最小的整数)(n f ,使得对于任何正整数m ,集合

}1,,1,{-++n m m m 的任一个)(n f 元子集中,均有至少3个两两互质的元素。

7.设集合S={1,2,…,50},求最小自然数k ,使S 的任意一个s 元子集中都存在两个不同的数a 和b ,满足ab b a )(+。

8.集合+∈=N k k X },6,,2,1{ ,试作出X 的三元子集族&,满足:

(1)X 的任意一个二元子集至少被族&中的一个三元子集包含;

(2))k 的元素个数表示&&(6&2

=。 9.设集合}21

{,m ,,A =,求最小的正整数m ,使得对A 的任意一个14-分划1421,,,A A A ,一定存在某个集合)141(≤≤i A i ,在i A 中有两个元素a 和b 满足

b a b 3

4≤<。

集合与简易逻辑知识点归纳(1)

{}9B =,;B A =B B = )()(); U U B A B =? )()()U U B A B =? ()()card A B card A =+ ()()card B card A B - ()U A =e()U A =e13设全集,2,3,4A = {3,4,5} B = {4,7,8}, 求:(C U A )∩ B), (C U A)(A ∪B), C U B). 有两相)(,2121x x x x <有两相等a b x x 221- ==无实根 有意义的

①一个命题的否命题为真,它的逆 命题一定为真. (否命题?逆命 题.)②一个命题为真,则它的逆 否命题一定为真.(原命题?逆 否命题.) 4.反证法是中学数学的重要方法。 会用反证法证明一些代数命题。 充分条件与必要条件 答案见下一页

数学基础知识与典型例题(第一章集合与简易逻辑)答案 例1选A; 例2填{(2,1)} 注:方程组解的集合应是点集. 例3解:∵{}9A B =,∴9A ∈.⑴若219a -=,则5a =,此时{}{}4,9,25,9,0,4A B =-=-, {}9,4A B =-,与已知矛盾,舍去.⑵若29a =,则3a =±①当3 a =时,{}{}4,5,9,2,2,9A B =-=--.B 中有两个元素均为2-,与集合中元素的互异性矛盾,应舍去.②当3a =-时,{}{}4,7,9,9,8,4A B =--=-,符合题意.综上所述,3a =-. [点评]本题考查集合元素基本特征──确定性、互异性、无序性,切入点是分类讨论思想,由于集 合中元素用字母表示,检验必不可少。 例4C 例5C 例6①?,②ü,③ü,④ 例7填2 例8C 例9? 例10解:∵M={y|y =x 2+1,x ∈R}={y |y ≥1},N={y|y =x +1,x ∈R}={y|y ∈R}∴ M∩N=M={y|y ≥1} 注:在集合运算之前,首先要识别集合,即认清集合中元素的特征。M 、N 均为数集,不能误认为是点集,从而解方程组。其次要化简集合。实际上,从函数角度看,本题中的M ,N 分别是二次函数和一次函数的值域。一般地,集合{y |y =f (x ),x ∈A}应看成是函数y =f (x )的值域,通过求函数值域化简集合。此集合与集合{(x ,y )|y=x 2+1,x ∈R}是有本质差异的,后者是点集,表示抛物线y =x 2+1上的所有点,属于图形范畴。集合中元素特征与代表元素的字母无关,例如{y|y ≥1}={x |x ≥1}。 例11填?注:点集与数集的交集是φ. 例12埴?,R 例13解:∵C U A = {1,2,6,7,8} ,C U B = {1,2,3,5,6}, ∴(C U A)∩(C U B) = {1,2,6} ,(C U A)∪(C U B) = {1,2,3,5,6,7,8}, A ∪ B = {3,4,5,7,8},A∩B = {4},∴ C U (A ∪B) = {1,2,6} ,C U (A∩B) = {1,2,3,5,6,7,8} 例145,6a b ==-; 例15原不等式的解集是{}37|<<-x x 例16 53|332 2x R x x ??∈-<-+-->+?? ≥或,即3344123x x x x ? 2或x <31,∴原不等式的解集为{x | x >2或x <31}.方法2:(整体换元转化法)分析:把右边看成常数c ,就同)0(>>+c c b ax 一样∵|4x -3|>2x +1?4x -3>2x +1或4x -3<-(2x +1) ? x >2 或x < 31,∴原不等式的解集为{x | x >2或x <3 1}. 例18分析:关键是去掉绝对值. 方法1:零点分段讨论法(利用绝对值的代数定义) ①当1-x ,∴}32 1 |{<2 1}. 方法2:数形结合:从形的方面考虑,不等式|x -3|-|x +1|<1表示数轴上到3和-1两点的距离之差小于1的点 ∴原不等式的解集为{x |x > 2 1 }. 例19答:{x |x ≤0或1??????????-<>-<>≤≤--≠????? ? ? ???>+-<+-≤-+≠+13 21 0121 0)1(2230)1(24020 12k k k k k k k k k k k k k 或或. 1 3 212<<-<<-?k k 或∴实数k 的取值范围是{k|-2?=+-R 的解集为函数在上恒大于 22,2, |2||2|2. 2,2,1|2|121.,,2 11 0.,, 1.(0,][1,). 22 x c x c x x c y x x c c c x c x x c R c c P c P c c -?+-=∴=+-??>?> <≥?+∞R ≥函数在上的最小值为不等式的解集为如果正确且Q 不正确则≤如果不正确且Q 正确则所以的取值范围为 例26答:552x x x >?><或. 例27答既不充分也不必要 解:∵“若 x + y =3,则x = 1或y = 2”是假命题,其逆命题也不成立. ∴逆否命题: “若12x y ≠≠或,则3x y +≠”是假命题, 否命题也不成立. 故3≠+y x 是12x y ≠≠或的既不充分也不必要条件. 例28选B 例29选A

