文档库 最新最全的文档下载
当前位置:文档库 › 二维随机变量练习题

二维随机变量练习题

二维随机变量练习题
二维随机变量练习题

二维随机变量练习题

一、填空题(每题5分共25分)

1. 抛币试验时,如果记“正面朝上”为1,“反面朝上”为0。现随机抛硬币两次,记第

一次抛币的结果为随机变量ξ,第二次抛币的结果为随机变量η,则),(ηξ的取值有______________________。

2. 若某二维随机变量),(Y X 的分布率为

则a ,b 满足__________。

3. 若二维随机变量),(ηξ的分布函数为),(y x F ,则=+∞

→+∞→),(lim y x F y x _________。

4. 若二维连续型随机变量),(Y X 的密度函数为),(y x ?,则

??

+∞∞

-+∞

-=dxdy y x ),(?_________。

5. 若二维连续型随机变量),(ηξ的边缘密度函数分别为)(x ξ?,)(y η?,联合密度函数

为),(y x ?,则ξ,η相互独立的充分必要条件为__________。 二、选择题(每题5分共25分)

6.关于二维随机变量的分布函数),(y x F ,下面正确的是_______

A. 0),(lim =-∞

→-∞

→y x F y x ;B. 1),(lim =-∞

→-∞→y x F y x ;C. 0),(lim =+∞

→-∞→y x F y x ;D. 1),(lim =-∞

→+∞→y x F y x

7.下面说法正确的是_______

A. 二维随机变量的分布函数其定义域为平面域的一部分;

B. 二维离散型随机变量的取值是有限个数对;

C. 二维连续型随机变量是指两个随机变量的取值是连续变化的;

D. 二维连续型随机变量在某个点的取值概率为零。

8.若二维连续型随机变量),(ηξ的联合密度函数和边缘密度分别为),(y x ?,)(x ξ?,)(y η?,则下面关系式正确的是________

A.?

+∞

-=

dx y x x ),()(??ξ; B. ?

+∞

-=

dx y x y ),()(??η;

C. )()(),(y x y x ηξ???=;

D. )()(),(y x y x ηξ???+=

9.设两个随机变量X 与Y 相互独立且同分布,

3

23

110P

X

3

23

11

0P Y ,则下列各式成

立的是_______

A.Y X =;

B.9

5}{=

=Y X P ;C.1}{==Y X P ;D.0}{==Y X P 。

10.对于随机变量的相互独立,下列说法争取的是______ A.与随机变量的相互独立相同;

B.与随机变量的相互独立无关;

C.随机变量相互独立时,可由边缘分布获得联合分布;

D.随机变量相互独立时,可有联合分布获得边缘分布。 三、计算题(每题8分共24分)

11.一口袋中有四个球,依次标有1,2,3,3。从这袋中任取一球,不放回袋中,再从袋中任取一球。设每次取球时,袋中每个球被取到的可能性相同。以Y X ,分别记第一、二次取得的球上标有的数字。求表示),(Y X 的分布密度的矩形表格。 12.已知二维离散型随机变量),(ηξ的分布规律为

求:①a 的值;②ξ和η的边缘密度。

13.已知某二维连续型随机变量),(ηξ的分布函数为 ??????

?

?

?

???

???>>+>≤<-+≤<>-+≤<≤<-+-≤-≤=1

0,11

202

1,)21(4100),

21(21

2002

1),122(20

2

1,0),(2y and x x y and x x y and x y y x y and x y x y y or x y x F

求其密度函数。

四、(6分)已知

ηξ,的分布密度表格为

试证明:当9

1,92=

=

βα时,ηξ,是相互独立的。

五、(10分)设Y X ,的联合密度函数是

??

?<≤<≤=elsewhere

x

y x x y x ,

00,10,

3),(?

求}4

18

1{<

≤X Y P 。

(提示:借助乘法定理求解)。

六、(10分)设随机变量),(Y X 在G 上服从均匀分布,其中G 由x 轴,y 轴及直线1=+y x 所围成。

求:①),(Y X 的边缘概率密度)(x X ?;

②}{X Y P <;

③试讨论X ,Y 的相互独立性。

高二数学选修2-3离散型随机变量的方差导学案

2.32离散型随机变量的方差 学习目标 1、理解各种分布的方差 2、会应用均值(期望)和方差来解决实际问题 自主学习:课本 1.一般地,设一个离散型随机变量X 所有可能取的值是n x x x x ???321,,这些值对应的概率是n p p p p ???,,,321则________________________________________________________叫做这个 离散型随机变量X 的方差;______________________________叫作离散型随机变量X 的标准差 2. 离散型随机变量的方差刻画了这个离散型随机变量的_____________________________. 3. 离散型随机变量X 分布列为二点分布时, ()___________D X =. 4.离散型随机变量X 服从参数为n ,p 的二项分布时,()___________D X =. 5. 离散型随机变量X 服从参数为,N M ,n 的超几何分布时, ()___________D X = 自学检测 1.已知X ~(),B n p ,()8,() 1.6E X D X ==,则,n p 的值分别是( ) A .100和0.08 B .20和0.4 C .10和0.2 D .10和0.8 2.设掷1颗骰子的点数为X ,则( ) A. 2() 3.5,() 3.5E X D X == B. 35() 3.5,()12 E X D X == C. () 3.5,() 3.5E X D X == D. 35() 3.5,()16E X D X == 3.一牧场的10头牛,因误食疯牛病病毒污染的饲料被感染,已知疯牛病发病的概率是0.02,若发病的牛数为X 头,则()D X 等于( ) A. 0.2 B. 0.196 C.0.8 D.0.812 4. 已知随机变量X 的分布列为

