文档库 最新最全的文档下载
当前位置:文档库 › 软磁铁氧体发展前景

软磁铁氧体发展前景

软磁铁氧体发展前景
软磁铁氧体发展前景

软磁铁氧体材料的现状及其发展前景

张继松王燕明

(中国西南应用磁学研究所四川绵阳 621000)

关键词:软磁铁氧体;应用;市场;现状;发展前景

1 前言

软磁铁氧体材料是一种用途广、产量大、成本低的电子工业及机电工业和工厂产业的基础材料,是其重要的支柱产品之一,它的应用直接影响电子信息、家电工业、计算机与通讯、环保及节能技术的发展,亦是衡量一个国家经济发达程序的标志之一。

软磁铁氧体材料的发明与实用化,至今已半个世界,由于它具有高磁导率、高电阻率、低损耗及陶瓷的耐磨性,因而在电视机的电子束偏转线圈、回扫变压器、收音机扼流圈、中周变压器、电感器、开关电源、通讯设备、滤波器、计算机、电子镇流器等领域得到广泛应用;随着电子技术应用日益广泛,特别是数字电路和开关电源应用的普及,电磁干扰(EMI)问题日益重要,世界各国对电子仪器及测量设备抗电磁干扰性能提出的标准越来越高,因此以软磁铁氧体为基础的EMI磁性元件发展迅速,产品种类繁多,如电磁干扰抑制器、电波吸收材料、倍频器、调制器等,现已成为现代军事电子设备、工业和民用电子仪器不可缺少的组成部分。

2 软磁铁氧体材料的应用状况

软磁铁氧体做成各种形状和规格尺寸的磁芯,主要用于工业类电子产品(或称投资类电子产品)和消费类电子产品中(见表1)。

表1 软磁铁氧体磁芯应用情况一览表

软磁铁氧体磁芯产量中约80%~90%(按重量计)用于消费类电子设备中。在消费类和工业类电子产品中使用的软磁铁氧体磁芯简述如下:

a. 用功率铁氧体材料制成的U形、E形磁芯来制作开关电源变压器、回扫变压器,枕校变压器和行推动变压器等;

b. 用高电阻率的MgMnZn系铁氧体材料来制作偏转磁芯;

c. 用高磁导率MnZn铁氧体制成UF形、EE形、日字形磁芯来制作电源滤波器;

d. 用高频NiZn铁氧体制成工字形、螺纹、帽形、双孔形等磁芯用来制作小型固定电感器、电感线圈;

e. 用MgZn系、NiCuZn系NiMgCuZn系制成的天线棒、旋转变压器用磁芯等。

f. 工业类电子设备如计算机监视器、程控交换机、监视器、传真机、天线及有线、通信设备、电子镇流器等广泛采用E形、环形、EP形、RM形、罐形磁芯等。虽然用的磁芯数量相对少,但质量要求相当高。

g. 用NiZn铁氧体的复数磁导率与频率的关系,改变不同成分配方及掺杂来实现铁氧体阻抗频率特性和衰减领域,制成宽频域抗EMI铁氧体串珠磁芯、多孔磁芯和各种滤波器;MnZn铁氧体材料具有高的μ

i

值,电阻率较低,大量用于电流不大的KYC线圈和EMI滤波的共模、差模线圈,使用在低频段来达到抗EMI干扰。

h. 铁粉芯材料在较大的H下具有恒定的μ

i 值,具有高B

s

、居里温度高,稳定

性好的特性,在大电流、低频段EMI电源滤波器、大电流共模、差模线圈中广泛应用。

i. 用纳米晶软磁材料的高磁导率、用高频域的高饱和磁感应强度、低损耗制成的抗EMI微型滤波器和噪音衰减器,应用于DC-DC变换器、计算机及Internet 联网的输入抗EMI滤波器;以Fe基、Co基材料开发出的各种抗EMI器件广泛用于计算机系统的各种通信网络。

此外,平面六角晶系的磁铅石型超高频软磁铁氧体、平面六角晶系材料还可用作永磁材料、微波和毫米波材料及磁头磁记录材料。

3 软磁铁氧体材料的市场

3.1 国内市场

我国软磁铁氧体材料的产量已居世界第二位。按照磁性行业“九五”规划,2000年,我国除台湾省外软磁铁氧体产量将达到6万吨。增长最快的将是MnZn铁氧体U、E形磁芯为主,它将从1998年的0.66吨增至2000年的2.42万吨。

从市场分布情况看,开关电源变压器用功率铁氧体、高μ铁氧体、电子镇流器及照明变压器用铁氧体、宽带射频铁氧体、抗电磁干扰器件用铁氧体的需求将会有较大的发展。

随着我国工业化程度的提高,投资类产品所需软磁铁氧体比重正在迅速提高,彩电、计算机市场的扩大,为其配套的软磁铁氧体磁芯需求量仍在稳步增长。根据2000年我国整机生产规划和使用磁性器件情况,预测软磁铁氧体材料市场需求量为63762吨(见表2)。

表2 2000年中国软磁铁氧体市场需求分析

3.2 国际市场需求

目前占世界软磁铁氧体产量第一位是日本,最大的生产厂家是日本TDK公司。

由于开关电源、射频通讯、抗电磁干扰、高清晰度电视、新型节能照明灯具及环保等新兴产业的发展,加上家电产业和计算机、传真机、程控交换机等工业长盛不衰,世界软磁铁氧体应用范围及市场需求保持高速增长,预计在未来五年内可保持10~12%的增长水平。国际市场上,收录机和收音机世界产量将稳定在2亿台左右,工业类电子产品增长速度将更快些(10~15%),预测国际市场软磁铁氧体材料2000年需求量将超过20万吨,其中,MnZn系占~60%、MgMnZn系~30%、NiZn系约占10%(以上按重量计)。假如电视机、计算机等整机每年按3~5%比例增长,那么世界软磁铁氧体需求量也将按比例不断增长。由于发达国家逐渐减少软磁铁氧体产量,这对我国软磁铁氧体磁芯出口,将是一个极好时机,这将促使我国软磁铁氧体产业的发展,生产量的增长。香港、台湾、东南亚感性元件产量很大,是我国软磁铁氧体出口主要地区;欧美对软磁铁氧体磁芯需求量也很大,近年来一些跨国公司如菲利浦、汤姆逊、西门子公司均来我国采购软磁铁氧体;日本由于日元升值,成本提高,一些大公司也来我国购买软磁铁氧体磁芯,甚至把工厂搬到我国沿海地区或在沿海地区开办分厂。这些都给我国软磁铁氧体磁芯出口,打入世界市场提供了极好时机,我国将成为世界上软磁铁氧体主要出口基地之一。

4 软磁铁氧体材料的现状

4.1 软磁铁氧体产业国内现状

我国从事软磁铁氧体生产的企业约100余家,年产量约为4万吨。大多数厂家生产规模小,为10~500吨,仅有4~5个厂家达到2000~2500吨,固定资产投资超过1000万元的企业只有50~60家(港、台厂商在珠江三角洲创办的合资、独资企业20余家未包括在内)。八十年代以来,由于国内广播、电视产品迅猛发展,增加了对软磁铁氧体材料的需求,国内一些主要软磁铁氧体生产企业,相继引进国外先进设备,扩大生产产量。据不完全统计,从“六五”、“七五”计划以来,全国扩建、新建软磁铁氧体生产线达40条,不仅提高了生产能力,而且产品质量也有较大幅度提高。“九五”期间,由国家批准立项,投资2.6亿元人民币,对南京898厂、河北涞水磁性材料厂、四川新津恒力磁性材料厂和江苏海安磁性材料总厂等进行技术改造,以便扩大软磁铁氧体产量。地方立项、集体或个人出资、外商独资、合资项目总投资强度还将会大大高于国家批准项目。如江苏晶石集团公司投资800万元的扩线工程将于最近完成,该厂生产能力将由原来的1000吨增加到2500吨/年,绵阳赛茂兴磁公司1999年投资近400万元扩建MnZn铁氧体生产线,分别从台湾连磁公司购进先进窑炉和从浙江海宁购进自动压机等,已投入生产。这些工厂和公司由于从国外引进了先进设备,采用先进生产工艺,产品基本能满足国产彩电和通讯设备要求。我国主要软磁铁氧体生产企业大都分布在华东地区,如南京金宁无线电器材厂(898厂)、浙江海宁天通电子有限公司、浙

江东阳磁性企业集团公司、江苏晶石集团公司,江苏南京富士化学有限公司、上海NiCFRAIC磁性器件公司(赢赛拉)、江苏常熟无线电器件厂、江苏海安磁性材料厂等;还有四川金川电子器材公司(89厂)、陕西金山电气总厂等,这些企业软磁铁氧体年产值都接近或超过亿元(人民币)。

从销售额结构分布看,国有企业~3.2亿元,占全行业软磁总销售额38%;乡镇企业~3亿元,占35.8%;中外合资企业~2.2亿元,占26.2%。从今后发展看,这种排序将会颠倒,中外合资企业销售额将进一步扩大,国有企业份额将减少。

从产品结构看,锰锌铁氧体是主导产品,年产量~3万吨;镍锌铁氧体~8000吨/年,中周天线磁芯等约为2000吨/年。

MnZn铁氧体国内市场售价为26000~30000元/吨,NiZn铁氧体国内市场售价为35000~40000元/吨。

目前,我国的软磁铁氧体材料的性能基本上在以下范围;功率铁氧体的性能相当于日本TDK产品的PC30牌号;高磁导率铁氧体的μ在6,000左右。少数企业能小批量生产PC40牌号和磁导率达8,000的产品。