集合与简易逻辑知识点整理

集合与简易逻辑 知识点整理 班级: 姓名: 1.集合中元素的性质(三要素): ; ; 。 2.常见数集:自然数集 ;自然数集 ;正整数集 ; 整数集 ;有理数集 ;实数集 。 3.子集:A B ?? ; 真子集:A B ≠ ?? ; 补(余)集:A C B ? ; 【注意】空集是任意集合的子集,是任意非空集合的真子集。 4.交集:A B ?? ; 并集:A B ?? 。 笛摩根定律:()U C A B ?= ;()U C A B ?= 。 性质:A B A ?=? ;A B A ?=? 。 5.用下列符号填空: "","","","","",""≠ ∈???=≠ 0 N ;{}0 R ;φ {}0;{}1,2 {}(1,2);{}0x x ≥ {} 0y y ≥ 6.含绝对值的不等式的解法:【注意】含等号时端点要取到。 x a < (0)a >的解集是 ;x a > (0)a >的解集是 。 (0)ax b c c +<>? a x b <+< ;(0)ax b c c +<

一元二次不等式2 0ax bx c ++>(0)a ≠恒成立? 。 一元二次不等式2 0ax bx c ++≥(0)a ≠恒成立? 。 9.简单分式不等式的解法: () 0()f x g x > ?()()0f x g x ?>?()0()0f x g x >??>?或()0()0f x g x ;则p q 是的 条件; 若,p q q p ≠>?;则p q 是的 条件; 若p q ?;则p q 是的 条件; 若,p q q p ≠>≠>;则p q 是的 条件。

高中数学专题 集合与简易逻辑

一. 本周教学内容: 集合与简易逻辑 知识结构: 【典型例题】 例1. 已知集合A{2,3,7},且A中至多有一个奇数,则这样的集合共有 A. 2个 B. 4个 C. 5个 D. 6个 解:集合A可有三类:第一类是空集;第二类是A中不含奇数;第三类是A中只含一小结:应充分理解“至多”两字,然后进行分类计数。 例2. 设全集I=R,集合A={x|(x-1)(x-3)≤0},B={x|(x-1)(x-a)<0}且 解:解不等式(x-1)(x-3)≤0,得1≤x≤3,故A={x|1≤x≤3},当a<1时, 是[1,3] 小结:这类问题一般可采用画数轴进行分析解决。 例3. 解:

小结:此题将解方程与集合运算有机地结合起来,对解题能力的要求略高一些,当然 例4. 解不等式|x+2|+|x|>4 解法一: 综上可知,原不等式的解集为{x|x<-3或x>1} 解法二:不等式|x+2|+|x|>4表示数轴上与A(-2),O(0)的距离之和大于4的点,如图所示。 小结:①我们常用脱去绝对值的方法来解含有绝对值的不等式,即零点分区间法,其实质是转化为分段求解,如解法一。 ②解法二是充分考虑绝对值的几何意义,从形的方面来考虑的,解决任何一个数学问题都要养成从数、形两个方面去思考的习惯,数形结合是数学中的一种基本的思维方法。 例5. 若关于x的不等式x2-ax-6a<0的解集为一开区间,且此区间的长度不超过5,试求a的取值范围。 解: 小结: 解a的范围。但韦达定理不能保证有实根,故应注意Δ>0这一条件。 例6. 解: 依题意有:

小结:关于方程根的讨论一般用函数的观点和方法去解决会使问题简洁。 例7. 等差数列{a+bn|n=1,2,…}中包含一个无穷的等比数列,求a,b(b≠0)所需满足的充分必要条件 解:设有自然数n1

