文档库 最新最全的文档下载
当前位置:文档库 › 中考数学 二次函数与几何图形

中考数学 二次函数与几何图形

中考数学 二次函数与几何图形
中考数学 二次函数与几何图形

学生姓名:

年级:

辅导老师:

上课日期:上课时间:教学主管:二次函数与线段

二次函数与几何图形

【2018年河南】23.(11分)(2017?河南)如图,直线y=﹣x+c与x轴交于

点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.

(1)求点B的坐标和抛物线的解析式;

(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.

②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.

二次函数与三角形一、面积问题

等腰三角形

直角三角形

平行四边形

【河南2017】(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x-5经过点B,C.

(1)求抛物线的解析式.

(2)过点A的直线交直线BC于点M.

①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的

平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;

中考数学二次函数压轴题(含答案)

中考数学二次函数压轴题(含答案) 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得;

故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 解答:

解:(1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=; ∴抛物线的解析式为:y=x2﹣x﹣2. (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2); ∴OA=1,OC=2,OB=4, 即:OC2=OA?OB,又:OC⊥AB, ∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°, ∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0). (3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2; 设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0; ∴4﹣4×(﹣2﹣b)=0,即b=﹣4; ∴直线l:y=x﹣4. 所以点M即直线l和抛物线的唯一交点,有: ,解得:即M(2,﹣3). 过M点作MN⊥x轴于N, S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.

二次函数与几何图形结合练习

3.2 与几何图形结合3.2.1 与等腰三角形结合1、如图,直线y=3x+3交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线交 x 轴于另 一点C (3,0). ⑴求抛物线的解析式 ; ⑵在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形?若存在,求出符合条件的 Q 点坐标;若不存在,请说明理由 2、如图,已知直线y=x 与交于A 、B 两点. (1)求交点A 、B 的坐标;(2)记一次函数y=x 的函数值为y 1,二次函数 的函数值为y 2.若y 1>y 2,求x 的 取值范围; (3)在该抛物线上存在几个点,使得每个点与AB 构成的三角形为等腰三角形?并求出不 少于3个满足条件的点 P 的坐标. y =x 2 y =x 2

3、如图,已知二次函数的图象经过点A (3,3)、B (4,0)和原点O 。P 为二次函数图象 上的一个动点,过点 P 作x 轴的垂线,垂足为 D (m ,0),并与直线OA 交于点C . (1)求出二次函数的解析式; (2)当点P 在直线OA 的上方时,求线段PC 的最大值; (3)当m >0时,探索是否存在点P ,使得△PCO 为等腰三角形,如果存在,求出 P 的坐 标;如果不存在,请说明理由. 3.2.2 与直角三角形结合1、二次函数的图象的一部分如图所示.已知它的顶点 M 在第二象限,且经 过点A(1,0)和点B(0,l).(1)试求,所满足的关系式;(2)设此二次函数的图象与x 轴的另一个交点为 C ,当△AMC 的面积为△ABC 面积的 倍时,求a 的值;(3)是否存在实数a ,使得△ABC 为直角三角形.若存在,请求出 a 的值;若不存在,请说 明理由. 2 y ax bx c a b 5 4

平面图形与立体图形的认识

【几何图形】 从实物中抽象出来的各种图形,包括立体图形和平面图形。 立体图形分为柱体,锥体,球体 多面体:围城棱柱和棱锥的面都是平的面,像这样的立体图形叫做多面体 欧拉公式:定点数+面数-棱数=2 练习: 1.下面几何体中,不是多面体的是() A球体 B 三棱锥 C 三棱柱D四棱柱 2.下列判断正确的是 A长方形是多面体B柱体是多面体 C圆锥是多面体D棱柱、棱锥都是多面体 3、将半圆绕它的直径旋转一周形成的几何体是() A、圆柱 B、圆锥 C、球 D、正方体 【点、线、面、体】 (1)几何图形的组成 点:线和线相交的地方是点,它是几何图形中最基本的图形。 线:面和面相交的地方是线,分为直线和曲线。 面:包围着体的是面,分为平面和曲面。 体:几何体也简称体。 (2)点动成线,线动成面,面动成体。 例、右侧这个几何体的名称是_______;它由_______个面组成;它有_______个顶点;经过每个顶点有_______条边。 解答:五棱柱,7,10,3 【直线】 1、概念:一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。 2、直线的性质 (1)直线公理:经过两个点有一条直线,并且只有一条直线。它可以简单地说成:过两点有且只有一条直线。 (2)过一点的直线有无数条。 (3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。 (4)直线上有无穷多个点。 (5)两条不同的直线至多有一个公共点。 3、表示:一条直线可以用一个小写字母表示;或者用两个大写字母表示 练习: 1.经过一点,有______条直线;经过两点有_____条直线,并且______条直线. 2、我们在用玩具枪瞄准时,总是用一只眼对准准星和目标,用数学知识解释为__________________. 【射线】 直线上一点和它一旁的部分叫做射线。这个点叫做射线的端点。