对于功率材料,如以TDK的PC30产品的标准来划分,高于PC30的为A档,达到或接近PC30的为B档,低于PC30为C档。对于高μ材料,如以磁导率高于6000为A档,5000左右为B档,低于4000为C档。那么中国的产品等级分布:B 档占46.2%,C档占52.3%,A档仅占1.5%。合资企业的产品大多数为A档,国有企业的产品大多数为B档,少数为A档,乡镇企业的产品大多为C档,少数为B档。

4.2 软磁铁氧体材料开发生产现状

4.2.1 MnZn铁氧体材料

功率铁氧体(大多为MnZn系)主要应用领域是开关电源的主变压器。它要求

铁氧体材料具有高饱和磁通密度(B

s )和高振幅磁导率(μ

a

),以提高功率转换效

率并避免饱和;为了避免变压器在高频下发热,要求材料的功率损耗(P

)应尽量

小,希望呈负温度系数;为了在高温下保持高的B

s 值,材料的居里温度(θ

f

)应当

较高。其中工作条件下的低功率是特别重要的,即要求在高磁通密度下(

=200mT),高温下(80~100℃),和高频下(20~50kHz)有低的功率损耗。目前世界上日本TDK公司生产的功率铁氧体材料牌号有H35、H7C1、H7C4、H7F等;日本FDK公司生产的牌号有H45、H49N、H63B;日本TOKin公司生产的牌号有

2500B2、2500B3;西门子公司生产的牌号有N67;菲利浦生产的牌号是3C85、

3F3;日本铁氧体公司生产牌号是SB?/FONT>7C、SB?/FONT>9C;国内电子第九研究所生产牌号是R4KB、R2KH;金宁磁材厂生产牌号是R2KD、R2KBD、R2KB1;金川电子器材厂生产牌号有R2M2KB;七五四厂生产牌号是R2K5F。根据有关专家预测,未来开关电源频率将是1MHz或更高频率。因此,开发生产1MHz或更高频率使用的功率铁氧体材料市场将更广阔。

低损耗MnZn铁氧体材料在有线通信设备中通道滤波器的电感器中得到应用。随着载波传输设备通话话路容量增大,就要求缩小LC滤波器体积,更重要的是要

求磁芯材料具有低损耗(比损耗系数tgδ/μ

i 小)和高稳定性(α

μ/μi)和减落因

子D

F 低)。这种材料一般生产水平为:tgδ/μ

i

=2.3~2.5×10-6

(f=100kHz),α

μ/μi=1.0~1.5×10-6/℃(20~55℃),D

F

=2~5×10-6。如日本

TDK的H68、H6H3、日本东北金属公司的1000SFP,200IF、西门子公司的N48等。近年来由于光纤通信发展,这类材料用量减少,性能提高方面没有新进展。

低频宽带变压器,小型脉冲变压器、电源滤波器等向小型化发展,高密度磁记录的短波长化,需要高磁导率MnZn铁氧体。工业生产的高磁导率铁氧体材料

μi=10000~15000;实际使用最广泛的是μi=5000~10000的铁氧体材料。如日本TDK公司的H5C2、H5D、H5E;日本FDK公司的H25Z,西门子公司的T38;菲利浦公司的3E5材料等。

4.2.2 NiZn系铁氧体材料

随着射频通信迅速发展,具有高频特性良好(高ρ、低损耗角正切tgδ、低磁导率的温度系数α

μ)的NiZn系铁氧体首先得到重要作用。在射频范围使用的NiZn系铁氧体材料,品种很多,产量很大,其磁导率在1500以下变化,使用频率范围为1MHz~100MHz。通常制作工形、帽形、棒形、螺纹等小型磁芯,经绕线装

配后,制成各种电感器、中周变压器、滤波线圈、扼流圈等,广泛用于广播电

视、传呼机及军用通信设备中。NiZn材料作为抗电磁干扰(EMI)和射频干扰(RFI)磁芯,在无线电发射机中应用愈来愈多,这是NiZn铁氧体应用的一个扩展。这类材料做成管形或磁珠,由于增加了阻抗,从而在电路中可抑制高频干扰信号。用NiZn材料做成双孔或多孔磁芯线圈,可完成阻抗变换或能量传输功能,且有较宽

的频率带宽和较低的传输损耗。低烧结温度的NiCuZn铁氧体,具有高的电阻率,在高频下有良好磁特性,可用于片式电感器中;另一种具有中等磁导率、高密

度、高电阻率及较强耦合性能的NiCuZn铁氧体,可用来制作录像机旋转变压器磁芯。

4.2.3 MgZn系铁氧体

MgZn系铁氧体材料有良好的高频特性,不需战略物质镍,成本低,在民用产品方面又部分替代NiZn系材料。高电阻率(ρ=106~108Ω·cm)的MgZn系铁氧体材料用作电视机显像管偏转磁芯,能提高电视机、显示器的电气绝缘特性及能使

彩色显示器避免高压击穿,提高其行扫描频率。据报道,日本的MgZn铁氧体磁芯产量约是软磁铁氧体产量的1/3(按重量计)。

5 软磁铁氧体的发展前景

软磁铁氧体材料作为一种功能材料已在国民经济的各个领域得到广泛应用,随着信息产业的飞跃发展,软磁铁氧体材料的应用领域还在不断扩展,几乎覆盖

了已有各种频段的整机、分机或元器件,与人们的日常生活密切相关。由于电子

信息技术的迅猛发展,对软磁铁氧体材料的产量和品种需求日渐增多,这对软磁

铁氧体材料的发展带来了新的机遇;同时也对软磁铁氧体材料也提出了日趋苛刻的技术要求。如:因为开关电源迅速推广和向小型化、高频化发展,不断对高频铁氧体材料提出降低高频功耗的要求;电子设备的轻量小型化,推动了电子元件片式化的高速发展,从而要求软磁铁氧体材料要具有低烧结温度,高密度或高Q 值;由于数字式技术发展引起抗电磁干扰器件和脉冲变压器磁芯需求增长,单片阵列式、小型、薄型、宽频带、多功能的抗EMI元器件将成为今后开发的重点。要满足这些要求,就必须在原材料选择、生产工艺、控制手段等上下功夫,才能制备出高性能软磁铁氧体材料。

5.1 市场发展趋势

软磁铁氧体市场将随着个人计算机的显示器和家用电视机用偏转线圈磁芯和开关电源用磁芯增加而稳定增长。亚洲更加突出其中心和大本营地位;以中国为首的发展中国家将成为软磁铁氧体材料的生产中心,中国的发展速度将加快,预计增长速度将超过世界软磁铁氧体材料6%/年左右的增长率按~15%/年增长率向前发展,将成为世界第一生产大国。

在软磁铁氧体的产品中,高磁导率材料约占20%、功率铁氧体材料约占25%,宽带射频铁氧体占15%,高频软磁铁氧体材料约占40%。

5.2 软磁铁氧体材料发展趋势

(1)为满足开关电源小型化、轻量化、高性能化要求,功率铁氧体将向高频化、低功耗方向发展;

(2)为适应多媒体通信、数字通信和移动通信及光纤通信小型化和宽频带,高磁导率材料将向更高磁导率和更高的工作频率发展;

(3)为满足宽屏幕、高清晰度电视及高分辨计算机显示器的要求,应开发高饱和磁感应强度、低的损耗和严格的形状尺寸公差的软磁铁氧体磁芯;

(4)为适应高档小型电感器及减少、抑制、消除电磁污染和干扰的需要,高频软磁铁氧体材料及器件将向高性能、高可靠、片式化、贴装化、薄膜化方向发展。

6 结束语

软磁铁氧体材料是一种应用最广、用量最大的一种磁性材料。近年来,随着信息产业的迅速发展和全球范围内的经济复苏及快速增长,国际国内对软磁铁氧体的大生产工艺技术、相关设备、应用技术及其发展方向的研究不断深入发展,为软磁铁氧体材料发展带来勃勃生机。我们应该抓住当今世界上软磁铁氧体工业蓬勃发展的大好机会和因日本等发达国家因软磁铁氧体生产成本高,对环境污染严重等诸因素而将软磁铁氧体生产转移到中国为重心的亚洲等发展中国家及我国即将加入WTO的有利机遇,大力发展我国软磁铁氧体工业。

前景广阔的软磁铁氧体材料

类别:行业知识发布时间:2008-1-25阅读:1229

软磁铁氧体材料基本类别及主要应用:

软磁铁氧体按成份一般分为MnZn、NiZn系尖晶石和平面型两大类。前者主要用于低、中频(MnZn)和高频(NiZn),后者可用于特高频范围;从应用角度又可分高磁导率μi、高饱和磁通密度Bs、高电阻率及高频大功率(又称功率铁氧体)等几大类。由于软磁铁氧体在高频作用下具有高导磁率、高电阻率、低损耗等特点,同时还具有陶瓷的耐磨性,因而被广泛用于工业和民用等领域。工业产品主要用于计算机、通信、电磁兼容等用开关电源、滤波器和宽带变压器等方面;民用产品主要用于电视机、收录机等电子束偏转线圈、回扫变压器、中周变压器、电感器及轭流圈部分等。

国内外研发现状:

在软磁铁氧体磁性材料中一般以μi>5000的材料称为高磁导率,该材料近年来产量不断递增,尤其是随着当今数字技术和光纤通信的高速发展,以及市场对电感器、滤波器、轭流圈、宽带和脉冲变压器的需求大量增加,它们所使用的磁性材料都要求μi>10000以上,从而可使磁芯体积缩小很多,以适应元器件向小型化、轻量化发展要求。另外为满足使用需求,这类高磁导率小磁芯表面必须很好,平滑圆整,没有毛刺,且表面上须涂覆一层均匀、致密、绝缘、美观的有机涂层,针对这一技术难点,高磁导率软磁铁氧体产业需求中迫切希望再提高该功能材料的磁导率(μi>10000)。

