文档库 最新最全的文档下载
当前位置:文档库 › 纸卷起重机的主要参数设计计算

纸卷起重机的主要参数设计计算

纸卷起重机的主要参数设计计算
纸卷起重机的主要参数设计计算

纸卷起重机的主要参数设计计算

庄炳春

(广州起重机械有限公司,广东广州510897 )

摘要:在抄纸车间,工业起重机是造纸流程的一个重要环节。如何根据各造纸机的参数,正确设计和选择起重机工作级别和运行速度等参数,关系到起重机能否可靠安全运行。文中联系实际案例,详细分析纸卷起重机几个主要参数的设计计算,不仅可供纸厂设备管理等人员参考,对起重机设计等人员也具有一定的参考价值。

关键词:纸卷起重机;服务起重机;纸机;工作级别;吊具

1正确设计纸卷起重机的重要性

抄纸车间使用的起重机是工业起重机,起重机是整个造纸工序流程中必不可少的一个环节。一般每个抄纸车间有2~3台起重机,如图1所示,靠近纸机干部位置的称为“纸卷起重机”,主要任务是提升纸卷;在纸机湿部位置的称为“服务起重机”,用于维修纸机。此外,起重机还用于初期阶段的纸机设备的吊运及安装,纸机运行阶段的其它辅件工件起吊,和在纸机停机检修阶段用于起吊和更换纸机各类压辊、烘缸零部件等工作。除了检修停机外,纸机每年大约340天,每天24小时不停地运作,若因起重机故障造成纸机停机,其损失每个小时几十万。抄纸车间的起重机,特别是“纸卷起重机”使用相当频繁,能否安全可靠运行,直接关系到企业的效益。因此,应科学地设计计算起重机的起重量、工作级别和工作速度等主要参数,这样才能保证起重机高效运行。下面主要谈谈“纸卷起重机”的主要参数

设计计算。图1 两条抄纸机线的布局

2纸卷起重机的起重量设计计算

“纸卷起重机”绝大多数为双小车桥式起重机(个别用门式起重机),其额定起重量等于纸卷、卷纸轴和吊具的重量之和,并考虑一定富裕量。以荣成纸厂为例,抄纸厂房内安装PM5、PM6两条纸机生产线,抄纸机规格参数、效率和纸卷尺寸等参数见表1,图2为纸卷和吊具图样

及相关尺寸代号。计算如下:

表1 纸机和卷纸轴等参数

纸机号荣成纸厂PM5 荣成纸厂PM6

产品牛皮箱板纸高强瓦楞芯纸

年产量40万吨30万吨纸机设计速度900m/min 900m/min 纸机工作速度825m/min 825m/min 原纸定量125~250g/m290~110g/m2计算定量

150 g/m2100 g/m2

纸卷密度ρ0.7t/m30.61t/m3

纸幅宽度L1 6660mm 6660mm

纸机自身最重55t(不含吊具) 55t(不含吊具) 纸卷直径D1 3200mm 3200mm

卷纸轴直径d 710mm 710mm

卷纸轴自重8t 8t

吊具自重~5t ~5t

2.1 PM5纸机的有关数据

(1)纸重q1

q1=[(D1/2)2-(d1/2)2] ×π×L1×ρ

=[(3.2/2)2-(0.71/2)2]×3.14×6.66×0.7

=35.65(t)

(2)起升载荷Q1

Q1=纸重q1+卷纸轴自重+吊具自重

=35.65+8+5

=48.65(t)

(3)每个纸卷产出时间T1

T1=纸重/(纸机速度×L1×定量)

=35.65×106/(825×6.66×150)

≈43(min)

(4)每天起吊纸卷次数C1

C1=24×60/43

≈33次。

图2 纸卷和吊具

2.2 PM6纸机的有关数据

同理可得:

(1)纸重q2=31.06t

(2)起升载荷Q2=44.06t

(3)纸卷产出时间T2≈57min

(4)每天起吊纸卷次数C2=25次

显然Q1>Q2,可以选择起重量为25t+25t 及以上的起重机。考虑到纸品密度变化等因素和起吊安全,起重量应具有10~20%的富裕量,因此选择30t+30t的起重量组合比较合适。

3 纸卷起重机的工作级别设计计算

作为一般设计参考,抄纸车间只有一台纸机时,每个车间只配置两台起重机,当有两台纸机时,干端考虑再增加一台起重机。但科学的方法应是根据纸机的数量、纸机速度、纸卷重量等资料计算起重机载荷轻重情况和运行时间等数据,

选择合理的工作级别,这样才能保证起重机在设计期预寿命内的可靠稳定运行。本例中,两台纸机每天起吊纸卷的总次数达58次(=33+25),平均25分钟起吊一次,若干部只设置一台“纸卷起重机”,工作太频繁,应该设置两台起重机比较合理。这样:

每台起重机每天平均起吊纸卷次数

=(33+25)/2

=29(次)

平均最大起重量

=(48.65+44.06)/2

= 46.36(t)。

3.1 起升机构的工作级别计算

起重机起升机构工作级别决定于机构载荷状态级别和机构的使用等级。

(1)机构载荷状态级别L

“纸卷起重机”实际工作循环为,从初始位置运行大车机构(偶尔也运行小车)到纸卷上方,吊具下降,吊起纸卷上升到一定高度,运行大车到复卷机位置,然后下放纸卷到复卷机架上,升起吊具,完成一个工作循环,每天如此重复循环29次;接着起重机从复卷机上吊空纸轴到纸机卷取架,卸载后回到某个位置待命,这是另一个工作循环;偶尔起重机还起吊其它卷纸轴或货物等。因此平均每天起吊情况有:

P1=4.5(装卸吊具) C1=3次(估计)

P2=12.5t(空纸轴+吊具) C2=29次

P3=10t(其他平均) C3=6次(估计)

P4=46.36t(纸卷) C4=29次

则:

每天总循环次数C T=3+29+6+29=67(次)

载荷谱系数Km= t1/t T(P1/P max)3+ t2/t T(P2/P max)3+…+ t n/t T(P n/P max)3

其中:

P max---额定起升载荷,60t

T i/t T---机构承受不同载荷时间与总时间比值,等于C i/C T

因此,

Km=(3/67)*(4.5/60)3+(29/67)*(12.5/60)3 +(6/67)*(10/60)3+(29/67)*(46.36/60)3

=0.204

查GB/T3811-2008表5,对应的起升机构载荷状态级别为L2。

(2)起升机构使用等级T

每天循环次数(即起吊次数):67

每年工作:340天

机构寿命:15年(一般10~15年)

即机构总循环次数C T=67×340×15=341700(次)

平均实际起升高度H=4m,假设起升速度V =4m/min,则:

总使用时间t T=341700×2H/(V×60)=11390(h)

查GB/T3811-2008表4,得到起升机构使用等级选T6。根据L2和T6查表6,确定起升机构的工作级别为M6。

3.2 大小车运行机构的工作级别计算

大车从出纸端到复卷机的运行距离约20m,假设大车运行速度为40m/min,则运行机构总使用时间t T=341700×2×20/(V×60)=5695(h),机构使用等级选T5,载荷状态级别仍为L2,因此可以得出大车运行机构的工作级别为M5。

