文档库 最新最全的文档下载
当前位置:文档库 › 二进制编码遗传算法中的控制参数选取方法

二进制编码遗传算法中的控制参数选取方法

二进制编码遗传算法中的控制参数选取方法
二进制编码遗传算法中的控制参数选取方法

遗传算法编码及算子简介

遗传算法编码及算子简介 遗传算法主要是通过遗传操作对群体中具有某种结构形式的个体施加结构重组处理,从而不断地搜索出群体中个体间的结构相似性,形成并优化积木块以逐渐逼近最优解。由此可见,必须把群体中的个体转化成按一定基因结构组成的染色体或个体,即编码。编码原则包括两条: 1.有积极积木块编码规则,即所定编码应当易于生成所求问题相关的短距和低阶的积木块。 2.最小字符集编码规则,即所定编码应用最小字符集以使问题得到自然的表示或描述。 规则一是基于模式定理和积木块假设;规则二提供了一种更为实用的编码规则。评估编码策略常采用的规范有: 1.完备性:问题空间中的所有点都能作为GA空间的点表现。 2.健全性:GA空间中的染色体能对应所有问题空间中的候选解。 3.非冗余性:染色体和候选解一一对应。 这些评估规范是独立于问题领域的普遍准则。对某个具体的应用领域而言,应该客观化地比较和评估该问题领域中所用的编码方法。应用遗传算法进行优化,首先将问题描述成串的形式,以模拟染色体。选择何种编码方式对算法的运行有很大的影响。现在,流行的观点认为二进制编码能在相同的范围内表示最多的模式,能充分地体现所谓的隐含并行性。但是,二进制编码方式的精度依赖于染色体的基因位数及设计变量的范围。因而对于高精度、多变量问题,n值需很大,降低遗传算法的收敛速度。另外,二进制编码不直接反映真实的设计空间。其它的编码方式还有:格雷码编码、浮点编码、树结构编码、参数动态编码和多维编码等。 遗传算法主要有选择、交叉和突变算子 选择算子 遗传算法使用选择算子或称复制算子来对种群中的个体进行优胜劣汰操作:选择算子使适应性高的个体在后代中生存的概率较大,而适应度低的个体生存的概率很小甚至被淘汰。遗传算法中的选择操作就是来确定如何从父代群体中按某种方法选取那些个体以传到下一代群体的一种遗传算法。选择操作是建立在群体中个体的适应度评价基础上的。选择操作的主要目的是为了避免基因缺失、提高全局收敛性和计算效率。在遗传算法中级很重要的作用。选择操作有多种方法,最常用的是轮盘赌法。在具体使用中,应根据问题求解的特点采用合适的方法或者混合使用。下面简单介绍各种选择算法: (1) 比例选择算法 基本思想是:各个个体被选中的概率与其适应度大小成正比,即适应度越高的个体被选中的概率也越大,反之则小。 (2) 最优选择算法 在遗传算法的运行过程中,通过对个体进行交叉、变异等遗传操作而不断地产出新的个体。虽然随着群体的进化过程会产出越来越多的优良个体,但由于选择、交叉、变异等遗传操作的随机性,它们也有可能破坏掉当前群体中适应度最好的个体。由于随机操作的原因,这种选择方法的误差比较大,有时甚至连适应度较高的个体也选择不上,由此会降低群体的平均适应度,对算法的运行效率、收敛性都有不利的影响。一般说来,适应度最好的个体要尽可能地保留到下一代群体中。为此可以使用最优保留策略进化模型,即当前群体中适应度最高的个体不参与交叉运算和变异运算,而是用它来替换掉本代群体中经过交叉、变异等操

MATLAB实验遗传算法与优化设计

实验六 遗传算法与优化设计 一、实验目的 1. 了解遗传算法的基本原理和基本操作(选择、交叉、变异); 2. 学习使用Matlab 中的遗传算法工具箱(gatool)来解决优化设计问题; 二、实验原理及遗传算法工具箱介绍 1. 一个优化设计例子 图1所示是用于传输微波信号的微带线(电极)的横截面结构示意图,上下两根黑条分别 代表上电极和下电极,一般下电极接地,上电极接输入信号,电极之间是介质(如空气,陶瓷等)。微带电极的结构参数如图所示,W 、t 分别是上电极的宽度和厚度,D 是上下电极间距。当微波信号在微带线中传输时,由于趋肤效应,微带线中的电流集中在电极的表面,会产生较大的欧姆损耗。根据微带传输线理论,高频工作状态下(假定信号频率1GHz ),电极的欧姆损耗可以写成(简单起见,不考虑电极厚度造成电极宽度的增加): 图1 微带线横截面结构以及场分布示意图 {} 28.6821ln 5020.942ln 20.942S W R W D D D t D W D D W W t D W W D e D D παπππ=+++-+++?????? ? ??? ??????????? ??????? (1) 其中πρμ0=S R 为金属的表面电阻率,为电阻率。可见电极的结构参数影响着电极损