高中数学随机变量分布列知识点

第二章随机变量及其分布 内容提要: 一、随机变量的定义 设是一个随机试验,其样本空间为,若对每一个样本点,都有唯一确定的实数 与之对应,则称上的实值函数是一个随机变量(简记为)。 二、分布函数的概念和性质 1.分布函数的定义 设是随机变量,称定义在上的实值函数 为随机变量的分布函数。 2.分布函数的性质 (1) , (2)单调不减性:, (3) (4)右连续性:。 注:上述4个性质是函数是某一随机变量的分布函数的充要条件。在不同的教科书上,分布函数的定义可能有所不同,例如,其性质也会有所不同。 (5) 注:该性质是分布函数对随机变量的统计规律的描述。 三、离散型随机变量 1.离散型随机变量的定义 若随机变量的全部可能的取值至多有可列个,则称随机变量是离散型随机变量。 2.离散型随机变量的分布律 (1)定义:离散型随机变量的全部可能的取值以及取每个值时的概率值,称为离散型随机变量的分布律,表示为 或用表格表示:

或记为 ~ (2)性质:, 注:该性质是是某一离散型随机变量的分布律的充要条件。 其中。 注:常用分布律描述离散型随机变量的统计规律。 3.离散型随机变量的分布函数 =,它是右连续的阶梯状函数。 4.常见的离散型分布 (1)两点分布(0—1分布):其分布律为 即 (2)二项分布 (ⅰ)二项分布的来源—重伯努利试验:设是一个随机试验,只有两个可能的结果 及,,将独立重复地进行次,则称这一串重复的独立试验为重伯努利试验。 (ⅱ)二项分布的定义 设表示在重伯努利试验中事件发生的次数,则随机变量的分布律为 ,, 称随机变量服从参数为的二项分布,记作。 注:即为两点分布。

高中数学2.1随机变量及概率分布导学案苏教版选修2-3

2.1 随机变量及概率分布 1.随机变量 一般地,如果随机试验的结果,可以用一个变量来表示,那么这样的变量叫做随机变量.通常用大写拉丁字母X ,Y ,Z (或小写希腊字母ξ,η,ζ)等表示,而用小写拉丁字母x ,y ,z (加上适当下标)等表示随机变量取的可能值. 预习交流1 随机变量与函数有哪些区别和联系? 提示:随机变量和函数都是一种映射,而随机变量是用变量对试验结果的一种刻画,是试验结果和实数之间的一个对应关系,即随机变量把随机试验的结果映射为实数.函数是把实数映射为实数,它们的本质是相同的,在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的范围相当于函数值域. 2.概率分布 一般地,假定随机变量X 有n 个不同的取值,它们分别是x 1,x 2,…,x n 且P (X =x i )=p i ,i =1,2,…,n ,①,称①为随机变量X 的概率分布列.简称为X 的分布列,也可以将①用表的形式来表示. 我们将表称为随机变量的概率分布表.它和①都叫做随机变量的概率分布.显然这里的p i (i =1,2,…,n )满足条件p i ≥0,p 1+p 2+…+p n =1. 预习交流2 盒中装有6支白粉笔和8支红粉笔,从中任意取出3支,其中所含白粉笔的支数为ξ,那么ξ的可能取值是多少?当ξ=2时表示怎样的试验结果.此时P (ξ=2)是多少? 提示:ξ的取值为0,1,2,3,“ξ=2”表示取出2支白粉笔和1支红粉笔. P (ξ=2)=C 26·C 18C 3 14=3091 . 3.两点分布 随机变量X 只取两个可能值0和1,我们把这一类概率分布称为0-1分布或两点分布,并记为X ~0-1分布或X ~两点分布.此处“~”表示“服从”. 预习交流3 试验结果有两种情况的是不是两点分布? 提示:不一定.因为两点分布要求试验结果只有两种,且随机变量必须只能为0和1.