小车运行机构横向移动很少,即总使用时间t T很小,载荷状态级别为L2,故其工作级别可比起升机构低一级。

3.3 起重机整机的工作机构计算

起重机整机的工作级别同样决定于起升载荷状态级别和使用等级(即完成的总工作循环数)。即参考总循环次数C T=341700次,查GB/T3811-2008表1,可得使用等级为U5,应注意到整机的使用等级比机构的使用等级低一级,而载荷谱系数Kp等于Km,因此,整机工作级别为A5,比起升机构的工作级别低一级。

4 纸卷起重机的工作速度设计计算

正确设计选择各机构的工作速度也很重要。速度高固然可以提高效率,减少机构的使用时间,对寿命有贡献;但速度高对厂房、机械、电气均产生较大冲击破坏,反而降低设备寿命。从理论上讲,速度变化直接影响的是使用时间长短,而机构的使用等级有较大的使用时间范围,故速度变化对机构工作级别影响不大。如上面例子,起升速度从4m/min升到6m/min,使用时间降为7593h,起升机构工作级别仍为M6;大车运行速度调高到60m/min,使用时间降为3797h,运行机构工作级别仍为M5。只有当起升速度提高到7.3 m/min,运行速度为71m/min以上时,机构工作级别才能下降一级。但速度提高将直接引起电机功率成线性比例上升,浪费电能。因此,一般根据纸卷的产出时间、运行距离长短进行合理设计各机构速度,在不影响生产效率和使用情况下,尽量选择中低速。

绝大多数抄纸机每30分钟以上出一个纸卷,而起重机每工作循环不会超过10分钟,因此,从运行可靠稳定角度考虑,速度不需要太快也完全可以满足使用要求。纸卷平均实际起吊高度基本上在3~5m左右,综合考虑起重量、电机功率和效率等因素,起升速度设计在3~8m/min之间比较合适。起升机构占每个循环的时间25~40%,起重量32t以上的,选择4m/min及以下起升速度,起重量32t以下的起升速度可以高些。

大车运行机构实际平均运行距离一般在20~30之间,运行速度设计在30~40m/min之间,不能超过50m/min,因为要考虑地面按钮盒或遥控器操作时人的安全步进速度。

小车运行速度主要根据起重机跨度、小车数量、起重量大小确定。抄纸车间起重机,一般为三小车和双小车结构,小车平移运行很少,小车实际可运行距离不到20m,选择20~30m/min足够,速度不宜太高,否则反而造成小车经常处于起制动状态。

5 结束语

实际在荣成纸厂,我们设计了三台整机工作级别为A5的电动葫芦桥式起重机,两台30t+30t 的“纸卷起重机”,各机构的工作级别为M5,一台30t+60t+30t的“服务起重机”,30t吊钩的工作级别为M5,60t吊钩的工作级别为M4。小

车运行速度20m/min,变频两档;大车运行速度为40m/min,变频两档;起升速度为4//0.67m/min,变级调速。起升机构的工作级别比理论计算的低一级,是考虑到选用的葫芦是32t,而且服务起重机外侧两个钩也能分担起吊纸卷等情况,大大减轻“纸卷起重机”的起升机构的工作时间。几年来有几十台像这样设计的起重机在国内外造纸行业使用,质量稳定,使用效果良好。

参考文献

[ 1 ] GB/T 3811-2008 起重机设计规范[ S ], 北京: 中国标准出版社, 2008.

[ 2 ] GB/T 3695-2008 电动葫芦桥式起重机[ S ], 北京:机械工业出版社, 2008.

[ 3 ] 宫本智. 葫芦式起重机[ M ]. 天津: 天津科学技术出版社, 2009.8.

[ 4 ] 张质文, 虞和谦, 王金诺等. 起重机设计手册[M].

北京: 中国铁道出版社,1998.3.

作者简介:庄炳春,1966,男,福建省惠安县,工程师,硕士

作者地址:广州市花都区花东镇北兴花都大道北28号

邮编:510897

收稿日期:2010-6-20

塔机附墙设计计算说明书 一、工程概述 本工程位于惠南镇中心位置,东南面临南汇中学体育场,在体育场的西北角有一信号塔,距小区5号楼南外墙皮约20米左右,东北面临近复旦大学太平洋金融学院,南侧临拱北路,西侧临观海路。 本项目总用地面积55103.4平方米,总建筑面积133288.98平方米(含保温建筑面积)。地上总建筑面积101191.19平方米(含保温建筑面积),包含4栋15层高层住宅,5栋16层高层住宅,2栋11层高层住宅,1栋5层多层住宅,3栋6层的多层住宅,1栋2层的商业配套用房及高层住宅群房的配套公建,地下总建筑面积32097.79平米。 本工程8#楼和9#楼合用安装一台南通惠尔建设机械有限公司出厂的QTZ63型(5510型)塔式起重机,臂长为58米,塔吊设置在9号楼东侧,(图1)安装高度超过使用说明书规定的最大独立高度,需进行附墙锚固,楼层高度为45.6m,塔机最大安装高度约为53m,设置有2道附墙,如图2所示。生产厂家在使用说明书中标明了建筑物外墙与塔吊中心的距离在4.0m左右,但由于该工程建筑物表面结构及工程施工工艺等因素的影响,塔吊安装后,塔吊中心距离建筑物外墙8.997m。所采用的附墙杆件的长度以及与建筑物间的夹角,与原说明书的规定有所不同。为了保证塔吊安全使用,我们对附墙杆件及其连接件作了稳定性及强度验算。 图1 22号楼1#塔吊布置图 图2 塔吊附墙示意图

二、编制依据 本方案编制主要依据为:GB/T 13752-1992《塔式起重机设计规范》、GB 50017《钢结构设计规范》、GB/T 3811-2008 《起重机设计规范》和永发QTZ63型塔式起重机使用说明书。 三、设计方案 1.原说明书要求 按照产品安装使用说明书:附着架由四根撑杆和一套环梁等组成,它主要是把塔机固定在建筑物的柱子上,起着依附作用。(见图3) 图3 原附着架示意图 2.改进设计方案 根据现场实际情况,塔机中心到连接点距离为8.997米。设计方案如图4所示。 图4 塔吊附墙杆设置图 四、计算说明 1.计算附墙架对塔身的支反力 假设塔身为一连续梁结构(见图5),以此进行结构的受力分析,可用力法求出附墙受力。实际使用中,塔机最上面的一道附墙受力最大,因为该道附墙节点力除由M引起的附墙受力外,还有承受由塔机悬臂端风

龙门起重机计算说明书 一龙门起重机的结构形式、有限元模型及模型信息。 该龙门起重机由万能杆、钢管以及箱形梁组成。上部由万能杆拼成,所有万能杆由三种型号组成,分别为2N1,2N4,2N5,所有最外围的竖杆由2N1组成,其他竖杆由2N4组成,所有斜杆由2N5组成,其他杆均为2N4;龙门起重机两侧下部得支撑架由钢管组成,钢管的型号为φ219?6、φ83?5,其中斜竖的钢管为φ219X6,其他钢管为φ83X5;龙门起重机上部和下支撑架之间由箱型梁连固接而成,下支撑架最下端和箱型梁相固连。所有箱型梁由厚为6mm的钢板焊接而成。 对龙门起重机进行建模时,所选单元类型为Link8、Pipe16、Shell63三种单元类型。有限元单元模型见图1。模型的基本信息见下: 关键点数 988 线数 3544 面数 162 体数 0 节点数 1060 单元数 3526 加约束的节点数 48 加约束的关键点数 0 加约束的线数 0 加约束的面数 12 加载节点数 18 加载关键点数 18 加载的单元数 0 加载的线数 0 加载的面数 0 二结构分析的建模方法和边界条件说明。 应力分析采用有限元的静力学分析原理,其建模方法采用实体建模法,采用体、面、线、点构造有限元实体。其中所有箱形梁用面素建模,其余用线素建模,然后在实体上划分有限元网格,具体见单元图。对于边界条件和约束条件,是在支撑架下的箱型梁的底面两端加X,Y,Z三方向的约束以模拟龙门起重机的实际情况。载荷分布有4种情况:工作时的吊重、小车自重、风载荷、考虑两度偏摆时的水平惯性力,具体见下。 三载荷施加情况。 (1)工作时的吊重 工作时的吊重为40t,此载荷分布在小车压在轨道的4个位置,每个位置为10t。由于小车在轨道上移动,故载荷的分布位置随小车的移动而改变,由于小车移动速度慢,我们只把吊重载荷的施加作两种情况处理:在最左端(或最右