集合与简易逻辑知识点

集合、简易逻辑 知识梳理: 1、 集合:某些指定的对象集在一起就构成一个集合。集合中的每一个对象称为该集合的元素。 元素与集合的关系:A a ∈或A a ? 集合的常用表示法: 列举法 、 描述法 。集合元素的特征: 确定性 、 互异性 、 无序性 。 常用一些数集及其代号:非负整数集或自然数集N ;正整数集*N ,整数集Z ;有理数集Q ;实数集R 2、子集:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集,记为A ?B 3、真子集:如果A ?B ,并且B A ≠,那么集合A 成为集合B 的真子集,记为A ?B ,读作“A 真包含于B 或B 真包含A ”,如:}{}{b a a ,?。 注:空集是任何集合的子集。是非空集合的真子集 结论:设集合A 中有n 个元素,则A 的子集个数为n 2个,真子集个数为12-n 个 4、补集:设A ?S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为A C s ,读作“A 在S 中的补集”,即A C s =}{A x S x x ?∈且,|。 5、全集:如果集合S 包含我们所要研究的各个集合,这时S 可以看作一个全集。通常全集记作U 。 6、交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作B A ?即:B A ?=}{B x A x x ∈∈且,|。 7、并集:一般地,由所有属于集合A 或属于B 的元素构成的集合,称为A 与B 的并集,记作B A ?即:B A ?=}{B x A x x ∈∈或,|。 记住两个常见的结论:B A A B A ??=?;A B A B A ??=?;

2013高考数学基础检测:01专题一-集合与简易逻辑

2013高考数学基础检测:01专题一-集合与简易逻辑

专题一 集合与简易逻辑 一、选择题 1.若A={x ∈Z|2≤22-x <8}, B={x ∈R||log 2x|>1}, 则A ∩(C R B)的元素个数为( ) A .0 B .1 C .2 D .3 2.命题“若x 2<1,则-11或x<-1,则x 2>1 D .若x ≥1或x ≤-1,则x 2≥1 3.若集合M={0, 1, 2}, N={(x, y)|x-2y+1≥0且x-2y-1≤0, x 、y∈M},则N 中元素的个数为( ) A .9 B .6 C .4 D .2 4.对于集合M 、N ,定义M-N={x|x∈M,且x ?N},M ○+N=(M-N)∪(N -M).设A={y|y=x 2-3x, x∈R}, B={y|y=-2x , x∈R},则A ○+B=( ) A .],094(- B . )0,4 9[- C .),0()49,(+∞--∞ D .),0[)4 9,(+∞--∞ 5.命题“对任意的x∈R ,x 3-x 2+1≤0”的否定是( )

{x|x>0}=ф,则实数m 的取值范围是_________. 10.(2008年高考·全国卷Ⅱ)平面内的一个四边形为平行四边形的充分条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件: 充要条件①_____________________; 充要条件②_____________________.(写出你认为正确的两个充要条件) 11.下列结论中是真命题的有__________(填上序号即可) ①f(x)=ax 2+bx+c 在[0, +∞)上单调递增的一 个充分条件是-2a b <0; ②已知甲:x+y ≠3;乙:x ≠1或y ≠2.则甲是乙的充分不必要条件; ③数列{a n }, n ∈N * 是等差数列的充要条件是 P n (n, n S n )共线. 三、解答题 12.设全集U=R ,集合A={x|y=log 2 1 (x+3)(2-x)}, B={x|e x-1 ≥1}. (1)求A ∪B ; (2)求(C U A)∩B .

