文档库 最新最全的文档下载
当前位置:文档库 › 石材的腐蚀机理和破坏因素

石材的腐蚀机理和破坏因素

石材的腐蚀机理和破坏因素
石材的腐蚀机理和破坏因素

石材的腐蚀机理和破坏因素

我国的石质材料品种繁多,应用广泛。从石器时代的岩画、石器,到历代的石窟造像、石塔经幢、石桥牌坊、石碑石雕、各种石头建筑以及目前普遍使用的装饰石材等等,构成了我国特有的“石文化”,成为中华文化的重要组成部分。这些使用的石材大部分与其他物体或大地相联,暴露在自然界的风化环境中,特别是近代工业的发展,环境污染对石材的威胁更加严重,另外不正确的安装、维修和防护也会造成严重破坏。为了更充分地发挥石材的社会和经济效益,有效地进行维护管理和科学地运用防护措施,研究石材的腐蚀机理和破坏因素是十分必要的。

石材的腐蚀破坏既是一个复杂的过程,又是石材内在性质和与环境因素相互作用的结果。

石材的内在性质包括其化学组成和颗粒结构,例如,碳酸盐岩石中碳酸盐含量超过50%,其主要化学组成是碳酸钙和碳酸镁等,具体的又可分为石灰石、白云石和大理石。石灰石90%以上的成分是碳酸钙,白云石中含有一定量的碳酸镁,大理石是经过重结晶的碳酸钙。这三者因为晶粒差异、孔径分布不同及以后沉积的缘故,物理性能有所差异,抗腐蚀性也不同。后沉积即重结晶会提高强度,降低微孔率,延长使用寿命。另外,砂岩和花岗岩也是常用的石材。这些石材的性质和结构各不相同,但是它们的表面和内部都有许多直径零点几到几百个纳米的微孔,这些微孔是气体和水份进出人石材内部的通道,同时气体和水份也将酸碱盐等物质带人和带出,使石材与环境更紧密相联。

环境因素包括当地的气候与气象,如气温变化、雨水与潮湿、风雪;包括邻近接触物的影响,如大地、海水或依托体;还包括环境空气成分,如大气中酸性气体含量(如s 、C02、NO 等)以及悬浮颗粒物(aSP)都直接影响石材的使用寿命。我国是硫化物污染较严重的国家之一,许多地区的环境空气质量达不到国家三级标准,环境污染的破环问题已提到首要议事日程上来,应当引起足够的重视。

I.石材腐蚀机理

石材的腐蚀按照作用机制主要可以分为以下几种:

I.1物理腐蚀

I.1.1冻损:冻损是造成石材裂缝的主要原因之一。雨水、冷凝水或地下水通过微孔进人石材,随着温度的变化,石材的体积反复收缩或膨胀,其应力可造成石材的裂损,尤其是长期处于潮湿环境而日夜温差较大的室外石材L1 J。石材对冻损的敏感程度取决于它的微孔结构,因为孔结构决定了水饱和度,同时结冰时所产生的压力强度因孔径而异。关于石材冻损的微观过程主要有两种观点,一种观点认为2J:在石材微孔中生成的冰晶的自由能要大于在粗孔中生成的冰晶的自由能,当冰晶在粗孔中形成并填充了这个孔时,至少有两种现象之一可能发生,一是它会生长出来,从而进入旁边的微孔中;二是它从周围的微孔中吸取必要的水分,继续生长填满整个粗孔后者在热力学上更为可行,这样冰晶继续生长而形成的大冰柱,由此冰晶膨胀造成冻损。然而,冰柱体由于膨胀受到石料的反作用力,它的自由能也会增加,如果石料对冰柱的压力足够大,那么,柱体的自由能会超过微孔中冰晶的自

由能,而冰将会挤进微孔的网络,反之冰晶膨胀造成石料损害。另一种观点认为_】J:石材内部水的压缩应力是主要破坏因素,在一种易受冰冻影响的石材中,石材本身的张力比终止冰柱生长的力大得多,换句话说,冰柱体膨胀对石材直接的破坏性很小。冰晶沿着粗孔增长或者绕过微孔形成密封水[43,被密封的水重复密封过程,而水结成冰体积膨胀约百分之十,密封水被压缩,产生压缩应力而造成石料破坏,他们称之为冰冻隆胀。关于这两种观点,他们各自都在自然界中能找到了典型的例子来应证。

1.1.2盐作用:盐作用包括结晶风化_5J、结晶压力【、水合压力、吸湿膨胀和温升膨胀l 造成的应力。盐作用是石材风化的最重要的原因。盐的来源包括石材早期地质形成时期和后来变化产生的盐结晶,而盐的其它来源包括石材与气体反应生成的产物,如CaSO4和Mgso4等,也包括水泥、灰浆、尘埃、地下湿气、海水和不当的清洁材料等通过石材微孔带人的盐。盐在石材微孔中结晶会产生很大的压力,即结晶压力,一些常见盐的结晶压力见表lI9J,结晶压力决定于结晶温度和饱和度(c/%)。

在一定的条件下,有些盐还可以重结晶生成新的水合物,占据更大的体积,产生额外的压力,即水合压力,例如石膏(CAISO4?1/2H20)和泻盐(~agSO,?6H20)的水合压力见表2[9]。水合压力与温度、湿气浓度有关。

盐的破坏力是很大的,例如,英国一座教堂的石基上涂抹了一层食盐(NaCI),其原意是为了保护石材,其效果却恰恰相反,使石材表面呈壳状剥落。盐结晶破坏在许多情况下借助于风的作用。内层的盐溶解在水中扩散到表面,风使得水蒸发加快,从而促进盐积累。环境干湿循环的变化也加速盐结晶的循环,重复的盐的溶解和结晶使石材微孔的表面呈粉末状或鳞片状脱落,石材的表面呈糖状风化,在雨淋到之处风化产物被雨水冲走。在一些含镁的石灰岩中结晶循环的破坏很容易形成一条条深沟。另外,常见的装饰石材表面恒湿不干的现象,也主要是盐的吸潮作用。

1.1.3化学破坏

冻损和盐的破坏作用都是物理过程,化学破坏造成的后果同样很严重。最直接的例子是碳酸盐类岩石中caC03与溶解在水中的so2和co2反应,生成可溶性或微溶盐。化学反应会引起快速腐蚀,通过对石灰石的观察,可以发现在雨水经常冲刷的地区,石材的风化缓慢但持续,已风化侵蚀的物质被雨水冲走。在更多的不易遭受雨水冲刷的地方,风化产物在原处就形成了坚硬的肮脏的皮层,这些皮层因原石材的结构不同而异,有的最终呈泡状脱落,有的形成顽固的黑垢。含钙砂岩的轮廓呈鳞状脱落就是典型的例子之一脱落的表层可厚至5—10rm~。导致的原因是SO2的直接污染。据实验分析,脱落表层的微孔中充满了硫酸钙。被浸蚀的表层是由于热膨胀或湿气运动形成的剪应力而最终脱落。

大气中酸性气体的溶解(不论是正常浓度还是受到工业污染后)会使水更具有腐蚀性。由于火山喷发、有机物腐蚀、燃烧和呼吸等作用,大气中=氧化碳正常浓度O.036%_I。;工业区二氧化碳浓度能高达0.044%。据估计一万年前二氧化碳浓度为2(.Vdppm,近代

