文档库 最新最全的文档下载
当前位置:文档库 › 飞秒激光器的应用与前景

飞秒激光器的应用与前景

飞秒激光器的应用与前景
飞秒激光器的应用与前景

目录

摘要 (1)

1.激光器的基本原理 (2)

1.1自发辐射、受激辐射、受激吸收、粒子数反转 (2)

1.2激光器的基本结构与工作原理 (2)

1.3激光产生的条件 (3)

2.飞秒激光脉冲的产生 (4)

2.1 飞秒激光脉冲技术 (4)

2.2飞秒激光脉冲的产生 (7)

3.飞秒激光器的基本特点及其应用 (9)

3.1 飞秒激光器的基本特点 (9)

3.2飞秒激光器的应用 (9)

4.飞秒激光器发展现状与应用前景 (13)

4.1 飞秒激光器发展现状 (13)

4.2飞秒激光器应用前景 (14)

致谢 (15)

参考文献 (15)

飞秒激光器的应用与前景

李海华(指导教师:李宏)

湖北师范学院物理系0301班,湖北,黄石,435002

摘要:飞秒激光器具有广泛的应用范围,特别是在材料加工、器件制作及光通信等领域具有重要的应用。本文对飞秒激光器的原理、技

术以及在几个方面的应用进行探讨,最后是对飞秒激光器将来应

用及发展前景进行了分析。

关键词:飞秒激光器锁模技术飞秒光脉冲

中图分类号:TN209

Application and prospect of femto-second laser

LI Haihua(Tutor:LI Hong)

(Department of Physics , Hubei Normal University ,435002 ) Abstract:Femtosecond laser is of large application scope, and particularly they are used in material processing, apparatus facture and optical

communication. The working principle of the laser is demonstrated,

and its applications introduced. Finally, application and prospect of the

femto-second laser in the future are discussed.

Key word:Femtosecond laser Locking mode technology femtosecond optical pulses

1.激光器的基本原理

激光器是20世纪60年代出现的一种新型光源。激光具有四大特性:单色性好、方向性好、相干性好、能量集中。

1.1自发辐射、受激辐射、受激吸收、粒子数反转

激光是基于受激发射放大原理而产生的一种相干光辐射。处于激发态的原子是不稳定的,在没有任何外界作用下,激发态原子会自发辐射而产生光子。而在有外界作用下,则会增加两种新的形式:受激辐射和受激吸收。激光是通过受激辐射来实现放大的光,而光和原子系统相互作用时,总是同时存在着自发辐射、受激辐射、受激吸收(在有外界作用下,自发辐射相对较弱,可以忽略)。为了能产生激光,就必须使受激辐射强度超过受激吸收强度,即使高能态的原子数多于低能态的原子数。我们把这种不同于平衡态粒子分布的状态称为粒子数反

转分布。也就是,要产生激光,

必须实现粒子数反转分布。

1.2激光器的基本结构与

工作原理

粒子数反转分布是产生

激光的一个必要条件,而要实

现粒子数反转分布和产生激

光还必须满足三个条件:第一、要有能形成粒子数反转分布的物质,即激活介质(这类物质具有合适的能级结构);第二、要有必要的能量输入系统给激活介质能量,使尽可能多的原子吸收能量后跃迁到高能态以实现粒子数反转,这一系统称作激励能源(或泵浦源);第三、要有光的正反馈系统——光学谐振腔,当一定频率的光辐射通过粒子数反转分布的激活介质时,受激辐射的光子数多于受激吸收的光子数可使光辐射得到放大,要使这种光放大并且以一个副长光子感应产生一个受激发射光子的单次过程为主,还能形成高单色性高方向性高相干性和高亮度性的光放大,必须使用光学谐振腔。因此,如图1所示,常用激光器由三部分组成:激活介质、激励能源、光学谐

振腔。

只有具有亚稳态的物质才有可能实现粒子数反转,从而实现光放大。因此,激活介质中必须存在一种特殊的能级——亚稳态能级。如图2所示,在

外界能源的激励下,基态E

1上的粒子被抽运到激发态E

3

上,因而基态E

1

的粒子数N

1减少,由于激发态E

3

的寿命很短,粒子将通过碰撞,很快地以无

辐射跃迁的方式转移到亚稳态E

2上,由于亚稳态E

2

寿命较长,其上就积累了

大量粒子,N

2不断增加。一方面N

1

不断减少,另一方面N

2

不断增加,以致

N 2大于N

1

,于是实现了亚稳态E

2

与基态E

1

间的粒子数反转分布。利用处在亚

稳态下的激活物质制成放大器,当有外来光信号输入时,光就被放大。受激辐射后产生的放大是杂乱无章的,要使它变成激光,需要选取一定传播方向和一定频率的光信号,在最优越的条件下进行放大,同时将其它方向和频率的光信号抑制,使.获得方向性和单色性很好的强光——激光。因此可以在激活介质两端安放具有选择性的光学谐振腔来达到这一目的。

1.3激光产生的条件

综上所述可知,产生激光的条件有工作物质在激励能源的激励下实现粒子数反转分布和光学谐振腔使受激辐射不断放大。除此之外,还必须满足增益条件。我们用增益系数G来描述介质对光的放大能力,只有在谐振腔中实现激光振荡不断加强才能产生激光,而要实现激光振荡不断加强的必要条件

是:R

1R

2

e2Gl>1其中R

1

,R

2

为谐振腔两镜的反射率,I

1

为发出光强,l为腔长。

对于给定的光学谐振腔R

1,R

2

和l固定,因此,要想实现激光振荡加强,增

益系数G必须大于R

1R

2

e2Gl =1时的增益系数G

m

,即G>G

m

图2 激活介质的两种工作模式

(b)四级能图(a)三级能图

2.飞秒激光脉冲的产生

飞秒光脉冲是指持续时间为10-12s ~10-15s 的激光脉冲,这种激光脉冲具有极高的峰值功率,很宽的光谱宽度和极短的激光发射时间等特点。

2.1 飞秒激光脉冲技术

2.1.1锁模技术

我们知道,光的单色

性好坏用谱线宽度⊿v 来

描述,如图3所示,v 0是中心频率,⊿v 愈小,谱线

愈窄,光的单色性愈好。

但受各种因素的影响,激

光器通常是多频输出的。

我们把激光器输出的每一个谐振频率称为一个纵模,即一般激光器是多纵模输出的。而且,在激光的横截面上可以观察到光强有一定的稳定分布。这种光强横向不同的稳定分布称为横模。其中单纵模和基横模(横截面为圆形光斑)在实际应用中最普遍。

产生飞秒激光的通用技术是激光锁模技术。一般来说,激光跃迁有一个有限的线宽,在这整个线宽内它能提供光增益,所以激光发射同样也有一个有限光谱宽度⊿v 。在增益带宽内含有大量模频率,如果激光器在许多频率上独立运转,则由于相位的随机性而无法产生超短脉冲。为了产生超短脉冲,各个模式必须相位锁定,使它们在空间的某点相长相加,而在别处相消相加。如图4所示,通常,锁模方法有两种:主动锁模和被动锁模。

主动锁模技术是在激光腔内放置一个激光调制器,

该调制器的调制信号

(a) (b)

图4 主动锁模(a)和被动锁模(b)

图3 光谱线及其宽度

是与激光束往返时间匹配的时钟信号,因此激光经过这种调制器后,其光电场幅度或相位受到调制,从而实现激光锁模;被动锁模技术是通过放置在激光腔内的与光强有关的非线形器件对激光场本身产生自动调制来实现锁模的。

2.1.1.1光克尔效应与自聚焦

克尔效应:克尔在1875年发现,线偏振光通过有外加电场作用的玻璃时,会变成椭圆偏振光,当旋转检偏器时,输出光不消失。这种现象表明,玻璃在外加恒定电场的作用下,由原来的各向同性变成了光学各向异性,外加电场感应引起了双折射,其折射率的变化与外加电场的平方成正比。从非线形光学来看,克尔效应是外加恒定电场和光电场在介质中通过三阶非线性极化率产生的三阶非线性极化效应。

光克尔效应:如果把克尔效应中的恒定电场用另一光电场代替,即在一频率为ω的光电场作用于介质的同时,还有另外一束任意频率为ω1的光电场作用于该介质。则由于ω1

光电场的作用会使介质对ω光波的作用有所改变,通

过三阶非线性极化效应,将

产生与频率ω1光电场平方

有关的三阶非线性极化。光

克尔效应可以提供改变光

波偏振状态的方法。

激光束的自聚焦:自聚

焦是感生透镜效应,这种效应是由于通过非线性介质的激光束的自相位作用使其波面发生畸变造成的。现假定一束具有高斯横向分布的激光在介质中传播,此时介质的折射率为n=n 0+⊿n(|E|2),其中⊿n(|E|2)是由光强引起的折射率变化。当⊿n 为正值

时,由于光束中心部分的光强较强,则中心部分的折射率变化比光束边缘部分的折射率变化大,因此,光束在中心比边缘的传播速度慢,结果使介质中传播的光束波面越来越畸变。如图6所示,这种畸变好像是光束通过正透镜一样,光线本身呈自聚焦现象。但是,由于具有有限截面的光束还要经受衍射作用,所以只有自聚焦效应大于衍射效应时,光才表现出自聚焦现象。即