小学平面几何知识及习题

1、平面图形的分类及概念 2、

2、立体图形的分类及概念 平面图形的周长、面积计算公式表 3、立体图形的表面积、体积计算公式表

4、其它的几何概念 1、距离:从直线外一点到这条直线所垂直线段的长度叫做距离。 2、三角形的角和等于180°。 3、周长:围成一个图形的所有边长的总和叫做这个图形的周长。 4、面积:物体的表面或围成的平面图形的大小,叫做它们的面积。 5、表面积:一个立体图形所有的面的面积总和,叫做它的表面积。 6、体积:一个立体图形所占空间的大小,叫做它的体积。 7、容积:一个容器所能容纳物体体积的多少叫做该容器的容积。 8、角的计量单位是"度",用符号"°"表示。 9、角的大小要看两条边叉开的大小,叉开的越大,角越大。角的大小与角的两边画出的长短没有

关系。 10、平行线间的距离都相等。 11、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合。这个图形叫做轴对称图形。 12、对称轴:这条直线叫做对称轴。 13、两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。 5、关于几何的一些操作知识 1、画一个角的步骤如下: ⑴画一条射线,使量角器的中心和射线的端点重合,零刻度线和射线重合; ⑵在量角器所取刻度线的地方点一个点; ⑶以画出的射线的端点为端点,通过刚画的点,再画一条射线。 2、垂线的画法:1)过直线上一点画这条直线的垂线。2)过直线外一点画这条直线的垂线。 3、画平行线的步骤是: ⑴固定三角板,沿一条直角边先画一条直线; ⑵用直尺紧靠三角板的另一条直线边,固定直尺然后平移三角板; ⑶再沿一条直角边画出另一条直线 4、例:画一个长是2.5厘米,宽是2厘米的长方形。画的步骤如下: ⑴画一条2.5厘米长的线段; ⑵从画出的线段两端,在同侧画两条与这条线段垂直的线段,使它们分别长2厘米。 ⑶把这两条线段另外的端点连接起来。 5、圆的画法: ⑴分开圆规的两脚,在直线上确定半径:

全国中考数学二次函数的综合中考真题汇总及答案解析

一、二次函数 真题与模拟题分类汇编(难题易错题) 1.如图1,抛物线y=ax 2+bx+c (a≠0)与x 轴交于点A (﹣1,0)、B (4,0)两点,与y 轴交于点C ,且OC=3OA .点P 是抛物线上的一个动点,过点P 作PE ⊥x 轴于点E ,交直线BC 于点D ,连接PC . (1)求抛物线的解析式; (2)如图2,当动点P 只在第一象限的抛物线上运动时,求过点P 作PF ⊥BC 于点F ,试问△PDF 的周长是否有最大值?如果有,请求出其最大值,如果没有,请说明理由. (3)当点P 在抛物线上运动时,将△CPD 沿直线CP 翻折,点D 的对应点为点Q ,试问,四边形CDPQ 是否成为菱形?如果能,请求出此时点P 的坐标,如果不能,请说明理由. 【答案】(1) y=﹣23 4x +94x+3;(2) 有最大值,365 ;(3) 存在这样的Q 点,使得四边形CDPQ 是菱形,此时点P 的坐标为( 73,256)或(173,﹣253). 【解析】 试题分析: (1)利用待定系数法求二次函数的解析式; (2)设P (m ,﹣ 34m 2+94m+3),△PFD 的周长为L ,再利用待定系数法求直线BC 的解析式为:y=﹣ 34x+3,表示PD=﹣2334m m ,证明△PFD ∽△BOC ,根据周长比等于对应边的比得:=PED PD BOC BC 的周长的周长,代入得:L=﹣95(m ﹣2)2+365 ,求L 的最大值即可; (3)如图3,当点Q 落在y 轴上时,四边形CDPQ 是菱形,根据翻折的性质知:CD=CQ ,PQ=PD ,∠PCQ=∠PCD ,又知Q 落在y 轴上时,则CQ ∥PD ,由四边相等:CD=DP=PQ=QC ,得四边形CDPQ 是菱形,表示P (n ,﹣23n 4 +94 n+3),则D (n ,﹣34n+3),G (0,﹣34 n+3),利用勾股定理表示PD 和CD 的长并列式可得结论. 试题解析: (1)由OC=3OA ,有C (0,3), 将A (﹣1,0),B (4,0),C (0,3)代入y=ax 2+bx+c 中,得:

平面图形与立体图形教案

4.1几何图形 4.1.1立体图形与平面图形 【教学目标】 1、能从实物图形中抽取出几何图形;能在生活中寻找出相应的几何图形;会认识常见的平面几何图形和立体几何图形。 2、通过实物抽取几何图形的体验,培养自己的几何图形感,能用几何图形描述生活中的物体。 3、通过对多彩多姿的图形世界体验,激发自己对几何学习的兴趣,也体会学习的快乐。 【教学重难点】 1.重点: (1)掌握立体图形与平面图形的关系,学会它们之间的相互转化;?初步建立空间观念. (2)理解几何图形是从实物图形中抽象出来的。 (3)从实际出发,用直观的形式,让学生感受图形的丰富多彩,激发学生学习的兴趣. 2.难点: (1)立体图形与平面图形之间的互相转化. (2)从现实情境中,抽象概括出几何图形 【教具准备】 长方体、正方体、球、圆柱、圆锥等几何体模型,墨水瓶包装盒(每个学生都准备一个),及多媒体教学设备和课本图4.1-5的教学幻灯片.

【教学过程】 一、引入新课 由多媒体展示美丽的图形世界 在同学们所观看中,有哪些是我们熟悉的几何图形? 二、新授 1.学生在回顾刚才所看到的图片,充分发表自己的意见,?并通过小组交流,补充自己的意见,积累小组活动经验. 2.指定一名学生回答问题,并能正确说出这些几何图形的名称. 学生回答:有圆柱、长方体、正方体等等. 教师活动:纠正学生所说几何图形名称中的错误,并出示相应的几何体模型让学生观察它们的特征. 3.立体图形的概念. (1)长方体、正方体、球、圆柱、圆锥等都是立体图形. (2)学生活动:看课本图4.1-3后学生思考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥) (3)用多媒体放映课本4.1-4的幻灯片 (4)提出问题:在这个幻灯片中,包含哪些简单的平面图形? (5)探索解决问题的方法. ①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案. ②学生回答:包含的平面图形有长方形、圆、正方形、多边形和三角形等.4.平面图形的概念.

小升初平面几何图形

小升初平面几何图形

平面几何图形 板块一、经典模型回顾 知识点1.共高定理 共高定理结论: 结论: 用途:线段比与面积比之间的相互转化。 鸟头模型结论: 用途:根据大面积求小面积。例1 例2 如图,将四边形ABCD的四条边AB、CB、CD、AD分别延长两倍至点E、F、G、H,若四边形ABCD的面积为5,则四边形EFGH的面积是。 如图,三角形ABC的面积为1,且1 3 AD AB =,14 BE BC =,1 5 CF CA =,则三角形DEF的面 积是________。

知识点2:蝴蝶模型 结论:1. 2.S1×S3=S2×S4 用途:借助面积比来反求线段比。 例3 知识点3:梯形蝴蝶 结论:1.S2=S3 2.S 1×S 4=S 22=S 32 3. 4.S1=a2份,S4=b2份, S 2 =S3=ab 份;S=(a+b)2份 用途:梯形中的面积比例关系。 如图,正方形ABCD的面积是64平方厘米,正方形CEFG 的面积是 36平方厘米,DF与BG相交于O。则DBO 的面积等于多少平米厘米?

例4 知识点4:燕尾定理 结论: 用途:推面积间的比例关系。 例 5 【阶段总结1】 1.五大模型分别是什么?各有什么妙用? 2.每个模型中都应注意的小技巧有哪些? 如图,ABC △中BD DA =2,CE EB =2,AF FC =2,那么ABC △的面积是阴影三角形面积的__________倍。 如图所示,在梯形ABCD 中,AB ∥CD ,对角线AC ,BD 相交于点O ,已知AB =5, CD =3, 且梯形ABCD 的面积为4,求三角形OAB 的面积。

烟台-历年中考数学真题-二次函数

25.(2018 14分)如图1,抛物线y=ax2+2x+c与x轴交于A(﹣4,0),B(1,0)两点,过点B的直线y=kx+ 分别与y轴及抛物线交于点C,D. (1)求直线和抛物线的表达式; (2)动点P从点O出发,在x轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t秒,当t 为何值时,△PDC为直角三角形?请直接写出所有满足条件的t的值; (3)如图2,将直线BD沿y轴向下平移4个单位后,与x轴,y轴分别交于E,F两点,在抛物线的对称轴上是否存在点M,在直线EF上是否存在点N,使DM+MN的值最小?若存在,求出其最小值及点M,N的坐标;若不存在,请说明理由. 25.(13分)(2017烟台)如图1,抛物线y=ax2+bx+2与x轴交于A,B两点,与y轴交于点C,AB=4,矩形OBDC 的边CD=1,延长DC交抛物线于点E. (1)求抛物线的解析式; (2)如图2,点P是直线EO上方抛物线上的一个动点,过点P作y轴的平行线交直线EO于点G,作PH⊥EO,垂足为H.设PH的长为l,点P的横坐标为m,求l与m的函数关系式(不必写出m的取值范围),并求出l的最大值; (3)如果点N是抛物线对称轴上的一点,抛物线上是否存在点M,使得以M,A,C,N为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M的坐标;若不存在,请说明理由.