第二章概念与思考题及答案

第二章信用、利息与利率 本章重要概念 信用:是以还本付息为条件的,体现着特定的经济关系,是不发生所有权变化的价值单方面的暂时让渡或转移。 信用制度:信用制度即为约束信用主体行为的一系列规范与准则及其产权结构的合约性安排。信用制度安排可以是正式的,也可以是非正式的。正式的信用制度是约束信用主体行为及其关系的法律法规和市场规则,而非正式的信用制度是约束信用主体行为及其关系的价值观念、意识形态和风俗习惯等。 商业信用:商业信用指工商企业之间相互提供的、与商品交易直接相联系的信用形式。它包括企业之间以赊销、分期付款等形式提供的信用以及在商品交易的基础上以预付定金等形式提供的信用。 银行信用:银行信用指各种金融机构,特别是银行,以存、放款等多种业务形式提供的货币形态的信用。银行信用和商业信用一起构成经济社会信用体系的主体。 国家信用:国家信用又称公共信用制度,伴随着政府财政赤字的发生而产生。它指国家及其附属机构作为债务人或债权人,依据信用原则向社会公众和国外政府举债或向债务国放债的一种形式。 消费信用:消费信用指为消费者提供的、用于满足其消费需求的信用形式。其实质是通过赊销或消费贷款等方式,为消费者提供提前消费的条件,促进商品的销售和刺激人们的消费。 国际信用:国际信用是指国与国之间的企业、经济组织、金融机构及国际经济组织相互提供的与国际贸易密切联系的信用形式。国际信用是进行国际结算、扩大进出口贸易的主要手段之一。 出口信贷:出口信贷是国际贸易中的一种中长期贷款形式,是一国政府为了促进本国出口,增强国际竞争能力,而对本国出口企业给予利息补贴和提供信用担保的信用形式。可分为卖方信贷和买方信贷两种。 卖方信贷:卖方信贷是出口方的银行或金融机构对出口商提供的信贷。 买方信贷:买方信贷是由出口方的银行或金融机构直接向进口商或进口方银行或金融机构提供贷款的方式。 银行信贷:国际间的银行信贷是进口企业或进口方银行直接从外国金融机构借入资金的一种信用形式。这种信用形式一般采用货币贷款方式,并事先指定了贷款货币的用途。它不享受出口信贷优惠,所以贷款利率要比出口信贷高。 国际租赁:国际租赁是国际间以实物租赁方式提供信用的新型融资形式。根据租赁的目的和投资加收方式,可将其分为金融租赁(Financial Lease)和经营租赁(Operating Credit)两种形式。

高二数学《随机变量的方差(第2课时)》教案

§2.3.2离散型随机变量的方差(第2课时) 一、教材分析: 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示了随机变量在随机实验中取值的平均值,所以又常称为随机变量的平均数、均值.今天,我们将对随机变量取值的稳定与波动、集中与离散的程度进行研究.其实在初中我们也对一组数据的波动情况作过研究,即研究过一组数据的方差. 回顾一组数据的方差的概念:设在一组数据1x ,2x ,…, n x 中,各数据与它 们的平均值x 得差的平方分别是21)(x x -,2 2)(x x -,…,2)(x x n -,那么 [1 2n S = 21)(x x -+2 2)(x x -+…+])(2x x n -叫做这组数据的方差 。 二、学情分析: 学生学习本节应该比较轻松,定义比较简单,初中已经接触过方差,高中阶段是将原先学得知识进一步提升。主要学生能将离散型随机变量的分布列列出来,进行套公式运算就可以,应注意的是要求学生在计算过程中细心。有过探究、交流的课堂教学的尝试。 三、教学目标: 1、知识与技能 了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。 2、过程和方法: 通过教师指导下的探究活动,经历数学思维过程,熟悉理解“观察—归纳—猜想—证明”的思维方法,养成合作的意识,获得学习和成功的体验.了解方差公式“D (a ξ+b )=a 2 D ξ”,以及“若ξ~Β(n ,p ),则D ξ=np (1—p )”,并会应用上述公式计算有关随机变量的方差 。 3、情感和价值: 承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。

两个随机变量和与商的分布函数和密度函数

设(X ,Y )的联合密度函数为f (x ,y ),现求Z=X+Y 的概率密度。 令{(,)|}z D x y x y z =+≤,则Z 的分布函数为: (){} {}(,)((,))Z D z z y F z P Z z P X Y z f x y dxdy f x y dx dy +∞--∞ -∞ =≤=+≤==??? ? (1.1) 固定z 和y 对积分 (,)z y f x y dx --∞ ?作换元,令x y u +=,得 (,)(,)z y z f x y dx f u y y du --∞ -∞ =-?? (1.2) 于是 ()(,)[(,)]z z Z F z f u y y dudy f u y y dy du +∞+∞ -∞-∞ -∞ -∞ =-=-???? (1.3) 由概率论定义,即得Z 的概率密度为 ()(,)Z f z f z y y dy +∞-∞ =-? (1.4) 由X 与Y 的对称性,又可得 ()(,)Z f z f x z x dx +∞-∞ =-? , (1.5) 特别的,当X 与Y 相互独立时,有 ()()()()()Z X Y X Y F z f z y f y dx f x f z x dx +∞ +∞ -∞ -∞ =-=-? ? (1.6) 其中,()X f x 、()Y f y 分别是X 和Y 的密度函数。 式(1.6)又称为()X f x 和()Y f y 的卷积,常记为*()X Y f f z 。因此式(1.6)又称为独立和分布的卷积公式。