耗,通过合理设计这些参数可以使电极的欧姆损耗做到最小,这就是所谓的最优化问题或者称为规划设计问题。此处设计变量有3个:W 、D 、t ,它们组成决策向量[W, D ,t ] T ,待优化函数(,,)W D t α称为目标函数。 上述优化设计问题可以抽象为数学描述: ()()min .. 0,1,2,...,j f X s t g X j p ????≤=? (2) 其中()T n x x x X ,...,,21=是决策向量,x 1,…,x n 为n 个设计变量。这是一个单目标的数学规划问题:在一组针对决策变量的约束条件()0,1,...,j g X j p ≤=下,使目标函数最小化(有时 也可能是最大化,此时在目标函数()X f 前添个负号即可)。满足约束条件的解X 称为可行解,所有满足条件的X 组成问题的可行解空间。 2. 遗传算法基本原理和基本操作 遗传算法(Genetic Algorithm, GA)是一种非常实用、高效、鲁棒性强的优化技术,广 泛应用于工程技术的各个领域(如函数优化、机器学习、图像处理、生产调度等)。遗传算法是模拟生物在自然环境中的遗传和进化过程而形成的一种自适应全局优化算法。按照达尔文的进化论,生物在进化过程中“物竞天择”,对自然环境适应度高的物种被保留下来,适应度差的物种而被淘汰。物种通过遗传将这些好的性状复制给下一代,同时也通过种间的交配(交叉)和变异不断产生新的物种以适应环境的变化。从总体水平上看,生物在进化过程中子代总要比其父代优良,因此生物的进化过程其实就是一个不断产生优良物种的过程,这和优化设计问题具有惊人的相似性,从而使得生物的遗传和进化能够被用于实际的优化设计问题。 按照生物学知识,遗传信息基因(Gene)的载体是染色体(Chromosome),染色体中 一定数量的基因按照一定的规律排列(即编码),遗传基因在染色体中的排列位置称为基因

遗传算法编码

遗传算法编码 读万卷书不如行万里路,今天下决心写一个SGA(Simple Genetic Alogrithms)程序,是求解非约束优化问题。 max f(x1,x2)=21.5+x1*sin(4*PI*x1)+x2*sin(20*PI*x2) -3.0<=x1<=12.1 4.1<=x2<= 5.8 这可是遗传算法中最容易的,可是结果却令人失望,在整个求解过程中都收敛在局部最优,只有通过加大变异率才能求得全局最优,但问题可想而知:全局最优解不稳定,就好像是昙花一现。 查了一下资料才发现是编码设计的问题。我用的是二进制编码。 编码是应用遗传算法时要解决的首要问题,也是设计遗传算法时的一个关键步骤。编码方法影响到交叉算子、变异算子等遗传算子的运算方法,大很大程度上决定了遗传进化的效率。 迄今为止人们已经提出了许多种不同的编码方法。总的来说,这些编码方法可以分为三大类:二进制编码法、浮点编码法、符号编码法。下面我们从具体实现角度出发介绍其中的几种主要编码方法。 1.二进制编码方法: 它由二进制符号0和1所组成的二值符号集。它有以下一些优点: 1)编码、解码操作简单易行 2)交叉、变异等遗传操作便于实现 3)符合最小字符集编码原则 4)利用模式定理对算法进行理论分析。 二进制编码的缺点是:对于一些连续函数的优化问题,由于其随机性使得其局部搜索能力较差,如对于一些高精度的问题(如上题),当解迫近于最优解后,由于其变异后表现型变化很大,不连续,所以会远离最优解,达不到稳定。而格雷码能有效地防止这类现象 2.格雷码方法: 格雷码方法是这样的一种编码方法,其连续两个整数所对应的编码值之间仅仅只有一个码位是不同的。如下表 十进制二进制格雷码 000000000 100010001 200100011 300110010 401000110 501010111 601100101 701110100 810001100 910011101 1010101111 1110111110 1211001010 1311011011