线形偏振光 椭圆偏振光 图5 克尔效应实验示意图

自聚焦效应正比于⊿n(|E|2),衍射效应反比于光束半径的平方。因此,由于光束受自聚焦作用,自聚焦效应和衍射效应均越来越强。如果后者增强得快,则在达到某一最小截面(焦点)后,自聚焦光束将表现出衍射现象。但是在许多情况下,一旦自聚焦作用开始,自聚焦效应总是强于衍射效应,因此光束自聚焦的作用一

直进行着,直至由于

其它非线性光学作

用使其终止。

2.1.1.2光克尔透镜

锁模技术

光克尔透镜锁

模技术是在宽带固体激光器中,利用与可饱和吸收体类似的机理来实现激光脉冲被动锁模的重要技术。光克尔效应产生的类可饱和吸收体的恢复时间小于1fs ,这种超快恢复时间对脉冲形成十分有利,它对脉冲的压缩从脉冲形成初期一直到稳定的脉冲输出都占统治地位,最终输出的脉冲宽度取决于增益带宽和腔体的总色散。通常在激光腔中都有一个色散脉冲形成机制,它所导致的时间自相位调制意味着空间的波前调制,也就是自透镜效应,几乎在所有的超短脉冲锁模激光器中自透镜效应都会发生。自透镜效应将改变腔模尺寸,使得通过光阑的透过率变化或者腔模和泵浦模的空间重合程度发生变化而导致损耗的变化。对于因自透镜效应从共焦腔变到平面平行腔的极端情况,腔模的间距变化了两倍。所以,锁模不要求激光器是单纯的横模,人们可以建立横模间距等于纵模间距的腔,其优点是模体积更大,更有效地获取增益。

2.1.2选模技术

基模与高阶模相比,具有亮度高、发散角小、径向光强分布均匀等特点。谐振腔内达到振荡条件的纵模数决定激光的单色性,在某些重要的应用当中,都要求纵模数被限制在某一范围内,以保证足够的单色性和空间相干性。然而,大多数激光器的输出总是多模的,为了达到某些特定的使用要求,必须采用选模技术,以获得单基模输出。

2.1.2.1横模选择技术

激光振荡的条件是增益系数G 必须大于损耗系数a

。横模选择的实质是图6 光束在非线形介质中的自聚焦现象

使基横模达到振荡条件,而使高阶横模的振荡受到抑制。对稳定腔来说,一般的选横模措施是合理地选择腔的几何结构参数,并在谐振腔中插入一个适当光孔尺寸的光阑,以抑制高阶横模振荡,获得基横模输出。而非稳定腔,它不仅具有模体积大的优点,而且其自身的横模选择能力较强,相邻横模之间有较大的损耗差异,因此容易实现大模体积的基横模运转。

2.1.2.2纵模选择技术

为了达到纵模选择的目的,一般可采取两种方法:干涉选模法和纵模选择增强法。前者利用腔内的法布里—珀罗(F-P)标准具或复合腔等措施,使得激光器主振荡模得以加强,而抑制其它纵模达到振荡阀值,后者是采用改变系统的某些参数的方法进一步增强谐振腔中已具备的选模作用。

2.1.3调Q技术

调Q技术是激光发展史上的重要突破之一,其特点是将激光能量压缩在很短的时间内发射,从而很大的提高了激光脉冲的亮度和功率。调Q技术是借助某种措施,调节谐振腔的损耗,使受激辐射迅速地形成和增强,从而输出强大的激光脉冲。这种调节谐振腔的损耗实际上是调节谐振腔的品质因数Q值,因此,使腔内损耗突变以形成巨脉冲的技术称为调Q技术。

2.1.4稳频技术

在许多实际应用中,不仅要求激光器实现单频输出,还要求输出光脉冲的频率本身稳定,为了达到这一目的,就必须采用稳频技术。通常用频率的稳定性和复现性这两个物理量来描述激光频率稳定的程度。

激光频率的稳定方法大体上分被动式稳频和主动式稳频两大类。前者是将激光器谐振腔反射镜之间的间隔器采用膨胀系数小的材料制作,同时对整个激光器谐振腔系数进行恒温控制。也可选用膨胀系数分别为正和负的两种材料以一定长度比例组合成谐振腔间隔器,在一定的温度范围内,两种材料的长度变化相互补偿。后者是在稳频激光器中安放一个反射镜,当激光器的频率偏离特定的标准频率时,通过一伺服控制系统,将频率的偏离变成驱动压电陶瓷的误差信号,由压电陶瓷的伸缩来控制腔长,使其振荡频率重新靠近特定的标准频率,以达到稳频的目的。

2.2飞秒激光脉冲的产生

现在以掺钛蓝宝石飞秒激光器为例,讨论飞秒激光脉冲的产生原理。如

图7所示,掺钛蓝宝石飞秒激光器在足够高的泵浦强度下工作,腔内激光在钛宝石晶体中的功率密度约达到1.0MW/cm 2时,由于高强度光场与介质的相互作用,导致光束自聚焦,产生光克尔透镜效应。由于光克尔透镜和光阑(狭缝)构成的幅度调制器的作用,使脉冲前沿和后沿的损耗大于中部峰值损耗,从而使脉冲压缩。这种脉冲光在腔内循环被放大与压缩,并通过增益竞争就可以输出稳定的飞秒光脉冲。但是实验证明,光脉冲越短,脉冲光谱带宽越宽,因此光脉冲在激光腔内传输时会发生群速弥散,影响光脉冲的进一步压缩。为使激光器产生更短的光脉冲,必须在腔内插入群速弥散补偿器。这种群速弥散补偿与自相位调制和克尔透镜相结合,使各种锁模机制之间达到最佳平衡,最终才能输出稳定的飞秒激光脉冲。

掺钛蓝宝石的荧光带宽大于

400nm (光谱范围为690~

1100nm ),理论上,掺钛蓝宝石

飞秒激光器可支持产生1~2fs 的

光脉冲。但实际上,由于超短脉

冲形成机理之间的相互制约,一

般获得的脉冲宽度约为10fs 。如

果采用啁啾镜和石英棱镜对共同

补偿掺钛蓝宝石飞秒激光器中的

群速弥散,可以进一步压缩脉冲

宽度。为了获得极窄的脉冲,增益介质(TiS )应尽可能短,以减

少三阶色散。为保证激光器有足

够的增益,必须选择高掺杂浓度

的短棒作为增益介质。 3.飞秒激光器的基本特点及其应用

3.1 飞秒激光器的基本特点

飞秒激光器的主要特点是超高速和超强电场。飞秒激光脉冲的峰值功率非常高,一旦将这种光聚焦到很小的范围内就有可能无热影响地照射材料使

图7 KLM 锁模掺钛蓝宝石飞秒激光器结构图

其直接电离,从而产生强大的电场和磁场。飞秒激光照射在材料上时,材料对光子的吸收机理与普通激光加工时的光子吸收机理不同。如图8所示,在普通激光加工当中,能量低时光子则不被吸收,而飞秒激光的光子密度较大,即使单光子的能量比吸收光谱的能量小也可能被材料吸收。飞秒激光加工通过聚光透镜的聚光点产生多光子吸收,从而实现对材料内部的加工。而且飞秒激光照射时不会产生热变形和热变质等损伤,也不会对随温度升高而产生物理变化的半导体材料、脆性材料造成损伤,并可实现高精密加工。

3.2飞秒激光器的应用

由于飞秒脉冲的优异特性,使它在许多方面得到重要的应用。本文将对飞秒激光器在加工、通信等方面的应用分别加以介绍。

3.2.1飞秒激光器在材料加工中的应用

3.2.1.1加工原理

无论是一般加工还

是微加工,激光对材料

加工的效果通常表现为

材料结构得到一定的修

复、调整或去除。飞秒

激光脉冲和材料作用过

程中,材料中的电子通

过对入射激光的多光子

非线性吸收方式获得受

激能量,获得的能量仅在几个纳米厚度的吸收层上迅速聚积,聚积的时空分布取决于材料加工的需要。作用区域内的温度瞬间急剧上升,并远远超过材料的熔化和汽化温度值,使物质发生高度电离,最终处于前所未有的高温、高压和高密度的等离子体状态。由于受辐射持续时间只有飞秒量级,远小于材料中受激电子通过转移、转化等形式的能量释放时间,因而从根本上避免了热扩散的存在和影响。同时飞秒量级脉冲有着非常高的瞬时功率,产生的光电场强度比原子内部库仑场高数倍,材料内部原有的束缚力已不足以遏止高密度离子、电子的迅速膨

胀,最终使作用区域内的材料以等离子体向外喷发的形式得到去除,实现了(a) (b) 图8 普通激光吸收(a)和飞秒激光吸收(b)过程

激光对材料的非热熔性加工,从而达到精密加工的目的。

3.2.1.2材料加工中的应用

飞秒激光以其独特的超短持续时间和超强峰值功率开创了材料超精细、低损伤和空间三维加工处理的新领域,而且应用越来越广泛。

对金属材料的加工应用。对一般金属来说,由于具有很高的热导性和较高的熔点温度,在其表面实现高精度和高质量的钻孔和切割有很大的困难。用传统的红外波长激光切割不锈钢板料,边缘凹凸不平,表面有溶渣,这是因为材料去除是通过熔化和蒸发获得的。由于汽化过程的反冲压力,导致了液相材料的向外膨胀,从而造成环绕加工位置边缘“冠状物”的存在,因而大大降低了加工质量和清洁度。而用飞秒激光切割,切缝的边缘整齐,金属表面没有材料熔化的痕迹。飞秒激光精密成形技术已在汽车发动机喷油嘴的成形生产中得到了应用,用飞秒激光精密成形微孔技术已替代了原先电火花加工工艺,孔的清洁度得到大大提高。