设(X ,Y )的联合密度函数为f (x ,y ),又X Z Y =,现求X Z Y =的概率密度,Z 的分布函数为 1 2 (){} (,)(,)Z D D F z P Z z f x y dxdy f x y dxdy =≤=+???? (2.1) 而 1 (,)(,)yz D f x y dxdy f x y dxdy +∞ -∞=?? ? ? (2.2) 对于固定的z ,y ,积分 (,)yz f x y dx -∞ ?作换元x u y = (这里y>0),得 (,)(,)yz z f x y dx yf yu y du -∞ -∞ =?? (2.3) 于是 01 (,)(,)(,)z D z f x y dxdy yf yu y dudy yf yu y dydu +∞-∞+∞ -∞==????? ? (2.4) 类似的可得 2 (,)(,)(,)yz D z f x y dxdy f x y dxdy yf yu y dydu +∞ -∞-∞-∞ ==-??? ? ? ? (2.5) 故有 12 0()(,)(,)[(,)(,)][(,)]Z D D z z F z f x y dxdy f x y dxdy yf yu y dy yf yu y dy du y f yu y dy du +∞-∞ -∞ +∞-∞-∞ =+=-=?????? ? ?? (2.6) 有概率密度定义可得X Z Y = 的概率密度为 ()(,)Z f z y f yz y dy +∞ -∞ =? (2.7) 特别的,当X 与Y 相互独立时,有 ()()()Z X Y f z y f yz f y dy +∞-∞ =? (2.8)

随机变量及其分布练习题

随机变量及其分布练习 题 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

第二章随机变量及其分布练习题 1.甲、乙两人各进行一次射击,甲击中目标的概率是,乙击中目标的概率是,则两人都击中目标的概率是( ) A. B. C. D. 2.设随机变量1 ~62X B ?? ??? ,,则(3)P X =等于( ) A. 516 B. 316 C.5 8 D. 716 3.设随机变量X 的概率分布列为 X 1 2 3 P 则E (X +2)B . 4.两台相互独立工作的电脑,产生故障的概率分别为a ,b ,则产生故障的电脑台数的均值为( ) A.ab B.a b + C.1ab - D.1a b -- 5.某普通高校招生体育专业测试合格分数线确定为60分.甲、乙、丙三名考生独立参加测试,他们能达到合格的概率分别是,,,则三人中至少有一人达标的概率为( ) A . B . 6.设随机变量~()X B n p ,,则2 2 ()()DX EX 等于( ) A.2p B.2(1)p - C.np D.2(1)p p - 7.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出 2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是( ).

8.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=(). 9.设随机变量ξ服从正态分布N(0,1),P(ξ>1)=p,则P(-1<ξ<0)等于(). p B.1-p C.1--p 10.已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ

52.3.2离散型随机变量的方差导学案(选修2-3)

§2.3.2离散型随机变量的方差导学案 高二数学组 一、教学目标 1、通过实例,理解离散型随机变量的方差; 2、能计算简单离散型随机变量的方差。 重点:离散型随机变量的方差的概念 难点:根据离散型随机变量的分布列求出方差 二、自学引入: 问题1:某射手在10次射击中所得环数为:10,9,8,10,8,10,10,10,8,9. 求这名射手所得环数的方差。 问题2:某射手在一次射击中所得环数 能否根据分布列求出这名射手所得环数的方差? 引入概念: (1)方差的概念:设一个离散型随机变量X所有可能取得值是x1,x2,…,x n;这些值对应的概率为p1,p2,…,p n,则 D(X)= , 叫做这个离散型随机变量X的方差。 离散型随机变量的方差反映了离散型随机变量的取值。 (2)D(X)的叫做随机变量X的标准差。 三、问题探究: (1)若随机变量X服从参数为p的二点分布,则D(X)= ()。 (2)若随机变量X服从参数为n,p的二项分布,则D(X)= ()。 四、典例解析: 例1 甲、乙两射手在同样条件下进行射击,成绩的分布列如下: 射手甲: 射手乙: 谁的射击水平比较稳定。 变式训练设X是一个离散型随机变量,其分布列如下表,试求D(X)

例2 已知某离散型随机变量X 服从下面的二项分布: k k k C k X P -==449.01.0)( (k=0,1,2,3,4). 求E (X )和D (X )。 变式训练 一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为 0.02。设发病的牛的头数为X ,求E (X )和D (X )。 五、小结: 六、作业:课后练习A 、B 。 §2.3. 2离散型随机变量的方差当堂检测 高二数学组 1、已知()~,,8, 1.6B n p E D ξξξ==,则,n p 的值分别是( ) A .1000.08和; B .200.4和; C .100.2和; D .100.8和 2、设投掷1颗骰子的点数为ξ,则( ) A.E ξ=3.5,D ξ=3.52 B.E ξ=3.5,D ξ=12 35 C.E ξ=3.5,D ξ=3.5 D.E ξ=3.5,D ξ= 16 35 3、有一批数量很大的商品的次品率为1%,从中任意地连续取出200件商品,设其中次品数为X ,求E (X ),D (X ) 4、A 、B 两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示: A 机床 B 机床 问哪一台机床加工质量较好