汽车废气的排放大大提高了大气中二氧化碳的浓度。水中二氧化碳的被度与水的腐蚀性有着直接的关系。二氧化碳溶解后电离成H 、HC03 和C030。H2CO3和碳酸钙生成易溶的碳酸氢钙。二氧化碳的溶解度随温度升高而降低,O℃时为C02 1.1ppm,而2O℃时为0.38ppm。碳酸盐溶蚀速率也与反应产物的移出速率有关,水的湍流会陕速带出反应产物从而加速腐蚀。烟煤在大气中硫化物的主要来源。煤中舍有1%到3%的硫,通常以黄铁矿的形式存在,一吨煤燃烧放出17到52千克SOz。原油里也含有一定比例的硫。汽油和柴油中含有0.1%到3%的硫,燃烧后产生70ppmS 和2—3pgnn s 。另外一个仅次于工业硫化污染的因素是火山喷发。五年前全球的s02年的排放量为l08吨,其中欧洲电厂排放25×lo6_】0 吨。燃烧时生成SO2和SO3的比例取决于燃烧温度而不是氧气量,SO2是主要产物大气中硫酸浓度大于SO3浓度,可能是SO2被氧化。S 放O2氧化成SOs的反应是很慢的,如果在催化剂M 和Fd 等的作用下则快得多。另外,自然界的H202和o3也是氧化剂,同时影响氧化速度的还有CA) No1(催化剂)、不完全燃烧的有机物、相对湿度和太阳能。

SO2和SOs等溶于雨后,形成酸雨,对碳酸盐类石材损害极大。生成的硫酸钙如果被冲走,又形成新的腐蚀面。除了直接的溶蚀外.残留的可溶性盐还会重结晶或水台,进一步侵蚀。

1.2生物破坏

直接由生物(主要是微生物)或由其代谢物对石材造成的浸蚀与物理和化学腐蚀相比要小得多.但前者对后者有着促进的作用,所以不容忽视。生物代谢产物包括、CO2和有机酸,溶在水中会提高水的侵蚀性。生物有机化过程中还消耗矿物质,从而促进岩石分解,另外,代谢产物还可能是物理腐蚀和化学腐蚀的催化剂。微生物会吸收太阳能促进矿物质的氧化还原反应。微生物的活动不仅限于石材的表面,它们还深入石材内部侵蚀硅酸盐、碳酸盐和各种金属氧化物例如,硝化细菌在还原氮过程中消耗碳酸盐:硫磺菌把有机硫氧化成硫酸而侵蚀碳酸盐等等未加防护的新的石材表面很容易被微有机体占领.包括自养型(能量来自太阳能和二氧化碳)和异养型(能量来自现存的有机物),如氰菌、藻、细菌、地衣等。一旦微有机体占据石材表面,生物降解作用就会不断向纵深发展。例如,可以发现有的久经风的石材裘面堆起了很厚的橄榄石,这表明了细菌滋生的繁荣。某些细菌会使硅铝酸盐释放阳离于,造成微生物矿物降解。地衣新陈代谢的产物如硫酸、硝酸和有机酸会加速硅酸盐和碳酸盐分解,『刊时也伴随着地衣根与石材矿物质之间的离子交换。高大植物的根也能与石材矿物质进行离子交换,分泌有机酸,作用机理与地衣相同lJ 。另外,一些植物如常青藤,还能从岩石裂缝处长人,直接造成应力破坏。另外,鸟类等也能对石材造成损害,已有报道_I 鸽子在石质建筑的檐和尖角处长年啄击造成破坏,其排泄物沉积在石面义造成污染。

2 石材腐蚀的能量机理

石材的腐蚀是个能量递减的过程,在这个过程中岩石的内聚能量密度慢慢减小,直到与松散的碎石以致土壤的能量相近。因为岩石遵循这们的自然规律,即物质自发趋向于形成与周围环境相近的内部结构。岩石的能量密度包括构成岩石的晶体和无定型部分的内聚能以及岩石组成之间的健合能。一般在成岩后内聚能量最大,蚀变过程中逐渐减小。岩石的力学性能(包括硬度和声速)与能量密度密切相关。石材在使用中各部分的能量减小是不均匀

的,均匀性取决于外来压力或冲击方式。岩石的能量最小值可以估计,它的变化率取决于周围环境的宏气候和微气候条件、外接触化学物质的作用、以及对石材本身矿物质的性能和

质量。化学键断裂时需要吸收与其键能佰等的能量,能量的吸收可以是持续的,也可以是瞬间的。当所吸收到的外部冲击能量高于某一一临界值时,此岩石便可能分裂。各种岩石以及同种岩石的不同部位的临界值都不相同,这就存在着岩石对压力或冲击的敏感性的问题

_1 。由敏感系数可以近似估计岩右腐蚀的难易程度。石材的蚀变还取决于周围的环境的条件,根据时间来划分,腐蚀进程可分为三步。第一步,在地质层中,没有人为因素干扰,蚀变速度是很慢的__也是均相的;第二步,从开采,搬运,切割到装修,石材表层的自由面逐步增大,并与外界破坏因素接触增多,非均相腐蚀速度明显加快;第三步,石材装修以后,石料承受和接触着较为固定的压力和环境破坏因素,常年持续的均相或非均相腐蚀往往是破坏最严重的一步。从技术的角度来说,石材的蚀变分为表面和整体两种,侵蚀深度不超过5mm称为表面腐蚀,反之称为整体腐蚀。表面腐蚀只是改变石材的表面性能如颜色、粗糙度等,对整体力学性能没有太大影响,但作为装饰石材会失去装饰效果。石材的腐蚀降低了强度和美观程度,后者主要与表面污物的沉积有关,外来污染物沉积在被侵蚀石材的表面,会遮盖和改变石材原有的色泽和纹理。就石材的清洗和保护而言,腐蚀现象可分为五个阶段:变粗糙、表层裂纹、表层分解、结壳、整体疏松。变粗糙是因为表层溶解,表层的化学成分和矿质大体还没有改变;表层裂纹是因为晶粒流失,组分问的键合降低;表层分解是表层晶体变为具有更小能量的晶体,键台能减弱,同时伴随着物理性能的变化;结壳为分解的一种特殊形式,新的晶体呈膜状,表面积增大,易沉积污物;整体琉松是表层裂纹和分解的相互混合向纵深发展.石材内聚能大大减弱,化学成分发生变化。

3.破坏因素

石材防护的关键是阻隔或减小周围环境中的破坏因素,从以上腐蚀机理的分析可以发现主要腐蚀破坏因素或参与腐蚀破坏的因素有:

3.1水

水结冰后体积膨胀约百分之十mj。水在岩石微孔中结冰的膨胀力可能超过岩石的张力.引起石面破碎或造成裂缝。水反复不均匀地吸收、渗透、溶解、温升膨胀、水合等都可能裂解岩石。更严重的是,水会向石材内部输送氧化或还原矿物质的化学物质和盐类,会将各种现代工业污染物带入石材微孔内,加速石材的溶蚀和破坏。水还是微生物等有机体滋生不可缺少的条件。所以水是石材腐蚀过程中最重要和最复杂的因素.目前许多防护方法都是以防水为中心。

3.2盐

盐都有降解的基本趋向,尤其是水溶性盐。溶盐的自发结晶是浓度和温度的函数。盐水舍后体积膨胀,会产生较大压力。如果石材温度变化较大,盐会温升膨胀,例如NaCI由20~C 升到60~C体积膨胀0.8%。盐膨胀是石材破坏最主要的因素之一。

3.3大气和酸雨

大气中酸性气体的溶解(不论是正常浓度还是受到工业污染后)会使水的酸性增强,更具有腐蚀性。二氧化碳溶解后和石材中碳酸钙作用生成易溶的碳酸氢钙。SO2和s03等溶于雨水后,形成酸雨,对石材尤其是碳酸盐石材损害极大,生成的硫酸钙被冲走,又形成新的腐蚀面。除了直接的溶蚀外,残留的可溶性盐还会重结晶或水合,进一步侵蚀石材。