对非金属材料的加工应用。对非金属材料加工中使用纳秒级脉冲时,由于热扩散,在照射区的外侧会形成熔融相,因此用它加工石英和玻璃等光学材料时的一个大问题就是由于熔融相造成的热应力将会在加工小孔的周围产生裂缝。传统的红外波长的激光对大多数透明的玻璃甚至根本无法加工,飞秒激光的出现,使这一问题得到了很好的解决。

对透明材料的加工应用。在透明材料中的应用主要指制造光纤通信器件。用飞秒激光器可以在工件内部进行加工,而且不损伤材料表面,因此可以通过改变晶体的折射率,实现透明晶体内部形成光波导或在光纤内实现折射,并且可以实现三维激光存储。此外还可以对光子晶体、蓝宝石、金刚石、水晶等进行加工制作。

对半导体材料的加工应用。传统的半导体材料加工是采用激光照射,利用材料的应变,并以热变质的方式达到实用化。而采用飞秒激光器加工材料不仅使材料表面几乎没有热变质层,而且也避免了由热变质引起的材料损伤,可以实现微米级的加工。

对聚合复合物材料的加工应用。传统的激光加工方法依赖于单光子线性吸收机制,加工精度较低,空间加工能力差。而超高峰值强度的飞秒激光为加工这类材料提供了必要条件。飞秒激光还可用于切割分离一些高爆危险物品,这是因为飞秒激光脉冲作用过程中等离子体的形成和材料的去除均非常

快速,以至于没有过多的能量传递给剩余材料,没有任何化学反应痕迹,使得其加工处理过程中的安全性大大增加。

对薄膜材料的加工应用。光掩膜是微(光)电子制备工业的支柱,成本极高。光掩膜是由光刻工艺制备的,但由于结构极其复杂,且为多步工艺,经常存在缺陷需要修改。修改光掩膜要求:(1)不能损伤衬底材料;(2)不能影响修改位置周围区域膜层的质量,并且不能有残渣形成;(3)不能影响修改位置衬底的透明度;(4)修改方法应能除去最小尺度的缺陷。因此就显露出飞秒激光掩膜修改的优势条件。

基于多光子吸收和电离基础上的飞秒激光加工,是一种“冷”的精确切割工具。它不仅可以使机械加工得到前所未有的超高精度和清洁度,同时还能够实现传统激光无法应付的超导体、半导体及陶瓷等多种特殊材料进行表面加工处理和内部结构修复操作。在材料加工方面,飞秒激光器主要在微加工方面具有其独特的应用。

3.2.2飞秒激光器在光通信中的应用

能否实现光纤通信的一个关键问题就是光纤的光强损耗能否降低到10Db/km以下,如果损耗过大,光纤通信就没有实际意义。而且在新一代光通信网络中,光子节点结构的设计是一个关键问题。光子节点需要用到各种各样的光开关,实现光信息系统中大容量信息在网络光路中高速分组切换与选择吸收。这些光开关的动作必须由光子来触发,因为其开关时间要求达到100fs的量级,用电子的方法不可能达到这样的速度。飞秒激光由于其高光强、高频率、相干性好等特殊性,使得它在光纤通信应用方面占有了绝对的优势。

半导体器件是光通信中的重要部分,目前光通信的通信码率已经达到了20Gbit/s以上。虽光纤通信的容量很大,但超高速的通信码率受到光电子器件材料的响应时间的限制,不能适应超高速光通信的需要。我们可以利用飞秒激光相干控制技术达到这一需求。在这一技术中,利用两个相干的飞秒脉冲激发半导体器件,第一个脉冲在器件中产生相干性好的载子布居,然后调节第二个脉冲的相位,利用两光脉冲的相干实现开关作用。这样便能解决因材料本征能级寿命较长造成的关断变慢的限制,开与关的时间取决与两个飞秒脉冲的时间间隔因而可以做得更快,最终能达到的速度只受量子力学原理限制。波分复用、时分复用和光孤子通信是实现高速光纤通信的主要手段。

3.2.3飞秒激光器在科学技术研究中的应用

近年来,由于超强电磁场的出现,使利用微扰论无法处理的现象可能得到解决。在激光电磁场中,当聚光波长为1μm光强达到 1018 W/cm2时,电子能量为100keV,而电磁场中的振动速度接近光速。当光强超过这一数值时,在电子能量增加的同时,质量也随之增大。原子和分子处于高强度的激光电磁场中,容易丢失电子而形成离子。在强电场中施加飞秒时间,苯或二氧芑这样的分子将发生不改变形状的离子化。在更强的电场中,电子瞬时被捕获,剩余的同性离子因库仑力而排斥,这种现象被称为库仑爆炸。

在高能物理及核物理方面,飞秒脉冲超强电场的应用备受关注。如前所述,这种超强电场能够非常容易地产生相对电子并能对原子和分子直接加工。用超过1020W/cm2的光强照射目标时,能够获得高于10MeV能量的电子,随之还产生高亮度的γ射线。如果高能电子与谐波超强脉冲相互作用,则会产生高谐波的康普顿散射现象,并产生具有数GeV能量的光子。用低强度的飞秒激光脉冲照射光电阴极将产生飞秒电子脉冲,这种脉冲将成为高亮度电子源。当激光强度达到太瓦级时,则很容易产生非线性现象。在1个大气压的气体中,飞秒激光能自动地改变折射率,由于位相的变化而产生相干白光,利用这一现象可进行大气观测和气溶胶的测量。利用飞秒激光的超高速性能可形成物质的非正常单一量子状态,而且分子的运动可用光直接控制。在数十飞秒的脉冲内,光电场只有几个周期,因此控制脉冲内电场的位相就能控制原子和分子的反应。

3.2.4飞秒激光器在化学、生物和医疗中的应用

3.2.

4.1飞秒激光器在化学、生物中的应用

近年来,用飞秒激光控制化学反应过程和产物是化学反应动力学过程研究的新进展,而在生物学研究中主要集中在细菌绿素光合作用反应中心和视红质天线分子的电荷迁移和能量弛豫动力过程。超短脉冲可能的高时间分辨对化学和生物化学动力学研究是吸引人的。光合作用之类的反应,其第一步首先涉及溶剂化过程, 这个过程发生于100fs时间尺度上,分子键也可在100fs时间尺度上形成和断裂。为了观测动力学过程, 探测脉冲必须短得多,10fs持续时间是非常合适的脉宽。在短时间尺度上, 人们实际可看清脉冲的周期并通过用标准波形对电子的辐照来控制电子,这种操纵可用于控制化学反应、原子过程或X射线的产生。在生物领域,科学家们去开展关于制造基

因、蛋白质分析用的微型芯片的应用研究。

3.2.

4.2飞秒激光器在医疗中的应用

飞秒激光器已经广泛永远于眼科、手术外科、脑神经外科等医疗领域,并且取得了初步成果。应用飞秒脉冲技术对糖尿病引起的青光眼或斑疹水肿之类的视网膜疾病的诊断和监视特别有希望, 原因是它可以测量这种疾病的发展进程。在较长脉冲情况下, 烧蚀阈值存在较多不确定因素, 在能量过剩情况下,较长脉冲具有烧坏周围区域的危险。在几百飞秒状态下, 激光脉冲可以调节, 从而避免了间接损伤。飞秒激光的热影响很小,用它做手术刀不会损伤周围的其他组织,对于心肌梗塞、脊髓手术、近视矫正手术,飞秒激光将是理想的选择。用飞秒激光照射人的角膜,可以进行比ArF准分子激光更细微的视力矫正手术。利用激光的吸收性可以治疗龋齿而几乎没有疼痛。此外,飞秒激光还可对细胞进行操控。用显微镜把飞秒激光会聚成微小光点,利用激光产生的冲击波将分裂的细胞分离开的实验已经取得了成功。

4.飞秒激光器发展现状与应用前景

4.1 飞秒激光器发展现状

飞秒激光器目前主要存在四大类别:

其一是由有机染料为介质的飞秒染料激光器。不同染料可以输出不同波长的飞秒激光脉冲,它覆盖了从紫外到近红外波段,但最有效的还是集中在红光波段。随着固体、半导体、光纤飞秒激光器的崛起,飞秒染料激光器在红外和紫外波段已经失去了竞争能力,但在可见波段,特别是在红光区域仍被广泛的应用在时间分辨光谱,半导体载流子快速弛豫过程和化学反应动力学过程的研究中。

其二是以掺钛蓝宝石,Li:SAF,掺镁橄榄石等固体材料为介质的飞秒固体激光器。由于这种固体材料具有比染料更宽的调谐范围,更大的饱和增益通量和更长的激光上能级寿命,使其在飞秒激光运转的许多特性都优于染料激光器,加之固体材料具有更稳定的光学性质和更紧凑的结构,使得飞秒固体激光器在很短的时间里发展成为飞秒激光技术的主体。