第二章复习题及答案

第二章练习及答案 一、填空题 1、带动其他构件运动的构件,叫原动件。 2、在原动件的带动下,作确定运动的构件,叫从动件。 3、低副的优点:制造和维修容易,单位面积压力小,承载能力大。 4、低副的缺点:由于是滑动摩擦,摩擦损失比高副大,效率低。 5.低副是两构件通过面接触而构成的运动副;高副是两构件通过点或线接触而构成的运动副。 6、火车车轮在铁轨上的滚动,属于高副。 二、判断题(正确√;错误×) 1、两构件通过面接触组成的运动副是低副。(√) 2.机构的原动件数应等于自由度数,否则机构没有确定运动。(√) 3.在平面机构中一个低副引入两个约束。(√) 4、由于两构件间的联接形式不同,运动副分为低副和高副。(×) 5、点或线接触的运动副称为低副。(×) 6、面接触的运动副称为低副。(√) 7、若机构的自由度数为2,那么该机构共需2个原动件。(√) 8、机构的自由度数应等于原动件数,否则机构不能成立。(√) 9、平面低副引入的约束数为1。(×) 10、当m个构件用复合铰链相联接时,组成的转动副数目也应为m个。(×) 11、局部自由度与机构的运动是有关的。(×) 12、在机构运动简图中运动副和构件都应用规定的符号和线条表示。(√)

三、选择题 1.当机构中主动件数目(2)等于机构自由度数目时,该机构具有确定的运动。 (1)小于;(2)等于;(3)大于;(4)大于或等于。 2.下图中的平面机构由(1)复合铰链组成。 (1)复合铰链;(2)局部自由度;(3)虚约束;(4)凸轮机构; 3.在计算平面机构自由度时,应选用(3)c)图。 (1)a);(2)b);(3)c); a) b) c) 4.机构具有确定运动的条件是(3)自由度数目= 原动件数目。 (1)自由度数目>原动件数目;(2)自由度数目<原动件数目; (3)自由度数目= 原动件数目;(4)自由度数目≠原动件数目;5.下图中的平面机构由(3)虚约束组成。 (1)复合铰链;(2)局部自由度;(3)虚约束;(4)凸轮机构;

高中理科数学离散型随机变量及分布列

理科数学复习专题 统计与概率 离散型随机变量及其分布列 知识点一 1、离散型随机变量:随着实验结果变化而变化的变量称为随机变量,常用字母,X,Y ,表示,所有取值可以一一列出的随机变量,称为离散型随机变量。 2、离散型随机变量的分布列及其性质: (1)定义:一般的,若离散型随机变量X 可能取的不同值为12,,,,,,i n x x x x X 取每一个值(1,2,,)i x i n 的概率为()i i P X x p ,则表 (2)分布列的性质:①0,1,2,,i p i n ;②11n i i p (3)常见离散型随机变量的分布列: ①两点分布:若随机变量X 的分布列为, 则称X 服从两点分布,并称(1)p P x 为成功概率 ②超几何分布:一般的,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则()(0,1,2,,k n k M N M n N C C P X k k m C 其中min{,}m M n ,且*,,,,)n N M N n M N N ,称分布列为超几何分布列。如果随机变量X 的分布列题型一 由统计数据求离散型随机变量的分布列 【例1】已知一随机变量的分布列如下,且E (ξ)=6.3,则a 值为( ) A. 5

【变式1】某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果: 则该公司一年后估计可获收益的期望是________. 题型二由古典概型求离散型随机变量的分布列(超几何分布) 【例2】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求: (1)该顾客中奖的概率; (2)该顾客获得的奖品总价值X元的概率分布列. 【变式2】某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X表示此人选对A饮料的杯数.假设此人对A和B两种饮料没有鉴别能力. (1)求X的分布列;(2)求此员工月工资的期望. 知识点二 1.条件概率及其性质 对于两个事件A和B,在已知事件B发生的条件下,事件A发生的概率叫做条件概率,用 符号P(A|B)来表示,其公式为P(A|B)=P(AB) P(B) (P(B)>0). 在古典概型中,若用n(B)表示事件B中基本事件的个数,则P(A|B)=n(AB) n(B) . 2.相互独立事件 (1)对于事件A、B,若事件A的发生与事件B的发生互不影响,称A、B是相互独立事件. (2)若A与B相互独立,则P(AB)=P(A)P(B). (3)若A与B相互独立,则A与B,A与B,A与B也都相互独立. (4)若P(AB)=P(A)P(B),则A与B相互独立. 3.二项分布