25.(2016 12分)如图1,已知平行四边形ABCD顶点A的坐标为(2,6),点B在y轴上,且AD∥BC∥x轴,过B,C,D三点的抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,2),点F(m,6)是线段AD上一动点,直线OF 交BC于点E. (1)求抛物线的表达式; (2)设四边形ABEF的面积为S,请求出S与m的函数关系式,并写出自变量m的取值范围; (3)如图2,过点F作FM∥x轴,垂足为M,交直线AC于P,过点P作PN∥y轴,垂足为N,连接MN,直线AC分别交x轴,y轴于点H,G,试求线段MN的最小值,并直接写出此时m的值. 24.(2015 本题满分12分) 如图,在平面直角坐标系中,抛物线2 y ax bx c =++与⊙M相交于A、B、C、D四点。其中AB两点的坐标分别为(-1,0),(0,-2),点D在x轴上且AD为⊙M的直径。点E是⊙M与y轴的另一个交点,过劣弧?DE上的点F作FH⊥AD于点H,且FH=1.5。 (1)求点D的坐标及该抛物线的表达式; (2)若点P是x轴上的一个动点,试求出⊿PEF的周长最小时点P的坐标; (3)在抛物线的对称轴上是否存在点Q,使⊿QCM是等腰三角形?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由。

2018中考数学专题二次函数

2018中考数专题二次函数 (共40题) 1.如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G. (1)求抛物线y=﹣x2+bx+c的表达式; (2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标; (3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标; ②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求AM+CM它的最小值. 2.如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D. (1)写出C,D两点的坐标(用含a的式子表示); (2)设S△BCD:S△ABD=k,求k的值; (3)当△BCD是直角三角形时,求对应抛物线的解析式. 3.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C. (1)求直线y=kx+b的函数解析式; (2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;

(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值. 4.如图,已知抛物线y=﹣x2+bx+c与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1 (1)求此抛物线的解析式以及点B的坐标. (2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒. ①当t为何值时,四边形OMPN为矩形. ②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由. 5.如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点. (1)求抛物线的解析式; (2)在第二象限取一点C,作CD垂直X轴于点D,AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值; (3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存

二次函数与几何图形结合题及答案

1.如图,已知抛物线2 1y x =-与x 轴交于A 、B 两点,与y 轴交于点C . (1)求A 、B 、C 三点的坐标; (2)过点A 作AP ∥CB 交抛物线于点P ,求四边形ACBP 的面积; (3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ⊥x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与?PCA 相似.若存在,请求出M 点的坐标;否则,请说明理由. 解:(1)令0y =,得2 10x -= 解得1x =± 令0x =,得1y =- ∴ A (1,0)- B (1,0) C (0,1)- ……………………3分 (2)∵O A =O B =O C =1 ∴∠BAC =∠AC O=∠BC O= 45 ∵A P ∥CB , ∴∠P AB = 45 过点P 作P E ⊥x 轴于E ,则?A P E 为等腰直角三角形 令O E =a ,则P E =1a + ∴P (,1)a a + ∵点P 在抛物线21y x =-上 ∴2 11a a +=- 解得12a =,21a =-(不合题意,舍去) ∴P E =3……………………………………………………………………………5分 ∴四边形ACB P 的面积S =12AB ?O C +12AB ?P E =11 2123422 ??+??=………………………………6分 (3). 假设存在 ∵∠P AB =∠BAC =45 ∴P A ⊥AC ∵MG ⊥x 轴于点G , ∴∠MG A =∠P AC =90 在Rt △A O C 中,O A =O C =1 ∴AC =2 在Rt △P AE 中,AE =P E =3 ∴A P= 32 ………8分 设M 点的横坐标为m ,则M 2 (,1)m m - ①点M 在y 轴左侧时,则1m <- (ⅰ) 当?A MG ∽?P CA 时,有 AG PA =MG CA ∵A G=1m --,MG=2 1m -即2322 = 解得11m =-(舍去) 23m =(舍去)………9分 G M C B y P A o x

初中数学平面几何图形

第四课时几何图形初步 LYX 1、几何图形 ①几何图形:我们把从实物中抽象出的各种图形统称为几何图形。 ②平面图形:几何图形(如线段、角、三角形、长方形等)的各部分都在同一平面内。 常见平面图形: ③立体图形:有些几何图形的各部分不都在同一平内,这样的几何图形叫做立体图形。 ⑴常见立体图形:⑵常见立体图形的归类: ★画立体图形时,看得见的棱线画成实线,看不见的棱线画成虚线。 ④展开图:有些立体图形是由平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。 例1、圆锥由_______面组成,其中一个是_______面 ,另一个是_______面. 例2、如图所示,一个三边相等的三角形,三边的中点用虚线连接,如果将三角形沿虚线 向上折叠,得到的立体图形是(). (A)三棱柱(B)三棱锥(C)正方体(D)圆锥 例3、分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形,那么这个几何体是()