其三是以多量子阱材料为代表的飞秒半导体激光器。超短脉冲半导体激光器的研究在很长时间里始终没有跨越皮秒级,直到将多量子阱材料引入到

短脉冲半导体激光器中,才使超短脉冲半导体激光器成为飞秒激光家庭中的重要成员。飞秒半导体激光器主要应用于高比特多路通信,超长距孤子光纤通信等领域。

为增益介质的飞秒光纤激光器。其主要特其四是以掺杂稀土元素的SiO

2

点是结构紧凑,小巧,高效率,低损耗,负色散和全光学,其波长适用于光通信,特别适用于孤子传输的研究。

飞秒激光器的发展主要有两个方向:一个是脉冲宽度的进一步压缩;另一个是增益介质的选取。而目前的发展主要体现在增益介质的选取上。4.2飞秒激光器应用前景

材料加工是飞秒激光器主要而直接的应用,由于飞秒激光具有许多无与伦比的优点,使其在测量、微电子、微机电系统、化学、生物、医学、军事等领域发挥着越来越大的作用。随着飞秒激光技术的日趋成熟,飞秒激光将在核物理、飞秒脉冲光谱学、超高速光通信等领域有着不可替代的地位。下面简要介绍飞秒激光在固体材料加工和激光通信等几个方面的应用前景。

(1)在纯硅玻璃或掺锗硅玻璃中,用可见飞秒激光可实现明显的激光损伤和光致折射率改变。激光照射区域通过色心形成,晶格缺陷,甚至小区域熔化实现致密化,增大折射率。

(2)利用飞秒激光还原稀土离子。实验发现,用飞秒激光照射Sm3+样品后有Sm2+存在,并且发现通过420℃退火一小时后Sm2+又重新变为Sm3+,这使材料的多次存储成为可能。

(3)将两束相干飞秒激光同时聚焦照射在二氧化硅玻璃上,可以形成光栅。

(4)用飞秒激光照射含稀土离子的玻璃,可以观察到长磷光现象。通过改变玻璃的成分和稀土离子的种类,可以在玻璃内部有选择的写入各种颜色的立体图像。利用此现象可以形成自动消失的光存储元件和三维显示器件。

(5)利用飞秒激光可以实现诱导晶体相变。在α-BBO晶体中诱导产生β-BBO实现诱导相变,属于结构重建型相变,相变温度为925±5℃。高低温之间的相变是一个渐变过程,速度较慢,存在相变滞后的问题。飞秒激光可以在强电磁场和热的作用下,有可能空间选择性的实现α-BBO到β-BBO的相变。

(6)飞秒激光相干控制技术实现了光通信光电转换速率的突破,实际上,飞秒激光在高速光通信中有着更广泛的意义。利用飞秒激光技术可以实现带宽为tHz的光纤网络,从而促使半导体激光的超短技术和开关技术的快速实现与发展。同时也带动一些相关领域如飞秒光电子非线性相互作用、量子点物理、tHz电磁辐射以及飞秒X射线技术等的飞速发展。

(7)利用飞秒激光的超高速性能可控制原子和分子的反应。目前此项研究已经达到高潮。

随着飞秒激光脉冲技术的进一步发展和完善,一定能开辟出更多的应用前景。

致谢

感谢李宏老师的潜心指导!

参考文献

[1] 吴平等编著.近代物理与高新技术.北京:国防工业出版社,2004(9)

[2]石顺祥等编著.非线性光学.西安:西安电子科技大学出版社,2003(3)

[3] 王清月.飞秒激光技术及其新兴相关学科.量子电子学报,1994,(4)

[4] 王志琦.飞秒激光技术的最新进展.应用光学,1999,(1)

[5] 戴戍,邵锐,明海.飞秒激光技术及相关领域.光电子技术与信息,1998,(6)

[6] 王水才,肖东,朱长军,贺俊芳.多波长钛宝石飞秒激光技术研究.物理,1999,(3)

[7] 张伟力,邢岐荣,柴路,王清月.全固化飞秒激光器研究进展.光电子.激光,1999,(3)

[8] 张志刚,徐敏.飞秒激光脉冲技术的发展和应用.激光杂志,1999,(5)

[9] 刘立鹏,周明等.飞秒激光三维微细加工技术.光电工程,2005,(4)

[10] 姜本学,赵志伟,潘守夔,徐军.飞秒激光与晶体和玻璃的相互作用.量子电子学报,2005,(2)

[11] 赵辉,张朝凤.飞秒激光的应用.鞍山师范学院学报,2004,(6)

[12] 王亚非.飞秒激光加工机.光机电信息,2004,(5)

[13] 张兴权,周建忠,王广龙.飞秒激光在材料微加工中的应用.电加工与模具,2005,(1)

[14] 贾威,王清月,傅星,胡小唐.飞秒激光在材料微加工中的应用.量子电子学报,2004,(2)

[15] 宋云夺.飞秒激光的应用.光机电信息,2004,(12)

[16] 王玉英.飞秒光纤激光器的发展及其工业应用.光机电信息,2006,(2)

[17] 从征.飞秒光脉冲的应用.激光与光电子学进展,1999,(10)

[18] 陈云生,车会生.飞秒激光器的发展现状.激光与光电子学进展,2003,(8)

目录 摘要 (2) 1引言 (3) 2激光显示技术 (3) 2.1激光显示技术原理 (3) 2.2激光显示技术特征 (4) 2.3激光显示技术类型 (4) 3激光显示技术发展历史 (5) 3.1国内激光显示技术发展历史 (5) 3.2国外激光显示技术发展历史 (5) 4激光显示技术发展现状 (6) 4.1国内激光显示技术发展现状 (6) 4.2国际激光显示技术发展现状 (9) 5总结 (10) 6致谢 (10) 7参考文献 (11)

摘要 激光显示作为新一代显示技术,继承了数字显示技术所有优点,能够最完美的再现自然色彩。本文简要介绍了激光显示技术的原理、特征、类型,并对国内外激光显示技术的发展历史和现状作了介绍。 关键词:激光显示技术、三基色激光、激光三维显示、数字显示技术 Abstract As a new generation of display technology, laser display inherited all the advantages of digital display, and can perfectly reproduce the natural colors. In this thesis, the principle, characteristic and type of laser display technology are introduced briefly. In addition, the developmental history and present status of which laser display is in domestic and overseas area are introduced too. Key words :Laser display technology;Tricolor laser;Three dimension display of laser ;Digital display technology

光纤激光器的工作原理及其发展前景 1 引言 光纤激光器于1963年发明,到20世纪80年代末第一批商用光纤激光器面市,经历了20多年的发展历程。光纤激光器被人们视为一种超高速光通信用放大器。光纤激光器技术在高速率大容量波分复用光纤通信系统、高精度光纤传感技术和大功率激光等方面呈现出广阔的应用前景和巨大的技术优势。光纤激光器有很多独特优点,比如:激光阈值低、高增益、良好的散热、可调谐参数多、宽的吸收和辐射以及与其他光纤设备兼容、体积小等。近年来光纤激光器的输出功率得到迅速提高。已达到10—100 kW。作为工业用激光器,现已成为输出功率最高的激光器。光纤激光器的技术研究受到世界各国的普遍重视,已成为国际学术界的热门前沿研究课题。其应用领域也已从目前最为成熟的光纤通讯网络方面迅速地向其他更为广阔的激光应用领域扩展。本文简要介绍了光纤激光器的结构、工作原理、分类、特点及其研究进展,最后对光纤激光器的发展前景进行了展望。 2 光纤激光器的结构及工作原理 2.1光纤激光器的结构 和传统的固体、气体激光器一样。光纤激光器基本也是由泵浦源、增益介质、谐振腔三个基本的要素组成。泵浦源一般采用高功率半导体激光器(LD),增益介质为稀土掺杂光纤或普通非线性光纤,谐振腔可以由光纤光栅等光学反馈元件构成各种直线型谐振腔,也可以用耦合器构成各种环形谐振腔泵浦光经适当的光学系统耦合进入增益光纤,增益光纤在吸收泵浦光后形成粒子数反转或非线性增益并产生自发辐射所产生的自发辐射光经受激放大和谐振腔的选模作用后.最终形成稳定激光输出。图1为典型的光纤激光器的基本构型。 增益介质为掺稀土离子的光纤芯,掺杂光纤夹在2个仔细选择的反射镜之间.从而构成F—P谐振器。泵浦光束从第1个反射镜入射到稀土掺杂光纤中.激射输出光从第2个反射镜输出来。 2.2 光纤激光器的工作原理 掺稀土元素的光纤放大器促进了光纤激光器的发展,因为光纤放大器可以通过适当的反馈机理形成光纤激光器。当泵浦光通过光纤中的稀土离子时.就会被稀土离子所吸收。这时吸收光子能量的稀土原子电子就会激励到较高激射能级,从而实现离子数反转,反转后的离子数就会以辐射形式从高能级转移到基态,并且释放出能量,完成受激辐射。从激发态到基态的辐射方式有2种:自发辐射和受激辐射。其中,受激辐射是一种同频率、同相位的辐射,可

飞秒,皮秒以及纳秒激光器溶解固体 摘要:0.2—5000ps激光溶解固体 题目:蓝宝石激光脉冲的开发、模型以及其性质的展示。飞秒激光对精密材料进行加工的优势也进行了讨论和展示。 正文:高效的利用激光对精密材料进行加工离不开对于调解激光辐射与物质之间相互影响的重要规律的知识。为了实现这一目标,激光与物质之间相互影响的系统研究是必要的。由于现在激光系统的进步,尤其是那些基于啁啾脉冲扩展技术,这样系统的研究已经在非常广泛的激光领域成为可能。CPA系统能够使激光脉冲持续时间从大约100飞秒变至几十纳秒,而其他特性不改变。这就允许我们对多种不稳定的激光与物质之间相互影响的过程进行细致的分析。举些例子,最近的学术研究对于损伤阈值、分割阈值以及高强度激光溶解都有提及。这个系统的研究只是刚刚开始,更多的研究将会帮助我们了解和证实飞秒激光系统对于精密材料加工的潜质。 最近进行的一些关于飞秒和纳秒脉冲溶解固体的实验。飞秒激光的染色和受激分子激光系统对精密材料加工的优势已经体现无疑。在这一研究报告中,我们展示了激光溶解和打孔技术的商业用途,蓝宝石激光提供了一个780nm,能量为100mJ,持续时间可在0.2—5000ps进行变化的激光系统。实验处于一个低影响的体系中,在其中,只是很少量的超出蒸发阈值。这个体系对于溶解精密固体实验意义非凡,这样一来,固体内的能量沉积和热影响区域都会被降到最低。我们讨论和举例飞秒激光脉冲的优点,希望能刺激在这个领域新的研