更多精彩毕业设计强咨询245250987 1概述 1.1起重机械的发展简史及发展动向 简单的起重运输装置的诞生,可以追溯到公元前5000~4000年的新石器时代末期,为埋葬和纪念死者而修筑石棺和石台,我国古代劳动人民已能开凿和搬运巨石。蒸气机的出现,推动了第一次工业革命,起重机械也因之有了较大发展。1827年,出现了第一台用蒸气机驱动的固定式回转起重机,从此结束了起重机采用人力驱动的历史。在工业发展中,电力驱动的出现是起重机械蓬勃发展的转折点。1880年,出现了第一台电力驱动的载客升降机。1885年,制成了电力驱动的回转起重机,从后制成了电力驱动的桥式起重机和门座起重机等。二次世界大战期间,新产品、新材料、新工艺不断出现。例如:由于自动焊接新技术的出现,箱形结构的桥式起重机越来越受到人们的欢迎;由于计算机技术的推广应用,利用计算机进行辅助设计(CAD)和辅助制造(CAM),使起重机的整机布置更趋优化,基本零部件更加紧凑耐用;由于自控技术和数显技术的广泛普及,使起重机的控制和安全保护装置大为改善,保证了操作的安全性和可靠性。 纵观世界各国起重机械发展的现状,对今后的动向,可归纳如下: 1、大型化 由于石油、化工、冶炼、造船以及电站等的工程规模越来越大,所以吊车起吊物品的重量也越来越大。 2、重视“三化”,逐步采用国际标准 所谓“三化”,是指起重机械的标准化、系列化和通用化。贯彻“三化”可以缩短设计周期,保证产品制造质量,便于管理和提高经济效益。 3、实现产品的机电一体化 机械产品需要更新换代。在当今计算机技术、数控技术及数显技术大发展的年代里,

更新换代的重要标志是实现产品的机电一体化。在起重机械上应用计算机技术,可以提高作业性能,增加安全性,以至实现无人自动操作。 4、人机工程学的应用 起重机械一般应用在沉重和繁忙的、环境比较恶劣的场合。为减少司机的作业强度,保持旺盛的注意力,应根据人机工程学的理论,设计驾驶室,改善振动于噪声的影响,防止废气污染,使其符合健康规范的要求。 1.2起重机械的用途、工作特点及其在经济建设中的地位 起重机械是用来对物料进行起重、运输、装卸、或安装等作业的机械设备。它在国民经济各部门都有广泛的应用,起着减轻体力劳动、节省人力、提高劳动生产率和促进生产过程机械化的作用。例如,一个现代化的大型港口,每年的吞吐量有几千万吨乃至上亿吨,被运送的物料品种繁多,有成件物品,也有散装材料或液态材料。为了尽快地完成如此繁重的装卸任务,如不采用成套的起重运输设备,那是不可想象的。码头边上,吊车林立,成了现代化港口的重要特点。因此说,起重机械在现代化的生产过程中决不是可有可无的辅助工具,而是合理组织生产的必不可少的生产设备。 起重机械在搬运物料时,经历上料、运送、卸料和回到原处的过程,有时运转,有时停转,所以它是一种间歇动作的机械。一个工作循环时间一般从几分钟到二三十分钟,其间各机构在不同时刻有短暂的停歇时间。这一特点决定了电动机的选择和发热计算方法;由于反复运动和制动,各机构和结构将承受强烈的振动和冲击,载荷是正反向交替作用的,许多重要构件承受不稳定变幅应力的作用,这些都将对构件的强度计算产生较大的影响。 起重机属于有危险性作业的设备,它发生事故造成的损失将是巨大的。所以,起重机设计和制造一定要严格按照国家标准和有关规定进行。 1.3起重机械的组成和类型 1.3.1起重机械的组成 起重机由产生运动的机构、承受载荷的金属机构、提供动力和起控制作用的电气设备及各种安全指示装置等四大部分组成。 起重机机构有四类,即:使货物升降的起升机构;作平面运动的运行机构;使起重机旋转的回转机构;改变回转半径的变幅机构。每一机构均由电动机、减速传动系统及执行装置等组成。设计时应尽可能采用标准的零部件加以组合,以利于制造和维修。金属结构则要根据使用要求进行设计制造。电动机和控制设备大多是标准产品,安全指示装置通常从市场购买,特殊的由制造厂设计制造。 1.3.2起重机械的类型 根据使用要求,设计任何合适的起重机形式。但从构造特征看,种类繁多的起重设备可归纳为三大类。 1、单动作起重设备 这类起重设备是使货物作升降运动的起升机构。常见的下列几种:(1)千斤顶一种升降行程很小,举升能力较大的小型起重设备。螺旋千斤顶或齿条千斤顶可用于汽车维修;液压千斤顶可将大型起重机顶起以更换车轮。 (2)滑车(俗称葫芦)一种用链条或钢丝绳与滑轮构成的省力滑轮组,结构紧凑,质量轻,是一种可携带的起重工具,有手动和电动两种。电动葫芦则是 一种电动起升机构,配有运行小车后可在空间布置的工字钢轨上运行,构成

银川能源学院电力学院 课程设计任务书 设计题目:300MW亚临界机组轴向推力的计算_ 年级专业:热动(本)1202 班 学生姓名:闫煜 学号: 1210240198 指导教师:于淼

电力学院《课程设计》任务书课程名称:汽轮机原理 说明:1、此表一式三份,院、学生各一份,报送实践部一份。 2、学生那份任务书要求装订到课程设计报告前面。

目录 一、引言 (1) 1、汽轮机课程设计目的 (1) 2、汽轮机课程设计内容与要求 (1) 3、汽轮机课程设计的一般原则 (1) 二、轴向推力的计算 (1) 1、轴向推力 (2) 1.1、冲动式汽轮机的轴向推力 (2) 三、推力轴承的安全系数 (4) 四、计算 (5) 1、求解第一级平均直径 (6) 2、轴向推力的计算 (6) 3、叶根反动度的计算 (7) 4、叶轮反动度 (7) 5、当量隔板漏气面积 (7) 6、叶根齿隙面积A5 (7) 7、平衡孔面积A4 (8) 8、α的计算 (8) 9、β的计算 (8) 10、轮盘面积的计算 (8) 五、汇总 (9) 六、参考文献 (9)