3.4工业烟雾

烟雾是潮气、灰尘和各种化工燃料烧物的混合物。烟尘象海绵一样,吸收各种气体,与

水混台后就形成酸性溶液。严重的工业污染和汽车废气排放以及闭塞的大气循环是工业烟雾形成的主要原因。烟雾不仅对生物有伤害性,对石质建筑和装饰石材的污损和腐蚀都很强。

3.5生物

微生物和植物分泌的无机酸和有机酸破坏石质结构,同时与矿物质进行离子交换,会加速石材的分解。鸟类等动物的排泄物也会造成石材污染。

当然,各种因索不是孤立的,各种腐蚀破坏也是同时进行的,相互促进。是否能长期有效地阻隔或减小这些破坏因素,是石材防护措施研究的主要内容。

介质的毒性和金属材料的耐腐蚀性

介质的毒性和金属材料的耐腐蚀性 《职业性接触毒物危险程度分级》GB5044分级原则是什么? 答:(1)职业性接触毒物危险程度分级,是以急性毒性、急性中毒发病状况、慢性中毒患病状况、慢性中毒后果、致癌性和最高容许浓度等六项指标为基础的定级标准。 (2)分级原则是依据六项分级指标综合分析,全面权衡,以多数指标的归属定出危害程度的级别,但对某些特殊毒物,可按其急性、慢性或致癌性等突出危害程度定出级别。 《职业性接触毒物危险程度分级》GB5044分级依据是什么? 答:(1)急性毒性 以动物试验得出的呼吸道吸入半数致死浓度(LC )或经口、经皮半数致死量(LD50) 50 或LD50最低值作为急性毒性指标。 的资料为准,选择其中LC 50 (2)急性中毒发病状况 是一项以急性中毒发病率与中毒后果为依据的定性指标:可分为易发生、可发生、偶而发生中毒及不发生急性中毒四级。将易发生致死性中毒或致残定为中毒后果严重;易恢复的定为预后良好。 (3)慢性中毒患病状况 一般以接触毒物的主要行业中,工人的中毒患病率为依据,但在缺乏患病率资料时,可取中毒症状或中毒指标的发生率。 (4)慢性中毒后果 依据慢性中毒的结局,分为脱离接触后,继续进展或不能治愈、基本治愈、自行恢复四级。并可依据动物试验结果的受损病变性质(进行性、不可逆性、可逆性)、靶器官病理生理特性(修复、再生、功能储备能力),确定其慢性中毒后果。 (5)致癌性 主要依据国际肿瘤研究中心公布的或其他公认的有关该毒物的致癌性资料,确定为人体致癌物、可疑人体致癌物、动物致癌物及无致癌性。 (6)最高容许浓度 主要以《工业企业设计卫生标准》TJ36-70中表4车间空气中有害物质最高容许浓度值为准。

1、金属腐蚀过程的特点是什么?采用那些指标可以测定金属全面腐蚀的速度。 答:特点因腐蚀造成的破坏一般从金属表面开始,然后伴着腐蚀的过程进一步发展,富士破坏将扩展到金属材料的内部,并使金属的性质和组成发生改变;金属材料的表面对腐蚀过程进行有显著的影响。重量指标:就是金属因腐蚀而发生的重量变化。深度指标:指金属的厚度因腐蚀而减少的量。电流指标:以金属电化学腐蚀过程阳极过程电流密度的大小。2、双电层的类型有哪些?平衡电极电位,电极电位的氢标度的定义? 答:类型:金属离子和极性水分子之间的水花力大于金属离子与电子之间的结合力;金属离子和极性水分子之间的水化力小于金属离子与电子之间的结合力;吸附双电层。平衡电极电位:金属浸入含有同种金属离子的溶液中参与物质迁移的是同一种金属离子,当反应达到动态平衡,反映的正逆过程的电荷和物质达到平衡,这是电位为平衡电极电位;电极电位的氢标度:以标准氢电极作为参考电极而测出的相对电极电位值称为电极电位的氢标度。 3、判断金属腐蚀倾向的方法有哪几种? 答:a腐蚀反映自由能的变化△G<0则反应能自发进行△G=0则达到平衡△G>0不能自发反应b标准电极电位越负,金属越易腐蚀 4、以Fe-H2O体系为例,试述电位-PH图的应用。 答:以电位E为纵坐标,PH为横坐标,对金属—水体系中每一种可能的化学反应或电化学反应,在取定溶液中金属离子活度的条件下,将其平衡关系表现在图上,这种图叫做电位PH平衡图。应用:预测金属的腐蚀倾向;选择控制腐蚀的途径。 5、腐蚀原电池的组成及工作历程?它有那些类型。 答:组成:阴阳极、电解质溶液、电路四个部分;工作历程:阳极过程、阴极过程、电流的流动;类型:a宏观腐蚀电池:异金属解除电池、浓差电池、温差电池;b微观腐蚀电池。 6、极化作用、极极化、阴极极化的定义是什么?极化的本质是什么?极化的类型有哪几种?答:极化作用:由于通过电流而引起原电池两级的电位差减小,并因而引起电池工作电流强度降低的现象;阳极极化:当通过电流时,阳极电位向正的方向移动的现象;阴极极化:当通过电流时,阴极电位向负的方向移动的现象;极化的本质:电子迁移的速度比电极反应及有关的连续步骤完成的快;极化的类型:电化学极化、浓度极化、电阻极化。 7、发生阳极极化与阴极极化的原因是什么? 答:阳极:阳极的电化学极化:如果金属离子离开晶格进入溶液的速度比电子离开阳极表面的速度慢,则在阳极表面上就会积累较多的正电荷而使阳极电位向正方向移动;阳极的浓度极化:阳极反应产生的金属离子进入分布在阳极表面附近溶液的速度慢,就会使阳极表面附近的金属离子浓度逐渐增加;阳极的电阻极化:很多金属在特定的溶液中能在表面生成保护膜能阻碍金属离子从晶格进入溶液的过程,而使阳极电位剧烈的向正的方向移动,生成保护膜而引起的阳极极化。阴极:电化学:氧化态物质与电子结合的速度比外电路输入电子的速度慢,使得电子在阴极上积累,由于这种原因引起的电位向负的方向移动;阴极的浓度极化:氧化态物质达到阴极表面的速度落后于在阴极表面还原反应的速度,或者还原产物离开电极表面的速度缓慢,将导致电子在阴极上的积累。 8、比较实测极化曲线与理想极化曲线的不同点?极化率的定义是什么?极化图有哪些应用?怎样判断电化学腐蚀过程的控制取决于哪些方面。 答:区别:理想极化曲线是理想电极上得到的曲线,只发生一个电极反应,初始电位为平衡电极电位,实际极化曲线是实际测量得到的曲线,不只发生一个电极反应,初始电位为混合电位。极化率:电极电位随电流密度的变化率,即电极电位对于电流密度的导数。极化图的应用:用Evans极化图表示影响腐蚀电流的因素;表示腐蚀电池的控制类型。控制取决于:阴极极化控制、阳极极化控制、欧姆电阻控制。