基于遗传算法的染色体编码的分析

基于遗传算法的染色体编码的分析 第19卷第1期 2010年1月 重庆电子工程职业学院V o1.19NO.1 lan.2010oumalofChon£咽in£CoUe~eofElectronicEnl~ine 基于遗传算法的染色体编码的分析 吴焱岷 (重庆大学计算机学院,重庆400044;重庆电子工程职业学院,重庆401331) 摘要:遗传算法为解决复杂问题,特别是NP类问题提供了一种全新的思路,其编码方式也将在一定程 度上决定算法效率的高低和程序设计的复杂程度.需要针对想要解决问题类型的不同而采取不同的编码方式. 关键词:遗传算法;编码;值类型;事务类型 中图分类号:TP39文献标识码:A文章编号:1674—5787(2010)01一【)【】86一O2 遗传算法的概念最早是由BagleyJ.D在1967年提出 的.而开始遗传算法的理论和方法的系统性研究在1975 年开始.这一开创性工作是由Michigan大学的J.H. Holland所实行.遗传算法简称GA(GeneticAlgorithm),在 本质上是一种不依赖具体问题的直接搜索方法.其基本 思想是基于Darwin进化论和Mendel的遗传学说 Darwin进化论最重要的是适者生存原理它认为每 一 物种在发展中越来越适应环境.物种每个个体的基本 特征由后代所继承.但后代又会产生一些异于父代的新 变化. Mendel遗传学说最重要的是基因遗传原理它认为

遗传以密码方式存在细胞中.并以基因形式包含在染色 体内每个基因有特殊的位置并控制某种特殊性质,所 以.每个基因产生的个体对环境具有某种适应性.基因突变和基因杂交可产生更适应于环境的后代.经过存优去 劣的自然淘汰.适应性高的基因结构得以保存下来. 遗传算法最大的特点莫过于可以绕过复杂的数学推 导而采用最直接的方式在有限空间中搜索结果.例如求 函数f(x)=x*sin(10"n'x)+2在(一1,2)区间上的极大值,按照常规思路.需要对函数求导,找出函数的变化趋势和拐点.才能确定最大值的位置.对于相对简单的函数.采用 这些数学的方法还没有太高的难度.但是对于复杂的函数.则需要较为深厚的数学功底.同时也增加了程序设计的复杂程度 对于GA.采用一套全新的思路,首先任意给定一组 随机值x.由此开始进行演化.这些值就是代表一系列原 始生命.这些生命是否可以延续,取决于他们的适应程 度将这些随机值带入函数中进行运算,对得到的一系列 函数值进行排序.求最大值,可以认为值较大的函数值对应的x接近我们所需要的结论,这些结果可以保留;反之.对于另外一些函数值较小的x.则表明应该被淘汰. 第二步就是按照Mendel的基因理论.对这些将被淘 汰的X进行演化.演化分两步进行: (1)交叉.两个x值交换数据,类似生物界的交配,染 色体进行重新重组.交换基因以期得到新的品种,新品种可能更加适应环境而得到生存的机会.也可能向相反的 方向发展.从而失去生存的机会.因此通过某种方式得到新的X的值可以导致函数值增大.也可能导致减小,他们都将参加新一轮的竞争 (2)变异.单一的X值进行自身的调整,这类似于生

遗传算法十进制编码求函数极大值程序

遗传算法十进制编码求函数极大值程序%Generic Algorithm for function f(x1,x2) optimum clear all; close all; Size=500; CodeL=2; MinX(1)=-2.048; MaxX(1)=2.048; MinX(2)=-2.048; MaxX(2)=2.048; E(:,1)=MinX(1)+(MaxX(1)-MinX(1))*rand(Size,1); E(:,2)=MinX(2)+(MaxX(2)-MinX(2))*rand(Size,1); G=200; BsJ=0; %*************** Start Running *************** for kg=1:1:G time(kg)=kg; %****** Step 1 : Evaluate BestJ ****** for i=1:1:Size xi=E(i,:); x1=xi(1); x2=xi(2); F(i)=100*(x1^2-x2)^2+(1-x1)^2; Ji=1./F; BsJi(i)=min(Ji); end [OderJi,IndexJi]=sort(BsJi); BestJ(kg)=OderJi(1); BJ=BestJ(kg); Ji=BsJi+1e-10; %Avoiding deviding zero fi=F; [Oderfi,Indexfi]=sort(fi); %Arranging fi small to bigger