一、引言 汽轮机是以蒸汽为的旋转式热能动力机械,与其他原动机相比,它具有单机功率大、效率、运行平稳和使用寿命长等优点。汽轮机的主要用途是作为发电用的原动机。在使用化石燃料的现代常规火力发电厂、核电站及地热发电站中,都采用汽轮机为动力的汽轮发电机组。汽轮机的排汽或中间抽汽还可用来满足生产和生活上的供热需要。在生产过程中有余能、余热的工厂企业中,还可以应用各种类不同品位的热能得以合理有效地利用。由于汽轮机能设计为变速运行,所以还可用它直接驱动各种从动机械,如泵、风机、高炉风机、压气机和船舶的螺旋桨等。因此,汽轮机在国民经济中起着极其重要的作用。 蒸汽在汽轮机级内流动时,由于各段压力分布的不同,从而产生于轴线平行的轴向推力,气方向与气流在汽轮机内的流动方向相同,使转子产生由高压向移动的趋势。因此,为了保证汽轮机的安全运行,必须进行轴向推力的计算。 1、汽轮机课程设计目的 汽轮机课程设计是对在汽轮机课程中所学到的理论知识的系统总结、巩固和加深;要求掌握汽轮机热力计算及变工况下热力核算的原则、方法和步骤,还要综合各方面的实践经验和理论知识,结合结构强度、调节运行、辅助设备等有关基本知识来分析问题,才能较合理的选定汽轮机设计的基本方案。 2、汽轮机课程设计内容与要求 (1)确定轴向推力的组成 (2)以高压缸冲动级为计算依据,确定级数并分别计算各个级的轴向推力 (3)必须给出各个级的轴向推力的详细计算过程 (4)将数据以表格形式列出 (5) 数据来源:通过给定的机组类型,学生自己查阅资料所需基本数据及公式3、汽轮机课程设计的一般原则 (1)设计过程中要保证数据选择正确,计算正确,绘图清晰美观。 (2)设计成品要求效率高,结构合理,安全可靠,成本低廉。 二、轴向推力的计算

塔式起重机方形独立基础的设计计算 余世章余婷媛 《内容提要》文章通过对天然基础的塔吊基础设计,详细论述整个基础的设计过程,经济适用,安全可靠、结构合理,思路清晰,论述精辟有据;在现场施工中,有着十分重要的指导意义。 关键词:塔机、偏心距、工况、一元三次方程、核心区、基底压力。 一、序言 随着建筑业迅猛发展,塔式起重机(简称塔机)在建筑市场中是必不可少的一项重要垂直运输机械设备;塔机基础设计,在建筑行业中是属于重大危险源的范畴,正因为如此,塔机基础设计得到各使用单位的高度重视;本人通过网络查阅过许多塔机基础设计方案,除采用桩基外,塔基按独立基础所设计的方形基础,绝大部分都按厂家说明书所提供的基础尺寸进行配筋,按规范设计计算的为数不多,厂家所提供基础大小数据有些是不满足规范要求,而塔机基础配筋绝大多数情况是配筋过大,浪费较为严重;厂家说明书所提供数据表明,地基承载力特征值小的基础外形尺寸就较大,承载力特征值较大,基础尺寸就相应的小点,似乎看起来这种做法是正确的,其实并非如此。 塔机基础型式方形等截面最为普遍,下面通过一些规范限定的条件,对方形截面独立基础规范化的设计,很有参考和实用价值。下面举例采用中联重科的塔吊类型进行论述和阐明。 二、塔吊基础设计步骤 2.1、确定塔吊型号

首先根据施工总平面图,根据建筑物外形尺寸(长、宽、高)、及材料堆放场地和钢筋加工场地,根据塔机覆盖率情况,按塔机说明书中的主要参数确定塔机型号。 2.2、根据塔机型号确定荷载 厂家说明书中都有荷载说明,按塔吊自由独立高度条件提供两组数据(中联重科),一组为工作状态(工况)荷载,另一组为非工作状态(非工况)荷载,确定出一组最不利的工况荷载。 2.3、确定塔吊基础厚度h 根据说明书中塔机安装说明,基础固定塔基及有两种形式,一种是地脚螺栓,另一种是埋入固定支腿式;因此根据塔机地脚螺栓锚固长度和支腿的埋深,可以确定塔机基础厚度h。 2.4、基础外形尺寸的确定 根据荷载大小和基础厚度h,确定独立方形基础的边长尺寸。 2.5、基础配筋计算 求出内力进行基础配筋计算,并根据《规范》的构造要求进行配筋和验算。 2.6、基础冲切、螺杆(支腿)受拉或局部受压的验算 三、方形独立基础尺寸的确定 3.1方形基础宽度B的上限值 根据上面塔机基础计算步骤可以看出,塔机基础尺寸的确定是方形基础的计算关键。利用偏心距限定条件,可求出基础最小截面尺寸。根据偏心距e(荷载按标准组合):

毕业设计(论文) 文献综述 题目轨道式龙门起重机 专业机械设计制造及其自动化 班级06级1班 学生陈成 指导教师周老师 西南交通大学 2010-4-27 年

1、轨道式集装箱龙门起重机国内发展现状 在我国集装箱港口的装卸作业中,通常采用岸边集装箱起重机加轮胎式集装箱龙门起重机的装卸方案,以轮胎式集装箱龙门起重机作为后方堆场的主要装卸机械。几年,随着港口的发展,轨道式集装箱龙门起重机在港口的使用越来越多。其电控系统、管理系统等方面以达到现有的港口机械水平,完全能满足现代港口集装箱的需要。 目前我国已能批量生产具有上个世纪90年代国际先进水平的岸边集装箱起重机和轮胎式集装箱龙门起重机,轨道式集装箱龙门起重机的研究与开发能力也越来越强。 由于大车行走和小车行走属于一般负载,没有特殊要求,因此变频器在V/F模式下即可正常工作,不需要做特殊设置就能投入使用,而主副钩吊属于重型负载,要求起钩和松钩都能保证不溜钩,上下行平稳迅速,要求在直流制动后马上投入制动器进行制动。 2、轨道式集装箱龙门起重机国外发展现状 长期以来,轨道式集装箱龙门起重机仅小车运行机构采用交流驱动,近年来,起升机构和大车运行也相继采用了交流驱动技术,这样减少了维护和修理费,降低了营运成本。日本三井公司最早成功地采用了交流变频调速装置,解决了起升机构位势负载和车轮支承压力变化导致车轮转速变化的关键技术,达到了集装箱堆6层作业的使用要求。派纳公司将其在自动控制领域所拥有的丰富经验成功地应用在大型轨道式集装箱龙门起重机上,满足了现代化集装箱堆场对自动化控制的需要。欧洲联合码头公司应用光缆传输技术,可靠地将轨道式集装箱龙门起重机与港站管理计算机联网,实现了无人装卸作业和堆场全盘自动化。 据统计,欧洲作为传统上的轮胎式集装箱龙门起重机的大订户,1995年订购的轨道式集装箱龙门起重机多达58台,从一个侧面反映出轨道集装箱龙门起重机的市场潜力和应用前景。另一方面,从世界一些著名的港口的发展趋势看,轨道式集装箱龙门起重机将向大型化、高效化、自动化方向发展。 目前,一些先进设计思想逐渐被采用,一些先进设计手段也被引入轨道式集装箱龙门起重机领域。如果有限元分析、结构优化设计、机电液一体化技术、CAD设计模块化技术、可靠性设计方法、机械结构动态设计等。这些方法在轨