随机变量及其分布

第15章随机变量及其概率分布 【授课对象】理工类专科大一 【授课时数】9学时 【授课方法】讲授与提问、随堂练习相结合 【基本要求】1、了解随机变量的概念; 2、理解离散型随机变量的概念及其分布律的概念和性质; 3、理解连续型随机变量的概念及其概率密度函数的概念和性质; 4、理解分布函数的概念,并知道其性质; 5、会利用分布律、概率密度函数及分布函数计算有关事件的概率; 6、会求简单的随机变量函数的概率分布; 7、了解二维随机变量的概念,知道二维随机变量的边缘(边际)分布、 联合分布函数等概念; 【本章重点】随机变量的概念;连续型(离散型)随机变量的密度函数(分布律)的概念和性质以及它们的分布函数的概念和性质;随机变量函数的概率分 布;熟记几种特殊分布的概率分布或密度函数。 【本章难点】随机变量的概念及性质;连续型随机变量的概率密度函数及分布函数的性质与相关计算;随机变量的函数的分布的求解。 【授课内容及学时分配】 §15.1随机变量 在第一章里,我们主要研究了随机事件及其概率,同学们可能会注意到在随机现象中,有很大一部分问题与实数之间存在着某种客观的联系。例如,在产品检验问题中,我们关心的是抽样中出现的废品数;在车间供电问题中,我们关心的是某时期正在工作的车床数;在电话问题中关心的是某一段时间内的话务量等。对于这类随机现象,其试验结果显然可以用数值来描述,并且随着试验的结果不同而取不同的数值。然而,有些初看起来与数值无关的随机现象,也常常能联系数值来描述。比如,在投硬币问题中,每次实验出现的结果为正面或反面,与数值没有联系,但我们可以通过指定数“1”代表正面,“0”代表反面,为了计算n次投掷中出现的正面就只须计算其

随机变量及其分布列与独立性检验练习题附答案

数学学科自习卷(二) 一、选择题 1.将三颗骰子各掷一次,记事件A =“三个点数都不同”,B =“至少出现一个6点”,则条件概率()P A B ,() P B A 分别是( ) A.6091,12 B.12,6091 C.518,6091 D.91216,12 2.设随机变量ξ服从正态分布()3,4N ,若()()232P a P a ξξ<-=>+,则a 的值为 A .73 B .53 C .5 D .3 3.已知随机变量ξ~)2,3(2N ,若23ξη=+,则D η= A . 0 B . 1 C . 2 D . 4 4.同时拋掷5枚均匀的硬币80次,设5枚硬币正好出现2枚正面向上,3枚反面向上的次数为ξ,则ξ的数学期望是( ) A .20 B .25 C. 30 D .40 5. 甲乙两人进行乒乓球比赛, 约定每局胜者得1分, 负者得0分, 比赛进行到有一人比对方多2分或打满6局时停止, 设甲在每局中获胜的概率为 23,乙在每局中获胜的概率为13 ,且各局胜负相互独立, 则比赛停止时已打局数ξ的期望()E ξ为( ) A .24181 B .26681 C .27481 D .670243 6.现在有10奖券,82元的,25元的,某人从中随机无放回地抽取3奖券,则此人得奖金额的数学期望为( ) A .6 B .395 C .415 D .9 7.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,,,(0,1)a b c ∈,且无其它得分情况,已知他投篮一次得分的数学期望为1,则ab 的最大值为 ( ) A .148 B .124 C .112 D .16 8.位于数轴原点的一只电子兔沿着数轴按下列规则移动:电子兔每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为 23,向右移动的概率为13,则电子兔移动五次后位于点(1,0)-的概率是 ( ) A .4243 B .8243 C .40243 D .80243