Bestfi=Oderfi(Size); %Let Bestfi=max(fi) BestS=E(Indexfi(Size),:); %Let BestS=E(m), m is the Indexfi belong to max(fi) bfi(kg)=Bestfi; kg BestS %****** Step 2 : Select and Reproduct Operation****** fi_sum=sum(fi); fi_Size=(Oderfi/fi_sum)*Size; fi_S=floor(fi_Size); % Selecting Bigger fi value r=Size-sum(fi_S); Rest=fi_Size-fi_S; [RestValue,Index]=sort(Rest); for i=Size:-1:Size-r+1 fi_S(Index(i))=fi_S(Index(i))+1; % Adding rest to equal Size end k=1; for i=Size:-1:1 % Select the Sizeth and Reproduce firstly for j=1:1:fi_S(i) TempE(k,:)=E(Indexfi(i),:); % Select and Reproduce k=k+1; % k is used to reproduce end end %************ Step 3 : Crossover Operation ************ Pc=0.90; for i=1:2:(Size-1) temp=rand; if Pc>temp %Crossover Condition alfa=rand; TempE(i,:)=alfa*E(i+1,:)+(1-alfa)*E(i,:); TempE(i+1,:)=alfa*E(i,:)+(1-alfa)*E(i+1,:); end end TempE(Size,:)=BestS; E=TempE; %************ Step 4: Mutation Operation ************** Pm=0.10-[1:1:Size]*(0.01)/Size; %Bigger fi,smaller Pm

实数编码的遗传算法代码

function GA_real_coded_min % ±?ày?aêμêy±à??ò?′???·¨?óoˉêy×?D??μμ?ó??ˉ?êìa % ??±êoˉêy?a J = x1^2 + x2^2 % ???D x1 μ?·??§?a [-10,10], x2 μ?·??§?a [-10,10] Size = 200;% the value of population CodeL = 2; MinX(1) = -10; MaxX(1) = 10; MinX(2) = -10; MaxX(2) = 10; E(:,1) = MinX(1) + (MaxX(1)-MinX(1))*rand(Size,1); E(:,2) = MinX(2) + (MaxX(2)-MinX(2))*rand(Size,1); G = 100;% the max generation %---------------Start Running--------------------------------------------- for kg = 1 : G time(kg) = kg; %----------------------step 1: Evaluate BestJ-------------------------for i = 1 : Size xi = E(i,:); x1 = xi(1); x2 = xi(2); % ????μ? F ó?óú??????ì?μ?êêó|?è?μ£?êêó|?èoˉêy?ù?Y??±êoˉêy??DDá???D?±??? F(i) = 1/(x1^2 + x2^2);% ????êêó|?è?μ£???′ó??o? Ji = x1^2 + x2^2;% ??????±ê?μ£???D???o? BsJi(i) = min(Ji); end [OrderJi,IndexJi] = sort(BsJi); BestJ(kg) = OrderJi(1); Ji = BsJi + eps;% Avoiding deviding zero fi = F; [Orderfi,Indexfi] = sort(fi); % Arranging fi small to bigger Bestfi = Orderfi(Size); % Let Bestfi=max(fi) BestS = E(Indexfi(Size),:); % Let BestS=E(m),m is the Indexfi belongs to max(fi) bfi(kg) = Bestfi; kg BestS %--------------------Step 2:Select and Reproduct Operation------------ fi_sum = sum(fi); fi_Size = (Orderfi/fi_sum)*Size; fi_S = floor(fi_Size); % Selecting Bigger fi value r = Size - sum(fi_S); Rest = fi_Size - fi_S; [RestValue,Index] = sort(Rest); for i = Size : -1 : Size-r+1