例4、下列各图形,都是柱体的是() 例5、下列四个图形中,经过折叠能围成如图所示的几何图形的是() 2、点、线、面、体 ①点动成线,分为直线和曲线; ②线动成面线运动生成的有平面、曲面; ③面运动成体;(直角三角板绕它的一边旋转,形成了什么图形?长方形绕着它的一边旋转,形成了什么图形?) 总结: ⑴几何图形是由点、线、面、体组成。点是构成图形的基本元素。 ⑵点无大小,线有直线和曲线,面有平的面和曲的面。 ⑶点动成线,线动成面,面动成体。 ⑷体由面围成,面与面相交成线,线与线相交成点。 3、直线、射线、线段 ①两点确定一条直线:经过两点有一条直线,并且只有一条直线。 ⑴因为两点确定一条直线,所以除了用一个小写字母表示直线(直线)外,还经常用一条直线上的两点来表示这个直线; ⑵一个点在直线上,也可以说这条直线经过这个点;一个点在直线外,也可以说直线不经过这个点; ⑶当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。 ②线段的表示方法 ③射线的表示方法 ★用数学符号表示直线、线段、射线?

2018中考数学专题二次函数

2018中考数专题二次函数 (共40题) 线于点G . (1 )求抛物线 y= - x 2+bx+c 的表达式; (2)连接GB , E0,当四边形GEOB 是平行四边形时,求点 G 的坐标; (3)①在y 轴上存在一点 H ,连接EH , HF ,当点E 运动到什么位置时,以 A , E , 顶点的四边形是矩形?求出此时点 E , H 的坐标; ②在①的前提下,以点 E 为圆心,EH 长为半径作圆,点 M 为O E 上一动点,求 (x -3)与x 轴交于A , B 两点,与y 轴的正半轴交于点 C,其 (1) 写出C, D 两点的坐标(用含 a 的式子表示); (2 )设 & BCD : Sz\ABD =k ,求 k 的值; (3)当厶BCD 是直角三角形时,求对应抛物线的解析式. 1.如图,抛物线 y=- x 2+bx+c 与直线AB 交于A (- 4, - 4) , B (0, 4)两点,直线 -_ x 2 -6交y 轴于点C .点E 是直线 AB 上的动点,过点 E 作EF 丄x 轴交AC 于点F , AC: y= 交抛物 F ,H 为 AM+CM 它 顶点为D .

3.如图,直线y=kx+b ( k 、b 为常数)分别与 x 轴、y 轴交于点A (- 4, 0)、B (0, 3),抛 物线y=- X 1 2+2X +1与y 轴交于点 C . (1) 求直线y=kx+b 的函数解析式; (2) 若点P ( X , y )是抛物线y=- X 2+2X +1上的任意一点,设点 P 到直线AB 的距离为d , 求d 关于x 的函数解析式,并求 d 取最小值时点P 的坐标; (3)若点E 在抛物线y=- X 2+2X +1的对称轴上移动,点 F 在直线AB 上移动,求CE+EF 的最 1 求此抛物线的解析式以及点 B 的坐标. 2 动点M 从点O 出发,以每秒2个单位长度的速度沿 X 轴正方向运动,同时动点 N 从 点O 出发,以每秒3个单位长度的速度沿 y 轴正方向运动,当 N 点到达A 点时,M 、N 同 时停止运动.过动点 M 作X 轴的垂线交线段 AB 于点Q ,交抛物线于点 P ,设运动的时间为 t 秒. ① 当t 为何值时,四边形 OMPN 为矩形. ② 当t >0时,△ BOQ 能否为等腰三角形?若能,求出 t 的值;若不能,请说明理由. (0, 3),与X 正半轴相交于点 B,对 称轴是直线X =1

中考数学 二次函数知识点总结

中考数学二次函数知识 点总结 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

二次函数知识点总结 二次函数知识点: 1.二次函数的概念:一般地,形如2 y ax bx c =++(a b c ,,是常数,0 a≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0 ,可以为零.二次函数的定义域是 a≠,而b c 全体实数. 2. 二次函数2 =++的结构特征: y ax bx c ⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2. ⑵a b c ,,是常数,a是二次项系数,b是一次项系数,c是常数项. 二次函数的基本形式 1. 二次函数基本形式:2 =的性质: y ax 结论:a 的绝对值越大,抛物线的开口越小。 总结: 2. 2 =+的 y ax c 性质:

结论:上加下减。 总结: 3. ()2 =-的性 y a x h 质: 结论:左加右减。 总结: 4.