上世纪90年代后,一些国外知名公司如日本TDK、TOKIN、HITACHI、

IROX-NKK、FDK、KAWATETSU等、德国SIEMENS、荷兰Philips、美国SPANG磁性分公司等相继研发出新一代超高磁导率H5D(μi=15000)、H5E(μi=18000)铁氧体材料。日本TDK公司是全球磁性材料最富盛名的领头羊企业,他们在早期生产的

H5C2(μi=10000)基础上,又先后开发了H5C3(μi=12000)、H5D(μi=15000)和

H5E(μi=18000)等系列高μ软磁铁氧体材料;90年代末已试验成功μi=20000的超高磁导率Mn-Zn铁氧体材料。TOKIN公司已向市场推出了12000H(μi=12000)、15000H(μi=15000)和18000H(μi=18000)的铁氧体材料。德国西门子、荷兰飞利浦、美国SPANG公司分别开发的高磁导率软磁铁氧体T42、T46、T56、3E6、3E7和MAT-W、MAT-H材料,其中T46:μi=15000、3E7:μi=15000、MAT-H:μi=15000,2000年西门子和飞利浦公司研制的T56、3E9材料最高磁导率已超过μi=18000。

虽然,我国软磁铁氧体工业发展较快,现有的生产厂家通过技术改造和工艺改进已取得不少成果,产品质量和产量得到明显提高,但目前国内只能大量生产μi=5000-7000的低档铁氧体材料,在高磁导率锰锌铁氧体材料研发生产上,国内与国外的水平与距离相差甚远,且大多数企业生产规模还太小,年产量普遍在1000吨以下,μi>10000的材料生产厂家更是屈指可数,而初具规模的国外公司一般年产软磁铁氧体在3000吨以上,TDK、FDK等公司年产量更是高达20000吨以上。依据我国磁性行业协会的统计,1999年我国生产μi=8000-10000材料的产量很少,但2000年后生产这类中低档软磁铁氧体材料却有较大改观。上海、浙江、山东、江苏、四川等地有一些企业在研发生产μi>10000中高档材料,如宝钢天通2000年和2001年相继开发出BRL10K(μi=10000)和BRL12K(μi=12000)产品;河北涞水和山东淄博磁材厂2000年也在着力研发μi>10000铁氧体材料;四川一些企业

研发的高磁导率铁氧体项目曾获得国家中小企业科技创新基金的大力支持,在大生产技术方面有所突破和创新。浙江横店东磁中央研究所近几年先后完成了μi为10000-15000材料的试制,并可实现部分产品的批量生产,有望朝着国内磁性行业。

真正意义上的高磁导率μi软磁铁氧体材料,其μi值应大大超过10000以上才能满足于通讯、计算机等IT行业和电子整机对各种器件超小型化、微型化、轻量化、标准化发展需求。为改变国内相关铁氧体材料生产企业长期滞留于抵挡产品、产量低、外观差、品牌少、缺乏国外市场的竞争力等落后面貌,磁性材料行业中的有关企业必须要高度重视并加大我国高档软磁铁氧体材料的研发力度,切实地改善现有的产品结构、制备工艺、加工方法,不断扩大配套和出口创汇力度,增强国际竞争力,以顺应于我国国家产业政策和国际市场的发展需求。为此,我国软磁体氧体行业应合理规划和布局产业结构,集中资金与力量,在培育发展规模经济和出口基地上下功夫,以具备一定基础和知名的大中型骨干企业为龙头,多建立几家高档软磁铁氧体生产、出口基地企业,形成我国软磁铁氧体行业的国家梯队。

科技的进步推动了软磁铁氧体材料应用的快速发展,随着新技术的不断发明和新产品的不断开发,以及现代计算机、通信、自动化和智能化系统及其相关产品等高新技术市场的不断发展,大大刺激了软磁铁氧体材料向高性能发展,并促进了新型软磁铁氧体材料的开发。

手机的增长,必然增加移动交换机的容量和地面站的数量。移动通信方面用的软磁材料主要是软磁器件。软磁铁氧体元件主要是无线寻呼用磁性天线,手机用的电磁兼容磁芯,如高频段的防寄生振荡用磁芯、混频器用的磁芯、耦合线圈用磁心,以及片式电感等,对于这些元件,国内还不能满足供货要求,主要靠进口。

程控交换机向小型化发展。移动交换机小型化和无人管理化需要温度范围高、功率损耗低和导磁率高的铁氧体软磁芯。目前,机上主要使用国外进口的磁芯。我国生产的磁芯与国际上同类材料性能基本相同,但产品的外观质量差,还不能被大量接受。程控交换机对磁芯要求是电源用的高频低损耗材料,表面安装技术用的片式电感、LC滤波器、片式混合电路器件,耦合变压器用的磁导率为12000至15000的高磁导率材料与高饱和磁通材料。

固定电话机向无绳和可视化发展。无绳电话机必须具有高清晰通话质量、有效防止窃听、抗干扰、通话范围大、功耗低、环保低辐射等优势。要求高磁导率和低功率损耗软磁铁氧体作为功率材料和抗干扰电磁兼容元件,以保证可靠性和稳定性。

计算机市场

软磁器件有大量需求

笔记本电脑。随着笔记本电脑里电子元件的时钟频率提高和小型化,应用的元件也必须相应地向高频化、片式化方向发展,如降低电源线与地间产生噪声的铁氧体软磁共模滤波器;除去让数字信号失真的高次谐波噪声成分的片式磁珠滤波器;噪声屏蔽吸收体;夹持在电缆线上的噪声滤波器;电池供给的直流电压变为电路所需的直流电压用DC-DC变换器磁芯;液晶背光源高交流电压用DC-AC逆变器;需大幅度降低磁损耗,以达到电脑低发热、节能的铁氧体变压器磁芯;IEEE1394/USB接口抗干扰片式磁珠、共模滤波器磁芯等。

液晶显示器。当前,在显示器市场,液晶显示器市场呈现出强劲的增长势头,液晶显示器是典型的数字电子消费品,需要一些重要的软磁电子元件,以使平面显示器更薄,质量更高,电磁噪音更低。其中的软磁器件如三端子滤波器、扼流圈、贴片电感、钳位滤波器、片状磁珠、直流-交流转换器、片变阻器等会有大量需求。

汽车工业市场

抑制EMI很关键

汽车电子系统EMC用软磁铁氧体。汽车电子系统越高级、越复杂,电磁兼容(EMC)问题就越突出。为了确保汽车电子系统的高可靠性,必须采取有效措施抑制EMI。为了抑制汽车电子系统的传导噪声,采用LC滤波器原理的常模扼流圈和共模扼流圈是一种简单有效的手段。由于常模扼流圈是非电流补偿型,所以需要大的磁心截面和高的饱和磁通密度,通常采用不易磁饱和的金属粉末磁心,如铁硅铝和铁镍钼磁粉心等;而对于电流补偿型的共模扼流圈,锰锌系高磁导率软磁铁氧体则是最适合的材料。

汽车HID安定器用软磁铁氧体。HID即高强度放电式气体灯,又称氙气灯。迄今全球已有超过2000万辆的汽车安装了HID前照灯,被誉为21世纪革命性汽车电子产品。在各种品牌的安定器内,核心部件DC-DC转换器的主变压器毫无例外都采用高性能功率铁氧体磁心制成,主变压器磁心分别采用小型PQ和RM型。