第一章设计出始参数 第一节基本参数: 起重量PQ=150.000 ( t ) 跨度S = 20.000 (m ) 左有效悬臂长ZS1=0.000 (m) 左悬臂总长ZS2=1.500 (m) 右有效悬臂长YS1=1.500 (m ) 右悬臂总长YS2=0.770 (m) 起升高度H0=20.000 (m) 结构工作级别ABJ=5级 主起升工作级别ABZ=0级 副起升工作级别ABF=5级 小车运行工作级别ABX=5级 大车运行工作级别ABD=5级 主起升速度VZQ=3.4000 (m/min) 副起升速度VFQ=3.4000 (m/min) 小车运行速度VXY=2.4000 (m/min) 大车运行速度VDY=2.4000 (m/min) 第二节选用设计参数 起升动力系数02=1.20 运动冲击系数04=1.10 钢材比重R=7.85 t/m'3 钢材弹性模量E=2.1*10'5MPa 钢丝绳弹性模量Eg=0.85*10'5MPa 第三节相关设计参数 大车车轮数(个)AH=8 大车驱动车轮数(个)QN=4 大车车轮直径RM=0.7000(mm) 大车轮距L2=11.000 (m) 连接螺栓直径MD=0.0360 (m) 工作最大风压q1=0/*250*/(N/m'2) 非工作风压q2=0/*600*/(N/m'2) 第四节设计许用值 钢结构材料Q235----B 许用正应力[ σ ] I=156Mpa [ σ ] II=175Mpa 许用剪应力[ ? ]=124Mpa 龙门架许用刚度:

主梁垂直许用静刚度: 跨中(Y)x~1=S/800=30.00mm 悬臂(Y)1=ZS1/700=2.00mm 主梁水平许用静刚度: 跨中(Y)y~1=S/2000=12.00mm 悬臂(Y)1=ZS1/700=2.00mm 龙门架纵向静刚度: 主梁严小车轨道方向(Y)XG=H/800=16.4mm 许用动刚度(f )=1.7H z 连接螺栓材料8.8级螺栓 许用正应力[ σ ] 1s=210.0Mpa 疲劳强度及板屈曲强度依GB3811-83计算许用值选取。 第二章起重小车设计 第一节小车设计参数 小车质量(t) GX=50.000(t) 小车车距(m) B=3.500(m) 轨道至主梁内边(m) L5=0.030(m) 小车轨距( m ) L6=2.500(m) 小车左外伸(m) L7=0.500(m) 小车右外伸(m) L8=0.500(m) 主梁与马鞍间距(m) L11=0(m) 吊钩下探量(m) H6=2.000(m) 小车轨道截面高(m) H7=0.120(m) 小车高H8=1.650(m) 小车顶至马鞍(m) 小车罩沿大车轨道方向 迎风面积(m'2) XDS=12.000(m'2) 小车罩垂直于大车轨道方向 迎风面积(m'2) XXS=12.000(m'2) 钢丝绳金属丝截面积(m'2) DO=6.550700e-004(m'2) 滑轮组钢丝绳分支数半NO=5 小车轨道型号QU70 小车外罩至导电架距离(m)L9=0.97(m) 小车外罩至栏杆距离(m) L10=0.970(m) 法兰至主梁上盖板距离(m)HD=1.800(m) 第二节设计计算 为工厂便于组织生产,提高标准件的通用性,设计中不进行起重小车设计,而采用5t--50t 通用桥式起重机小车。此,起重机小车设计详见5t--50t通用桥式起重机小车计算说明书。

汽轮机课程设计 第一部分:设计题目与任务 题目:汽轮机热力计算与设计 根据给定的汽轮机原始参数来进行汽轮机热力计算与设计: 1、分析与确定汽轮机热力设计的基本参数,这些参数包括汽轮机的容量、进汽参数、转速、排汽压力或冷却水温度、回热加热级数及给水温度、供热汽轮机的供热蒸汽压力等; 2、分析并选择汽轮机的型式、配汽机构形式、通流部分形状及有关参数; 3、拟订汽轮机近似热力过程线和原则性回热系统,进行汽耗率及热经济性的初步计算; 4、根据汽轮机运行特性、经济要求及结构强度等因素,比较和确定调节级的型式、比烩降、叶型及尺寸等: 5、根据通流部分形状和回热抽汽点要求,确定压力级即非调节级的级数和排汽口数,并进行各级比焙降分配; 6、对各级进行详细的热力计算,求出各级通流部分的几何尺寸、相对内效率和内功率,确定汽轮机实际的热力过程线; 7、根据各级热力计算的结果,修正各回热抽汽点压力以符合实际热力过程线的要求,并修正回热系统的热平衡计算; 8、根据需要修正汽轮机热力计算结果. 第二部分:设计要求 1)运行时具有较高的经济性; 2)不同工况下工作时均有高的可靠性; 3)在满足经济性和可靠性要求的同时,还应考虑汽轮机的结构紧凑、系统简单、布置合理、成本低廉、安装和维修方便及零部件通用化、系列标准化等因素。 第三部分:设计内容 一、汽轮机热力计算与设计原始参数 主蒸汽压力3.43Mpa,主蒸汽温度435℃;

冷却水温度20℃,给水温度160℃; 额定功率e P :23MW,调节级速比a x :0.24 二、汽轮机设计基本参数确定 1、汽轮机容量 额定功率e P :23MW 2、进气参数 汽轮机初压P 0=3.43Mpa 汽轮机初温t0=435℃ 3、汽轮机转速n=3000rad/min 4、排气压力 汽轮机排气压力Pc=0.005Mpa 冷却水温tc1= 20℃ 5、回热级数及给水温度 给水温度tfw=160℃ 回热级数Z=3级 三、选型、配汽及流通部分的设计计算 1、汽轮机型号 由排气压力和冷却水温可知汽轮机为:凝气式汽轮机。 型号:N23-3.43/435 2、配汽方式 汽轮机的配汽机构又称调节方式,与机组的运行要求密切相关。通常的喷嘴配汽、节流配汽、变压配汽以及旁通配汽四种方式。喷嘴配汽是国产汽轮机的主要配汽方式,由已知参数以及设计要求选用喷嘴配汽方式。 四、拟定汽轮机近似热力过程曲线和原则性热力系统,进行汽耗量、回热系统 热平衡及热经济性的初步计算 1、近似热力过程曲线的拟定 (1)进排汽机构及连接管道的各项损失 蒸汽流过各阀门及连接管道时,会产生节流损失和压力损失。下表列出这些 损失通常的取值范围。

常熟市莫城起重机械制造厂 门式起重机计算书 型号: MDG 起重量:主钩50T副钩10T 跨度: 24M 有效悬臂:左9M右9M 工作级别:A5 内容:悬臂刚度强度校核;整机稳定性校核

50/10-24M 单梁门式起重机计算书 起重机主参数及计算简图: Lx1=11721Lk=24000Lx2=11421 B=3600 b1b2 p 1p 2 8 5 4 1 = h L=9000 计算简图 小车自重: G X=153.8 KN主梁自重: G Z=554.1 KN走台栏杆滑导支架等附件: G F=40.2 KN 桥架自重: 1100.54 KN额定起重量: G E=490 KN 760e 2751413 0 4 0 2 1 1 2 2 6 1 602 103 222 222 1338.7 1358.7 支腿折算惯性矩的等值截面14140012 6 14261 主梁截面 刚性支腿折算惯性矩:I 1BH 3bh3 5.18 1010 MM 4 12 主梁截面惯性矩: I 2BH 3bh37.91010 MM 4 12 主梁 X 向截面抵弯矩:W X BH 3bh3 7.087 107MM3