第22卷第3期 宁夏大学学报(自然科学版)2001年9月 Vol.22No.3 Journal of Ningxia Uni versity(Natural Science Edi tion)Sep.2001文章编号:0253-2328(2001)03-0298-04 钢筋混凝土中钢筋腐蚀的化学机理与防腐措施 杨建森1,何党庆2 (1.宁夏大学土木工程系,宁夏银川 750021; 2.长庆输油公司,宁夏银川 750004) 摘 要:分析阐述了钢筋混凝土中钢筋腐蚀的化学机理,并着重讨论了碳化反应和氯离子对钢筋腐蚀的影响规律,最后提出了防止钢筋腐蚀的技术措施. 关键词:钢筋腐蚀;碳化;氯离子侵蚀 分类号:(中图)TU528.571 文献标识码:A 当今混凝土的耐久性问题已越来越引起人们的关注和重视,在1991年召开的第二届混凝土耐久性国际学术会议上,Mehta教授在题为 混凝土耐久性50年进展!的主旨报告指出:?当今世界,混凝土破坏原因,按重要性递降顺序排列是钢筋腐蚀、寒冷气候下的冻害、侵蚀环境的物理化学作用.#对于钢筋混凝土结构或构件而言,钢筋腐蚀是最重要的破坏因素之一.混凝土中钢筋的腐蚀,其危害性主要表现在以下三个方面:?降低了结构或构件的承载能力,减小了安全储备;%降低了结构或构件的刚度,增大了变形,甚至使混凝土保护层脱落,影响了正常使用;&降低了结构或构件的延性,甚至改变其形态,从而导致伤亡事故.因此,钢筋腐蚀是影响结构耐久性的主要因素,近年来对钢筋腐蚀的研究已成为混凝土领域研究最多的问题之一. 1 钢筋腐蚀机理 通常情况下,混凝土中的高碱性溶液(pH值一般在12以上,约为12.6)对混凝土中的钢筋起到保护作用.钢筋在这种高碱性的环境中,表面沉积着一层致密的水化氧化铁薄膜( F2O3?2H2O)而处于惰性状态.通常钢筋表面薄膜的破坏有两种原因:?因混凝土碳化而引起钢筋混凝土保护层的碱度降低(pH值可降至9以下),当混凝土pH值降到11.5以下时,钢筋表面的钝化薄膜就会受到破坏;%由于氯离子和氧离子的扩散侵蚀而破坏钝化薄膜.钝化薄膜的破坏,失去了对钢筋的保护作用,若有空气(指其中的氧气)和水分侵入,钢筋便开始发生腐蚀.腐蚀的机理是发生吸氧性电化学腐蚀阳极Fe(Fe2++2e-,阴极H2O+ 1 2 O2+2e-(2OH-,电化学腐蚀必需具备两个基本条件:存在两个电势不等的电极;金属表面存在必要的电解质液相薄膜.一般说来,由于钢筋成分不均匀或氧气浓度的差异,第一个条件总是能够满足的,第二个条件则要求混凝土中腐蚀的相对湿度>60%[1]. 2 钢筋腐蚀的影响因素及其作用规律 影响钢筋腐蚀的因素很多.在一般大气条件下,影响钢筋腐蚀的主要因素有氯离子、混凝土碳化、环境条件(温度、湿度、浓度等)、混凝土渗透性和保护层厚度、钢筋位置与直径等.混凝土的渗透性与其强度、孔隙率、裂缝宽度及密度有关. 一般说来,由于暴露程度较大,角部钢筋的腐蚀速度为中间钢筋的1.3~1.5倍[2].混凝土的渗透性能与钢筋腐蚀速度有直接关系.研究表明,裂缝分布越密,混凝土水灰比越大,养护时间就越短,强度越低,裂缝宽度越大,混凝土渗透性越好,钢筋腐蚀越快.采用矿渣水泥的混凝土中的钢筋腐蚀速度为普通水泥的1.7~1.9倍.关于粉煤灰对钢筋腐蚀的影响,研究认为混凝土中粉煤灰掺量小于30%时,对钢筋腐蚀无不利影响,甚至是有利的,但掺量超过 收稿日期:2001-02-23 基金项目:宁夏自然科学基金资助项目(B002) 作者简介:杨建森(1971-),男,讲师,研究土木工程材料和环境保护

某滑坡的变形和破坏机理分析研究 介绍了某滑坡的特征,分析了滑坡区区域工程地质和水文地质特征,对该滑坡体的变形和破坏机理进行了研究和分析。分析表明:人为活动和地形地貌是滑坡发生变形破坏的主要因素,降雨诱发、岩层产状等因素是造成滑坡发生滑动和进一步破坏的诱发因素。 标签:滑坡变形破坏诱发因素 1概述 塔山滑坡位于广东省开平市长沙区平岗村塔山开元塔底。由于建设工程的需要,在塔山的东南侧进行采石,采用放炮等土石法,致使塔山南侧岩石大量开采形成陡崖,并使周边岩土体产生裂缝,之后由于人为因素和自然因素的影响,塔山南侧裂缝逐渐扩大,至90年代,开始形成滑坡。1999~2001年,在修建塔山公园公路时对山体坡脚进行开挖,在公路北侧形成高约10~17m,坡度约35~45°的高陡边坡,滑坡距公路最近的平岗村居民区约22m,山坡坡脚距公路最近仅2m左右。2004年和2005年雨季,由于连降暴雨,滑坡有活动下滑的趋势,滑坡体前缘公路路面隆起,最高处隆起约40cm,隆起部分面积约有20~30m2,公路北侧排水沟产生变形歪斜,部分已经破坏,水沟上方在雨水后有地下水浸出,形成间歇性下降泉,平岗村内部分房屋墙面产生裂痕,进出塔山公园的公路曾数次被塔山山坡上崩塌的土体破坏。 2滑坡变形形态特征 X 根据实地踏勘,除滑坡体后壁出现较大裂缝外,滑坡周界及滑坡体底部也有约13处裂缝,现将裂缝走向一致的裂缝分为一组,共五组裂缝(表1)。 3滑坡体的工程地质与水文地质特征 塔山滑坡滑坡体主要由第四系坡积土层、风化残积土层、侏罗系中上统百足山群、全风化、强风化、少量中风化基岩组成(见图1)。滑坡体中上部为残积土层,主要由粉土、粉质粘性土组成,呈可塑状或松散状,含较多的碎石和砂、砾石,透水性较好;风化残积土层主要由粉质粘性土,含少量碎石和砂砾石组成,局部夹有全风化、强风化岩,其透水性较差;基岩主要为全风化、强风化泥质粉砂岩,含少量强、中风化岩块,其透水性较好;滑床基本处在中—微风化泥质粉砂岩、粉砂质泥岩中,岩石呈中厚层状,岩质坚硬,局部裂隙发育,透水性好。 滑坡区地下水主要为第四系冲积土层、残坡积土层中的孔隙水和基岩裂隙水,地下水补给来源主要为大气降水的渗入补给和相邻含水层之间的侧向补给。