软磁铁氧体、软磁铁氧体磁芯配方及软磁铁氧体用途

1、fe2o3含量低于50摩尔%的mn-zn铁氧体

2、饱和电抗器磁芯,多输出开关调节器及带有它的计算机

3、餐具电子灭菌消毒柜

4、测量直流电流的传感器及测量方法

5、超宽频段金属有机配合物磁性材料和以其为基本材料的超宽

频段有机磁性基料

6、磁感式煤铁分离器

7、磁热定时开关

8、磁头和磁记录再现装置

9、磁性微球形高分散负载金属催化剂及其制备方法和用途

10、磁性元件及磁性元件的制造方法

11、从亚铁盐水溶液中去除杂质的方法

12、带防雷性能的交流轨道电路

13、低损耗软磁锰锌铁氧体

14、电磁干扰滤波器

15、电磁感应测速器

16、电磁信号法电火花加工放电位置检测传感器装置

17、多用强力增能器

18、高纯四方相γ-三氧化二锰纳米晶及制备方法

19、高磁导率低温烧结中高频叠层片式电感材料及制备方法

20、高频磁共振稳压变压器

21、高频低损耗软磁铁氧体磁芯材料

22、高频细晶粒软磁铁氧体磁体材料及其生产工艺

23、共晶合成法制取锰锌铁氧体颗粒料

24、轨道电路绝缘破损防护系统

25、交流连续式轨道电路受电端中继变压器

26、具有微晶结构的薄片磁体

27、抗静抗杂工业

28、可控硅触发变压器

29、硫酸盐体系中多金属离子溶液的深度净化方法

30、锰-锌功率软磁铁氧体料粉及其制备方法

31、锰锌铁氧体软磁及制造方法

32、锰锌铁氧体软磁烧结方法

33、凝胶法制备平面六角结构软磁铁氧体高活性超细粉的方法

34、切割非晶态电感磁芯制法

35、球阀铜球的生产加工方法

36、软磁mg-zn铁氧体材料及其低温烧结工艺

37、软磁钢及其制造方法

38、软磁体粉末复合材料、它的制造方法和应用

39、软磁铁氧体磁心磁控溅射真空镀银工艺

40、软磁铁氧体磁芯成型方法及模具结构

41、软磁铁氧体纳米晶的合成方法

42、软磁铁氧体烧结窑排胶装置

43、软磁铁氧体相合面精磨工艺及其产品

44、软磁铁氧体用四氧化三锰的制备方法

45、软磁铁氧体用氧化铁红的制备方法

46、软磁性复合材料

47、软磁性六方晶系铁氧体复合颗粒和用其制造的生胚及烧结陶瓷48、软磁性铁氧体粉末的制造方法和层压芯片电感器的制造方法49、烧结软磁铁氧体的燃煤推板窑

50、生产四氧化三锰的方法

51、适用于孔板式磁性免疫分析分离技术中的磁性分离装置

52、微位移传感器

53、温度报警传感器总成

54、温度磁控开关

55、无极感应放电荧光灯

56、一种磁力书写黑板及配套永磁笔、板擦

57、一种多功能磁卡保护套

58、一种宽频磁电双性复合材料及其制备方法

59、一种免疫分析分离用磁性分离器

60、一种软磁铁氧体磁环表面涂塑方法

61、一种软磁铁氧体磁体的制备方法

62、一种软磁铁氧体磁芯

63、一种生产高纯氧化铁的方法

64、一种微波介质材料及其制备方法

65、一种无铁渣湿法炼锌方法

66、一种用于微机器人的软磁橡胶执行器制备方法67、一种预烧软磁铁氧体粉料的方法

68、一种直热式铁氧体脉动时间继电器

69、一种直热式铁氧体延时断电开关

70、音频开关式交流感应电动机

71、永磁同步高速电机

72、用作铁氧体原材料的复合氧化物的生产方法73、预烧软磁铁氧体料的直热式回转窑

74、运流电流和位移电流式电机及测速电机

75、直流荧光灯

76、直线通过式背面平面磨床

77、制备甚高频片感器材料的方法

78、珠形噪声滤波器

79、自蔓延高温合成软磁铁氧体制备方法及其产品

中国西南应用磁学研究所翁兴园

科技的进步推动了软磁铁氧体材料应用的快速发展,随着新技术的不断发明和新产品的不断开发,以及现代计算机、通信、自动化和智能化系统及其相关产品等高新技术市场的不断发展,大大刺激了软磁铁氧体材料向高性能发展,并促进了新型软磁铁氧体材料的开发。

通信市场

对磁性材料要求更高

移动通信手机向多媒体化和3G发展。现在手机的功能在不断扩大,集照相、MP3、MP4和电视功能于一体的多媒体手机发展成为主流。今后数年内,中国3G制式手机发展将成为重点,产量将超过GSM制式。由于功能的增加和技术的提高,对磁性材料性能提出更高的要求。磁性材料必须满足高频率、小型化、贴片化、高磁性能、低损耗和抗电磁干扰的要求。

手机的增长,必然增加移动交换机的容量和地面站的数量。移动通信方面用的软磁材料主要是软磁器件。软磁铁氧体元件主要是无线寻呼用磁性天线,手机用的电磁兼容磁芯,如高频段的防寄生振荡用磁芯、混频器用的磁芯、耦合线圈用磁心,以及片式电感等,对于这些元件,国内还不能满足供货要求,主要靠进口。

程控交换机向小型化发展。移动交换机小型化和无人管理化需要温度范围高、功率损耗低和导磁率高的铁氧体软磁芯。目前,机上主要使用国外进口的磁芯。我国生产的磁芯与国际上同类材料性能基本相同,但产品的外观质量差,还不能被大量接受。程控交换机对磁芯要求是电源用的高频低损耗材料,表面安装技术用的片式电感、LC滤波器、片式混合电路器件,耦合变压器用的磁导率为12000至15000的高磁导率材料与高饱和磁通材料。

固定电话机向无绳和可视化发展。无绳电话机必须具有高清晰通话质量、有效防止窃听、抗干扰、通话范围大、功耗低、环保低辐射等优势。要求高磁导率和低功率损耗软磁铁氧体作为功率材料和抗干扰电磁兼容元件,以保证可靠性和稳定性。

计算机市场

软磁器件有大量需求

笔记本电脑。随着笔记本电脑里电子元件的时钟频率提高和小型化,应用的元件也必须相应地向高频化、片式化方向发展,如降低电源线与地间产生噪声的铁氧体软磁共模滤波器;除去让数字信号失真的高次谐波噪声成分的片式磁珠滤波器;噪声屏蔽吸收体;夹持在电缆线上的噪声滤波器;电池供给的直流电压变为电路所需的直流电压用DC-DC变换器磁芯;液晶背光源高交流电压用DC-AC逆变器;需大幅度降低磁损耗,以达到电脑低发热、节能的铁氧体变压器磁芯;IEEE1394/USB接口抗干扰片式磁珠、共模滤波器磁芯等。

液晶显示器。当前,在显示器市场,液晶显示器市场呈现出强劲的增长势头,液晶显示器是典型的数字电子消费品,需要一些重要的软磁电子元件,以使平面显示器更薄,质量更高,电磁噪音更低。其中的软磁器件如三端子滤波器、扼流圈、贴片电感、钳位滤波器、片状磁珠、直流-交流转换器、片变阻器等会有大量需求。

汽车工业市场

抑制EMI很关键

汽车电子系统EMC用软磁铁氧体。汽车电子系统越高级、越复杂,电磁兼容(EMC)问题就越突出。为了确保汽车电子系统的高可靠性,必须采取有效措施抑制EMI。为了抑制汽车电子系统的传导噪声,采用LC滤波器原理的常模扼流圈和共模扼流圈是一种简单有效的手段。由于常模扼流圈是非电流补偿型,所以需要大的磁心截面和高的饱和磁通密度,通常采用不易磁饱和的金属粉末磁心,如铁硅铝和铁镍钼磁粉心等;而对于电流补偿型的共模扼流圈,锰锌系高磁导率软磁铁氧体则是最适合的材料。

汽车HID安定器用软磁铁氧体。HID即高强度放电式气体灯,又称氙气灯。迄今全球已有超过2000万辆的汽车安装了HID前照灯,被誉为21世纪革命性汽车电子产品。在各种品牌的安定器内,核心部件DC-DC 转换器的主变压器毫无例外都采用高性能功率铁氧体磁心制成,主变压器磁心分别采用小型PQ和RM 型。

EV充电装置用软磁铁氧体。纯电动汽车(EV)是用高能充电电池作为动力源驱动的汽车。EV电池充电方式分为接触式和感应式两种。感应式充电系统(ICS)克服了接触式的缺点,安全可靠,性能稳定,代表着充电技术的发展方向。在这种充电方式中,充电站端和汽车端各有一个用软磁铁氧体材料制成的大型扁平罐形磁心,其中嵌绕线圈。充电时两线圈靠近构成一个变压器,靠初次级间磁感应耦合将高频交流电能由充电站馈送至电池组。有关研究表明,类似TDK PC44、PC47或FDK 6H40、6H45等低损耗功率铁氧体是制作磁耦合装置较适合的磁心材料。

HEV动力系统用软磁铁氧体。混合动力汽车(HEV)是由内燃机和电池两种动力驱动的汽车,为了实现复杂

2020年(发展战略)软磁铁氧体状态与发展

(发展战略)软磁铁氧体状态和发展

软磁铁氧体现状和发展 摘要: 本文讨论分析了软磁铁氧体国内外研究、生产、专用工艺设备、市场现状。详细论讨了高磁导率铁氧体、功率铁氧体、迭层片式电感器用的铁氧体粉料等铁氧体的技术发展动向。 1.前言 软磁铁氧体应用广,用量大的壹种磁性材料。1997年世界产量22万吨,其中我国产量5万吨,预计2000年世界产量将达到30万吨,2005年达到45万吨,预计今年我国将达到6万吨,2005年将超过15万吨,约占全世界软磁铁氧体总量的1/3,占世界第壹位。但我国尚存于工艺技术比较低,壹些专用工艺设备较落后,造成产品档次不够高等问题,有待进壹步解决。 于软磁铁氧体的产量中,高磁导率铁氧体约占20%,功率铁氧体约占25%,宽带射频铁氧体,电子镇流器约占15%,其余的如抗电磁干扰(EMI),偏转磁芯等约占40%。 2技术发展方向 2.1软磁铁氧体制备工艺 从80年代以来,我国引进国外先进工艺设备和工艺技术,使生产规模和效率有显著提高,壹些产品性能于较短的时间内达到国际水平。但生产的自动化程度仍跟不上发达国家著名铁氧体XX公司,他们生产线用“电脑集成制造”(CIM)和“电脑/人联合集成”(CHIM),用电脑控制自动完成制粉、成型、烧结、磨削及包装等工序,使产品合格率达95~99%。

2.2高磁导率铁氧体 由于高磁导率铁氧体于数字通讯,光纤通讯及电磁兼容等领域中大量应用,促使其制备工艺逐渐完善,不断提高性能,国外研制水平μi为20000~23000,国内外有关生产水平列于表1。值得提及的表1中列出的μi值国内厂家属于小批量生产性能,大批量生产的μi值为7000~8000,研制水平为12000~13000。海宁天通电子有限XX公司陆明岳开发的产品,1999年6月通过省级新产品鉴定μi为13000。北京大学和深圳组建的深圳中核集团XX公司,去年10月投产,年生产能力30吨,产品μi稳定于10000之上,最高能达到18000。 目前除要求高磁导率铁氧体继续提高磁导率外,要求居里温度Tc高,损耗因数tg δ/μi温度系数αμi要低,且要求随使用频率增加磁导率衰减慢,使μi-f曲线于较宽频带内保持平直,具有高的截止频率。预计到2002年,国外商品化产品磁导率将提高到25000左右。 近年来EMI磁芯发展很快,TDK和美国steward等XX公司,已有10多种牌号,品种规格很全,国内尚处于小批量生产阶段,是根据用户要求生产产品。 2.3功率铁氧体 近几年来,功率铁氧体销售额平均年增长率约10%,是80年代后期到90年代初研究重点,其产品主要应用于高频开关电源的主变压器磁芯,具有代表性的产品是以日本TDKXX公司的PC30、PC40、PC50,国内企业也向这些牌号性能指标努力,当下国内能大批量生产的是PC30,只有个别企业能生产PC40。天通XX公司大批量生产TP4产品性能和TDKXX公司的PC40相同,μi=2300±25%,于室温(25℃)时,Bs=510mT,Br=100mT,Hc=14A/m,于100kHz,100℃下,Pc=410mw/cm3,ρ=6.5Ω.m,Tc≥215℃,d≈4.8/cm3。PC50国内于1994年