究。第一部分中,我们将展示三种不同持续时间的脉冲在低影响条件下溶解金属的特点:飞秒,皮秒以及纳秒激光器这三种实验对象。关于实验的配置和结果,我们将在第二部分中给出。 1、理论知识背景 在低强度的短波激光脉冲作用于金属物时,由于反方向的韧制辐射,激光的能量会被自由电子吸收。然后,被吸收的激光能量需要在电子系统中热能化,将能量传输到晶格中,由于电子的热量传输给了溶解目标,导致能量流失。如果我们假定,在电子系统中的热能化是非常快而且其电子和晶格系统都以热量为表征( T&i T),那么能量 e 进入金属中的过程就可描述为一维下,以两个温度为变化量的扩散模型: 在上式中,z为与固体目标表面垂直的一个分量,Q(z)是热流量,S为激光加热源项,I(t)是激光光强,A=1-R和α分别是材料表面透射率和材料的吸收常数, C和i C分别是电子和晶格系统的单位 e 体积比热容,γ是电子-晶格耦合的特征参量, k是电子的热导率。 e 在上式中,忽略了晶格系统中的热导率。电子比热容远远低于晶格比热,因此电子会被加热到一个非常高的瞬时温度。当电子的温度(单位能量)残留小于费米能量时,电子比热容和非平衡态的电子比热容

飞秒激光的发展和应用 (.) 摘要:随着激光技术的研究、开发和应用十分活跃。本文简要介绍了飞秒激光发展、特点及技术研究进展和发展趋势。 关键词:飞秒,激光技术,激光手术,激光武器,飞秒脉冲,飞秒激光 作者简介: 0 引言 20世纪以光科学与工程技术研究为基础所积累的丰硕成果,已在世界范围内对人类现代物质和精神文明做出了巨大的贡献。21世纪将是光子技术进一步大发展的时代,激光技术将成为世界各国竞争的焦点之一,以激光技术为核心的相关产业将成为知识经济时代和信息时代的重要驱动力量。 飞秒激光是过去20年间由激光科学发展起来的最强有力的新工具之一。飞秒脉冲是如此的短,目前已经达到了4 fs以内(可见光-近红外波段),1飞秒(fs,即10-15 s),仅仅是1千万亿分之一秒,如果将10 fs作为几何平均来衡量宇宙,其寿命仅不过1 min而已。飞秒脉冲又是如此之强,采用多级啁啾脉冲放大(CPA)技术获得的最大脉冲峰值功率可达到100太瓦(TW,即1012 W)甚至皮瓦(PW,即1015 W)量级,其可聚焦强度比将太阳辐射到地球上的全部光聚焦成针尖般大小后的能量密度还要高[1]。飞秒激光完全是人类创造的奇迹。 1 飞秒激光的原理 众所周知,组成物质的分子和原子,每时每刻都在快速地运动,这是微观物质重要的基本属性。飞秒激光产生后,人类能够在原子和电子的层面上观察到它们超快运动的过程并加以利用。在高强度飞秒激光的作用下,气态、液态、固态物质会在瞬息间变成等离子体。高功率飞秒激光与电子束碰撞,能够产生X 射线飞秒激光、射线激光以及正负电子对。此外,利用飞秒激光能够有效地加速电子,使加速器的规模得到上千倍的压缩。高功率飞秒激光与物质相互作用,能够产生足够数量的中子,实现激光受控核聚变的快速点火[2]。 通过对飞秒的研究,除了揭示自然科学的奥妙之外,还促进了新型“飞秒激光”技术的应用和发展。飞秒激光是一种周期可以用飞秒计算的超强超短脉冲激光。它的出现为人类提供了前所未有的全新实验手段与物理条件,有着十分广阔的应用前景。 2 飞秒激光的特点 根据飞秒激光超短和超强的特点,大体上可以将应用研究领域分成超快瞬态现象的研究和超强现象的研究。它们都是随着激光脉冲宽度的缩短和脉冲能量的增加而不断的得以深入和发展。 飞秒激光的特点:(1)持续时间极短,只有几个飞秒,是人类目前在实验条件下所能获得的最短的脉冲,所以飞秒激光是无穿透性的,对眼内组织无损伤。(2)具有极高瞬时功率,可达到百万亿瓦。近红外激光脉冲,在经过角膜组织表面时不被吸收,通过调节聚焦透镜和角膜表面相对位置。将脉冲聚焦在预定深度的一个小点上,当每次脉冲达到聚焦点时,触发一次称为激光诱导光衰变作用,多脉冲定位在同一个焦点深度,通过形成一层小直径的气泡来实现切割手术。(3)能聚焦到比头发丝直径还要小的空间区域。每个脉冲的连接的紧密性,决定了切割平面的光滑性。

激光技术的发展与展望 "激光"一词是"LASER"的意译。LASER原是Light amplification by stimulated emissi on of radiation取字头组合而成的专门名词,在我国曾被翻译成"莱塞"、"光激射器"、"光受激辐射放大器"等。1964年,钱学森院士提议取名为"激光",既反映了"受激辐射"的科学内涵,又表明它是一种很强烈的新光源,贴切、传神而又简洁,得到我国科学界的一致认同并沿用至今。 从1961年中国第一台激光器宣布研制成功至今,在全国激光科研、教学、生产和使用单位共同努力下,我国形成了门类齐全、水平先进、应用广泛的激光科技领域,并在产业化上取得可喜进步,为我国科学技术、国民经济和国防建设作出了积极贡献,在国际上了也争得了一席之地。 一、我国早期激光技术的发展 1957年,王大珩等在长春建立了我国第一所光学专业研究所--中国科学院(长春)光学精密仪器机械研究所(简称"光机所")。在老一辈专家带领下,一批青年科技工作者迅速成长,邓锡铭是其中的突出代表。早在1958年美国物理学家肖洛、汤斯关于激光原理的著名论文发表不久,他便积极倡导开展这项新技术研究,在短时间内凝聚了富有创新精神的中青年研究队伍,提出了大量提高光源亮度、单位色性、相干性的设想和实验方案。1960年世界第一台激光器问世。1961年夏,在王之江主持下,我国第一台红宝石激光器研制成功。此后短短几年内,激光技术迅速发展,产生了一批先进成果。各种类型的固体、气体、半导体和化学激光器相继研制成功。在基础研究和关键技术方面、一系列新概念、新方法和新技术(如腔的Q突变及转镜调Q、行波放大、铼系离子的利用、自由电子振荡辐射等)纷纷提出并获得实施,其中不少具有独创性。 同时,作为具有高亮度、高方向性、高质量等优异特性的新光源,激光很快应用于各技术领域,显示出强大的生命力和竞争力。通信方面,1964年9月用激光演示传送电视图像,1964年11月实现3~30公里的通话。工业方面,1965年5月激光打孔机成功地用于拉丝模打孔生产,获得显著经济效益。医学方面,1965年6月激光视网膜焊接器进行了动物和临床实验。国防方面,1965年12月研制成功激光漫反射测距机(精度为10米/10公里),1966年4月研制出遥控脉冲激光多普勒测速仪。 可以说,在起步阶段我国的激光技术发展迅速,无论是数量还是质量,都和当时国际水平接近,一项创新性技术能够如此迅速赶上世界先进行列,在我国近代科技发展史上并不多见。这些成绩的取得,尤其是能够把物理设想、技术方案顺利地转化成实际激光器件,主要得力于光机所多年来在技术光学、精密机械和电子技术方面积累的综合能力和坚实基础。一项新技术的开发,没有足够的技术支撑是很难形成气候的。 二、重点项目带动激光技术的发展 激光科技事业从一开始就得到了领导和科学管理部门的高度重视。当时中国科学院副院长张劲夫提出建立专业激光研究所的设想,很快得到国家科委、国家计委的批准。主管科技的聂荣臻副总理还特别批示:研究所要建在上海,上海有较好的工业基础,有利于发展这一新技术。1964年,我国第一所,也是当时世界上第一所激光技术的专业研究所--中国科学院上海光学精密机械研究所(简称"上海光机所")成立。当年12月在上海召开全国激光会议,张劲夫、严济慈出席并主持会议,140位代表提交了103篇学术报告。 1964年启动的"6403"高能钕玻璃激光系统、1965年开始研究的高功率激光系统和核聚变研究,以及1966年制定的研制15种军用激光整机等重点项目,由于技术上的综合性和高难度,有力地牵引和带动了激光技术各方面在中国的发展。我国的激光科技事业,虽然也遭遇了"文革"十年浩劫,但借助于重点项目的支撑,