钢筋混凝土的钢筋腐蚀现状调查与原因探究[摘要]现在钢筋混凝土结构的构筑物由于钢筋腐蚀导致结构失效的现象越 来越多,这里分析了这些工程事故的钢筋腐蚀原因和各因素影响,综述了钢筋混凝土中钢筋受蚀的机理。 【关键词】混凝土;钢筋腐蚀;结构;化学反应 钢筋混凝土是通过在混凝土中加入钢筋、钢筋网、钢板或纤维而构成的一种组合材料,两者共同工作从而改善混凝土抗拉强度不足的力学性质,为混凝土加固的一种最常见形式,具有材料来源容易、价格低廉、坚固耐用等特点,广泛应用于公路、桥梁等结构中。混凝土结构中钢筋腐蚀导致结构物破坏或失效,已成为当今世界关注的重大课题之一,它在影响结构物耐久性因素中,占主导地位。在混凝土工程中,因为钢筋的腐蚀造成众多的工程事故,钢筋混凝土中钢筋受腐蚀的现象正逐步受到我国各方的重视。虽然我国在混凝土结构钢筋腐蚀方向并没有完整、系统、深入的调查,但是对钢筋腐蚀现状调查,分析腐蚀产生的原因,制定相关措施,对我国混凝土工程质量有着非同寻常的意义。 正常使用条件下,自然环境中的钢筋混凝土的腐蚀并不严重,所以并未受到人们的重视。混凝土结构由于环境污染和的建筑物老化的加重,环境介质中腐蚀性物质含量增加,遭受破坏的现象日益严重。根据统计,因为国民经济中的1.25%是钢筋腐蚀而造成的经济损失,钢筋腐蚀而造成的工程事故也时常发生,因此,钢筋混凝土的腐蚀破坏问题已引起国内的关注,成为研究和关注的一个重要方向。由于钢筋混凝土结构耐久性问题的加重,造成的经济损失和人员伤亡已远远超出人们的预计。 截止1986年,美国已花费240亿美元用于修复被腐蚀桥梁,而且以每年5亿美元的速度增长。美国1984年报道,57.5万座钢筋混凝土桥出现钢筋腐蚀破坏,其中40%的桥梁需要耗费54亿美元来修理承载力不足与加固处理。建于1967年的美国明尼苏达州境内一座跨越密西西比河标号为1-35W钢梁混凝土公路拱桥,在使用仅二十多年桥体就出现重大腐蚀现象,用局部修补的方法进行了修复,不久又出现裂缝和腐蚀现象,但未及时采取有效措施,最终于2007年发生重大坍塌事故,造成了人员的重大伤亡。加拿大早期由于大量使用“防冰盐”,使得钢筋混凝土桥梁等破坏严重。1986年同本运输省检查的103座混凝土海港码头状况,发现仅服役20年的结构都需要修补。在英国、澳大利亚、欧洲、海湾国家中,由于氯盐为主的钢筋腐蚀破坏问题大量出现。根据1994年铁路秋检统计,我国铁路中有损坏的钢筋混凝土桥为2675座,其中由于钢筋锈蚀而发生损伤的为722座,占27%。20世纪90年代前修建的海港工程竟然使用10~20年就会发生严重的钢筋锈蚀。1979年建成通车的北京西直门立交桥,因为冬季撒盐化冰造成的“盐害”,在使用不足20年后便被迫拆除重修,重修费用高达3000万元。由此可见,恶劣环境中(如酸雨、海洋环境、除冰盐、高低温等环境条件)服役的钢筋混凝土结构耐久性问题十分突出。2001年,位于我国四川的宜宾大桥突然垮塌,然后仅使用了11年;使用仅不到20年就需重建或修理比比皆是,如澎

金属材料的电化学腐蚀与防护 一、实验目的 1.了解金属电化学腐蚀的基本原理。 2.了解防止金属腐蚀的基本原理和常用方法。 二、实验原理 1.金属的电化学腐蚀类型 (1)微电池腐蚀 ①差异充气腐蚀 同一种金属在中性条件下,如果不同部位溶解氧气浓度不同,则氧气浓度较小的部位作为腐蚀电池的阳极,金属失去电子受到腐蚀;而氧气浓度较大的部位作为阴极,氧气得电子生成氢氧根离子。如果也有K3[Fe(CN)6]和酚酞存在,则阳极金属亚铁离子进一步与K3[Fe(CN)6]反应,生成蓝色的Fe3[Fe(CN)6]2沉淀;在阴极,由于氢氧根离子的不断生成使得酚酞变红(亦属于吸氧腐蚀)。两极反应式如下: 阳极(氧气浓度小的部位)反应式: Fe = Fe2++2e- 3Fe2++2[Fe(CN)6]3-= Fe3[Fe(CN)6]2 (蓝色沉淀) 阴极(氧气浓度大的部位)反应式: O2+2H2O +4e-= 4OH- ②析氢腐蚀 金属铁浸在含有K3[Fe(CN)6]2的盐酸溶液中,铁作为阳极失去电子,受腐蚀,杂质作为阴极,在其表面H+得电子被还原析出氢气。两极反应式为: 阳极:Fe = Fe2++2e- 阴极:2H++2e-= H2↑ 在其中加入K3[Fe(CN)6],则阳极附近的Fe2+进一步反应: 3Fe2++2[Fe(CN)6]3-= Fe3[Fe(CN)6]2 (蓝色沉淀) (2)宏电池腐蚀 ①金属铁和铜直接接触,置于含有NaCl、K3[Fe(CN)6]、酚酞的混合溶液里,由于?O(Fe2+/Fe)< ?O(Cu2+/Cu),两者构成了宏电池,铁作为阳极,失去电子受到腐蚀(属于吸氧腐蚀)。两极的电极反应式分别如下: 阳极反应式: Fe = Fe2++2e- 3Fe2++2[Fe(CN)6]3-= Fe3[Fe(CN)6]2 (蓝色沉淀) 阴极(铜表面)反应式: O2+2H2O +4e-= 4OH- 在阴极由于有OH-生成,使c(OH-)增大,所以酚酞变红。

一“直冲”破坏 1从外行的角度谈谈子弹射击玻璃的破坏现象,当高速子弹射到四边嵌固的平板玻璃上, 在冲击波与子弹冲量作用下,玻璃将被直穿出一个孔,此可称为“直冲”,这大概是冲 击波速远大于玻璃的应力波速度而造成上述的所谓“直冲”破坏;当一位大力士用尖头 锤击玻璃,在猛烈的敲击下,玻璃将会产生钉锤下的小孔及其沿小孔周边呈局部的放射 状的裂缝,这样的破坏现象很类似我们钢筋混凝土板发生的受冲切承载力破坏,故可称 之为“冲切”;如果对该平板玻璃施加一个居中的集中荷载,按静力加荷方式直至玻璃 破坏,此时会发现平板玻璃的跨厚比较大的情况下,会出现类似数条大裂缝而迅即脆性 破坏,这属玻璃特性,但在此拟其为呈平板结构的受弯状破坏,或者此拟为钢筋混凝土 平板呈双向板塑性铰线似的破坏。 2对金属板产生“直冲”破坏的典型例子是:冲床冲孔,其孔必然是垂直的。 3发生“直冲”破坏的条件是:被“直冲”破坏的板类部件本身要具备足够的刚性和整体 承载力,才能实现局部的“直冲”破坏;局部的“直冲”承载力将会受到周边结构部位 的约束,其“直冲”能力将会有较大提高,这里可能会涉及双向或三向的强度问题。 4对钢筋混凝土板进行“直冲”的试验研究,据我的估计是极少的,在六十余载从事钢筋 混凝土研究中,甚少见到这方面的论文可供参照。我个人曾在下放到预制构件厂工作时,模拟杯口基础底板冲切试验,但发现破坏均呈“冲切”的喇叭口状,如下列图示;对于 素混凝土板进行“直冲”试验,按我的想象,可按下列图示来做: (a)素混凝土“冲切”试验(b)素混凝土“直冲”试验 素混凝土板试验 从上述两种破坏图示意中可知,两种试验的承载力值必定是: 实际冲切锥呈喇叭状破坏面上主要靠混凝土抗拉强度来抵抗破坏面上的主拉应力(概念 表述,并不准确);而在“直冲”试验中,“直冲柱体”受到周边混凝土块体的约束, 沿破坏面上的压剪强度会有较大提高。 因此,不能简单地看到柱头顶穿楼板呈“直冲柱体”状的破坏面,就认为是“直冲”破坏。 二“直剪”破坏