主要软磁铁氧体材料厂商牌号对照表

厂商 Manufacturers 信艺电子HP30HP40/R2K3D HP44/R2K4D HP5H5K H7K H10K H12K H15K ACME P2P4P41P5/P51A05A07A10/A101A12/A121A151 AVX/TPC B1B2/F1F2F4A4/A5A3A2A1A0 COSMOFERRITES CF129CF138CF195CF197 DMEGC DMR30DMR40DMR44DMR50DMR6K DMR10K DMR12K DMR15K EPCOS (SIEMENS) N41N67/N87N97N49T35T37/T44T38T42T46 FAIR-RITE78797576 FDK6H106H206H407H102H062H072H102H15 FENGHUA PG232PG242PG152HS502HS702HS103HG123HG153 FERRITEINT (TSC) TSF-7099TSF-7060TSF-5099TSF-300TSF-010K TSF-012K TSF-015K FERROXCUBE (PHILIPS) 3C853C90/3C943C96/3F33F4/3F3.5 3.00E+043E25/3E273E5/3E55 3.00E+06 3.00E+07 HITACHI ML24D ML25D ML120MP70D MP10T MP15T HITACHI (NIPPON) SB-5S SB-7C SB-9C SB-1M GP7GP9GP11MT10T HPC HE4HE44HE5HL5HL7HL10HL12HL15 ISKRA25G45G/55G35G75G19G22G12G32G52G ISU PM-1PM-7PM-11FM-5HM2A HM3/HM3A HM5A HM7A JFE(KAWATETSU)MB3MB4MC2MA055MA070A MA100MA120MA150 JINNING JP3JP4/JP4A JP4B JP5JH5/JH5A JH7/JH7A JH10JH15 KASCHKE K2006K2008K2001K5000K8000K10000 KAWATETSU MB3MB4MA055MA070MA100MA120 KINGTECH KP3KP4KP4A KP5KH5/KH5A KH7/KH7A KH10A KH13KH15 KRAVSTINEL K82K86K87 LCCTHOMSON B2B4F1F2A5A3 MAGNE TICS P K J W H MMG-NEOSID F5A/F5C F44F45F47F9C/F10FT7F39 NCD LP2LP3LP3A LP5HP1/HP1F HP2/HP2F HP3/HP3F HP4 NEC/TOKIN BH2BH1B405000H7000H10000H12000H15000H NEOSID F827F830F860F938F942 NICERA NC-1M NC-2H2HM55M NC-5Y NC-7NC-10H NC-12H NC-15H SAMWHA PL-5PL-7PL-9PL-F1SM-50SM-70S SM-100SM-150 STEWARD32353740 TDG TP3TP4TP4A TP5TL5TL7TL10TL13TL15 TDK PC30PC40PC44PC50HS52HS72HS10H5D H5C3 TOKIN3100BH2BH1B405000H7000H12000H TOMITA 2.00E+06 2.00E+07 2.00E+082E3/2F12E7/2G12E2/2E2B2H22H1 TPC F1F2F4A4/A5A3A2 TRIDELTA MF198MF198A MF197MF199 川峰山口工厂(西海) SK-104G SK-108G SK-109GE SK-110G SK-12G 材料牌号 Material Brands 主要软磁铁氧体材料厂商牌号对照表 注:grc534原发

软磁铁氧体磁芯现下的市场形态

软磁铁氧体磁芯现下的市场形态 发布时间:2014-7-7 9:59:17 浏览次数:16 软磁铁氧体磁性材料和软磁铁氧体磁芯统称软磁铁氧体,长期以来软磁铁氧体产量的增长是建立在其生产技术和应用技术共同发展的基础之上的。电子技术的飞速发展,对软磁铁氧体器件,如电感器、变压器、滤波器等不断提出了各种新的要求,这种要求促进了软磁铁氧体的发展,如适应开关电源向高频化发展的高频低功耗功率铁氧体材料,适应光纤通信和数字技术发展的宽频带变压器和抗干扰扼流圈用的高磁导率与宽频带铁氧体材料,同时具有高μ与高Bs的材料(双高材料),适应高清晰度和大屏幕显示器发展的偏转线圈和回扫变压器用高频低损耗功率材料,以及适应表面贴装技术发展的平面电感器和变压器用低烧结温度和低热阻的铁氧体材料等等,就是生产和应用技术共同发展的最直接结果。 在开发和研究过程中,由于软磁铁氧体材料和磁芯的研究始终结合在一起,从而形成了由各种软磁铁氧体材料制成的各种形状的磁芯,所有这些材料及磁芯的不同组合可以具有各种不同的性能、特点和用途,以满足各种需求。 软磁铁氧体磁芯材料是一种用途广、产量大、成本低的电子工业及机电工业和工厂产业的基础材料,是其重要的支柱产品之一,它的应用直接影响电子信息、家电工业、计算机与通讯、环保及节能技术的发展,亦是衡量一个国家经济发达程序的标志之一。 软磁铁氧体材料是品种最多、应用最广的一类磁性功能材料,也是铁氧体材料中发展最早的一类材料。自从1935年荷兰Philip实验室研究开发成功至今已有将近七十年的历史,其性能也已得到了很大的改进和提高。由于这类材料具有高的本征电阻率ρ,所以在交流条件下具有许多金属软磁材料所无法比拟的优越性且价格低廉,并可制成各种形状的磁芯,因此,在高频区一般都使用软磁铁氧体材料。用这类材料制成的磁芯被广泛应用于通信、广播、电视、自动控制、航天技术、计算机技术、电子设备及其它IT产业中来制作各种类型的电感器、变压器、扼流圈、抑制器和滤波器等器件。 目前由于软磁铁氧体具有广阔的发展前景和可预期的市场潜力,从而成为世界各国铁氧体公司开发和研究的重点。权威机构对全球软磁行业的评估认为,世界软磁铁氧体需求量的平均增长速度在今后几年中将继续保持在10%~15%的水平。由此可以看出,开发具有自己独立知识产权的可批量生产的综合性能好的软磁铁氧体材料并迅速占领市场已经成为各个公司的当务之急。本文在对软磁材料,特别是软磁铁氧体材料的发展过程及发展趋势进行综合分析之后,指出了一些研究和开发人员在材料研究中普遍容易忽视的问题。 一、软磁铁氧体材料的发展过程及发展趋势 一般地,从应用角度来分,软磁铁氧体材料主要分为功率材料和高磁导率材料两大类,为适应世界电子技术发展的需要,这两类铁氧体材料都已经得

1.铁氧体材料发展及分类

铁氧体 中文名称:铁氧体 英文名称:ferrite 定义:由以三价铁离子作为主要正离子成分的若干种氧化物 组成,并呈现亚铁磁性或反铁磁性的材料。 铁氧体是一种具有铁磁性的金属氧化物。就电特性来说,铁氧体的电阻率比金属、合金磁性材料大得多,而且还有较高的介电性能。铁氧体的磁性能还表现在高频时具有较高的磁导率。因而,铁氧体已成为高频弱电领域用途广泛的非金属磁性材料。由于铁氧体单位体积中储存的磁能较低,饱合磁化强度也较低(通常只有纯铁的1/3~1/5),因而限制了它在要求较高磁能密度的低频强电和大功率领域的应用。 简介 铁氧体(ferrites)是一种非金属磁性材料,它是由三氧化二铁和一种或几种其他金属氧化物(例如:氧化镍、氧化锌、氧化锰、氧化镁、氧化钡、氧化锶等)配制烧结而成。它的相对磁导率可高达几千,电阻率是金属的1011倍,涡流损耗小,适合于制作高频电磁器件。铁氧体有硬磁、软磁、矩磁、旋磁和压磁五类。 旧称铁淦氧磁物或铁淦氧,其生产过程和外观类似陶瓷,因而也称为磁性瓷。铁氧体是铁和其他一种或多种适当的金属元素的复合氧化物。性质属于半导体,通常作为磁性介质应用,铁

氧体磁性材料与金属或合金磁性材料之间最重要的区别在于导 电性。通常前者的电阻率为102~108Ω·cm,而后者只有10-6~10-4Ω·cm。 发展历史 中国最早接触到的铁氧体是公元前 4世纪发现的天然铁氧体,即磁铁矿(Fe3O4),中国所发明的指南针就是利用这种天然磁铁矿制成的。到20世纪30年代无线电技术的发展,迫切地要求高频损耗小的铁磁性材料。而四氧化三铁的电阻率很低,不能满足这一要求。1933年日本东京工业大学首先创制出含钴铁氧体的永磁材料,当时被称为OP磁石。30~40年代,法国、 日本、德国、荷兰等国相继开展了铁氧体的研究工作,其中荷兰菲利浦实验室物理学家J.L.斯诺克于1935年研究出各种具有优良性能尖晶石结构的含锌软磁铁氧体,于1946年实现工业化生产。1952年,该室J.J.文特等人曾经研制成了以 BaFe12O19为主要成分的永磁性铁氧体。这种铁氧体与1956年该室的G.H.永克尔等人所研究的四种甚高频磁性铁氧体具有类似的六角结构。1956年E.F.贝尔托和 F.福拉又报道了亚铁磁性的Y3Fe5O12的研究结果。其中代换离子Y有Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、 Tm、Yb和Lu等稀土离子。由于这类磁性化合物的晶体结构与天然矿物石榴石相同,故将其称之为石榴石结构铁氧体。迄今为止,除了1981年日本杉本光男采用超急冷法制得的非晶结构的铁氧体