2009年第12 期 中文核心期刊 高功率光纤激光器发展概况 Survey of high-power fiber lasers ZHANG Jing-song (Electronic communications technology department, Shenzhen Institute of Information Technology,Shenzhen Guangdong 518029,China) Abstract :High-power fiber lasers have wide applications in the filed of optical communication,printing,marking,material processing,medicine etc.High-power fiber lasers may substitute conventional lasers large-ly,have new application of laser,broaden the scope of laser industry.The history and recent development of high-power fiber lasers home and aboard are surveyed.The prospect of high-power fiber lasers is discussed.Key words :high-power fiber laser,double-clad fiber,cladding pump 张劲松 (深圳信息职业技术学院电子通信技术系,广东深圳518029) 摘要:高功率光纤激光器以其优越的性能和超值的价格,在光通信、印刷、打标、材料加工、医疗等领域 有着广阔的应用,将会很大程度上替代传统激光器,并开辟一些新的激光应用领域,扩大激光产业的规模。概述国内外高功率光纤激光器的发展历史与现状。展望了高功率光纤激光器的发展前景。 关键词:大功率光纤激光器;双包层光纤;包层泵浦中图分类号:TN248 文献标识码:A 文章编号:1002-5561(2009)12-0008-03 0引言 从1960年第一台激光器(美国Maiman 等首先用红宝石晶体获得了激光输出)问世到现在近50年过去了,激光技术确如人们所期,渗入了各行各业:通信、生物技术、医学、印刷、制造、军事、娱乐业等。在某些领域,它已经成为不可替代的核心技术。但是激光产业规模还不够大,究其原因,不是人类不需要激光,而是传统激光器不好用:成本高、效率低、故障多。 光纤激光器的出现带来了扩大激光产业规模的希望。光纤激光器激光光束质量好,电-光转换效率高,输出功率大;所有的半导体器件及光纤组件都可以融接成一体,避免了元件的分立,可靠性得到极大提高。 1国外高功率光纤激光器发展概况 光纤激光器的最早有关研究可以追溯到20世纪 60年代初期,当时激光器刚刚出现不久,人们对激光 器的研究投入了极大热情,积极研制开发各种新型激光器。1961年,美国光学公司的E.Snitzer 等在光纤激 光器领域进行了开创性的工作,他们利用棒状掺钕(Nd 3+)玻璃波导获得了波长1.06μm 的激光。 20世纪70年代,光纤通信的研究开始起步,新兴 的光纤通信系统对新型光源的需求极大地刺激了激光器的研究工作。但由于人们的注意力集中到迅猛发展的半导体激光器技术上,以及光纤激光器自身的一些当时无法克服的困难,光纤激光器的研究逐渐沉寂下来。尽管如此,仍然取得了一些值得一提的成就。例如,1973年,J.Stone 等成功地研制出能够在室温下连续工作的掺钕光纤激光器,他们采用的半导体注入型激光器终端泵浦方式对以后实用型光纤激光器的研究具有重要的意义。 20世纪80年代,英国Southampton 大学的S.B.Poole 等用MCVD 法成功地制备了低损耗的掺钕和掺 铒光纤,因为掺铒光纤光纤激光器的激射波长恰好位于通信光纤的1.55μm 低损耗窗口,人们开始认识到光纤放大器和光纤激光器在提高传输速率和延长传输距离等方面无疑将给光纤通信带来一场革命。掺铒光纤放大器(EDFA )得到了迅速的发展并成为一项成熟的应用技术。但是,光纤通信用的光纤激光器输出功率一般都是毫瓦级,一直以来只局限于光通讯等领域;同时由于巨大的行业差距,几乎无人把它与激光 收稿日期:2009-08-31。 作者简介:张劲松(1969-),男,博士,高工,现主要从事光纤激光器、放大器等方面的研究。 ⑧

激光的发展历史与前景 ——15物01 15075003 邹萌●激光原理 激光是光与物质的相互作用,实质上,也就是组成物质的微观粒子吸收或辐射光子,同时改变自身运动状况的表现。 微观粒子都具有特定的一套能级(通常这些能级是分立的)。任一时刻粒子只能处在与某一能级相对应的状态(或者简单地表述为处在某一个能级)上。与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h(h为普朗克常量)。 ●发展历程 激光是20世纪以来,继原子能、计算机、半导体之后,人类的又一重大发明,被称为“最快的刀”、“最准的尺”、“最亮的光”。 激光的最初的中文名叫做“镭射”、“莱塞”,是它的英文名称LASER的音译,LASER (Light Amplification by Stimulated Emission of Radiation)的意思是“通过受激发射光扩大”,这已经完全表达了制造激光的主要过程。1964年按照我国著名科学家钱学森建议改称“激光”。 激光的原理早在 1917年已被著名的美国物理学家爱因斯坦发现,但直到 1960 年激光才被首次成功制造。 1958年,美国科学家肖洛(Schawlow)和汤斯(Townes)发表重要论文,并获得1964年的诺贝尔物理学奖。 1960年5月15日,美国加利福尼亚州休斯实验室的科学家梅曼宣布获得了波长为0.6943微米的激光,这是人类有史以来获得的第一束激光,梅曼因而也成为世界上第一个将激光引入实用领域的科学家。 1960年7月7日,梅曼宣布世界上第一台激光器诞生。 前苏联科学家尼古拉·巴索夫于1960年发明了半导体激光器。 ●应用前景 激光技术是现代科学技术发展的结果,是20世纪与原子能、计算机、半导体齐名的四项重大发明之一。激光一问世,就获得了飞快发展,激光的发展不仅使古老的光学科学和光学技术获得了新生,而且推动了许多新兴产业的产生。激光能够使人们有效地利用目前所拥有的先进方法和手段,促进生产力的提高。因此,激光技术是当今工业发展的一个重要趋势。 其中,生命和健康科学是一个非常强劲的市场,因为那里会不断出现的新应用,很多都是基于激光的原理。激光不再只局限为一种外科手术工具,它将会更加广

飞秒激光器的应用研究 院系:信息科学与技术系 专业班:光信0801班 姓名:周紫雁 学号:20081182002 2012年5月

飞秒激光器的应用研究The Study of the Applications of Femtosecond Laser

摘要 飞秒激光是人类目前在实验室条件下所能获得最短脉冲的技术手段,它的独特优势使飞秒激光器在各领域的应用倍受关注,飞秒激光器在高速光通讯、强场科学、纳米科学、生物医学等领域具有广泛的应用。通过研究其应用现状以及供需量,不但可以了解飞秒激光的基本特性与工业优势,并且可以给各企业的激光器开发提供参考。 首先,本文对飞秒激光的物理特性及主要用途进行了概述,阐述了飞秒激光的优势与特性。通过翻阅资料与数据,对飞秒激光器国际方面应用现状进行分析。虽然目前飞秒激光器在激光加工行业所占份额很小,但是它的应用前景不可估量。在数据分析之后,以实际考察以及案例分析的方法,对飞秒激光器在中国的应用现状进行了分析,由于飞秒激光微加工在国内运用少之又少,但是在屈光矫正方面应用广泛,并对此进行详细的考察。结论得出,飞秒激光目前处于供小于求的状态,若广泛引进可以达到很高的效益。 关键词:飞秒激光工业应用眼科应用

Abstract Currently, femtosecond laser is the shortest pulse technology which we can obtain in the laboratory conditions. Due to these advantages, the applications of the femtosecond laser in different fields raise folks’ attentions. Femtosecond lasers have a great applying prospect in high-speed optical communication, strong field science, Nano science, biology medicine. To study the market situation and the demands and supply, not only can we grasp the information of the major nature and industrial advantages of femtosecond laser, but also can give the departments of retailer and the manager a great reference to make the long-term strategic plan. Firstly,the physical characteristics and the use of femtosecond has been illustrated basically. It is illumined the unique advantages and nature of femtosecond laser. Then, I analyzed the international market of the femtosecond laser via the date and paging the information. Although the industry of femtosecond laser accounts for a small market share, it has a mega international market prospect. Through the investigation and case analysis, the Chinese market of femtosecond lasers is analyzed. Due to the little application of femtosecond laser in the domestic micro processing field and the wide use in LASIK, I laid more emphasis in the biology and medicine market and made the conclusion, that recently the supply of the femtosecond laser is less than the demands, if abundant equipment can be imported, it can bring large quantities of economic effects. Key words:Femtosecond laser industrial application ophthalmology application

飞秒激光器的市场调查分析报告 院系:信息科学与技术系 专业班:光信0801班 姓名:周紫雁 学号:20081182002 2012年5月

飞秒激光器的市场调查分析报告

摘要 从1980年后期起,超短光脉冲的产生及放大技术迅速发展。飞秒激光的特征是超高速和超高强度,正是由于飞秒激光器的这种优势使飞秒激光器及其在各领域的应用倍受关注。飞秒激光是人类目前在实验室条件下所能获得最短脉冲的技术手段。飞秒激光在瞬间发出的巨大功率比全世界发电总功率还大,科学家预测飞秒激光将为新能源的产生发挥重要作用。就目前来说,飞秒激光器在高速光通讯、强场科学、纳米科学、生物医学等领域具有广泛的应用和潜在的市场前景。 本文旨在研究其市场情况以及供需量,可以得出其投放入市场的适用量,从而可以对产品市场的销售商、生产的管理部门提高工参考依据以及为其做长期战略性规划提供参照。本文第一章主要对飞秒激光的物理特性及主要用途进行了概述,第二章通过翻阅资料和统计数据对飞秒激光器国际市场行情分析,第三章通过实际考察以及案例分析,对于飞秒激光器中国市场行情进行了分析。 关键词:飞秒激光市场分析调研