集合与简易逻辑知识点

高考数学概念方法题型易误点技巧总结(一) 集合与简易逻辑 基本概念、公式及方法是数学解题的基础工具和基本技能,为此作为临考前的高三学生,务必首先要掌握高中数学中的概念、公式及基本解题方法,其次要熟悉一些基本题型,明确解题中的易误点,还应了解一些常用结论,最后还要掌握一些的应试技巧。本资料对高中数学所涉及到的概念、公式、常见题型、常用方法和结论及解题中的易误点,按章节进行了系统的整理,最后阐述了考试中的一些常用技巧,相信通过对本资料的认真研读,一定能大幅度地提升高考数学成绩。 1.集合元素具有确定性、无序性和互异性. 在求有关集合问题时,尤其要注意元素的互异性,如(1)设P 、Q 为两个非空实数集合,定义集合P+Q={|,}a b a P b Q +∈∈,若 {0,2,5}P =,}6,2,1{=Q ,则P+Q 中元素的有________个。 (答:8)(2)设{(,)|,}U x y x R y R =∈∈,{(,)|20}A x y x y m =-+>,{(,)|B x y x y n =+-0}≤,那么点)()3,2(B C A P u ∈的充要条件是________(答:5,1<->n m );(3)非空集合 }5,4,3,2,1{?S ,且满足“若S a ∈,则S a ∈-6” ,这样的S 共有_____个(答:7) 2.遇到A B =?时,你是否注意到“极端”情况:A =?或B =?;同样当A B ?时,你是否忘记?=A 的情形?要注意到?是任何集合的子集,是任何非空集合的真子集。如集合{|10}A x ax =-=,{}2|320B x x x =-+=,且A B B =,则实数a =______.(答:10,1,2 a =) 3.对于含有n 个元素的有限集合M ,其子集、真子集、非空子集、非空真子集的个数 依次为,n 2,12-n ,12-n .22-n 如满足{1,2}{1,2,3,4,5}M ??≠集合M 有______个。 (答:7) 4.集合的运算性质: ⑴A B A B A =??; ⑵A B B B A =??;⑶A B ?? u u A B ?痧; ⑷u u A B A B =???痧; ⑸u A B U A B =??e; ⑹()U C A B U U C A C B =;⑺()U U U C A B C A C B =.如设全集}5,4,3,2,1{=U ,若}2{=B A ,}4{)(=B A C U ,}5,1{)()(=B C A C U U ,则A =_____,B =___.(答:{2,3}A =,{2,4}B =) 5. 研究集合问题,一定要理解集合的意义――抓住集合的代表元素。如:{}x y x lg |=—函数的定义域;{}x y y lg |=—函数的值域;{}x y y x lg |),(=—函数图象上的点集,如 (1)设集合{|M x y ==,集合N ={}2|,y y x x M =∈,则M N =___(答: [4,)+∞) ;(2)设集合{|(1,2)(3,4),}M a a R λλ==+∈,{|(2,3)(4,5)N a a λ==+, }R λ∈,则=N M _____(答:)}2,2{(--) 6. 数轴和韦恩图是进行交、并、补运算的有力工具,在具体计算时不要忘了集合本身和空集这两种特殊情况,补集思想常运用于解决否定型或正面较复杂的有关问题。如已知函 数12)2(24)(22+----=p p x p x x f 在区间]1,1[-上至少存在一个实数c ,使 0)(>c f ,求实数p 的取值范围。 (答:3(3,)2 -) 7.复合命题真假的判断。“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“真假相反”。如在下列说法中:⑴“p 且q ”为真是“p 或q ”为真的充分不必要条件;⑵“p 且q ”为假是“p 或

高中数学知识点易错点梳理一集合与简易逻辑 (1)

高中数学知识点易错点梳理一集合与简易逻辑 1. 研究集合必须注意集合元素的特征即三性(确定,互异,无序); (1) 已知集合A={x,xy,lgxy},集合,B={0,|x |,y},且A=B,则x+y= 2. 研究集合,首先必须弄清代表元素,才能理解集合的意义。 (2)已知集合M={y |y=x 2 ,x ∈R},N={y |y=x 2 +1,x ∈R},求M ∩N ; 与集合M={(x,y )|y=x 2 ,x ∈R},N={(x,y)|y=x 2 +1,x ∈R}求M ∩N 的区别。 3. 集合 A 、B ,?=?B A 时,你是否注意到“极端”情况:?=A 或?=B ;求集合的 子集B A ?时是否忘记?. 例如:(3)()()012222 <--+-x a x a 对一切R x ∈恒成立,求a 的取植范围,你讨 论了a =2的情况了吗? 4. 对于含有n 个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次 为,n 2,12-n ,12-n .22-n 如满足条件}4,3,2,1{}1{??M 的集合M 共有_____个 5. 解集合问题的基本工具是韦恩图; (5)某文艺小组共有10名成员,每人至少会唱歌和跳舞中的一项,其中7人会唱歌,跳舞5人会,现从中选出会唱歌和会跳舞的各一人,表演一个唱歌和一个跳舞节目,问有_____________种不同的选法? 6. 两集合之间的关系。(6)},14{},,12{Z k k x x N Z k k x x M ∈±==∈+== 7. (C U A)∩( C U B) = C U (A ∪B) (C U A)∪( C U B) = C U (A ∩B);B B A = A B ??; 8、可以判断真假的语句叫做命题. 逻辑连接词有“或”、“且”和“非”. p 、q 形式的复合命题的真值表: p q P 且q P 或q 真 真 真 真 真 假 假 真 假 真 假 真 假 假 假 假 9、 命题的四种形式及其相互关系 互 逆 互 互 互 为 互 否 逆 逆 否 否 否 否 否 否 互 逆 原命题 若p 则q 逆命题 若q 则p 否命题 若﹃p则﹃q 逆否命题 若﹃q则﹃p