高中数学选修2-3 离散型随机变量导学案加课后作业及答案

§2.1.1 离散型随机变量 【学习要求】 1.理解随机变量及离散型随机变量的含义. 2.了解随机变量与函数的区别与联系. 【学法指导】 引进随机变量的概念,就可以用数字描述随机现象,建立连接数和随机现象的桥梁,通过随机变量和函数类比,可以更好地理解随机变量的定义,随机变量是函数概念的推广. 【知识要点】 1.随机试验:一般地,一个试验如果满足下列条件: (1)试验可以在相同的情形下重复进行; (2)试验所有可能的结果是明确的,并且不只一个; (3)每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验的结果会出现哪一个.这种试验就是一个随机试验. 2.随机变量:在随机试验中,随着变化而变化的变量称为随机变量. 3.离散型随机变量:所有取值可以的随机变量,称为离散型随机变量. 【问题探究】 探究点一随机变量的概念 问题1掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示,那么掷一枚硬币的结果是否也可以用数字来表示呢? 问题2随机变量和函数有类似的地方吗? 例1下列变量中,哪些是随机变量,哪些不是随机变量?并说明理由. (1)上海国际机场候机室中2013年10月1日的旅客数量; (2)2013年某天济南至北京的D36次列车到北京站的时间; (3)2013年某天收看齐鲁电视台《拉呱》节目的人数; (4)体积为1 000 cm3的球的半径长. 小结随机变量从本质上讲就是以随机试验的每一个可能结果为自变量的一个函数,即随机变量的取值实质上是试验结果对应的数,但这些数是预先知道所有可能的值,而不知道究竟是哪一个值. 跟踪训练1指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由. (1)某人射击一次命中的环数; (2)任意掷一枚均匀硬币5次,出现正面向上的次数; (3)投一颗质地均匀的骰子两次出现的点数(最上面的数字)中的最小值; (4)某个人的属相. 探究点二离散型随机变量的判定 问题1什么是离散型随机变量? 问题2非离散型随机变量和离散型随机变量有什么区别? 例2①某座大桥一天经过的中华牌轿车的辆数为ξ;②某网站中歌曲《爱我中华》一天内被点击的次数为ξ; ③一天内的温度为ξ;④射手对目标进行射击,击中目标得1分,未击中目标得0分,用ξ表示该射手在一次射击中的得分.上述问题中的ξ是离散型随机变量的是() A.①②③④B.①②④C.①③④D.②③④小结该题主要考查离散型随机变量的定义,判断时要紧扣定义,看是否能一一列出. 跟踪训练2指出下列随机变量是否是离散型随机变量,并说明理由. (1)白炽灯的寿命ξ; (2)某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差ξ; (3)江西九江市长江水位监测站所测水位在(0,29]这一范围内变化,该水位站所测水位ξ; (4)一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数. 探究点三离散型随机变量的应用 例3(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5.现从该袋内随机取出3只球,被取出的球的最大号码数ξ.写出随机变量ξ可能取的值,并说明随机变量所取的值表示的随机试验的结果. (2)抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ>4”表示的试验结果是什么? 小结解答此类问题的关键在于明确随机变量的所有可能的取值,以及其取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果,解答过程中不要漏掉某些试验结果. 跟踪训练3下列随机试验的结果能否用离散型随机变量表示?若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果. (1)盒中装有6支白粉笔和2支红粉笔,从中任意取出3支,其中所含白粉笔的支数ξ,所含红粉笔的支数η. (2)从4张已编有1~4的卡片中任意取出2张,被取出的卡片号数之和ξ. (3)离开天安门的距离η. (4)袋中有大小完全相同的红球5个,白球4个,从袋中任意取出一球,若取出的球是白球,则过程结束;若取出的球是红球,则将此红球放回袋中,然后重新从袋中任意取出一球,直至取出的球是白球,此规定下的取球次数ξ. 【当堂检测】 1.下列变量中,不是随机变量的是() A.一射击手射击一次命中的环数B.标准状态下,水沸腾时的温度 C.抛掷两枚骰子,所得点数之和D.某电话总机在时间区间(0,T)内收到的呼叫次数 2.10件产品中有3件次品,从中任取2件,可作为随机变量的是() A.取到产品的件数B.取到正品的概率 C.取到次品的件数D.取到次品的概率 3.抛掷2枚骰子,所得点数之和记为ξ,那么“ξ=4”表示的随机试验的结果是() A.2枚都是4点B.1枚是1点,另1枚是3点 C.2枚都是2点D.1枚是1点,另1枚是3点,或者2枚都是2点 4.一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6.现从中随机取出2个球,以ξ表示取出的球的最大号码,则“ξ=6”表示的试验结果是___________________. 【课堂小结】 1.所谓的随机变量就是试验结果和实数之间的一个对应关系,随机变量是将试验的结果数量化,变量的取值对应于随机试验的某一个随机事件. 2.写随机变量表示的结果,要看三个特征:

Oracle第二章习题及答案

一、基于自己创建表的操作 1:创建一张学生表student,拥有stuid,stuname,sex,三个字段,其中stuid为主键。 create table student( stuid int primary key, stuname VARCHAR(20), sex VARCHAR(20) ) 2:为该表增加一个新列score。 alter table student add(score varchar(10)); 3:修改该表score列名为stuscore。 alter table student rename column score to stuscoree; 4:为student表插入5条记录。 insert into student values(1,'张三丰','男',80); insert into student values(2,'阿悄','女',70); insert into student values(3,'陈龙','男',90); insert into student values(4,'章子怡','女',50); insert into student values(5,'张卫健','男',60); 5:查询student表中的全部数据,其中列名为中文。 select STUID as 学号,STUNAME as 姓名,SEX as 性别,STUSCOREE as 分数from student; 6:查询学生姓名和分数,并是查询结果按照学生成绩降序排列。 select STUNAME,STUSCOREE from student order by STUSCOREE desc; 7:修改所有性别为“男”的学生信息为性别为“male”。 update student set SEX='male' where SEX='男'; 8:删除所有记录。 delete from student; 9:删除student表。 drop table student; 二、基于emp表的操作 1:创建一张新表emp1,和emp表结构和记录完全一样。 create table emp1 as select*from Scott.Emp; 基于emp1表的操作: 1:选择部门30中的雇员。 select*from emp1 where DEPTNO=30 and JOB='CLERK';