Abstract (Times New Roman字体,小二号加粗,居中) (空一行) The dissolution of labour contract by employer………………………………(小四号Times New Roman字体)……………………………………………………………… Key words(顶格四号Times New Roman字体,加粗):labor contract dissolute by employer dissolute right away(用小四号Times New Roman书写词条,各词条间用两个英文空格隔开,其它格式同中文摘要)

中国激光技术发展回顾与展望 名称研制成功时间研制人 He-Ne激光器1963年7月邓锡铭等 掺钕玻璃激光器1963年6月干福熹等 GaAs同质结半导体激光器1963年12月王守武等 脉冲Ar+激光器1964年10月万重怡等 CO2分子激光器1965年9月王润文等 CH3I化学激光器1966年3月邓锡铭等 YAG激光器1966年7月屈乾华等 可以说,在起步阶段我国的激光技术发展迅速,无论是数量还是质量,都和当时国际水平接近,一项创新性技术能够如此迅速赶上世界先进行列,在我国近代科技发展史上并不多见。这些成绩的取得,尤其是能够把物理设想、技术方案顺利地转化成实际激光器件,主要得力于光机所多年来在技术光学、精密机械和电子技术方面积累的综合能力和坚实基础。一项新技术的开发,没有足够的技术支撑是很难形成气候的。 激光科技事业从一开始就得到了领导和科学管理部门的高度重视。当时中国科学院副院长张劲夫提出建立专业激光研究所的设想,很快得到国家科委、国家计委的批准。主管科技的聂荣臻副总理还特别批示:研究所要建在上海,上海有较好的工业基础,有利于发展这一新技术。1964年,我国第一所,也是当时世界上第一所激光技术的专业研究所——中国科学院上海光学精密机械研究所(简称“上海光机所”)成立。当年12月在上海召开全国激光会议,张劲夫、严济慈出席并主持会议,140位代表提交了103篇学术报告。 1964年启动的“6403”高能钕玻璃激光系统、1965年开始研究的高功率激光系统和核聚变研究,以及1966年制定的研制15种军用激光整机等重点项目,由于技术上的综合性和高难度,有力地牵引和带动了激光技术各方面在中国的发展。我国的激光科技事业,虽然也遭遇了“文革”十年浩劫,但借助于重点项目的支撑,仍艰难地生存了下来并取得可贵的进展。 1、“6403”高能钕玻璃激光系统 1964年启动,最后从技术上判定热效应是根本性技术障碍,于1976年下马。这一项目对发展高能激光技术有历史贡献是不可忽视的,它使我国激光技术的水平上了一个台阶。其成果主要表现在:(1)建成了具有工程规模的大口径(120毫米)振荡—放大型激光系统,最大输出能量达32万焦耳;改善光束质量后达3万焦耳。(2)实现了系统技术集成,成功地进行了打靶实验,室内10米处击穿80毫米铝靶,室外2公里距离击穿0.2毫米铝耙,并系统地研究了强激光辐射的生物效应和材料破坏机理。(3)第一次揭示了强光对激光系统本身的光损伤现象和机制。(4 )第一次深入和理解激光光束质量的重要性和物理内涵,采用了一系列提高光束质量的创新性技术,如万焦耳级非稳腔激光器、片状激光器、振荡—扫瞄放大式激光系统、尖劈法光束质量诊断等。(5)激光元器件和支撑技术有了突破性提高,如低吸收高均匀性钕玻璃熔炼工艺、高能脉冲氙气、高强度介质膜、大口径(1.2米)光学精密加工等。(6)培养和造就了一批技术骨干队伍。 2、高功率激光系统和核聚变研究 1964年王淦昌独立提出激光聚变倡议,1965年立项开始研究。经几年努力,建成了输出功率10(上标10)瓦的纳秒级激光装置,并于1973年5月首次在低温固氘靶、常温氘化锂靶和氘化聚乙烯上打出中子。1974年研制成功我国第一台多程片状放大器,把激光输出功率提高了10倍,中子产额增加了一个量级。在国际上向心压缩原理解密后,积极跟踪并于1976年研制成六束激光系统,对充气玻壳靶照射,获得了近百倍的体压缩。这一系列的重大突破,使我国的激光聚变研究进入世界先进行列,也为以后长期的持续发展奠定了基础 3、军用激光研究 1966年12月,国防科委主持召开了军用激光规划会,48个单位130余人参加,会议制定了包括含15种激光整机、9种支撑配套技术的发展规划。虽未正式批准生效,但仍起了有益的推动作用。此后的几年内,这一领域涌现了一批重要成果。例如:(1)靶场激光距技术初试成功:采用重复频率为20赫兹的YAG调Q激光器,测距精度优于2米,最远测量距离达660公里,加在经纬仪上,可实现对飞行目标的单站定轨。这一成果为以后完成洲际导弹再入段轨迹测量创造了必要条件。(2)红宝石激光人造卫星测

收稿日期:2008-10-13. 动态综述 光纤激光器研究进展 申人升,张玉书,杜国同 (大连理工大学物理与光电工程学院,辽宁大连116023) 摘 要: 光纤激光器具有寿命长,模式好,体积小,免冷却等一系列其他激光器无法比拟的优点,近年来受到了来自电子信息、工业加工和国防科技等研究开发领域的高度关注。文章概述了光纤激光器典型的工作原理,阐述了其当前主要研究方向以及国内外研究现状,最后提出了光纤激光器产业化的趋势。 关键词: 光纤;光纤激光器;光子晶体光纤;超短脉冲 中图分类号:TN248 文献标识码:A 文章编号:1001-5868(2009)01-0001-05 Latest Development of Fiber Lasers SH EN Ren -sheng ,ZH ANG Yu -shu,DU Guo -tong (School of Physics and Optoelectronic Technology,Dalian University of Technology,Dalian 116024,C HN) Abstract: Fiber lasers ow n lots of advantages co mpared w ith other lasers,including lo ng life,goo d mode,compactness,etc.Recently,fiber lasers have received increasing ly intensive attention in the applications o f electro nic inform ation,industr y processing and national defense technolog y.T he ty pical principle o f fiber laser is explained and resear ch progr esses about fiber lasers are review ed.Furthermore,the future developm ental trends fo r laser fiber are discussed. Key words: fiber;fiber lasers;photonic crystal fiber;ultrashort pulse 0 引言 光纤激光器诞生于20世纪60年代初,它是伴随着光纤通信技术、光纤制造工艺以及与激光器生产技术的日趋成熟而迅猛发展起来的新型器件。由于其在高速率、密集波分复用(DWDM )通信系统、高精度传感技术和大功率激光加工等方面呈现出潜在的技术优势和广阔的应用前景,所以备受世界各国科研工作者的青睐,现已成为国际学术界的热门研究对象。 光纤激光器与其他类型激光器相比较,其优点为:(1)泵浦功率低、增益高、输出光束质量好;(2)与其他光纤器件兼容,可实现全光纤传输系统;(3)使用光纤作为基体,其结构具有较高的比表面积,因而散热好;(4)体积小,携带方便;(5)光纤激光器可以作为光孤子源,实现光孤子通信。 1 原理与分类 1.1 基本工作原理 图1 所示为典型光纤激光器的基本结构。 图1 光纤激光器基本结构 典型光纤激光器主要由三部分组成:产生光子的增益介质、使光子得到反馈并在增益介质中进行谐振放大的光学谐振腔和激发增益介质的泵浦源。其中,增益介质为掺杂稀土离子的纤芯。 当泵浦光从反射镜1(或光栅1)入射到掺杂光纤芯中时,会被所掺杂的稀土离子吸收。吸收了光子能量的稀土离子会发生能级跃迁,实现/粒子数反 # 1#

激光切割技术的现状与发展 班级:13光信1 姓名:邱丽芬学号:1311122107 {摘要}:介绍了我国国内激光切割设备的现状和激光切割技术的发展前景,简要介绍激光切割原理,提出了该技术的发展目标及需要解决的问题。 {关键词}:激光切割设备国内市场激光切割机现状发展前景 引言 近年来,激光切割加工技术发展很快,国际上每年都以20%~30%的速度增长。我国1985 年以来,更以每年25 %以上的速度增长。由于我国激光工业基础较差,激光加工技术的应用尚不普遍,激光加工整体水平与先进国家相比仍有较大差距,相信随着激光加工技术的不断进步,这些障碍和不足会得到解决。激光切割技术必将成为21 世纪不可缺少的重要的钣金加工手段。激光切割加工广阔的应用市场,加上现代科学技术的迅猛发展,使得国内外科技工作者对激光切割加工技术进行不断探入的研究,推动着激光切割加工技术不断地向前发展。 一.我国激光切割设备与现状 全球激光制造技术发展飞速,我国与国际激光技术水平的差距有所增大,高端的激光加工成套装备几乎全部依赖进口,致使国外激光制造装备在我国市场的占有率高达70%。预计未来10年内,我国对这些高性能激光切割系统的市场需求量将达到100亿元。如此迫切和巨大的市场需求反应出激光加工的手段已经覆盖到国民经济各个重要领域,同时也影响着国防、航空航天等关键技术的突破,我们不仅仅是解决目前国内该产品的空白,同时也旨在解决激光加工领域多层面技术核心问题,如激光数控、激光机床新型结构、高质量激光加工的技术瓶颈等。 从中小功率激光切割设备取代传统加工工艺的优势来分析,与传统刀具机床设备相比,激光设备采用无接触的热加工方式,具有极高的能量聚集性、光斑细小、热扩散区少、个性化加工、加工品质高、无“刀具”磨损等优势,激光切口光滑无飞边,一些柔性材料自动收口,无变形,加工图形可通过计算机随意设计和输出,无需繁杂的刀模设计和制作。