集合与简易逻辑专题训练

集合与简易逻辑专题训练 一、选择题:(本大题共12小题,每小题4分,共48分) 1、下列表示方法正确的是 A 、1?{0,1,2} B 、{1}∈{0,1,2} C 、{0,1,2}?{0,1,3} D 、φ {0} 2、已知A={1,2,a 2-3a -1},B={1,3},=B A {3,1}则a 等于 A 、-4或1 B 、-1或4 C 、-1 D 、4 3、设集合},3{a M =,},03|{2 Z x x x x N ∈<-=,}1{=N M ,则N M 为 A 、 {1,3,a} B 、 {1,2,3,a} C 、 {1,2,3} D 、 {1,3} 4、集合P=},2|),{(R x y x y x ∈=-,Q=},2|),{(R x y x y x ∈=+,则P Q A 、(2,0) B 、{(2,0 )} C 、{0,2} D 、{}|2y y ≤ 5、下列结论中正确的是 A 、命题p 是真命题时,命题“P 且q ”一定是真命题。 B 、命题“P 且q ”是真命题时,命题P 一定是真命题 C 、命题“P 且q ”是假命题时,命题P 一定是假命题 D 、命题P 是假命题时,命题“P 且q ”不一定是假命题 6、“0232=+-x x ”是“x=1”的 A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分也不必要条件 7、一个命题与它的逆命题、否命题、逆否命题这四个命题中 A 、真命题的个数一定是奇数 B 、真命题的个数一定是偶数 C 、真命题的个数可能是奇数也可能是偶数 D 、上述判断都不正确 8、设集合},2|{Z n n x x A ∈==,},2 1 |{Z n n x x B ∈+==,则下列能较准确表示A 、B 关系的图是 9、命题“对顶角相等”的否命题是 A 、对顶角不相等 B 、不是对顶角的角相等

01集合与简易逻辑

北大附中2013届周练2 (时间120分钟满分150分) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。) 1.(2011年北京)已知集合A={x|x≠1,x∈R},A∪B=R,则集合B不可能是() A.{x|x>-2,x∈R}B.{x|x<-2,x∈R} C.{x|x≠-2,x∈R} D.{0,-2,1} 2.(2011年湖北八校联考)“a=-1”是“直线a2x-y+6=0与直线4x-(a-3)y+9=0互相垂直”的 A.充分不必要条件B.必要不充分条件 C.充要条件D.既不充分也不必要条件 3.(2011年黄冈3月质检)已知全集I={1,2,3,4,5,6,7},M={3,4,5},N={1,3,6},则集合{2,7}等于() A.(?I M)∩(?I N) B.(?I M)∪(?I N) C.M∪N D.M∩N 4.“a2+b2≠0”的含义为() A.a,b不全为0;B.a,b全不为0 C.a,b至少有一个为0;D.a不为0且b为0,或b不为0且a为0 5.设命题:p:若a>b,则1 a< 1 b;q:若 1 ab<0,则ab<0;给出以下3个复合命题:①p∧q; ②p∨q③?p∧?q.其中真命题个数为() A.0个B.1个C.2个D.3个 6.已知全集U=A∪B中有m个元素,(?U A)∪(?U B)中有n个元素.若A∩B非空,则A∩B 的元素个数为() A.mn B.m+n C.n-m D.m-n 7.命题“存在一个三角形,内角和不等于180°”的否定为() A.存在一个三角形,内角和等于180°;B.所有三角形,内角和都等于180° C.所有三角形,内角和都不等于180°;D.很多三角形,内角和不等于180° 8.已知条件p:(x+1)2>4,条件q:x>a,且?p是?q的充分而不必要条件,则a的取值范围是() A.a≥1 B.a≤1 C.a≥-3 D.a≤-3 9.(2011年湖北八市三月调考)设集合M={y|y=2x,x<0},N={y|y=log2x,0

必修一集合与简易逻辑知识点经典总结

集合、简易逻辑 集合知识梳理: 1、 集合:某些指定的对象集在一起就构成一个集合。集合中的每一个对象称为该集合的元素。 元素与集合的关系:A a ∈或A a ? 集合的常用表示法: 列举法 、 描述法 。集合元素的特征: 确定性 、 互异性 、 无序性 。 常用一些数集及其代号:非负整数集或自然数集N ;正整数集*N ,整数集Z ;有理数集Q ;实数集R 2、子集:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集,记为A ?B 3、真子集:如果A ?B ,并且B A ≠,那么集合A 成为集合B 的真子集,记为 A ? B ,读作“A 真包含于B 或B 真包含A ”,如:}{}{b a a ,?。 注:空集是任何集合的子集。是非空集合的真子集 结论:设集合A 中有n 个元素,则A 的子集个数为n 2个,真子集个数为12-n 个 4、补集:设A ?S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为A C s ,读作“A 在S 中的补集”,即A C s =}{A x S x x ?∈且,|。 5、全集:如果集合S 包含我们所要研究的各个集合,这时S 可以看作一个全集。通常全集记作U 。 6、交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作B A ?即:B A ?=}{B x A x x ∈∈且,|。 7、并集:一般地,由所有属于集合A 或属于B 的元素构成的集合,称为A 与B 的并集,记作B A ?即:B A ?=}{B x A x x ∈∈或,|。 记住两个常见的结论:B A A B A ??=?;A B A B A ??=?; 命题知识梳理: 1、命题:可以判断真假的语句叫做命题。(全称命题 特称命题) ⑴全称量词——“所有的”、“任意一个”等,用“?”表示; 全称命题p :)(,x p M x ∈?; 全称命题p 的否定?p :)(,x p M x ?∈?。 ⑵存在量词——“存在一个”、“至少有一个”等,用“?”表示;