主梁 Y 向截面抵弯矩:W Y HB 3hb3 5.089 107 MM 3 6B 一. 悬臂强度和刚度校核。 Ⅰ. 悬臂刚度校核 该门式起重机采用两个刚性支腿,故悬臂端挠度计算按一次超静定龙门架计算简图计算。 ( P1 P2) L2C 38K 3 f(L L K) 3EI 28K12 式中C3:小车轮压合力计算挠度的折算系数 ( P1b1 P2b2) L(2L K3L ) P2b2 3 C3 2 ( L K L) 2(P1 P2)L =1.00055 K:考虑轮缘参与约束,产生横向推力 K I 2h 0.927 I 1L K P1,P2:小车轮压 P1P2G X G E 321.9KN 2 代入数值: f(P P2C(L L K8K 3 ) 12)L3 3EI 28K12 (321.9103321.9 103 )9000 2 1.00055 (90002400080.927 3 ) 3 2.1021057.9101080.92712 22.911mm 按起重机设计规范有效悬臂端的许用挠度:[ f ]L K900025.7mm 350350 f [ f ] 结论:综上计算校核,该起重机的悬臂梁的刚度满足起重机械设计规范的要求。 Ⅱ. 悬臂的强度校核 1.该起重机悬臂的危险截面为支承处截面,满载小车位于悬臂端时该截面受到最大弯曲应力和最 大剪应力。 此时弯曲应力: M x M qw M q s M p s MT max W y W y W x W x

第一部分汽轮机课程设计指导书 一、课程设计的目的与要求 1.系统地总结、巩固并应用《汽轮机原理》课程中已学过的理论知识,重点掌握汽轮机热力设计的方法、步骤。 2.汽轮机热力设计的任务,一般是按照给定的设计条件,确定流通部分的几何参数,力求获得较高的相对内效率。就汽轮机课程设计而言其任务通常是指各级几何尺寸的确定及级效率和内功率的计算。 3.汽轮机设计的主要内容与设计程序大致包括: (1) 分析并确定汽轮机热力设计的基本参数,如汽轮机容量、进汽参数、转速、排汽压力或循环水温度、回热加热级数及给水温度、供热汽轮机的供汽压力等。 (2) 分析并选择汽轮机的型式、配汽机构型式、通流部分形状及有关参数。 (3) 拟定汽轮机近似热力过程线和原则性热力系统,进行汽耗量与热经济性的初步计算。 (4) 根据汽轮机运行特性、经济要求及结构强度等因素,比较和确定调节级的型式、比焓降、叶型及尺寸等。 (5) 根据流通部分形状和回热抽汽压力要求,确定压力级的级数,并进行各级比焓降分配。 (6) 对各级进行详细的热力计算,求出各级流通部分的几何尺寸、相对内效率和内功率,确定汽轮机的实际热力过程线。 (7) 根据各级热力计算的结果,修正各回热抽汽点压力以符合实际热力过程线的要求。 (8) 根据需要修正热力计算结果。 (9) 绘制流通部分及纵剖面图。 4.通过设计对整个汽轮机的结构作进一步的了解,明确主要部件在整个机组中的作用、位置及相互关系。 5.通过设计了解并掌握我国当前的技术政策和国家标准、设计资料等。 6.所设计的汽轮机应满足以下要求: (1) 运行时具有较高的经济性。 (2) 不同工况下工作时均有高的可靠性。 (3) 在满足经济性和可靠性要求的同时,还应考虑到汽轮机的结构紧凑、系统简单、布局合理、成本低廉、安装与维修方便以及零部件通用化、系列标准化等因素。 7.由于课程设计的题目接近实际,与当前国民经济的要求相适应,因而要求设计者具有高度的责任感,严肃认真。应做到选择及计算数据精确、合理、绘图规范,清楚美观。 二、课程设计题目 以下为典型常规题目,也可以设计其他类型的机组。 机组型号: B25-8.83/0.981 机组型式:多级冲动式背压汽轮机 1

塔吊基础设计计算方法 地基基础采用预应力混凝土管桩基础,设计等级教工宿舍C1C4、教工宿舍C15C16为丙级,教工宿舍C5C6为乙级。抗震设防烈度为6度,设计使用年限50年。 标签:塔吊基础;四桩;预应力管桩;承载力;倾覆力矩 1 工程概况 广东水利电力职业技术学院从化校区教工宿舍工程包括C1C4、C5C6、C15C16共3栋主体建安工程,二期精装修以及其他配套工程等。 三栋建筑由教工宿舍C1C4和教工宿舍C5C6、教工宿舍C15C16组成,总建筑面积:17782.82m2。其中教工宿舍C1C4地上6层;教工宿舍C5C6地上12层;教工宿舍C15C16地上6层,基地建筑面积2358.99m2(其中C1C4为862.89m2;C5C6为745.05m2;C15C16为751.05m2)。C1C4首层层高3m,二层~六层层高为3.0m,六层以上层高均为3.2m;C5C6首层层高4m,二层~十二层层高3m,十二层以上4.7m;C15C16首层层高3m,二层~六层层高3m,六层以上3.9m。C1C4、C15C16建筑结构类型为异形柱框架结构,C5C6建筑结构类型为剪力墙结构。 教工宿舍C1C4、教工宿舍C15C16建筑结构类型为异形柱框架结构,教工宿舍C5C6建筑结构类型为剪力墙结构。建筑安全等级为二级,抗震设防类型为丙类。地基基础采用预应力混凝土管桩基础,设计等级教工宿舍C1C4、教工宿舍C15C16为丙级,教工宿舍C5C6为乙级。抗震设防烈度为6度,设计使用年限50年。建筑防火类别为二类,耐火等级为二级;主体建筑屋面工程防水为2级。 根据施工现场场地条件及周边环境情况,安装1台塔式起重机负责建筑材料的垂直及水平运输。 2 塔吊基础(四桩)设计 2.1 计算参数 采用1台QTZ80塔式起重机,塔身尺寸1.60m,地下室开挖深度为0m;现场地面标高-0.60m,承台面标高-0.30m;采用预应力管桩基础,地下水位-2.90m。 2.1.1 塔吊基础受力情况 图1 塔吊基础受力示意图

优秀设计 XXXX大学 毕业设计说明书 学生姓名:学号: 学院: 专业: 题目:桥梁式集装箱起重机设计 指导教师:职称: 职称: 20**年12月5日

目录 前言 (2) 一主要设计内容及参数 (4) 二主梁结构设计 (5) 三小车设计 (7) 四起吊机构设计 (12) 五支架设计 (14) 设计小结 (15) 参考文献 (16)

前言 起重机被喻为“巨人之臂”,是广泛用于国民经济各部门进行物质生产和装卸搬运的重要设备。起重机的设计制造,从一个侧面反映了国家的工业现代化水平。我国起重机制造业奠基于20世纪50年代。70年代以来,起重机的类型、规格、性能和技术水平获得很大的发展。近年来在物流和工业企业发展的带动下,起重机行业进入飞速发展时期。 起重机主要分为桥梁式、悬臂式、塔式、龙门式、拉索式、液压伸缩臂式等形式。本设计以桥式双梁单小车集装箱起重机为例,介绍起重机的设计思路、设计内容以及设计方法。 起重机设计主要根据客户要求,在符合国家标准及机械工业标准中对起重机的要求下进行设计。设计方案的选择主要通过与客户沟通取得一致意见后确定,设计内容主要包括在起重机的实际工作环境下确定起重机的最大额定载荷、非正常载荷(如冲击载荷,风力载荷、震动载荷等)、操纵形式、使用寿命、检修方式以及安全等级等;确定起重机主要零部件的选材以及机加工和材料处理的方法;确定起重机的工作级别;确定其主要受力梁的截面形式、截面大小以及梁的材料选择和加工方法。由于桥梁式起重机体积和质量都比较大,所以在设计过程中还应考虑起重机的运输方案和安装方法。