基于数据挖掘的遗传算法

基于数据挖掘的遗传算法 xxx 摘要:本文定义了遗传算法概念和理论的来源,介绍遗传算法的研究方向和应用领域,解释了遗传算法的相关概念、编码规则、三个主要算子和适应度函数,描述遗传算法计算过程和参数的选择的准则,并且在给出的遗传算法的基础上结合实际应用加以说明。 关键词:数据挖掘遗传算法 Genetic Algorithm Based on Data Mining xxx Abstract:This paper defines the concepts and theories of genetic algorithm source, Introducing genetic algorithm research directions and application areas, explaining the concepts of genetic algorithms, coding rules, the three main operator and fitness function,describing genetic algorithm parameter selection process and criteria,in addition in the given combination of genetic algorithm based on the practical application. Key words: Data Mining genetic algorithm 前言 遗传算法(genetic algorithm,GAs)试图计算模仿自然选择的过程,并将它们运用于解决商业和研究问题。遗传算法于20世界六七十年代由John Holland[1]发展而成。它提供了一个用于研究一些生物因素相互作用的框架,如配偶的选择、繁殖、物种突变和遗传信息的交叉。在自然界中,特定环境限制和压力迫使不同物种竞争以产生最适应于生存的后代。在遗传算法的世界里,会比较各种候选解的适合度,最适合的解被进一步改进以产生更加优化的解。 遗传算法借助了大量的基因术语。遗传算法的基本思想基于达尔文的进化论和孟德尔的遗传学说,是一类借鉴生物界自然选择和自然遗传机制的随机搜索算法。生物在自然界的生存繁殖,显示对其自然环境的优异自适应能力。受其启发,人们致力于对生物各种生存特性的机制研究和行为模拟。通过仿效生物的进化与遗传,根据“生存竞争”和“优胜劣汰”的原则,借助选择、交叉、变异等操作,使所要解决的问题从随机初始解一步步逼近最优解。现在已经广泛的应用于计算机科学、人工智能、信息技术及工程实践。[2]在工业、经济管理、交通运输、工业设计等不同领域,成功解决了许多问题。例如,可靠性优化、流水车间调度、作业车间调度、机器调度、设备布局设计、图像处理以及数据挖掘等。遗传算法作为一类自组织于自适应的人工智能技术,尤其适用于处理传统搜索方法难以解决的复杂的和非线性的问题。 1.遗传算法的应用领域和研 究方向 1.1遗传算法的特点 遗传算法作为一种新型、模拟生物进化过程的随机化搜索方法,在各类结 构对象的优化过程中显示出比传统优 化方法更为独特的优势和良好的性能。 它利用其生物进化和遗传的思想,所以 它有许多传统算法不具有的特点[3]: ※搜索过程不直接作用在变量上,而是 作用于由参数集进行了编码的个体 上。此编码操作使遗传算法可以直接 对结构对象进行操作。 ※搜索过程是从一组解迭代到另一组 解,采用同时处理群体中多个个体的 方法,降低了陷入局部最优解的可能 性,易于并行化。

遗传算法解释及代码(一看就懂)

遗传算法( GA , Genetic Algorithm ) ,也称进化算法。遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。因此在介绍遗传算法前有必要简单的介绍生物进化知识。 一.进化论知识 作为遗传算法生物背景的介绍,下面内容了解即可: 种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。 个体:组成种群的单个生物。 基因 ( Gene ) :一个遗传因子。 染色体 ( Chromosome ):包含一组的基因。 生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。适应度低的个体参与繁殖的机会比较少,后代就会越来越少。 遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。 简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。 二.遗传算法思想 借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。这样进化N代后就很有可能会进化出适应度函数值很高的个体。 举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中

(完整版)遗传算法的基本原理

遗传算法的基本原理和方法 一、编码 编码:把一个问题的可行解从其解空间转换到遗传算法的搜索空间的转换方法。 解码(译码):遗传算法解空间向问题空间的转换。 二进制编码的缺点是汉明悬崖(Hamming Cliff),就是在某些相邻整数的二进制代码之间有很大的汉明距离,使得遗传算法的交叉和突变都难以跨越。 格雷码(Gray Code):在相邻整数之间汉明距离都为1。 (较好)有意义的积木块编码规则:所定编码应当易于生成与所求问题相关的短距和低阶的积木块;最小字符集编码规则,所定编码应采用最小字符集以使问题得到自然的表示或描述。 二进制编码比十进制编码搜索能力强,但不能保持群体稳定性。 动态参数编码(Dynamic Paremeter Coding):为了得到很高的精度,让遗传算法从很粗糙的精度开始收敛,当遗传算法找到一个区域后,就将搜索现在在这个区域,重新编码,重新启动,重复这一过程,直到达到要求的精度为止。 编码方法:

1、二进制编码方法 缺点:存在着连续函数离散化时的映射误差。不能直接反映出所求问题的本身结构特征,不便于开发针对问题的专门知识的遗传运算算子,很难满足积木块编码原则 2、格雷码编码:连续的两个整数所对应的编码之间仅仅只有一个码位是不同的,其余码位都相同。 3、浮点数编码方法:个体的每个基因值用某一范围内的某个浮点数来表示,个体的编码长度等于其决策变量的位数。 4、各参数级联编码:对含有多个变量的个体进行编码的方法。通常将各个参数分别以某种编码方法进行编码,然后再将他们的编码按照一定顺序连接在一起就组成了表示全部参数的个体编码。 5、多参数交叉编码:将各个参数中起主要作用的码位集中在一起,这样它们就不易于被遗传算子破坏掉。评估编码的三个规范:完备性、健全性、非冗余性。 二、选择 遗传算法中的选择操作就是用来确定如何从父代群体中按某种方法选取那些个体遗传到下一代群体中的一种遗传运算,用来确定重组或交叉个体,以及被选个体将产生多少个子代个体。 常用的选择算子: 1、轮盘赌选择(Roulette Wheel Selection):是一种回放式随机采样方法。每个个体进入下一代的概率等于它的适应度值与整个种群中个体适应度值和的比例。选择误差较大。