()2 y a x h k =-+的性质: 总结: 二次函数图象 的平 移 1. 平移步 骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.

二次函数与几何图形综合题(可编辑修改word版)

二次函数与几何图形综合题 类型 1 二次函数与相似三角形的存在性问题 1.(2015·昆明西山区一模)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(4,0),C(0,2) 三点. (1)求这条抛物线的解析式; (2)P 为线段BC 上的一个动点,过P 作PE 垂直于x 轴与抛物线交于点E,设P 点横坐标为m,PE 长度为y,请写出y 与m 的函数关系式,并求出PE 的最大值; (3)D 为抛物线上一动点,是否存在点D 使以A、B、D 为顶点的三角形与△COB 相似?若存在,试求出点D 的坐标;若不存在,请说明理由.

2.(2013·曲靖)如图,在平面直角坐标系xOy 中,直线y=x+4 与坐标轴分别交于A,B 两点,过A,B 两点的抛物线为y=-x2+bx+c.点D 为线段AB 上一动点,过点D 作CD⊥x 轴于点C,交抛物线于点E. (1)求抛物线的解析式; (2)当DE=4 时,求四边形CAEB 的面积; (3)连接BE,是否存在点D,使得△DBE 和△DAC 相似?若存在,求出D 点坐标;若不存在,说明理由. 3.(2015·襄阳)边长为 2 的正方形OABC 在平面直角坐标系中的位置如图所示,点D 是边OA 的中点,连接CD,点E 在第一象限,且DE⊥DC,DE=DC.以直线AB 为对称轴的抛物线过C,E 两点.

(1)求抛物线的解析式; (2)点P 从点C 出发,沿射线CB 以每秒 1 个单位长度的速度运动,运动时间为t 秒.过点P 作PF⊥CD 于点F.当t 为何值时,以点P,F,D 为顶点的三角形与△COD 相似? (3)点M 为直线AB 上一动点,点N 为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由. 类型 2 二次函数与平行四边形的存在性问题 1.(2014·曲靖)如图,抛物线y=ax2+bx+c 与坐标轴分别交于A(-3,0),B(1,0),C(0,3)三点,D

历年中考数学易错题汇编-二次函数练习题及详细答案

一、二次函数真题与模拟题分类汇编(难题易错题) 1.已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y 轴交直线AC于点D. (1)求抛物线的解析式; (2)求点P在运动的过程中线段PD长度的最大值; (3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由. 【答案】(1)y=x2﹣4x+3;(2)9 4 ;(3)点P(1,0)或(2,﹣1);(4)M(2,﹣ 3). 【解析】 试题分析:(1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解; (2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答; (3)①∠APD是直角时,点P与点B重合,②求出抛物线顶点坐标,然后判断出点P为在抛物线顶点时,∠PAD是直角,分别写出点P的坐标即可; (4)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M为直线CB与对称轴交点时,|MA﹣MC|最大,然后利用待定系数法求出直线BC的解析式,再求解即可. 试题解析:解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0), ∴ 930 10 b c b c ++= ? ? ++= ? ,解得 4 3 b c =- ? ? = ? ,∴抛物线解析式为y=x2﹣4x+3; (2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3).∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣ (x﹣3 2 )2+ 9 4 .∵a=﹣1<0,∴当x= 3 2 时,线段PD的长度有最大值 9 4 ;

(完整版)二次函数与几何图形综合题.doc

二次函数与几何图形综合题 类型 1二次函数与相似三角形的存在性问题 1. (2015 ·明西山区一模昆)如图,已知抛物线y= ax2+bx+ c(a≠0)经过 A(- 1, 0), B(4, 0), C(0 ,2) 三点. (1)求这条抛物线的解析式; (2)P 为线段 BC 上的一个动点,过P 作 PE 垂直于 x 轴与抛物线交于点 E,设 P 点横坐标为 m, PE 长度为 y,请写出 y 与 m 的函数关系式,并求出PE 的最大值; (3)D 为抛物线上一动点,是否存在点 D 使以 A、B、D 为顶点的三角形与△ COB 相似?若存在,试求出点 D 的坐标;若不存在,请说明理由.

2. (2013 ·靖曲 )如图,在平面直角坐标系xOy 中,直线y= x+ 4 与坐标轴分别交于A, B 两点,过A,B 两点的抛物线为y=- x2+ bx+ c.点 D 为线段 AB 上一动点,过点 D 作 CD⊥ x 轴于点 C,交抛物线于点 E. (1)求抛物线的解析式; (2)当 DE= 4 时,求四边形CAEB 的面积; (3)连接 BE,是否存在点 D ,使得△ DBE 和△ DAC 相似?若存在,求出 D 点坐标;若不存在,说明理由.