一主要设计内容及参数 1、起重机首先要确定的是工作级别 本设计的起重机用于集装箱生产制造或物流行业。 起吊件为生产下线的集装箱,或物流行业待装货的集装箱,所以都是空箱。起吊重量为5T 根据起重机行业标准,不管是集装箱生产行业还是物流行业都是生产节奏比较快的,因此该起重机的工作级别定为A5级,起吊机构工作级别为M5。 2、根据以上所规定级别设置设计内容及参数 a.主梁结构 主梁涉及到的主要设计内容或参数主要有:主梁的截面形式、截面大小、所用材料、制作方法、主梁上平面的平面度、侧面的平面度和垂直度、主梁应该具有的上拱度,还有主梁上的轨道安装等等。 b.支架结构 支架需要设计的主要内容和参数包括:截面形式、截面大小、使用材料、制作方法、支腿的垂直度误差、支腿与地面的连接方式等等。 c.小车机构 小车机构要设计的主要内容和参数包括:小车架设计;起吊机构设计; 小车行走机构设计。根据起吊重量设计小车架截面;根据所需要元件的安装位置设计小车架的结构;根据工作级别设计行走机构中电机的功率和类型; 根据起吊高度确定卷筒的直径和长度;根据工作级别确定主电机的功率以及减速机的型号。确定其他一些元件的型号。 d.控制机构 控制机构主要设计其控制室的制作和安装、控制电路的安装、进出控制室的方法。控制室的制作和安装应符合起重机行业标准中的相关内容;控制电路属于电气范畴在此不予讨论。 f.安装调试 根据起重机行业标准规定,起重机在生产完备后需要在本厂安装调试,合格后方能出厂。调试的主要内容有小车的运行情况;司机室的视野状况和温度;在1.25倍额定起重量下把小车开到中跨,持续30分钟,卸载后主梁不得有永久变形,主梁和其它部件上的油漆不得有剥落现象,小车架不能有永久变形。

汽轮机课程设计报告 姓名: 学号: 班级: 学校:华北电力大学

汽轮机课程设计报告 一、课程设计的目的、任务与要求 通过设计加深巩固《汽轮机原理》中所学的理论知识,了解汽轮机热力设计的一般步骤,掌握设计方法。并通过设计对汽轮机的结构进一步了解,明确主要零件的作用与位置。具体要求就是按给定的设计条件,选取有关参数,确定汽轮机通流部分尺寸,力求获得较高的汽轮机效率。 二、设计题目 机组型号:B25-8.83/0.981 机组型式:多级冲动式背压汽轮机 新汽压力:8.8300Mpa 新汽温度:535.0℃ 排汽压力:0.9810Mpa 额定功率:25000.00kW 转速:3000.00rpm 三、课程设计: (一)、设计工况下的热力计算 1.配汽方式:喷嘴配汽 2.调节级选型:单列级 3.选取参数: (1)设计功率=额定功率=经济功率 (2)汽轮机相对内效率ηri=80.5% (3)机械效率ηm=99.0% (4)发电机效率ηg=97.0% 4.近似热力过程线拟定 (1)进汽节流损失ΔPo=0.05*Po 调节级喷嘴前Po'=0.95*Po=8.3885Mpa (2)排汽管中的压力损失ΔP≈0 5.调节级总进汽量Do的初步估算 由Po、to查焓熵图得到Ho、So,再由So、Pc查Hc。 查得Ho=3474.9375kJ/kg,Hc=2864.9900kJ/kg 通流部分理想比焓降(ΔHt(mac))'=Ho-Hc=609.9475 kJ/kg Do=3.6*Pel/((ΔHt(mac))'*ηri*ηg*ηm)*m+ΔD Do=3.6*25000.00/(609.9475*0.805*0.970*0.990)*1.05+5.00=205.4179(kJ/kg) 6.调节级详细热力计算 (1)调节级进汽量Dg Dg=Do-Dv=204.2179t/h (2)确定速比Xa和理想比焓降Δht 取Xa=0.3535,dm=1100.0mm,并取dn=db=dm 由u=π*dm*n/60,Xa=u/Ca,Δht=Ca^2/2

设计任务书 设计题目: 50吨双梁龙门起重机金属结构设计 设计要求: 1.能提升重物并使重物沿水平方向移动,即起重机能够提升重物一道水平面内不同的地点,而不像升降机只是一种提升机械。门式起重机的承重梁不是支撑在像桥式起重机的高架牵引箱上,而是支撑在能在地面钢轨上行驶的行走箱上。这样,可以在露天的场地行动自如。 2.双梁龙门起重机适用于工矿企业、车站、港口、露天仓库及物资部门的货场等,在固定跨距间对各种物料进行装卸及起重搬运工作。 3.本起重机由电器设备、小车、大车运行机构、门架四大部分组成。按工作繁忙程度和载荷状态分为轻级、中级、重级、特种级四种。标准电源为三相交流、50赫、380伏,电源线为架空滑线、电缆两种。本论文设计的起重机是一台50T-35m,U型变频,箱形双主梁集装箱龙门起重机总起重量50T,吊具以下起重量为50T,全长59m,跨度35m,有效悬臂9m,工作级别A5。 设计进度要求: 第一周:确定题目, 借阅相关的材料

第二周:深入现场进行实践,针对门机常有问题请教有关技师,准备编稿第三、四周:编写硬软件手写稿 第五、六周:上机编写电子稿 第七周:调试程序,找出问题,改进设计 第八周:撰写论文,准备答辩 指导教师(签名):

摘要 龙门起重机是提高装卸作业效率、减轻工人劳动强度、用途十分广泛的大型起重设备。在铁路货场、港口码头装卸集装箱,在水电站起吊大坝闸门,在建筑工地进行施工作业,在贮木场堆积木材等都得到了广泛的应用。 根据要求和用途不同,龙门起重机的参数、规格和结构形式也是各式各样。由于偏轨箱形龙门起重机具有许多优点,目前,国内外生产的龙门起重机以偏轨箱形龙门起重机居多,本论文主要研究偏轨箱形龙门起重机金属结构的设计计算,按照《起重机设计规范》规定的载荷组合,分析起重机的受力情况,计算起重机承受的自重载荷、起升载荷、水平惯性载荷、起重机运行时的风载荷等,并将上述各种载荷分为垂直载荷和水平载荷计算主梁所受的内力。根据相应的计算结果校核主梁危险截面(即小车位于跨中时的跨中截面和小车位于有效悬臂端时的支座截面)的强度、刚度及稳定性,从而判断该主梁结构的是否满足设计要求。 本论文以实际结构为例,对起重机结构系统进行了详细的分析计算,可为起重机相关的设计提供一定的辅助和参考作用。 关键词:龙门起重机,金属结构,主梁,支腿