光纤激光器的前世今生 ?光纤激光器定义 光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,光纤激光器可在光纤放大器的基础上开发出来:在泵浦光的作用下光纤内极易形成高功率密度,造成激光工作物质的激光能级“粒子数反转”,当适当加入正反馈回路(构成谐振腔)便可形成激光振荡输出。 光纤激光器应用范围非常广泛,包括激光光纤通讯、激光空间远距通讯、工业造船、汽车制造、激光雕刻激光打标激光切割、印刷制辊、金属非金属钻孔/切割/焊接(铜焊、淬水、包层以及深度焊接)、军事国防安全、医疗器械仪器设备、大型基础建设,作为其他激光器的泵浦源等等。 光纤激光器发展史 早期对激光器的研制主要集中在研究短脉冲的输出和可调谐波长范围的扩展方面。今天,密集波分复用(DWDM)和光时分复用技术的飞速发展及日益进步加速和刺激着多波长光纤激光器技术、超连续光纤激光器等的进步。同时,多波长光纤激光器和超连续光纤激光器的出现,则为低成本地实现Tb/s的DWDM或OTDM传输提供理想的解决方案。就其实现的技术途径来看,采用EDFA放大的自发辐射、飞秒脉冲技术、超发光二极管等技术均见报道。 目前国内外对于光纤激光器的研究方向和热点主要集中在高功率光纤激光器、高功率光子晶体光纤激光器、窄线宽可调谐光纤激光器、多波长光纤激光器、非线性效应光纤激光器和超短脉冲光纤激光器等几个方面。 1962年世界上第一个GaAs半导体激光器问世以来,已有四十余年的历史,现在半导体激光器已广泛地应用于激光通信、光盘存储、激光检测等领域。 随着半导体激光器连续输出功率的日益提高,其应用范围也不断扩大,其中大功率半导体激光器泵浦的固体激光器(DPSSL)是它最大的应用领域之一。这一技术综合了半导体激光器与固体激光器的优点,不仅将半导体激光器的波长转换为固体激光器的波长,而且伴随光束质量的改善和光谱线宽的压缩,以及实现脉冲输出等。https://www.wendangku.net/doc/e217889116.html,/半导体激光器体积小、重量轻,直接电子注入具有很高的量子效率,可以通过调整组份和控制温度得到不同的波长与固体激光材料的吸收波长相匹配,但它本身的光束质量较差,且两个方向不对称,横模特性也不尽理想。而固体激光器的输出光束质量较高,有很高的时间和空间相干性,光谱线宽与光束发散角比半导体激光小几个量级。对于DPSSL,是吸收波长短的高能量光子,转化为波长较长的低能量光子,这样总有一部分能量以无辐射跃迁的方式转换为热。这部分热能量将如何从块状激光介质中散发、排除成为半导体泵浦固体激光器的关键技术。 为此,人们开始探索增大散热面积的方法。深圳市星鸿艺激光科技有限公司专业生产激光打标机,激光焊接机,深圳激光打标机,东莞激光打标机 ?方法之一就是将激光介质做成细长的光纤形状。 所谓光纤激光器就是用光纤作激光介质的激光器,1964年世界上第一代玻璃激光器就是光纤激光器。由于光纤的纤芯很细,一般的泵浦源(例如气体放电灯)很难聚焦到芯部。所以在以后的二十余年中光纤激光器没有得到很好的发展。随着半导体激光器泵浦技术的发展,以及光纤通信蓬勃发展的需要,1987年英国南安普顿大学及美国贝尔实验室实验证明了掺铒光纤放大器(EDFA)的可行性。它采用半导体激光光泵掺铒单模光纤对光信号实现放大,现在这种EDFA已经成为光纤通信中不可缺少的重要器件。由于要将半导体激光泵浦入单模光纤的纤芯(一般直径小于10um),要求半导体激光也必须为单模的,这使得单模EDFA难以实现高功率,报道的最高功率也就几百毫瓦。

飞秒激光是过去20年间由激光科学发展起来的最强有力的新工具之一。飞秒脉冲时域宽度是如此的短,目前已经达到了4fs以内。1飞秒(fs),即10-15s ,仅仅是1千万亿分之一秒,如果将10fs作为几何平均来衡量宇宙,其寿命仅不过1min而已;飞秒脉冲又是如此之强,采用多级啁啾脉冲放大(CPA)技术获得的最大脉冲峰值功率可达到百太瓦(TW,即1012W)甚至拍瓦(PW,即1015W)量级,其聚焦强度比将太阳辐射到地球上的全部光聚焦成针尖般大小后的能量密度还要高。飞秒激光完全是人类创造的奇迹。 近二十年来,从染料激光器到克尔透镜锁模的钛宝石飞秒激光器,以及后来的二极管泵浦的全固态飞秒激光器和飞秒光纤激光器,虽然说脉冲宽度和能量的记录在不断刷新,但最大进展莫过于获得超飞秒脉冲变得轻而易举了。桑迪亚国家实验室的R.Trebino说:“过去1 0年中,(超快)技术已有显著改善, 钛蓝宝石激光器和现在的光纤激光器正在使这种(飞秒) 激光器的运转变得简洁和稳定。这种激光器现在人们已可买到, 而10年前, 你却必须自己建立。”比如,著名的飞秒激光系统生产商美国Clark-MXR公司将产生高功率飞秒脉冲的所有部件全部集成到一个箱子里,采用掺铒光纤飞秒激光器作为种子源,加上无需调整(NO Tweak)的特殊设计,形成了世界上独一无二,超稳定、超紧凑的CPA2000系列钛宝石啁啾脉冲放大系统。这种商品化的系统不需要飞秒专家来操作,完全可以广泛应用于科研和工业上的许多领域里。 根据飞秒激光超短和超强的特点,大体上可以将应用研究领域分成超快瞬态现象的研究和超强现象的研究。它们都是随着激光脉冲宽度的缩短和脉冲能量的增加而不断的得以深入和发展。飞秒脉冲激光的最直接应用是人们利用它作为光源, 形成多种时间分辨光谱技术和泵浦/探测技术。它的发展直接带动物理、化学、生物、材料与信息科学的研究进入微观超快过程领域, 并开创了一些全新的研究领域, 如飞秒化学、量子控制化学、半导体相干光谱等。飞秒脉冲激光与纳米显微术的结合, 使人们可以研究半导体的纳米结构(量子线、量子

飞秒激光技术带来内存读取革命 2012-08-16 09:15:33 文章来源:互联网 衡量企业级内存的重要性主要体现在高效率、高稳定性和较小的占用空间上。而内存计算目前已实现的应用就是对传统数据处理方式的加速。相对于磁盘来说,内存的读写速度要快很多倍。即便如此,现在内存的价格也在日渐便宜,而容量却要不断增加,以应对计算机的快速发展。 正因为如此,在服务器和企业级应用领域,集成度、稳定性以及纠错能力更高的内存产品一直是模组厂商的主要利润来源之一。但是内存计算简单停留在现有的技术层面是无法满足日益增长的要求的。于是更多的新兴技术被发现并利用起来。 图1 电子自旋 来自法国的研究人员,对于内存读写计算早已有了不少的研究。他们发现了一种“飞秒”激光的技术,可以使读/写过程加快10万倍。 这个技术的核心实现点是自旋电子学。说到自旋电子学,可能有很多网友会比较陌生。其实自旋电子学也叫做磁电子学。它利用电子的自旋和磁矩,使固体器件中除电荷输运外,还加入电子的自旋和磁矩。 虽然这是一门新兴的学科和技术,但是利用自旋电子学的原理,可以实现像是磁性随机内存、自旋场发射晶体管等,因此也是很多研究人员所感兴趣的原因。

图2 自旋电子学 新的技术有时必然会存在一些不能解决的问题,像是自旋电子学就存在一个很明显的问题,被用于检测数据位的磁传感器速度很慢。但是这个技术可以利用激光加速硬盘光碟的存储I/O的方法,通过该激光产生超快激光脉冲来改变电子自旋,加快读/写过程。 法国研究人员的这个加快内存读写的技术虽然在业界引起了不小的反响,并因此获得了诺贝尔物理学奖,但是有人却认为这是个纸上谈兵、无法应用于生活的“鸡肋”。 因为目前这项研究一直是在零下233度的实验环境下进行的。而室温才是生产可行处理器或内存设备的重要要求,室温的环境下,研究人员无法产生同等的效果。即便如此,不得不承认的是,虽然环境的问题暂时没有办法解决,但是至少研究人员已经知道如何增加通道中电子的自旋寿命。相信随着更深入的研究,这个技术能真正的应用于产品中。 利用半导体带来闪存读写的新革命 对于这个研究发现,IBM的研究人员认为,他们的技术突破为创造晶体管和非易失性存储打开了大门,这将大大降低现在NAND闪存技术的功率。并且他们也根据这个技术方向,自己得出了新的研究结果。 经过IBM研究院和瑞士苏黎世联邦理工学院的固态物理实验室共同研究发现,他们可以通过改变电子在其空间中的相对轴向(向上或向下),用它代表数据位。利用超短激光脉冲监测一小块地方内成千上万电子同时产生的自旋,将电子自旋周期延长30倍至1.1纳秒。 图3 脉冲改变自选周期

相关文档