软磁铁氧体基本磁特性

软磁铁氧体材料和磁心概述 软磁铁氧体材料和磁心概述 软磁铁氧体材料分类 铁氧体又称氧化物磁性材料,它是由铁和其它金属元素组成的复合氧化物。铁氧体采用陶瓷工艺,经高温烧结而制成各种形状的零件。实际上,所有在金属磁性材料中出现的磁现象,在铁氧体中也能观察到,但是有两个基本不同点:一是铁氧体的饱和磁化强度远远低于金属磁性材料,通常为金属材料的一半到五分之一;二是铁氧体的电阻率比金属磁高一百万倍以上。由于这种区别,对于低频(1000 赫兹以下)高功率的磁心一般采用金属磁性材料,用于较高频率(1000 赫兹以上)磁心采用铁氧体材料。按照铁氧体的特性和用途,可把铁氧体分为永磁、软磁、矩磁、旋磁和压磁等五类;如果按照铁氧体的晶格类型来分,最重要的有尖晶石型、石榴石型和磁铅石型等三大类。高频变压器和电器中主要使用软磁铁氧体材料,因此下面主要叙述软磁铁氧体材料的分类及特性。大多数软磁铁氧体属尖晶石结构,一般化学表示式为MeFe 2O 4,这里 Me 表示二价金属元素,如:Mn、Ni、Mg、Cu、Zn等。软磁铁氧体材料是各种铁氧体材料中产量最多,用途最广泛的一种。这类材料的主要特点是起始磁导率高和矫顽力低,即容易磁化也极易退磁,其磁滞回线呈细而长形状。软磁铁氧体材料可按化学成分、磁性能、应用来进行分类。若按化学成分来分类,则主要可分为 MnZn 系、NiZn系和 MgZn 系三大类。MnZn 系铁氧体具有高的起始磁导率,较高的饱和磁感应强度,在无线电中频或低频范围有低的损耗,它是,1兆赫兹以下频段范围磁性能最优良的铁氧体材料。常用的MnZn 系铁氧体,其起始磁导率μi=400~20000,饱和磁感应强度 BS=400~530mT。MnZn 系铁氧体广泛制作开关电源变压器、回扫变压器、宽带变压器、脉冲变压器、抗电磁波干扰滤波电感器及扼流圈等,是软磁铁氧体中产量最大的一种材料(按重量计约占 60%)。NiZn 系铁氧体使用频率 100kHz~100MHz,最高可使用到300MHz。这类材料磁导率较低,电阻率很高,一般为 105~107Ωcm。因此,高频涡流损耗小,是 1MHz 以上高频段磁性能最优良有材料。常用的 NiZn 系材料,磁导率μi=5~1500,广泛用于制作各种高频固定电感器,可调电感器,谐振回路线圈,线性调节线圈抗电磁波干扰线圈等。附加少量 CuO 的 NiCuZn 系材料,最近在表面安装片式电感器中得到广泛应用。NiZn 系材料制成的各类小型磁心产量很大(按数量计),但按重量计的约占软磁铁氧体材料的 10% 左右。MgZn 系铁氧体材料中附加小量 MnO 后制成 MgMnZn系材料,电阻率较高,广泛用于制作各种显象管或显示的偏转线圈磁心,数量很大,产量约占软磁铁氧体材料的30%(按重量计)左右。MgZn 系铁氧体在某些高频电感线圈及天线线圈中也得到应用。

关于编制软磁铁氧体项目可行性研究报告编制说明

软磁铁氧体项目 可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司编制时间:https://www.wendangku.net/doc/e517557116.html, 高级工程师:高建

关于编制软磁铁氧体项目可行性研究报告 编制说明 (模版型) 【立项 批地 融资 招商】 核心提示: 1、本报告为模板形式,客户下载后,可根据报告内容说明,自行修改,补充上自己项目的数据内容,即可完成属于自己,高水准的一份可研报告,从此写报告不在求人。 2、客户可联系我公司,协助编写完成可研报告,可行性研究报告大纲(具体可跟据客户要求进行调整) 编制单位:北京中投信德国际信息咨询有限公司 专 业 撰写节能评估报告资金申请报告项目建议书 商业计划书可行性研究报告

目录 第一章总论 (1) 1.1项目概要 (1) 1.1.1项目名称 (1) 1.1.2项目建设单位 (1) 1.1.3项目建设性质 (1) 1.1.4项目建设地点 (1) 1.1.5项目主管部门 (1) 1.1.6项目投资规模 (2) 1.1.7项目建设规模 (2) 1.1.8项目资金来源 (3) 1.1.9项目建设期限 (3) 1.2项目建设单位介绍 (3) 1.3编制依据 (3) 1.4编制原则 (4) 1.5研究范围 (5) 1.6主要经济技术指标 (5) 1.7综合评价 (6) 第二章项目背景及必要性可行性分析 (7) 2.1项目提出背景 (7) 2.2本次建设项目发起缘由 (7) 2.3项目建设必要性分析 (7) 2.3.1促进我国软磁铁氧体产业快速发展的需要 (8) 2.3.2加快当地高新技术产业发展的重要举措 (8) 2.3.3满足我国的工业发展需求的需要 (8) 2.3.4符合现行产业政策及清洁生产要求 (8) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (9) 2.3.6增加就业带动相关产业链发展的需要 (9) 2.3.7促进项目建设地经济发展进程的的需要 (10) 2.4项目可行性分析 (10) 2.4.1政策可行性 (10) 2.4.2市场可行性 (10) 2.4.3技术可行性 (11) 2.4.4管理可行性 (11) 2.4.5财务可行性 (11) 2.5软磁铁氧体项目发展概况 (12)

铁氧体磁环

一。下面的是行业标准 1.1 GB/T9637-88《磁学基本术语和定义》,等同采用IEC50-901,代替等同采用IEC205的SJ/T1258-77《磁性材料与器件术语及定义》。 1.2 JJG1013-89《磁学计量常用名词术语和定义》(试行)为中华人民共和国国家计量检定规程,非等效采用IEC50-901制定的,和GB/T9677-88出自于一个文本,基本上都是一个翻译问题,内容基本一样,只是翻译成的中文表述不同。 1.3 SJ/T103213-91《铁氧体材料牌号与元件型号命名方法》,代替SJ/T1582-80。 本标准规定软磁铁氧体材料用R表示,如R20表示磁导率为20的软磁铁氧体材料。软磁铁氧体材料牌号已被等同采用IEC1332(1995)《软磁铁氧体材料分类》的电子行业标准SJ/T1766-97代替。 1.4 SJ/Z1766-81《软磁铁氧体材料系列及测试方法》 1.5 SJ/T1766-97《软磁铁氧体材料分类》电子行业标准等同采用IEC1332(1995) 1.6 GB/T9634-88《磁性氧化物外形缺陷极限规范的指南》等同采用IEC424(1973)制定 1.7 GB/T9632-88《通信用电感器和变压器磁芯测量方法》本标准等同采用IEC367-1(1982)制定。 1.8 GB/T9635-88《天线棒测量方法》本标准等同采用IEC492(1975)制定。 1.9 SJ/T3175-88《磁性氧化物圆柱形磁芯、管形磁芯及螺纹磁芯的测量方法》本标准等同采用IEC732(1982)制定。 1.10 SJ/T10281-91《磁性零件有效参数的计算》等同采用IEC205(1966)、205AMD (1976)、205AMD2(1981)制定。 1.11 GB/T11439-89《通信用电感器和变压器磁芯第二部分:性能规范起草导则》,等同采用IEC367-2(1974)、367-2AMD1(1983)、367-2A(1976)制定。GB/T11439-89在1995年国家标准消化整理以后,被转化为电子行业标准SJ/T11076-96。 1.12 SJ/T9072.3-97《变压器和电感器磁芯制造厂产品目录中有关铁氧体材料资料的导则》等同采用IEC401(1993,第二版),代替SJ/Z9072-3-87二。以下为搜集整理 2.1前景广阔的软磁铁氧体材料

磁性材料的基本特性及分类参数

一. 磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2)

软磁铁氧体现状与发展

软磁铁氧体现状与发展 摘要: 本文讨论分析了软磁铁氧体国内外研究、生产、专用工艺设备、市场现状。详细论讨了高磁导率铁氧体、功率铁氧体、迭层片式电感器用的铁氧体粉料等铁氧体的技术发展动向。 1.前言 软磁铁氧体应用广,用量大的一种磁性材料。1997 年世界产量22 万吨,其中我国产量 5 万吨,预计2000 年世界产量将达到30 万吨,2005 年达到45 万吨,预计今年我国将达到6 万吨,2005 年将超过15 万吨,约占全世界软磁铁氧体总量的1/3 ,占世界第一位。但我国尚存在工艺技术比较低,一些专用工艺设备较落后,造成产品档次不够高等问题,有待进一步解决。 在软磁铁氧体的产量中,高磁导率铁氧体约占20 %,功率铁氧体约占25 %,宽带射频铁氧体,电子镇流器约占15 %,其余的如抗电磁干扰(EMI ),偏转磁芯等约占40 %。 2技术发展方向 2.1 软磁铁氧体制备工艺 从80 年代以来,我国引进国外先进工艺设备和工艺技术,使生产规模和效率有显著提高,一些产品性能在较短的时间内达到国际水平。但生产的自动化程度还跟不上发达国家著名铁氧体公司,他们生产线用“电脑集成制造”(CIM )和“电脑/ 人联合集成”(CHIM ),用电脑控制自动完成制粉、成型、烧结、磨削及包装等工序,使产品合格率达95?99 %。 2.2 高磁导率铁氧体 由于高磁导率铁氧体在数字通讯,光纤通讯及电磁兼容等领域中大量应用,促使其制备工艺逐渐 完善,不断提高性能,国外研制水平卩i为20000?23000,国内外有关生产水平列于表1。值得提及的表1中列出的卩i值国内厂家属于小批量生产性能,大批量生产的卩i值为7000?8000,研 制水平为12000 ?13000 。海宁天通电子有限公司陆明岳开发的产品,1999 年6月通过省级新产