(完整版)遗传算法简介及代码详解

遗传算法简述及代码详解 声明:本文内容整理自网络,认为原作者同意转载,如有冒犯请联系我。 遗传算法基本内容 遗传算法为群体优化算法,也就是从多个初始解开始进行优化,每个解称为一个染色体,各染色体之间通过竞争、合作、单独变异,不断进化。 遗传学与遗传算法中的基础术语比较 染色体:又可以叫做基因型个体(individuals) 群体/种群(population):一定数量的个体组成,及一定数量的染色体组成,群体中个体的数 量叫做群体大小。 初始群体:若干染色体的集合,即解的规模,如30,50等,认为是随机选取的数据集合。适应度(fitness):各个个体对环境的适应程度 优化时先要将实际问题转换到遗传空间,就是把实际问题的解用染色体表示,称为编码,反过程为解码/译码,因为优化后要进行评价(此时得到的解是否较之前解优越),所以要返回问题空间,故要进行解码。SGA采用二进制编码,染色体就是二进制位串,每一位可称为一个基因;如果直接生成二进制初始种群,则不必有编码过程,但要求解码时将染色体解码到问题可行域内。 遗传算法的准备工作: 1) 数据转换操作,包括表现型到基因型的转换和基因型到表现型的转换。前者是把求解空间中的参数转化成遗传空间中的染色体或者个体(encoding),后者是它的逆操作(decoding) 2) 确定适应度计算函数,可以将个体值经过该函数转换为该个体的适应度,该适应度的高低要能充分反映该个体对于解得优秀程度。非常重要的过程。 遗传算法基本过程为: 1) 编码,创建初始群体 2) 群体中个体适应度计算 3) 评估适应度 4) 根据适应度选择个体 5) 被选择个体进行交叉繁殖 6) 在繁殖的过程中引入变异机制 7) 繁殖出新的群体,回到第二步

遗传算法 (2)

用遗传算法优化BP神经网络的Matlab编程实例 由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。 程序一:GA训练BP权值的主函数 function net=GABPNET(XX,YY) %-------------------------------------------------------------------------- % GABPNET.m % 使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络 %-------------------------------------------------------------------------- %数据归一化预处理 nntwarn off XX=premn mx(XX); YY=premn mx(YY); %创建网络 net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'trainlm'); %下面使用遗传算法对网络进行优化 P=XX; T=YY; R=size(P,1); S2=size(T,1); S1=25;%隐含层节点数 S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 aa=ones(S,1)*[-1,1]; popu=50;%种群规模 initPpp=initializega(popu,aa,'gabpEval');%初始化种群 gen=100;%遗传代数 %下面调用gaot工具箱,其中目标函数定义为gabpEval [x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPpp,[1e-6 1 1],'maxGenTerm',gen,... 'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMutation',[2 gen 3]); %绘收敛曲线图 figure(1) plot(trace(:,1),1./trace(:,3),'r-'); hold on plot(trace(:,1),1./trace(:,2),'b-');

遗传算法(浮点数编码)

浮点数编码实现遗传算法 遗传算法主要包括三个主要操作,选择、交叉和变异。用浮点数编码进行运算,三种操作方法如下: 选择: 1. 计算i f 和n i S f =∑ 2. 计算i i n f P S = 3. 累计概率1 i i j j g P ==∑ 4. 产生均匀分布0~1的随机数r 5. 将r 与i g 比较,如果1i i g r g -≤≤,则选择个体i 进入到下一代新群体 6. 反复执行4和5,直至新群体的个体数目等于父代群体规模 交叉: 11(1)(1)t t t A B A t t t B A B x x x x x x αααα++=+-=+- 其中,1t A x +和1t B x +是交叉之后的个体,t A x 和t B x 是随机选择的两个 个体,α是交叉的一个常数, 取值为(0,1]。 变异: 1max min ()()%20()()%21t t t A A A t t A A x k x x r rand x x k x x r rand +?+?-?==?-?-?=?,, 1t A x +是变异之后的个体,t A x 是变异之前的个体,k 是变异的一个常 数,取值为(0,1],max x 是个体的上限,min x 是个体的下限,r 是产生的随机数。

适应度线性变换: F aF b '=+ 其中F 是原适应度,F '是变换之后的适应度,a,b 是变换的系数。适应度线性变换要满足下面两个条件: 条件一:avg avg F F '= 条件二:max avg F C F '=? C=1.2~2 缩放时参数a,b 的计算方法可以用如下方法: 如果满足: max min 1 avg C F F F C ?-> - 就令: max (1) avg avg C a F F F -=- max max avg avg avg F C F b F F F -?= - 否则: min avg avg F a F F = - min min avg avg F F b F F ?= - 实现代码如下:

遗传算法及其发展状况研究

关于遗传算法的文献综述 班级:13级机械(4)班学号:913101140439 姓名:元志斌 关键词:遗传算法,编码,搜索,优化,交叉,遗传 摘要:遗传算法是一种基于生物进化自然选择和群体遗传机理的,适合于复杂系统优化的自适应概率优化技术,近年来,因为遗传算法求解复杂优化问题的巨大潜力和在工业工程领域的成功应用,这种算法受到了国内外学者的广泛关注,本文介绍了遗传算法研究现状和发展的前景,概述了它的理论和技术,并对遗传算法的发展情况发表了自己的看法。Abstract:Genetic algorithm is a kind of natural selection and based on biological evolution of gen etic mechanism, group suitable for complex system optimization adaptive probability optimizatio n technique, in recent years, because genetic algorithm for solving complex optimization problem in the huge potential and the successful application of industrial engineering, this algorithm was wide attention of scholars at home and abroad, this paper introduces the current research status and development of genetic algorithm, summarizes the prospect of its theory and technology of genetic algorithm and the development of published opinions of his own. 1.引言 遗传算法Genetic Algorithm(GA)是由美国密歇根大学的John H. Holland教授及其学生于20世纪60年代末到70年代初提出的。它是以达尔文的自然进化论“适者生存、优胜劣汰”和孟德尔遗传变异理论为基础,模拟生物进化过程。它具有大范围快速全局搜索能力,能在搜索过程中自动获取和积累有关搜索空间的知识,并自适应地控制搜索过程以求的最优解。正是遗传算法的诸多特点,使得它在求解组合优化、机器学习、并行处理等问题上得到了广泛的应用。普通遗传算法是通过模拟染色体群的选择、交叉和变异等操作,不断迭代,最终收敛到高适应度值的染色体,从而求得问题的最优解。但是随着问题规模的扩大,组合优化问题的搜索空间急剧扩大,普通遗传算法的收敛速度慢、易陷入局部最优的缺点就暴露了。而佳点集遗传算法正是通过佳点集的方法改进交叉算子,加快算法收敛到全局最优解的速度,降低发生早熟的概率,提高整个算法的计算效率。 2.国内外相关研究现状 遗传算法的鼻祖是美国Michigan大学的Holland教授及其学生。他们受到生物模拟技术的启发,创造了一种基于生物遗传和进化机制的适合于复杂系统优化的自适应概率优化技术

遗传算法入门到掌握

遗传算法入门到掌握
读完这个讲义,你将基本掌握遗传算法,要有耐心看完。
想了很久,应该用一个怎么样的例子带领大家走进遗传 算法的神奇世界呢?遗 传算法的有趣应用很多,诸如寻路问题,8 数码问题,囚犯困境,动作控制,找 圆心问题(这是一个国外网友的建议:在一个不规则的多边形 中,寻找一个包 含在该多边形内的最大圆圈的圆心。),TSP 问题(在以后的章节里面将做详细 介绍。),生产调度问题,人工生命模拟等。直到最后看到一个非 常有趣的比 喻,觉得由此引出的袋鼠跳问题(暂且这么叫它吧),既有趣直观又直达遗传算 法的本质,确实非常适合作为初学者入门的例子。这一章将告诉读者,我 们怎 么让袋鼠跳到珠穆朗玛峰上去(如果它没有过早被冻坏的话)。
问题的提出与解决方案
让我们先来考虑考虑下面这个问题的解决办法。 已知一元函数:
图 2-1 现在要求在既定的区间内找出函数的最大值。函数图像如图 2-1 所示。
极大值、最大值、局部最优解、全局最优解