混凝土结构的腐蚀机理及预防措施(一) 摘要:腐蚀是影响混凝土结构耐久性、可靠性的至关重要的因素。为深入了解混凝土结构的腐蚀,本文从影响混凝土结构的腐蚀性介质,混凝土结构的腐蚀机理,混凝土结构的腐蚀预防措施,并结合电力工程中混凝土防腐措施的施工要点进行了阐述。为了保证防腐蚀工程的质量,在设计中应根据腐蚀介质的性质、浓度和作用条件,结合工程部位的重要性等因素,正确选择防腐蚀材料和构造;在施工中应严格执行科学的制度,精心施工,确保建筑工程质量,提高建筑物使用寿命,执行可持续发展。 关键字:混凝土结构腐蚀腐蚀性介质腐蚀机理预防措施施工要点工程实例 建筑(ARCHITECTURE),巨大的工艺品。它组成我们赖以生存的不可缺少的空间,建筑也以其优美造型给我们带来愉悦。随着社会的不断进步,随着对环境资源的重视,人们对建筑质量有更高的要求,也越来越重视建筑工程中的腐蚀现象。由于多种因素,在建筑工程中,腐蚀无所不在。腐蚀给国民经济带来巨大的损失,腐蚀给我们生存的建筑空间带来不确定的安全隐患。 所谓腐蚀,是材料与其环境间的物理化学作用引起材料本身性质的变化。 腐蚀反应的场所,首先是材料和腐蚀性介质之间相界面处。在一个腐蚀系统中,对材料行为起决定作用的是化学成分、结构和表面状态。腐蚀过程中如伴有机械应力的作用,将加速腐蚀而出现一系列特殊的腐蚀现象。但单纯的机械负荷(如拉应力、摩擦、磨损、疲劳等)造成的材料损伤,则不属于腐蚀范畴。 由于电力工程的特点,电力工程建设中存在着大量的腐蚀行为。如何通过设计选材适当、保证施工质量,减轻腐蚀给电力工程带来的负面影响,应成为电力工程技术人员探索的课题。对电力土建专业来说,确保建筑物的耐久性,尤其是保证混凝土结构的耐久性,防止或减少混凝土结构中腐蚀出现,应该成为我们探索的目标。 一、影响混凝土结构的腐蚀性介质 为了确定建筑物不同部位的防护措施,将腐蚀性介质按其形态并结合不同的作用部位分为5种:气态介质、腐蚀性水、酸碱盐溶液、固态介质和污染土。各种介质对不同材料的腐蚀程度,可按介质类别、环境相对湿度和作用条件等因素分为强腐蚀性、中等腐蚀性、弱腐蚀性和无腐蚀性共四个等级。 1.气态介质包括腐蚀性气体和以液体为分散相的气溶胶(酸雾、碱雾等),其作用的部位主要是室内外上部建筑结构的构配件。 2.腐蚀性水系指在工业生产过程中受到各种介质污染的工业水(生产水和废水)或地下水,介质在腐蚀性水中的含量较低。腐蚀性水作用的部位主要是地基、基础、污水池、地面和墙面等。 3.酸碱盐溶液:含有不同浓度介质的酸碱盐液体(包括完全潮解或溶解的腐蚀性固体),其

金属材料的点腐蚀和缝 隙腐蚀 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

金属材料的点腐蚀和缝隙腐蚀 点腐蚀和缝隙腐蚀(pitting and crevice corrosion)金属材料接触某些溶液,表面上产生点状局部腐蚀,蚀孔随时间的延续不断地加深,甚至穿孔,称为点腐蚀(点蚀),也称孔蚀。通常点蚀的蚀孔很小,直径比深度小得多。蚀孔的最大深度与平均腐蚀深度的比值称为点蚀系数。此值越大,点蚀越严重。一般蚀孔常被腐蚀产物覆盖,不易发现,因此往往由于腐蚀穿孔,造成突然性事故(见金属腐蚀)。 缝隙腐蚀是两个连接物之间的缝隙处发生的腐蚀,金属和金属间的连接(如铆接、螺栓连接)缝隙、金属和非金属间的连接缝隙,以及金属表面上的沉积物和金属表面之间构成的缝隙,都会出现这种局部腐蚀。 许多金属材料都能产生点蚀和缝隙腐蚀。不锈钢、铝合金等靠钝化来增强耐蚀性的金属材料,也易产生点蚀和缝隙腐蚀。许多环境介质都能引起金属材料的点蚀和缝隙腐蚀,尤其是含氯离子的溶液。 点腐蚀 金属表面的电化学不均匀性是导致点蚀的重要原因。金属材料的表面或钝化膜等保护层中常显露出某些缺陷或薄弱点(如夹杂物、晶界、位错等处),这些地方容易形成点蚀核心。金属浸入含有某些活化阴离子(特别是氯离子)的溶液中,只要腐蚀电位达到或超过点蚀电位(或称击穿电位),就能产生点蚀。这是由于钝化膜在溶液中处于溶解以及可再度形成的动平衡状态,而溶液中的活化阴离子(氯离子)会破坏这种平衡,导致金属的局部表面形成微小蚀点,并发展为点蚀源。例如不锈钢表面的硫化物夹杂的溶解,暴露出钢的新鲜表面,就会形成点蚀源。 点蚀的发展是一个在闭塞区内的自催化过程。在有一定闭塞性的蚀孔内,溶解的金属离子浓度大大增加,为保持电荷平衡,氯离子不断迁入蚀孔,导致氯离子富集。高浓

工 业 技 术 1 影响因素:1.1 PH 值 PH=-log[H +] PH 值是溶液中氢离子浓度的负对数值,它表征溶液的微酸碱的性质,PH=7,中性;PH<7,酸性;PH>7,碱性,因为许多化学反应都是在[H +]很小的条件下进行的,为了表示很小的浓度,避免用负指数的麻烦,通常用负对数来表示酸碱度,故引入PH 值的概念。 由此可见,冷却水的PH 值越小,酸性越大,对碳钢等金属在水中的腐蚀就会快一些,反之,会慢一些。 1.2 阴离子 金属腐蚀速度与水中阴离子的种类有密切的关系,水中不同的阴离子在增加金属腐蚀速度方面的顺序为: 冷却水中金属腐蚀影响因素 程明新 贾 在 蓝树宏 张艳强 (中国石油呼和浩特石化公司,内蒙古 呼和浩特 010000) 摘 要:在冷却水系统的正常运行以及化学清洗过程中,金属常常会发生不同形态的腐蚀,根据金属腐蚀的理论知识,通过观察试样或腐蚀设备的腐蚀形态,再配合一些其他方法,人们常常找出产生腐蚀的原因和解决腐蚀的措施。关键词:冷却水;金属腐蚀;硬度;金属离子;悬浮固体中图分类号: U664.81+4 文献标识码:A NO 3-