集合与简易逻辑知识点汇编

第一章知识点 、知识结构: 本章知识主要分为集合、简单不等式的解法(集合化简)、简易 二、知识回顾: (一)集合 1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的 使用. 2. 集合的表示法:列举法、描述法、图形表示法 3. 集合元素的特征:确定性、互异性、无序性 4. 集合运算:交、并、补. 交:A PIB U {X |X 亡 A ,且X 亡 B} 并: A UB U {X |X 忘 A 或 X 忘 B} 补:GAu {x^U ,且X 芒 A 5. 主要性质和运算律 (1)包含关系: A 匸A,①匸A, A 匸U,GA 匸U, A J B, A 匸 C; A R B 匸 A, A Cl B 匸 B; A U B 二 A,A U B 二 B. 逻辑三部分:

(2) 等价关系:A C B U AnB=A= AUB=B= GAUB = U (3)集合的运算律: 交换律:A n B =B n A; A U B = B U A. 结合律:(A P I B )n c = A n (B n c );(A U B )U C = A U (B U C ) 分配 律:.A n (B U c )=(A n B )u (A n c );A U (B n c )=(A U B )n (A U c ) ① RA 二①,① UA = A,U nA = A,U U A=U An ^u A=? A U 5u A=U 3U L=? S U ? =U S U U^^U A)=A NA n B )=(右LA ) U (B U D 齢(A u B )=( S U A> n ^U B) 6. 有限集的元素个数 定义:有限集A 的元素的个数叫做集合 A 的基数,记为card ( A )规 定 card( ? ) =0. 基本公式: (1)card(AUB) =card(A) +card(B)-card(AnB) ⑵ card (A U B U C) = card (A) + card (B) + card(C) -card(A^B) -card (B RC) -card(cn A) + card(AnBnc) ⑶ card ( 3L A)= card(U)- card(A) (4) 设有限集合A, card(A)=n, 2n -2. 0-1 律: 等幕律: A " A =A,AU A = A. 求补律: 反演律: (i )A 的子集个数为2n ; (ii )A 的真子集个数为2n -1 ; (iii )A 的非空子集个数为2 -1 ; (iv )A 的非空真子集个数为

第一章集合与简易逻辑(教案)

1 高中数学第一册(上) 第一章集合与简易逻辑 ◇教材分析 【知识结构】本章知识主要分为集合、简单不等式的解法(可看做集合的化简)、简易逻辑三部分: 【知识点与学习目标】 【高考评析】 集合知识作为整个数学知识的基础,在高考中重点考察的是集合的化简,以及利用集合与简易逻辑的知识来指导我们思维,寻求解决其他问题的方法. ◇学习指导 【学法指导】本章的基本概念较多,要力求在理解的基础上进行记忆. 【数学思想】1.等价转化的数学思想;2.求补集的思想; 3.分类思想;4.数形结合思想.

2 【解题规律】 1.如何解决与集合的运算有关的问题? 1)对所给的集合进行尽可能的化简; 2)有意识应用维恩图来寻找各集合之间的关系; 3)有意识运用数轴或其它方法来直观显示各集合的元素. 2.如何解决与简易逻辑有关的问题? 1)力求寻找构成此复合命题的简单命题; 2)利用子集与推出关系的联系将问题转化为集合问题. 引言 通过一个实际问题,目的是为了引出本章的内容。 1、分析这个问题,要用数学语言描述它,就是把它数学化,这就需要集合与逻辑的知识; 2、要解决问题,也需要集合与逻辑的知识. 在教学时,主要是把这个问题本身讲清楚,点出为什么“回答有20名同学参赛”不一定对.而要进一步认识、讨论这个问题,就需要运用本章所学的有关集合与逻辑的知识了. §1.1集合 〖教学目的〗通过本小节的学习,使学生达到以下要求: (1)初步理解集合的概念,知道常用数集及其记法;(2)初步了解“属于”关系的意义; (3)初步了解有限集、无限集、空集的意义. 〖教学重点与难点〗本小节的重点是集合的基本概念与表示方法;难点是运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合. 〖教学过程〗 ☆本小节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明.然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子. 1、集合的概念: 在初中代数里学习数的分类时,就用到“正数的集合”,“负数的集合”等此外,对于一元一次不等式2x一1>3,所有大于2的实数都是它的解.我们也可以说,这些数组成这个不等式的解的集合,简称为这个不等式的解集. 在初中几何里学习圆时,说圆是到定点的距离等于定长的点的集合.几何图形都可以看成点的集合. 一般地,某些指定的对象集在一起就成为一个集合,也简称集.这句话,只是对集合概念的描述性说明.集合则是集合论中原始的、不定义的概念.在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识.例如,“我校篮球队的队员”组成一个集合;“太平洋、大西洋、印度