3.(2015 襄·阳 )边长为 2 的正方形O ABC 在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接 CD ,点 E 在第一象限,且DE⊥ DC , DE =DC.以直线 AB 为对称轴的抛物线过C, E 两点. (1)求抛物线的解析式; (2)点 P 从点 C 出发,沿射线 CB 以每秒 1 个单位长度的速度运动,运动时间为t 秒.过点 P 作 PF ⊥ CD 于点 F .当 t 为何值时,以点P, F ,D 为顶点的三角形与△COD 相似? (3)点 M 为直线 AB 上一动点,点N 为抛物线上一动点,是否存在点M, N,使得以点M,N, D, E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.

几何图形与平面图形

课题 4.1.1几何图形与平面图形 一、学习目标 1、通过观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程; 2、能由实物形状想象出几何图形,由几何图形想象出实物形状; 3、能识别一些简单几何体,正确区分平面图形与立体图形。 学习重点:识别简单的几何体 学习难点:从具体事物中抽象出几何图形 二、自主探究 1、几何图形 (1)仔细观察图4.1-1,让同学们感受是丰富多彩的图形世界; (2)出示一个长方体的纸盒,让同学们观察图4.1-2回答问题: 从整体上看,它的形状是 从不同侧面看,你看到的图形是 看棱得到的是 看顶点的到的是 。 我们见过的长方体、圆柱、圆锥、球、圆、线段、点等,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的。我们把这些图形称为几何图形。 2、立体图形 说一说下面这些几何图形有什么共同特点? 有些几何图形的各部分不都在同一平面内,它们是 .(如: ) 请再举出一些立体图形的例子. 想一想 生活中还有哪些物体的形状类似于这些立体图形呢? 3、平面图形 (1)纸盒 (1)长方体 (2)长方形 (3)正方形(4)线段 点

说一说下面这些几何图形又有什么共同特点? 平面图形的概念 线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是 。 请再举出一些平面图形的例子。 思考:立体图形与平面图形是两类不同的几何图形,它们的区别在哪里?它们有什么联系? 三、课堂练习 课本119页练习 四、要点归纳 1、 2、平面图形与立体图形的关系: 立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内; 立体图形中某些部分是平面图形。 五、拓展训练 1.下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球. 其中属于立体图形的是( ) A. ①②③; B. ③④⑤; C. ① ③⑤; D. ③④⑤⑥ 【总结反思】 现实物体 几何图形 平面图形 立体图形 看外形

近年江西中考数学二次函数

二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是() A、ac<0 B、当x=1时,y>0 C、方程ax2+bx+c=0(a≠0)有两个大于1的实数根 D、存 在一个大于1的实数x0,使得当x<x0时,y随x的增大而减小; 当x>x0时,y随x的增大而增大 如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D. (1)直接写出A、B、C三点的坐标和抛物线的对称轴; (2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE 交抛物线于点F,设点P的横坐标为m; ①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形? ②设△BCF的面积为S,求S与m的函数关系式. 如图,已知经过原点的抛物线y=﹣2x2+4x与x轴的另一交点为A,现将它向右平移m(m>0)个单位,所得抛物线与x轴交于C、D两点,与原抛物线交于点P. (1)求点A的坐标,并判断△PCA存在时它的形状(不要求说理); (2)在x轴上是否存在两条相等的线段,若存在,请一一找出,并写出它们的长度(可用含m的式子表示);若不存在,请说明理由; (3)设△CDP的面积为S,求S关于m的关系式. 1.如图所示,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,与x轴的另一个交点为A1. (1)当a=﹣1,b=1时,求抛物线n的解析式; (2)四边形AC1A1C是什么特殊四边形,请写出结果并说明理由; (3)若四边形AC 1A1C为矩形,请求出a,b应满足的关系式.

初三数学二次函数所有经典题型

初三数学二次函数经典题型 二次函数单元检测 (A) 姓名___ ____ 一、填空题: 1、函数21(1)21m y m x mx +=--+是抛物线,则m = . 2、抛物线223y x x =--+与x 轴交点为 ,与y 轴交点为 . 3、二次函数2y ax =的图象过点(-1,2),则它的解析式是 , 当x 时,y 随x 的增大而增大. 4.抛物线2)1(62-+=x y 可由抛物线262-=x y 向 平移 个单位得到. 5.抛物线342++=x x y 在x 轴上截得的线段长度是 . 6.抛物线()4222-++=m x x y 的图象经过原点,则=m . 7.抛物线m x x y +-=2,若其顶点在x 轴上,则=m . 8. 如果抛物线c bx ax y ++=2 的对称轴是x =-2,且开口方向与形状与抛物线 相同,又过原点,那么a = ,b = ,c = . 9、二次函数2y x bx c =++的图象如下左图所示,则对称轴是 ,当函数值0y <时, 对应x 的取值范围是 . 10、已知二次函数21(0)y ax bx c a =++≠与一次函数2(0)y kx m k =+≠的图象相交于点 A (-2,4)和B (8,2),如上右图所示,则能使1y 2y >成立的x 的取值范围 . 二、选择题: 11.下列各式中,y 是x 的二次函数的是 ( ) A .21xy x += B . 220x y +-= C . 22y ax -=- D .2210x y -+= 12.在同一坐标系中,作22y x =、22y x =-、212 y x =的图象,它们共同特点是 ( ) 22 3x y -=