钢筋混凝土桥梁腐蚀机理与防护 发表时间:2019-12-31T09:13:13.037Z 来源:《科学与技术》2019年第16期作者:周忠振 [导读] 现阶段,我国经济迅速发展,建设成了很多钢筋混凝土结构的桥梁 摘要:现阶段,我国经济迅速发展,建设成了很多钢筋混凝土结构的桥梁、码头等,但是在几十年的运营过程中很多钢筋混凝土桥梁出现了不同程度的耐久性问题,其中最为突出的就是混凝土的腐蚀。长期的腐蚀会导致钢筋混凝土的承受力下降、耐久性能降低,使用寿命缩短,所以对钢筋混凝土桥梁防腐进行分析十分必要。 关键词:钢筋混凝土;桥梁;腐蚀机理;防护 1导言 近些年,由于环境污染的问题越来越严重,原本非常坚固的钢筋混凝土桥梁也出现了不同程度的腐蚀。而桥梁腐蚀的出现,不仅会影响桥梁的整体美观,同时还会影响桥梁的使用寿命,甚至引发安全事故。因此,必须采取一定的措施加强对钢筋混凝土桥梁的防护,以此提高桥梁建筑的使用寿命和安全性。 2桥梁腐蚀机理研究现状 现阶段对于桥梁腐蚀机理的研究主要认为:由于混凝土受到腐蚀性介质的作用,混凝土被腐蚀,对钢筋造成了破坏,钢筋在外界因素的作用下遭受破坏,对于混凝土会产生一定的应力变形,进而导致混凝土的裂缝。这些裂缝会导致钢筋腐蚀进一步加重。 3钢筋混凝土桥梁腐蚀机理 3.1钢筋混凝土桥梁碳化作用腐蚀 碳化作用腐蚀顾名思义就是指空气中的二氧化碳与钢筋混凝土桥梁表面和内部毛细孔道中的氢氧化钙和水化硅酸钙发生反应,当碳化反应达到一定程度后,就会破坏掉钢筋表面的钝化膜,从而导致钢筋混凝土桥梁的腐蚀,这将对桥梁的使用安全和寿命造成严重的影响。 3.2钢筋混凝土桥梁硫酸盐腐蚀 空气中的二氧化硫和硫化氢同样会对钢筋混凝土桥梁造成腐蚀,当空气中的二氧化硫和硫化氢与水接触会产生一些酸类的物质,这些酸类物质会破坏掉混凝土表面的钝化膜,达到一定程度后,就会腐蚀到桥梁中的钢筋,从而对桥梁的质量和使用寿命造成严重影响。 4钢筋混凝土桥梁防腐蚀处理的问题 4.1处理意识不高 现代化的交通建设体系中,钢筋混凝土桥梁是非常有代表性的组成部分,自身所产生的影响非常显著,想要在日后工作的开展上创造出较高的价值,必须坚持在处理意识上良好的提升,但是从调查的结果来看,该方面的工作并没有达到理想的成绩。首先,钢筋混凝土桥梁的防腐蚀处理工作,未能够在方案设定上有效健全,日常调查研究存在很大的疏漏现象,各项工作的实践并没有按照协调原则来开展。这种问题的出现,直接导致钢筋混凝土桥梁的防腐蚀处理体系,未能够达到健全效果,而且各项工作的部署与落实,都存在较多的挑战;其次,防腐蚀处理工作的进行,缺乏持续性的干预,有些小问题表现为严重忽视现象,影响到了未来工作的全面进步。 4.2处理制度不健全 从客观的角度来分析,钢筋混凝土桥梁的建设、运营、发展等,都具有非常远大的目标,但是防腐蚀工作是具有敏感性较高的内容,倘若在处置和安排的过程中,没有遵循严格的制度来完成,势必会导致前后工作难以得到良好的衔接,各自内容和技术指标,也会表现出较大的矛盾、冲突现象。首先,钢筋混凝土桥梁的防腐蚀处理制度,并没有结合桥梁自身的特点、规模、位置、环境来完成,大部分情况下,防腐蚀处理工作的实施,都是按照传统的标准来操作,在经验的依赖方面较高,此种情况下,容易导致防腐蚀的问题不断增加,而且在后续工作的实践上,难以创造出较高的价值。其次,处理制度长久表现出不健全的现象后,全局防腐蚀的部署,以及最终目标的实现,都遭遇到了较大的阻碍。 5钢筋混凝土桥梁腐蚀防护措施 5.1合理的增加混凝土的厚度 钢筋混凝土桥梁之所以经常被腐蚀最主要的一个原因就在于混凝土保护层经常在碳化作用和硫酸盐下发生钝化,致使混凝土遭到腐蚀。因此,若想有效的防护钢筋混凝土桥梁腐蚀,可以合理的增加混凝土的厚度,加大钢筋混凝土桥梁的混凝土保护层,以此有效的避免混凝土保护层经常被腐蚀。在混凝土中掺加一些火山灰、粉煤灰等,使得混凝土中氯离子的渗透速率降低,而混凝土的电阻率会随之增加,就可以使腐蚀的时间和腐蚀的速度降低。其中超细材料微硅粉在混凝土中能够有效降低孔隙尺寸和阻断毛细孔,因此能够大幅度提高混凝土的抗掺性,降低氯离子的渗透对于钢筋的损害。在拌和混凝土的过程中,可以加入防钢筋生锈的物质,对于钢筋有很好的保护作用,阻碍有害物质对于钢筋的进一步腐蚀,在工程中这种高性能的混凝土应用比较广泛。 5.2涂刷防腐涂层 钢筋混凝土桥梁经常发生碳化和硫酸盐反应的一个重要原因就是桥梁的混凝土很容易与空气中的水分、二氧化碳、二氧化硫等发生反应。因此,在防护混凝土桥梁腐蚀时,就需要防止这些反应的发生,可以在钢筋混凝土桥梁的表面涂刷防腐涂层,经常使用的涂料有纯丙乳液、叔碳酸盐乳液、有机硅和苯丙乳液等。在钢筋混凝土桥梁的表面涂刷防腐涂层可以有效的防止混凝土与空气直接接触,避免发生碳化和硫酸盐反应,从而实现对钢筋混凝土桥梁腐蚀的防护。 5.3多种防护措施的设计和使用 为了实现钢筋混凝土桥梁腐蚀防护,在设计钢筋混凝土桥梁时,设计师和相关管理工作人员应该结合桥梁建设当地的实际情况设计多种腐蚀防护方案。例如:工业发展较快的地区在建设钢筋混凝土桥梁时,在选择防腐涂层的涂料时需要谨慎,尽量选择一些比较好的涂料,因为对于工业发展较快的地区来说,其环境污染相对也比较严重,若想达到桥梁防护的目的,就需要选择好一点的涂料。而一些建筑行业发展较快的地区在建设钢筋混凝土桥梁时,因为这些地区经常出现超载的现象,所以在设计桥梁时应该合理的增加混凝土的厚度,这样不仅可以达到防腐的目的,同时还可以有效的避免因为超载而出现裂缝,从而达到延长桥梁使用寿命和提高桥梁质量的目的。 5.4采取阴极防护措施 这种防护措施主要是应用在沿海地区或者北方,因为这里的气候条件等因素,会对混凝土桥梁的钢筋造成损害。阴极防护可以阻碍海水中或者空气中的离子对钢筋所造成的腐蚀,在国外有很多国家已经尝试了使用阴极防护来对桥梁进行保护,这种防护措施虽有一定的局

钢筋锈蚀的机理 公司内部编号:(GooD?TMMT?MMUT?UUPTY?UUYY?DTTI?钢筋锈蚀的机理

1前言 钢筋锈蚀对钢筋混凝土结构及预应力混凝土结构的耐久性和安全性影响极大。混凝土在多种因素作用下(如碳化、氯离子侵蚀等),钢筋因原先在碱性介质中生成的钝化膜被破坏而渐渐失去保护作用,导致钢筋锈蚀,生成的铁锈体积比被腐蚀掉的金属体积大3~4倍,使混凝土保护层沿钢筋纵向开裂,而裂缝一旦产生,钢筋锈蚀速度大大加快,结构构件的承载力与可靠性劣化的速度大大加快,有的共至发展到钢筋锈断,危及结构的安全。 文献资料表明,钢筋锈蚀引起钢筋混凝土结构的过早破坏已成为世界各国普遍关注的一大灾害。美国标准局1975年的调查表明,混凝土中钢筋的腐蚀占全美各种腐蚀的40%:日本新干线使用不到10年,就出现大面积因钢筋腐蚀引起的混凝土开裂、剥蚀。在我国,大量采用钢筋混凝土结构已有儿十年历史,对于遭受恶劣环境条件的腐蚀作用影响,尤其是在20世纪五六十年代,由于要求早强或防冻在混凝土中掺加过量的氯盐的结构,耐久性破坏现象非常严重。长期以来,人们发现混凝土结构在复杂恶劣的环境下会出现未老先衰的现象,尤其是接连不断的工程事故,使学术界在血的教训面前深刻认识到研究和提高混凝土耐久性的现实意义。 笔者将对钢筋锈蚀机理、影响因素、腐蚀过程、锈后钢筋混凝土的力学性能及粘结性能等进行分析,提出钢筋锈蚀应采取的预防措施,提高混凝土的耐久性和结构的安全性,减少耐久性破坏造成的损失,将是一项具有重大实际意义和社会经济效益的研究课题。 2对钢筋锈蚀的分析 混凝土中钢筋锈蚀机理的研究 一一电化学反应过程