集合与简易逻辑知识点归纳(1)

{}9B =,;B A = )()();U U B A B =? ()()A B card A =+ ()U A =e()U A =e13设全集,2,3,4A = {3,4,5} B = {4,7,8}, 求:(C U A )∩ B), (C U A)(A ∪B), C U B). 有意义的q 同为假时为假,其他情况时为真即当当为真;③“非

数学基础知识与典型例题(第一章集合与简易逻 辑)答案 例1选A; 例2填{(2,1)} 注:方程组解的集合应是点集. 例3解:∵{}9A B =,∴9A ∈.⑴若219a -=, 则5a =,此时{}{}4,9,25,9,0,4A B =-=-, {}9,4A B =-,与已知矛盾,舍去.⑵若29a =,则3 a =±①当3a =时,{}{}4,5,9,2,2,9A B =-=--.B 中有两个元素均为2-,与集合中元素的互异性矛盾,应舍去.②当3a =-时,{}{}4,7,9,9,8,4A B =--=-,符合题意.综上所述,3a =-. [点评]本题考查集合元素基本特征──确定性、互异性、无序性,切入点是分类讨论思想,由于集合中元素用字母表示,检验必不可少。 例 例y |y ≥1},≥,N 分别是二集合{y |y =f (x ),|y=x 2+1,x ∈R} y =x 2+1 x |x ≥1}。 φ. 8} ,C U B = {1, A)∪(C U B) = ,∴ C U (A ∪B) }3< 3x ?+,即123x x ??>2或x < 3 1 }.方法2:(整体换元转化法)分析:把右边看成常数c ,就同)0(>>+c c b ax 一样∵|4x -3|>2x +1?4x -3>2x +1或4x -3<-(2x +1) ? x >2 或x <3 1 ,∴原不等式的解集为{x | x >2或x <3 1}. 例18分析:关键是去掉绝对值. 方法1:零点分段讨论法(利用绝对值的代数定义) ①当1 -

集合与简易逻辑测试题(整理)

第一章 集合与简易逻辑 (考试时间:60分钟;满分:80分) 姓名: 班级: 学号: 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.在下列四个结论中,正确的有( ) (1)843 2-<>x x 是的必要非充分条件; (2)ABC ?中,A>B 是sinA>sinB 的充要条件; (3)213≠≠≠+y x y x 或是的充分非必要条件; (4)0cot tan sin <>x x x 是的充要条件. A .(1)(2)(4) B .(1)(3)(4) C .(2)(3)(4) D .(1)(2)(3)(4) 2.设集合A ={1,2,3,4}, B ={3,4,5},全集U =A ∪B ,则集合?U (A ∩B )的元素个数为 ( ) A .1个 B .2个 C .3个 D .4个 3.设a ∈R ,则a >1是1a <1的( ) A .充分但不必要条件 B .必要但不充分条件 C .充要条件 D .既不充分也不必要条件 4.下列命题中的假命题... 是( ) A .,lg 0x R x ?∈= B .,tan 1x R x ?∈= C .3,0x R x ?∈> D .,20x x R ?∈> 5.集合{}0,2,A a =,{}21,B a =,若{}0,1,2,4,16A B =,则a 的值为( ) A .1 B .2 C .3 D .4 6.已知p :存在x ∈R ,mx 2+1≤0;q :对任意x ∈R ,x 2+mx +1>0,若p 或q 为假,则实数m 的取值范围为( ) A .m ≤-2 B .m ≥2 C .m ≥2或m ≤-2 D .-2≤m ≤2 7.对于集合A ,B ,“A ∩B=A ∪B ”是“A=B ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要条件