软磁铁氧体材料基本类别及主要应用Featuresand

软磁铁氧体材料基本类别及主要应用(Features and applicat ion of Soft magnet) 软磁铁氧体按成份一般分为MnZn、NiZn系尖晶石和平面型两大类。前者主要用于低、中频(MnZn)和高频(NiZn),后者可用于特高频范围;从应用角度又可分高磁导率μi、高饱和磁通密度Bs、高电阻率及高频大功率(又称功率铁氧体)等几大类。由于软磁铁氧体在高频作用下具有高导磁率、高电阻率、低损耗等特点,同时还具有陶瓷的耐磨性,因而被广泛用于工业和民用等领域。工业产品主要用于计算机、通信、电磁兼容等用开关电源、滤波器和宽带变压器等方面;民用产品主要用于电视机、收录机等电子束偏转线圈、回扫变压器、中周变压器、电感器及轭流圈部分等。 一:国内外研发现状: 在软磁铁氧体磁性材料中一般以μi>5000的材料称为高磁导率,该材料近年来产量不断递增,尤其是随着当今数字技术和光纤通信的高速发展,以及市场对电感器、滤波器、轭流圈、宽带和脉冲变压器的需求大量增加,它们所使用的磁性材料都要求μi>10000以上,从而可使磁芯体积缩小很多,以适应元器件向小型化、轻量化发展要求。另外为满足使用需求,这类高磁导率小磁芯表面必须很好,平滑圆整,没有毛刺,且表面上须涂覆一层均匀、致密、绝缘、美观的有机涂层,针对这一技术难点,高磁导率软磁铁氧体产业需求中迫切希望再提高该功能材料的磁导率(μi>10000)。 上世纪90年代后,一些国外知名公司如日本TDK、TOKIN、HITACHI、IROX-NKK、FDK、KAWATETSU等、德国SIEMENS、荷兰Philips、美国SPANG磁性分公司等相继研发出新一代超高磁导率H5D(?i=15000)、H5E(?i=18000)铁氧体材料。日本TDK公司是全球磁性材料最富盛名的领头羊企业,他们在早期生产的H5C2(?i=10000)基础上,又先后开发了H5C3(?i=12000)、H5D(?i=15000)和H5E(?i=18000)等系列高?软磁铁氧体材料;90年代末已试验成功?i=20000的超高磁导率Mn-Zn铁氧体材料。TOKIN公司已向市场推出了12000H(?i=12000)、15000H(?i=15000)和18000H(?i=18000)的铁氧体材料。德国西门子、荷兰飞利浦、美国SPANG公司分别开发的高磁导率软磁铁氧体T42、T46、T56、3E6、3E7和MAT-W、MAT-H材料,其中T46:?i=15000、3E7:?i=15000、MA T-H:?i=15000,2000年西门子和飞利浦公司研制的T56、3E9材料最高磁导率已超过?i=18000。 虽然,我国软磁铁氧体工业发展较快,现有的生产厂家通过技术改造和工艺改进已取得不少成果,产品质量和产量得到明显提高,但目前国内只能大量生产?i=5000-7000的低档铁氧体材料,在高磁导率锰锌铁氧体材料研发生产上,国内与国外的水平与距离相差甚远,且大多数企业生产规模还太小,年产量普遍在1000吨以下,μi>10000的材料生产厂家更是屈指可数,而初具规模的国外公司一般年产软磁铁氧体在3000吨以上,TDK、FDK等公司年产量更是高达20000吨以上。依据我国磁性行业协会的统计,1999年我国生产μi=8000-10000材料的产量很少,但2000年后生产这类中低档软磁铁氧体材料却有较大改观。上海、浙江、

软磁铁氧体烧结过程的质量问题现象及解决措施

软磁铁氧体烧结过程的质量问题现象及解决措施 一、烧结条件对磁性能的影响 烧培条件对铁氧体的磁性能有很大影响。烧结温度、烧结气氛和冷却方 式是烧结条件的三个主要方面。 (一)烧结温度对磁性能的影响 一般说来,烧结温度偏低时,晶粒大小不均匀,气孔分散于晶界和晶粒内部,呈不规则多面形。磁导率μi和剩磁感应强度Br都较低,但是矫顽力HCB 较大。烧结温度适当,则晶粒趋于均匀、气孔呈球形、烧结密度较低、磁导率μi和剩磁感应强度Br较大,矫顽力HCB有所减少。烧结温度过高时,晶粒虽然增大,但是由于内部的气孔迅速膨胀,有的杂质发生局部熔融而使晶界变形,则不仅烧结密度低,磁导率μi和剩磁感应强度Br也将显著下降,机械性能极其 脆弱,无实用价值。 对软磁铁氧体而言,在一定的烧结温度范围内,初始磁导率μi随烧结温度升高而增大,损耗角正切tgδ也随温升而增大(即Q值减少)。对硬磁铁氧体而言,烧结温度高,剩磁感应强度Br也高,而矫顽力HCJ减小。对旋磁铁氧体而言;烧结温度高,则饱和磁化强度也较高。在生产中,必须针对各种材料的不同特点,结H合产品的其它性能要求而区别对待,由试验确定最佳的烧结温度。 (二)烧结气氛对磁性能的影响 气氛条件对铁氧体烧结非常重要,尤其对含有易变价的Mn,Fe,Cu,Co等金属元素的铁氧体,在烧结过程中随着氧分压和温度的变化而发生电价的变化以至相变,过度的氧化与还原,就有另相析出(如α-Fe2O3,FeO,Fe3O4,Mn2O3等), 将导致磁性能的急剧变化。 在升温阶段,因为还没有形成单一尖晶石相,对周围气氛要求不苛刻,在空气中、真空中或氮气中升温均可;在保温过程中,由于发生了气孔的排除、晶粒的长大和完善、单一结构铁氧体的生成,这些均要求控制好烧结气氛。可以说,烧结气

磁性材料的基本特性及分类参数

一.磁性材料的基本特性 1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2.软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁

性材料的厚度t及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3.软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 二、软磁材料的发展及种类 1.软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。 到20世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直至现在硅钢片在电力工业用软磁材料中仍居首位。到20年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。从40年代到60年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料。进入70年代,随着电讯、自动控制、计算机等行业的发展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料—非晶态软磁合金。 2.常用软磁磁芯的种类 铁、钴、镍三种铁磁性元素是构成磁性材料的基本组元。 按(主要成分、磁性特点、结构特点)制品形态分类:

软磁铁氧体发展前景要点

软磁铁氧体材料的现状及其发展前景 张继松王燕明 (中国西南应用磁学研究所四川绵阳 621000) 关键词:软磁铁氧体;应用;市场;现状;发展前景 1 前言 软磁铁氧体材料是一种用途广、产量大、成本低的电子工业及机电工业和工厂产业的基础材料,是其重要的支柱产品之一,它的应用直接影响电子信息、家电工业、计算机与通讯、环保及节能技术的发展,亦是衡量一个国家经济发达程序的标志之一。 软磁铁氧体材料的发明与实用化,至今已半个世界,由于它具有高磁导率、高电阻率、低损耗及陶瓷的耐磨性,因而在电视机的电子束偏转线圈、回扫变压器、收音机扼流圈、中周变压器、电感器、开关电源、通讯设备、滤波器、计算机、电子镇流器等领域得到广泛应用;随着电子技术应用日益广泛,特别是数字电路和开关电源应用的普及,电磁干扰(EMI)问题日益重要,世界各国对电子仪器及测量设备抗电磁干扰性能提出的标准越来越高,因此以软磁铁氧体为基础的EMI磁性元件发展迅速,产品种类繁多,如电磁干扰抑制器、电波吸收材料、倍频器、调制器等,现已成为现代军事电子设备、工业和民用电子仪器不可缺少的组成部分。 2 软磁铁氧体材料的应用状况 软磁铁氧体做成各种形状和规格尺寸的磁芯,主要用于工业类电子产品(或称投资类电子产品)和消费类电子产品中(见表1)。 表1 软磁铁氧体磁芯应用情况一览表