二次函数与几何图形动点问题--答案

二次函数与几何图形 模式1:平行四边形 分类标准:讨论对角线 例如:请在抛物线上找一点p 使得P C B A 、、、四点构成平行四边形,则可分成以下几种情况 (1)当边AB 是对角线时,那么有BC AP // (2)当边AC 是对角线时,那么有CP AB // (3)当边BC 是对角线时,那么有BP AC // 1、本题满分14分)在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点. (1)求抛物线的解析式; (2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S.求S 关于m 的函数关系式,并求出S 的最大值; (3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能使以点P 、Q 、B 、0为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.

2、如图1,抛物线322 ++-=x x y 与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D . (1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴; (2)连结BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF //DE 交抛物线于点F ,设点P 的横坐标为m . ①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形? ②设△BCF 的面积为S ,求S 与m 的函数关系.

模式2:梯形 分类标准:讨论上下底 例如:请在抛物线上找一点p 使得P C B A 、、、四点构成梯形,则可分成以下几种情况 (1)当边AB 是底时,那么有PC AB // (2)当边AC 是底时,那么有BP AC // (3)当边BC 是底时,那么有AP BC // 3、已知,矩形OABC 在平面直角坐标系中位置如图1所示,点A 的坐标为(4,0),点C 的坐标为)20(-,,直线 x y 3 2 -=与边BC 相交于点D . (1)求点D 的坐标; (2)抛物线c bx ax y ++=2 经过点A 、D 、O ,求此抛物线的表达式; (3)在这个抛物线上是否存在点M ,使O 、D 、A 、M 为顶点的四边形是梯形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.

《立体图形与平面图形》练习题

4.1 多姿多彩的图形(1) 几何图形 长方形的是()1.如图所示,水平放置的下列几何体,从正面看到的视图不是 .. 2.下列几何体中,直棱柱的个数是() A.5 B.4 C.3 D.2 3.直四棱柱、长方体和正方体之间的包含关系是() A B C D 4.若一个棱柱有10个顶点,则下列说法正确的是() A.这个棱柱有4个侧面 B.这个棱柱有5条侧棱 C.这个棱柱的底面是十边形 D.这个棱柱是一个十棱柱 5.小明用如下左图所示的胶漆滚从左到右滚涂墙壁,下列平面图形中符合胶漆滚涂出的图案是() A B C D 6.举出两个俯视图为圆的实物例子: 、. 7.写出下列立体图形的名称(从左到右依次写出): . 8.如果直六棱柱的其中一条侧棱长为4cm,那么它的所有侧棱长度之和为 cm. 9.分别画出图中的物体的三个视图: 10.如图①②③④四个图形都是平面图形,观察图②和表中对应数值,探究计数的方法并解答下面的问题.

(1)数一数每个图各有多少顶点、多少条边、这些边围成多少区域,将结果填入下表: (2)根据表中的数值,写出平面图的顶点数、边数、区域数之间的关系; (3)如果一个平面图形有20个顶点和11个区域,求这个平面图形的边数. 参考答案 1.答案: B 解析:B答案中圆锥的主视图是三角形. 2.答案: C 解析:直棱柱的侧面应是矩形,符合这个条件的有第一个,第五个和第六个.故选C.

3.答案:A 解析:正方体是特殊的长方体,长方体又是特殊的直四棱柱,故选A.4.答案:B 解析:一个棱柱有10个顶点,则它是五棱柱,五棱柱有5个侧面,有5条侧棱,底面是五边形.故选B. 5.答案:A 解析:由胶漆滚得图形可得,最左边中间为一小黑正方形,胶漆滚从左到右,则最先留下印记的即为中间有一小黑正方形的图形.故选A. 6.圆柱,球,圆锥. 7.从左到右依次为:圆柱、长方体、四棱锥、圆锥. 8.直六棱柱的其中一条侧棱长为4cm,那么它的所有侧棱长度之和为6×4=24cm.故答案为24. 9.三个视图如下: 10.解:(1)结和图形我们可以得出: 图①有4个顶点、6条边、这些边围成3个区域; 图②有7个顶点、9条边、这些边围成3个区域; 图③有8个顶点、12条边、这些边围成5个区域; 10个顶点、15条边、这些边围成6区域.

相关文档
相关文档 最新文档