高中数学-集合与简易逻辑知识点

集合与简易逻辑知识点 知识点内容典型题 元素与集合、集合与集合的关系 ①、∈只能表示元素与集合的关 系,而、、 ?、?、=只能表示集 合与集合的关系. ②0、{0}、的关系是常见题型, 如:数集{0}与空集的关系是() A.{0}= B.{0}∈ C.∈{0} D.?{0} ③常用数集:R、R*、R+、R + 、Q、 Z、N.(注意*、+、+的不同含义) ④是任何集合的子集,是任何非. 空.集合的真.子集. ⑤n个元素的集合的真子 ..集.个数 为:2n-1. 1.下列关系中正确的是() A.0 B.0∈ C.0= D.0≠ 2.已知a=-3,A={x│x2=9},则下 列关系正确的是() A.a A B.{a}A C.{a}∈A D.a A 3.下列命题为真命题的是() A.3{3} B. 3∈{3} C.3{1,2,3} D. 3∈ 4.若a=1,集合A={x│x<2},则下 列关系中正确的是() A.a A B.{a}A C.{a}∈A D.{a}A 集合的运算 ①掌握好求交、并、补集的基本含 义和方法,特别是C U A的含义. ②有限元素集之间的运算,常根据 定义解答,如: ⑴{0,1,2}∩{0,3,5}=. ⑵{x∈N│x<3}∩{x∈Z│0<x<10} =. ③无限元素集之间的运算,可用数 轴法,如: 设集合A={x│-1<x≤2},B= {x│-2<x≤1}则A∩B=. ④点集运算,常联立解方程组,如: A={(x,y)│x+y=2},B={(x , y)│x- y=1},则A∩B=. 5.设集合A={x∈Z│0<x<4},B= {2,3,4,5,6},则A∩B=. 6.已知集合A={x│x>0},B={x│x= 0},则A∩B是() A.{x│x≥0} B.{x│x>0} C.{0} D. 7.设M={x│2≤x≤5},N={x│-1≤ x≤3},则M∪N等于 . 8.设集合U=R,A={x│-2<x<3}, 则集合C U A=. 9.若全集U={x∈Z│x≥0},则C U N+ =. 10.已知全集U=N,集合A={x∈N│ x>10},B={x∈N│x≥3},则 C U(A∪B)=.

专题1集合与简易逻辑试题汇总

专题1:2013-2015高考数学(理)集合与简易逻辑考题汇总 (2015I) 3.设命题P :?n ∈N ,2n >2n ,则?P 为( ) A.?n ∈N , 2n >2n B.? n ∈N , 2n ≤2n C.?n ∈N , 2n ≤2n D.? n ∈N , 2n =2n (2015II) 1.已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=( ) A.{--1,0} B.{0,1} C.{-1,0,1} D.{,0,,1,2} (2014I) 1.已知集合A={x |2230x x --≥},B={x |-2≤x <2},则A B ?=( ) A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2) 9.不等式组124x y x y +≥??-≤? 的解集记为D .有下面四个命题: 1p :(,),22x y D x y ?∈+≥-, 2p :(,),22x y D x y ?∈+≥, 3P :(,),23x y D x y ?∈+≤, 4p :(,),21x y D x y ?∈+≤-. 其中真命题是( ) A .2p ,3p B .1p ,4p C .1p ,2p D .1p ,3p 14.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一个城市. 由此可判断乙去过的城市为 . (2014II) 1.设集合M ={0,1,2},N ={x |x 2-3x +2≤0},则M ∩N =( ) A .{1} B .{2} C .{0,1} D .{1,2} (2013I) 1.已知集合A ={x |x 2-2x >0},B ={x |<x ,则( ). A .A ∩ B = B .A ∪B =R C .B ?A D .A ?B (2013II) 1.已知集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N =( ). A .{0,1,2} B .{-1,0,1,2} C .{-1,0,2,3} D .{0,1,2,3}

高一数学集合与简易逻辑测试题

[课题]第一章集合与简易逻辑测试题 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.集合A={x|x≤},a=3,则( ) A.a A B.a A C.{a}∈A D.{a} A 2.集合M={x|x=3k-2,k∈Z},Q={y|y=3l+1,l∈Z},S={z|z=6m+1,m∈Z}之间的关系是( ) A.S Q M B.S=Q M C.S Q=M D.S Q=M 3.若A={1,3,x},B={x2,1},且A∪B=A,则这样x的不同取值有( ) A.1个 B.2个 C.3个 D.4个 4.符合条件{a}P{a,b,c}的集合P的个数是( ) A.2 B.3 C.4 D.5 5.若A={x|x2-4x+3<0},B={x|x2-6x+8<0},C={x|2x2-9x+a<0},(A∩B)C,则a的取值范围是( ) A.a≤10 B.a≥9 C.a≤9 D.9≤a≤10 6.若a>0,使不等式|x-4|+|3-x|<a在R上的解非空,则a的值必为( ) A.0<a<1 B.0<a≤1 C.a>1 D.a≥1 7.集合A={x|x2-5x+4≤0},B={x|x2-5x+6≥0},则A∩B= ( ) A.{x|1≤x≤2,或3≤x≤4} B.{x|1≤x≤2,且3≤x≤4} C.{1,2,3,4} D.{x|1≤x≤4或2≤x≤3} 8.如果方程x2+(m-3)x+m的两根都是正数,则m的取值范围是( ) A.0<m≤3 B.m≥9或m≤1 C.0<m≤1 D.m>9 9.由下列各组命题构成“P或Q”,“P且Q”,“非P”形式的复合命题中,“P或Q”为真命题,“P且Q”为假命题,“非P”为真命题的是( )

相关文档
相关文档 最新文档