软磁铁氧体磁芯产量中约80%~90%(按重量计)用于消费类电子设备中。在消费类和工业类电子产品中使用的软磁铁氧体磁芯简述如下: a. 用功率铁氧体材料制成的U形、E形磁芯来制作开关电源变压器、回扫变压器,枕校变压器和行推动变压器等; b. 用高电阻率的MgMnZn系铁氧体材料来制作偏转磁芯; c. 用高磁导率MnZn铁氧体制成UF形、EE形、日字形磁芯来制作电源滤波器; d. 用高频NiZn铁氧体制成工字形、螺纹、帽形、双孔形等磁芯用来制作小型固定电感器、电感线圈; e. 用MgZn系、NiCuZn系NiMgCuZn系制成的天线棒、旋转变压器用磁芯等。 f. 工业类电子设备如计算机监视器、程控交换机、监视器、传真机、天线及有线、通信设备、电子镇流器等广泛采用E形、环形、EP形、RM形、罐形磁芯等。虽然用的磁芯数量相对少,但质量要求相当高。 g. 用NiZn铁氧体的复数磁导率与频率的关系,改变不同成分配方及掺杂来实现铁氧体阻抗频率特性和衰减领域,制成宽频域抗EMI铁氧体串珠磁芯、多孔磁芯和各种滤波器;MnZn铁氧体材料具有高的μ i 值,电阻率较低,大量用于电流不大的KYC线圈和EMI滤波的共模、差模线圈,使用在低频段来达到抗EMI干扰。 h. 铁粉芯材料在较大的H下具有恒定的μ i 值,具有高B s 、居里温度高,稳定 性好的特性,在大电流、低频段EMI电源滤波器、大电流共模、差模线圈中广泛应用。 i. 用纳米晶软磁材料的高磁导率、用高频域的高饱和磁感应强度、低损耗制成的抗EMI微型滤波器和噪音衰减器,应用于DC-DC变换器、计算机及Internet 联网的输入抗EMI滤波器;以Fe基、Co基材料开发出的各种抗EMI器件广泛用于计算机系统的各种通信网络。 此外,平面六角晶系的磁铅石型超高频软磁铁氧体、平面六角晶系材料还可用作永磁材料、微波和毫米波材料及磁头磁记录材料。

软磁材料的种类、特点及应用

软磁材料的种类、特点及应用 一软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。到20世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直至现在硅钢片在电力工业用软磁材料中仍居首位。到20年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。从40年代到60年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料。进入70年代,随着电讯、自动控制、计算机等行业的发展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料—非晶态软磁合金。 二常用软磁磁芯的种类 铁、钴、镍三种铁磁性元素是构成磁性材料的基本组元。 按(主要成分、磁性特点、结构特点)制品形态分类: (1) 粉芯类:磁粉芯,包括:铁粉芯、铁硅铝粉芯、高磁通量粉芯(High Flux)、坡莫合金粉芯(MPP)、铁氧体磁芯 (2) 带绕铁芯:硅钢片、坡莫合金、非晶及纳米晶合金 三常用软磁磁芯的特点及应用 (一) 粉芯类 1. 磁粉芯 磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。由于铁磁性颗粒很小(高频下使用的为0.5~5 微米),又被非磁性电绝缘膜物质隔开,因此,一方面可以隔绝涡流,材料适用于较高频率;另一方面由于颗粒之间的间隙效应,导致材料具有低导磁率及恒导磁特性;又由于颗粒尺寸小,基本上不发生集肤现象,磁导率随频率的变化也就较为稳定。主要用于高频电感。磁粉芯的磁电性能主要取决于粉粒材料的导磁率、粉粒的大小和形状、它们的填充系数、绝缘介质的含量、成型压力及热处理工艺等。 常用的磁粉芯有铁粉芯、坡莫合金粉芯及铁硅铝粉芯三种。 磁芯的有效磁导率μe及电感的计算公式为:μe = DL/4N2S × 109 其中:D 为磁芯平均直径(cm),L为电感量(享),N 为绕线匝数,S为磁芯有效截面积(cm2)。 (1) 铁粉芯 常用铁粉芯是由碳基铁磁粉及树脂碳基铁磁粉构成。在粉芯中价格最低。饱和磁感应强度值在1.4T左右;磁导率范围从22~100;初始磁导率μi随频率的变化稳定性好;直流电流叠加性能好;但高频下损耗高。 (2). 坡莫合金粉芯 坡莫合金粉芯主要有钼坡莫合金粉芯(MPP)及高磁通量粉芯(High Flux)。 MPP 是由81%Ni、2%Mo及Fe粉构成。主要特点是:饱和磁感应强度值在7500Gs左右;

磁性材料的基本特性及分类参数

磁性材料的基本特性及分类参数 https://www.wendangku.net/doc/e517557116.html,/来源:日期:2006年04月25日 一. 磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 二、软磁材料的发展及种类

软磁铁氧体材料的基本特性(一)(精)

软磁铁氧体材料基本磁特性(一 磁化曲线和磁滞回线 有一个很长的均匀线管空心线圈,轴向长度为 l,有 N匝线圈,流过的电流为 I,则线圈内部的磁场为 H:(1-1①磁场的方向平行于螺线管轴,以及在内截面上是均匀分布的[见图1-4(a]。有关的磁感应强度B由下式给出:B=μ0·H (T(或Wb/m2 (1-2②这里,μ0 是真空绝对磁导率,数值为4π×107H/m(享利 / 米。如果螺线管中填满铁氧体磁性材料,则磁场作用于材料内部的微观电流环线,使材料内部的磁畴趋向一致(通过畴壁位移磁畴旋转,结果材料磁矩增大了线圈内部磁场,这个磁场的增加称磁化强度 M,单位是A/m(安/米。 ①1 奥斯特(Oe=79.577安/米=80安/米(A/m ②1 特斯拉(T=1韦伯/米(Wh/m2=104高斯(Gs 1mT(毫特斯拉=10Gs(高斯 因此,线圈内磁场 Hi 为:(A/m (1-3 磁感应强度为:B=μ0Hi=μ0(H+M(T (1-4或者,B=μ0H+J (T (1-5这里,J 是磁极化强度,单位是 T(特斯拉。J 与 M的关系为:J=μ0M(T (1-6因此,M 是由于磁性材料除菌过滤器而造成的磁场强度的增量,而J是相应的磁通密度的增量。磁感应强度除以磁场强度的 商简称为绝对磁导率,用μ0μ表示:B/H=μ0μ或B=μ0μH (1-7 式中μ是材料的相对磁导率,它表示某种材料的磁导率比真空磁导率大多少倍,这是一个无量纲的比值。实际使用中将形容词“相对”省略,直接称为材料的磁导率。

磁性材料在外磁场中磁化时,其磁感应强度 B 与磁化场 H 呈现复杂的关系,这种关系可用磁化曲线和磁滞回线来表征。在慢慢增长的直流磁场作用下,可以获得静态磁化曲线。实际采用的是初始磁化曲线,即将铁氧体完全退磁后(这时磁畴全部随机取向,相互抵消而结果磁化为零,把磁场强度从零慢慢增加所得到的双联过滤器B-H 曲线。图1-5 示出多晶铁氧体样品的磁化过程和起始磁化曲线。可将磁化曲线分为四段:OA 为起始磁化阶段,AB 为磁化陡峭阶段,BC 是缓慢磁化阶段(趋于饱和,CS 是饱和磁化段。 在 B-H 曲线上,CS 段是与 H 轴维持一定斜率的斜线。在饱和磁场Hs 相对应的磁感应强度称为饱和磁感应强度 Bs。这是一个较为重要的实用参数。 (a 很长空心线圈 (b 很长螺线管中有很长铁氧体园棒图 1-4 螺线管中的磁场

软磁铁氧体材料的基本特性(一)

软磁铁氧体材料基本磁特性(一) 磁化曲线和磁滞回线 有一个很长的均匀线管空心线圈,轴向长度为 l,有 N匝线圈,流过的电流为 I,则线圈内部的磁场为 H:(1-1)①磁场的方向平行于螺线管轴,以及在内截面上是均匀分布的[见图1-4(a)]。有关的磁感应强度B由下式给出:B=μ0·H (T)(或Wb/m2) (1-2)②这里,μ0 是真空绝对磁导率,数值为 4π×107H/m(享利 / 米)。如果螺线管中填满铁氧体磁性材料,则磁场作用于材料内部的微观电流环线,使材料内部的磁畴趋向一致(通过畴壁位移磁畴旋转),结果材料磁矩增大了线圈内部磁场,这个磁场的增加称磁化强度 M,单位是A/m(安/米)。 ①1 奥斯特(Oe)=79.577安/米=80安/米(A/m) ②1 特斯拉(T)=1韦伯/米(Wh/m2)=104高斯(Gs) 1mT(毫特斯拉)=10Gs(高斯) 因此,线圈内磁场 Hi 为:(A/m) (1-3) 磁感应强度为:B=μ0Hi=μ0(H+M)(T) (1-4)或者,B=μ0H+J (T) (1-5)这里,J 是磁极化强度,单位是 T(特斯拉)。J 与 M的关系为:J=μ0M(T) (1-6)因此,M 是由于磁性材料除菌过滤器而造成的磁场强度的增量,而J是相应的磁通密度的增量。磁感应强度除以磁场强度的 商简称为绝对磁导率,用μ0μ表示:B/H=μ0μ或 B=μ0μH

(1-7) 式中μ是材料的相对磁导率,它表示某种材料的磁导率比真空磁导率大多少倍,这是一个无量纲的比值。实际使用中将形容词“相对”省略,直接称为材料的磁导率。 磁性材料在外磁场中磁化时,其磁感应强度 B 与磁化场 H 呈现复杂的关系,这种关系可用磁化曲线和磁滞回线来表征。在慢慢增长的直流磁场作用下,可以获得静态磁化曲线。实际采用的是初始磁化曲线,即将铁氧体完全退磁后(这时磁畴全部随机取向,相互抵消而结果磁化为零),把磁场强度从零慢慢增加所得到的双联过滤器B-H 曲线。图1-5 示出多晶铁氧体样品的磁化过程和起始磁化曲线。可将磁化曲线分为四段:OA 为起始磁化阶段,AB 为磁化陡峭阶段,BC 是缓慢磁化阶段(趋于饱和),CS 是饱和磁化段。 在 B-H 曲线上,CS 段是与 H 轴维持一定斜率的斜线。在饱和磁场Hs 相对应的磁感应强度称为饱和磁感应强度 Bs。这是一个较为重要的实用参数。 (a) 很长空心线圈

相关文档