金属材料的腐蚀和防护 罗--(学号:1230060054) (-----大学物理与材料科学学院物理学1202班) 专题授课老师:---- 摘要:自从人类发现并使用金属到如今已有5000年的历史,然而人类在享受金属材料的使用带来便利的同时,也在苦恼着金属腐蚀带来的烦恼。人类在使用金属的同时,也在尽最大的努力对金属进行防护。金属的有效防护,一方面可以降低成本,提高劳动生产率,赢得最大的经济效应;另一方面对加强国防建设也有重要的意义。 关键词:金属材料腐蚀防护 引言:当金属和周围气态或液态介质接触时常常由于发生化学作用或电化学作用而逐渐损坏的过程成为金属腐蚀,每年金属腐蚀给国家带来巨大的经济损失,所以金属的有效防护对于一个企业和国家是至关重要的。 1.金属材料的腐蚀机理 1.1金属腐蚀的分类 按照金属的腐蚀机理可以将金属腐蚀分为化学腐蚀与电化学腐蚀两大类。化学腐蚀就是金属与接触到的物质直接发生氧化还原反应而被氧化损耗的过程;电化学腐蚀就是铁和氧形成两个电极,组成腐蚀原电池。金属腐蚀的实质都是金属原子被氧化转化成金属阳离子的过程。 1.2金属腐蚀的发生

自然界中只有极少数金属(例如金、铂等)能以游离状态存在,而大多数金属都需要从它们的矿石中用不同的能量冶炼出来。因此,金属受周围介质的化学及电化学作用而被破坏,这种现象叫做金属的腐蚀。 1.3金属腐蚀的危害 金属腐蚀的危害首先在于腐蚀造成了巨大的经济损失。这种损失可分为直接损失和间接损失。直接损失包括材料的损耗、设备的失效、能源的消耗。由于腐蚀,使大量有用材料变为废料,估计全世界每年因腐蚀报废的钢铁设备约为其年产量的10% 。间接损失包括因腐蚀引起的停工停产,产品质量下降,大量有用有毒物质的泄漏、爆炸,以及大规模的环境污染等。一些腐蚀破坏事故还造成了人员伤亡,直接威胁着人民群众的生命安全。 2.金属腐蚀防护的方法 2.1 改变金属的组成 这种方法最常见的是不锈钢材料。通过在钢铁中加入12-30%的金属铬而改变钢铁原有的组成,从而改善性能,不易腐蚀。如目前迅速发展起来的不锈钢炊具,餐具等就是以此为材料的。2.2 形成保护层 在金属表面覆盖各种保护层,把被保护金属与腐蚀性介质隔开,是防止金属腐蚀的有效方法。可以形成以下几种保护层来对金属腐蚀进行防护: (1)磷化处理: 钢铁制品去油、除锈后,放入特定组成的磷酸

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 混凝土结构的腐蚀机理及预防 措施(2021新版) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

混凝土结构的腐蚀机理及预防措施(2021 新版) 摘要:腐蚀是影响混凝土结构耐久性、可靠性的至关重要的因素。为深入了解混凝土结构的腐蚀,本文从影响混凝土结构的腐蚀性介质,混凝土结构的腐蚀机理,混凝土结构的腐蚀预防措施,并结合电力工程中混凝土防腐措施的施工要点进行了阐述。为了保证防腐蚀工程的质量,在设计中应根据腐蚀介质的性质、浓度和作用条件,结合工程部位的重要性等因素,正确选择防腐蚀材料和构造;在施工中应严格执行科学的制度,精心施工,确保建筑工程质量,提高建筑物使用寿命,执行可持续发展。 关键字:混凝土结构腐蚀腐蚀性介质腐蚀机理预防措施施工要点工程实例 建筑(ARCHITECTURE),巨大的工艺品。它组成我们赖以生存的

不可缺少的空间,建筑也以其优美造型给我们带来愉悦。随着社会的不断进步,随着对环境资源的重视,人们对建筑质量有更高的要求,也越来越重视建筑工程中的腐蚀现象。由于多种因素,在建筑工程中,腐蚀无所不在。腐蚀给国民经济带来巨大的损失,腐蚀给我们生存的建筑空间带来不确定的安全隐患。 所谓腐蚀,是材料与其环境间的物理化学作用引起材料本身性质的变化。 腐蚀反应的场所,首先是材料和腐蚀性介质之间相界面处。在一个腐蚀系统中,对材料行为起决定作用的是化学成分、结构和表面状态。腐蚀过程中如伴有机械应力的作用,将加速腐蚀而出现一系列特殊的腐蚀现象。但单纯的机械负荷(如拉应力、摩擦、磨损、疲劳等)造成的材料损伤,则不属于腐蚀范畴。 由于电力工程的特点,电力工程建设中存在着大量的腐蚀行为。如何通过设计选材适当、保证施工质量,减轻腐蚀给电力工程带来的负面影响,应成为电力工程技术人员探索的课题。对电力土建专业来说,确保建筑物的耐久性,尤其是保证混凝土结构的耐久性,

3滑坡破坏机理研究及稳定性计算 3.1边坡滑坡破坏机理 3.1.1水平坡的变形破坏机理 水平坡是指岩层倾向大致与边坡走向一致,而岩层倾角小于软弱岩层面残余摩擦角的一类层状岩质边坡。这类边坡的主要变形机理为滑移——压致拉裂,在这一变形机制下,其可能的破坏模式为转动型滑坡<弧面破坏),具体过程描述如下:边坡形成后由于卸荷回弹或者蠕变,坡体沿平缓结构面向坡前临空方向产生缓慢的滑移。滑移面的锁固点或错列点附近,因拉应力集中生成与滑移面近于垂直的拉张裂隙,向上<个别情况向下)扩展且其方向渐转成与最大主应力方向趋于一致<大体平行坡面)并伴有局部滑移。这种拉裂面的形成机制与压应力作用下格里菲斯裂纹的形成扩展规律近似,所以它应属于压致拉裂。滑移和拉裂变形是由斜坡内软弱结构面处自下而上发展起来的。 据实例分析和模拟研究,这类变形演变过程可分为三个阶段<图3-1)。 图3-1滑移-压致拉裂变形演变图 <1)卸荷回弹阶段 人工边坡在边坡开挖形成后,由于边坡以外岩土体的卸除原有的平衡状态被打破,边坡岩土体将向临空面方向发生膨胀变形。对近水平层状岩质边坡而言,这种变形表现为沿岩层面向临空面方向缓慢滑移,如图3-1

<2)压致拉裂面自下而上扩展阶段 坡底附近岩层在上面岩土体的高压力作用下,随着滑移变形的发展,逐渐产生近似垂至于岩层面的裂隙,如图3-1

相关文档