门式起重机毕业设计说 明书 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

西南交通大学峨眉校区 毕业设计说明书 论文题目:门式起重机设计 —起升机构与小车运行机构设计系部:机械工程系 专业:工程机械 . 班级:工机二班 学生姓名:毛明明 学号: 指导教师:冯鉴 目录 第一章门式起重机发展现状 4 型吊钩门式起重机的用途 (5) 钢丝绳的计算 (8) 滑轮、卷筒的计算...................................... 减速机的选择 (12)

车轮的计算 (24)

第一章门式起重机发展现状 门式起重机是指桥梁通过支腿支承在轨道上的起重机。它一般在码头、堆场、造船台等露天作业场地上。当门式起重机的小车运行速度大、运行距离长、生产效率高时,常改称为装卸桥。港口上常用的机型有:轨道式龙门起重机、轮胎式龙门起重机、岸边集装箱起重机、桥式抓斗卸船机等。 当桥架型起重机的跨度特别大时,为了减轻桥架和整机的自身质量,常改用缆索来代替桥架,供起重小车支承和运行之用。 起重机械是用来升降物品或人员的,有的还能使这些物品或人员在其工作范围内作水平或空间移动的机械。取物装置悬挂在可沿门架运行的起重小车或运行式葫芦上的起重机,称为“门架型起重机”。 进入21世纪以来,我国的造船工业进入了快速发展的轨道,各大主力船厂承接的船舶吨位从几万吨发展到十几万吨,年造船能力也普遍跃上百万吨水平,造船模式也相继从船台造船转向船坞造船,大型造船门式起重机的需求也大幅度增加。 随关中船长兴、中船龙穴、青岛海西湾、舟山金海湾、靖江新时代、太平洋集团扬州大洋等大型国营和民营造船基地的建设,大型造船门式起重机也进入了一个大型集中建造的黄金时期,起重机的提升能力从600t上升到900t,跨度从170米增加到239米,已经建成的和在建的大型造船门式起重机有几十台。门式起重机作为一种重要的物料搬运设备,在造船领域中的重要作用日益显现。随着经济的发展,它不仅在国民经济中占有重要的位置,而且在社会生产和生活的领域也不断扩大。从20纪后期开始,国际上门式起重机的生产向大型化、多功能化、专用化和自动化的方向发展。 第二章 MG型吊钩门式起重机的概述 MG型吊钩门式起重机属双主梁通用门式起重机,也称A型双梁门吊,由桥架、大车运行机构、小车、电气设备等部分构成。本起重机是按GB/T14406-1993《通用门式起重机》设计制造,常用起重量10-50t,工作环境为-20- 40。C,工作级别A5、A6两种。本起重机小车导电采用软缆导电,大车采用滑触线或电缆卷筒方式供电,操作方式有地面控制、操纵室控制、遥控三种形式供用户选择。标准操纵方式为室控,全部机

能源与动力工程学院汽轮机课程设计 题目:600MW超临界汽轮机调节级叶片强度核算时间:2006年11月13日-2006年12月4日 学生姓名:杨雪莲杨晓明吴建中单威李响梅闫指导老师:谭欣星 热能与动力工程036503班

2006-12-4 600MW超临界汽轮机调节级叶片强度核算 [摘要]本次课程设计是针对600MW超临界汽轮机调节级叶片强度的校核, 并主要对第一调节阀全开,第二调节阀未开时的调节级最危险工况对叶片强度的校核。 首先确定了最危险工况下的蒸汽流量。部分进汽度选择叶型为HQ-1型,喷嘴叶型HQ-2型。根据主蒸汽温度确定叶片的材料为Cr12WmoV马氏体-铁素体钢。 其次,计算了由于汽轮机高速旋转时叶片自身质量和围带质量引起的离心力和蒸汽对叶片的作用力。 选取了安全系数,计算屈服强度极限、蠕变强度极限和持久强度极限,三者中的最小值为叶片的许用用力,叶片拉弯应力的合成并校核,确定叶片是否达到强度要求。 最后,论述了调节级的变化规律即压力-流量之间的关系。 一、课程设计任务书 课程名称:汽轮机原理 题目:600MW超临界汽轮机调节级叶片强度核算 指导老师:谭欣星 课题内容与要求 设计内容: 1、部分进汽度的确定,选择叶型 2、流经叶片的蒸汽流量计算蒸汽对叶片的作用力计算 3、叶片离心力计算 4、安全系数的确定 5、叶片拉弯合成应力计算与校核 6、调节级后的变化规律 设计要求: 1、运行时具有较高的经济性 2、不同工况下工作时均有高的可靠性 已知技术条件与参数: 1、600MW 2、转速:3000r/min 3、主汽压力:24.2Mpa; 主汽温度:566C 4、单列调节级,喷嘴调节 5、其他参数由高压缸通流设计组提供 参考文献资料: 1、汽轮机课程设计参考资料冯慧雯,水利电力出版社,1998 2、汽轮机原理翦天聪,水利电力出版社 3、叶轮机械原理舒士甑,清华大学出版社,1991

塔式起重机抗倾覆计算及基础设计 一、基础的设置:根据塔式起重机说明书基础设置要求的技术参数及对地基的要求 选用基础设计图,基础尺寸采用5.5m ×5.5m ×1.2m ,基础砼标号为C35(7天和28天 期龄各一组),要有砼检测报告,基础表面砼平整度要求≤1/1000,塔式起重机预埋螺 栓材料选用40Cr 钢,承重板高出基础砼面5~8㎜左右,要有排水设施。 二、塔式起重机抗倾覆计算 ①、塔式起重机的地基为天然地基,必须稳妥可靠,在表面上平整夯实,夯实后的 基础的承压能力不小于200kPa ,基础的总重量不得小于80T ,砼 标 号 不 得 小 于 C35,砼的捣 制应密实,塔式起重机采用预埋螺栓固定式。 ②、参数信息:塔吊型号:QTZ5510,塔吊起升高度H :37.50m ,塔身宽度B :1.7m , 自重F K :453kN ,基础承台厚度h :1.2m ,最大起重荷载Q :60kN ,基础承台宽度b :5.50m , 混凝土强度等级:C35。 ③、塔式起重机在安装附着前,处于非工作状况时为最不利工况,按此工况进行设计 计算。塔式起重机受力分析图如下: 根据《塔式起重机说明书》,作用在塔吊底座荷载标准值为:M K =1654kn ·m , F K = 530KN ,Fv K =74.9KN ,砼基础重量 G K = 835KN ④、塔式起重机抗倾覆稳定性验算: 为防止塔机倾覆需满足下列条件: 式中e----- 偏心距,即地基反力的合力至基础中心的距离; M K ------ 相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的力矩值; Fv K ------相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的水平荷 载; F K -------塔机作用于基础顶面的竖向荷载标准值; h ---------基础的高度(h=1.2m ); G K ----------基础自重; b---------矩形基础底面的短边长度。(b=5.5m) 将上述塔式起重机各项数值M K 、Fv K 、F K 、h 、G K 、b 代入式①得: e =1.28< b/3=1.83m 偏心距满足要求,抗倾覆满足要求。 三、塔式起重机地基承载力验算:根据岩土工程详细勘察报告资料,1#塔吊 基础底板处承载力特征值为372Kpa 。取塔式起重机基础底土层的承载力标准值为 372Kpa ,根据《TCT5613塔式起重机使用说明书》,采用塔式起重机基础:长× 宽×高=5500×5500×1200的形式,塔吊采用预埋螺栓固定式,塔式起重机对地 面压应力为170Kpa <372Kpa 满足要求,直接按说明的大样图施工,不再做另外

相关文档
相关文档 最新文档