在解决上面提出的问题之前我们有必要先澄清几个以后将常常会碰到的概念: 极 大值、最大值、局部最优解、全局最优解。学过高中数学的人都知道极大值在一 个小邻域里面左边的函数值递增,右边的函数值递减,在图 2.1 里面的表现就是 一 个“山峰”。当然,在图上有很多个“山峰”,所以这个函数有很多个极大 值。而对于一个函数来说,最大值就是在所有极大值当中,最大的那个。所以极 大值具有 局部性,而最大值则具有全局性。 因为遗传算法中每一条染色体,对应着遗传算法的一个 解决方案,一般我们用 适应性函数(fitness function)来衡量这个解决方案的优劣。所以从一个基因 组到其解的适应度形成一个映射。 所以也可以把遗传算法的过程看作是一个在多 元函数里面求最优 解的过程。在这个多维曲面里面也有数不清的“山峰”,而 这些最优解所对应的就是局部最优解。 而其中也会有一个 “山峰” 的海拔最高的, 那么这个就是全局最优 解。而遗传算法的任务就是尽量爬到最高峰,而不是陷 落在一些小山峰。(另外,值得注意的是遗传算法不一定要找“最高的山峰”, 如果问题的适应度评价越小越 好的话,那么全局最优解就是函数的最小值,对 应的,遗传算法所要找的就是“最深的谷底”)如果至今你还不太理解的话,那 么你先往下看。本章的示例程序将会 非常形象的表现出这个情景。
“袋鼠跳”问题
既然我们把 函数曲线理解成一个一个山峰和山谷组成的山脉。 那么我们 可以设想所得到的每一个解就是一只袋鼠,我们希望它们不断的向着更高处跳 去,直到跳到最高的山峰 (尽管袋鼠本身不见得愿意那么做)。所以求最大值 的过程就转化成一个“袋鼠跳”的过程。下面介绍介绍“袋鼠跳”的几种方式。
爬山法、模拟退火和遗传算法
解决寻找最大值问题的几种常见的算法: 1. 爬山法(最速上升爬山法): 从搜索空间中随机产生邻近的点, 从中选择对应解最优的个体, 替换原来的个体, 不断 重复上述过程。因为只对“邻近”的点作比较,所以目光比较“短浅”, 常常只能收敛到离开初始位置比较近的局部最优解上面。 对于存在很多局部最优 点的问题, 通过一个简单的迭代找出全局最优解的机会非常渺茫。(在爬山法 中, 袋鼠最有希望到达最靠近它出发点的山顶, 但不能保证该山顶是珠穆朗玛峰, 或者是一个非常 高的山峰。因为一路上它只顾上坡,没有下坡。) 2. 模拟退火: 这个方法来自金属热加工过程的启发。在金属热加工过程中,当金属的温度超过 它的熔点(Melting Point) 时,原子就会激烈地随机运动。与所有的其它的物 理系统相类似, 原子的这种运动趋向于寻找其能量的极小状态。在这个能量的变

遗传算法【精品毕业设计】(完整版)

遗传算法的概念最早是由Bagley J.D 于1967年提出的。后来Michigan大学的J.H.Holland 教授于1975年开始对遗传算法(Genetic Algorithm, GA)的机理进行系统化的研究。遗传算法是对达尔文生物进化理论的简单模拟,其遵循“适者生存”、“优胜略汰”的原理。遗传算法模拟一个人工种群的进化过程,并且通过选择、杂交以及变异等机制,种群经过若干代以后,总是达到最优(或近最优)的状态。 自从遗传算法被提出以来,其得到了广泛的应用,特别是在函数优化、生产调度、模式识别、神经网络、自适应控制等领域,遗传算法更是发挥了重大的作用,大大提高了问题求解的效率。遗传算法也是当前“软计算”领域的重要研究课题。 本文首先结合MATLAB对遗传算法实现过程进行详细的分析,然后通过1个实际的函数优化案例对其应用进行探讨。 1. 遗传算法实现过程 现实生活中很多问题都可以转换为函数优化问题,所以本文将以函数优化问题作为背景,对GA 的实现过程进行探讨。大部分函数优化问题都可以写成求最大值或者最小值的形式,为了不是一般性,我们可以将所有求最优值的情况都转换成求最大值的形式,例如,求函数f(x)的最大值, 若是求函数f(x)的最小值,可以将其转换成g(x)=-f(x),然后求g(x)的最大值, 这里x可以是一个变量,也可是是一个由k个变量组成的向量, x=(x1, x2, …, x k)。每个 x i, i=1,2,…,k, 其定义域为D i,D i=[a i, b i]。 一般规定f(x)在其定义域内只取正值,若不满足,可以将其转换成以下形式, 其中C是一个正常数。 1.1 编码与解码 要实现遗传算法首先需要弄清楚如何对求解问题进行编码和解码。对于函数优化问题,一般来说,有两种编码方式,一是实数编码,一是二进制编码,两者各有优缺点,二进制编码具有稳定性高、种群多样性大等优点,但是需要的存储空间大,需要解码过程并且难以理解;而实数编码直接用实数表示基因,容易理解并且不要解码过程,但是容易过早收敛,从而陷入局部最优。本文以最常用的二进制编码为例,说明遗传编码的过程。 从遗传算法求解的过程来看,需要处理好两个空间的问题,一个是编码空间,另一个是解空间,如下图所示

相关文档