(完整word版)高中数学选修2-3第二章随机变量及其分布教案

第二章 随机变量及其分布 2.1.1离散型随机变量 第一课时 思考1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢? 掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和 0分别表示正面向上和反面向上(图2.1一1 ) . 在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化. 定义1:随着试验结果变化而变化的变量称为随机变量(random variable ).随机变量常用字母 X , Y ,ξ,η,… 表示. 思考2:随机变量和函数有类似的地方吗? 随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域. 例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } . 利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品” , {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出 3 件以上次品”又如何用 X 表示呢? 定义2:所有取值可以一一列出的随机变量,称为离散型随机变量 ( discrete random variable ) . 离散型随机变量的例子很多.例如某人射击一次可能命中的环数 X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y 也是一个离散型随机变量,它的所有可能取值为0, 1,2,…. 思考3:电灯的寿命X 是离散型随机变量吗? 电灯泡的寿命 X 的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以 X 不是离散型随机变量. 在研究随机现象时,需要根据所关心的问题恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否超过1000 小时,那么就可以定义如下的随机变量: ?? ≥?0,寿命<1000小时; Y=1,寿命1000小时. 与电灯泡的寿命 X 相比较,随机变量Y 的构造更简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易. 连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 如某林场树木最高达30米,则林场树木的高度ξ是一个随机变量,它可以取(0,30]内的一切值 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验

第二章随机变量习题参考答案

第二章随机变量(习题2)参考答案 因此:p i i=2, p i 2.2 由离散型随机变量概率分布性质: ae ?k =1∞k=1, 即: a e ?k =1∞k=1, 注意到 e ?k = 1+12+?+1n +?=1 ∞ k=1 因此: a e ?1 =1, 所以:a =e ?1. 2.3 设A i ={甲第i 次投篮命中},B i ={乙第i 次投篮命中},i =1,2. 则 P A 1 =P A 2 =0.7, P B 1 =P B 2 =0.4, 且A 1, A 2, B 1, B 2相互独立,因此 (1) 两人投中次数相同的概率为: P A 1 A 2 B 1 B 2 + P A 1 A 2B 1 B 2 + P A 1 A 2B 1B 2 + P A 1A 2 B 1 B 2 + P(A 1A 2 B 1B 2 )+P(A 1A 2B 1B 2) =0.32×0.62+4×0.7×0.3×0.4×0.6+0.72×0.42=0.3124. (2) 甲比乙投中的次数多的概率为: P A 1A 2 B 1 B 2 + P A 1 A 2B 1 B 2 + P A 1A 2B 1B 2 + P A 1A 2B 1 B 2 + P A 1A 2B 1 B 2 =0.7×0.3×0.62×2+2×0.72×0.4×0.6+0.72×0.62=0.5628. 2.4 由于P X =k = k 15 , k =1,2,3,4,5. 因此 (1) P 1≤X ≤3 =P X =1 +P X =2 +P{X =3}=1 15+2 15+3 15=0.4. (2) P 0.5

西城学探诊高中数学 2.3.2随机变量的数字特征(三)导学案(无答案)新人教B版选修23

§2.3.2随机变量的数字特征(三) 学习目标 1.理解取有限个值的离散型随机变量的方差及标准差的概念. 2.能计算简单离散型随机变量的方差,并能解决一些实际问题. 学习过程 【任务一】知识要点 1.离散型随机变量的方差、标准差 设离散型随机变量X的分布列为 X x1x2…x i…x n P p1p2…p i…p n 则(x i-())描述了i(=1,2,…,)相对于均值()的偏离程度, 而D(X)=为这些偏离程度的加权平均,刻画了随机变量X与其均值E(X)的平均偏离程度.我们称D(X)为随机变量X的,并称其算术平方根D X为随机变量X的 2.离散型随机变量方差的性质 (1)设a,b为常数,则D(aX+b)=, (2)D(c)=0(其中c为常数). 3.服从两点分布与二项分布的随机变量的方差 (1)若X服从两点分布,则D(X)=(其中p为成功概率); (2)若X~B(n,p),则D(X)= 【任务二】问题探究 探究点一方差、标准差的概念及性质 问题1某省运会即将举行,在最后一次射击选拔比赛中,甲、乙两名运动员各射击10次,命中环数如下: 甲运动员:7,8,6,8,6,5,8,10,7,5; 乙运动员:9,5,7,8,7,6,8,6,7,7. 观察上述数据,两个人射击的平均成绩是一样的.那么,是否两个人就没有水平差距呢?如果你是教练,选哪位选手去参加正式比赛? 问题2类比样本方差、标准差的概念,能否得出离散型随机变量的方差、标准差? 问题3随机变量的方差与样本的方差有何不同?

问题4 方差、标准差的单位与随机变量的单位有什么关系? 问题5 我们知道若一组数据x i (i =1,2,…,n )的方差为s 2 ,那么另一组数据ax i +b (a 、b 是常数且i =1,2,…,n )的方差为a 2s 2 .离散型随机变量X 的方差是否也有类似性质? 例1 随机抛掷一枚质地均匀的骰子,求向上一面的点数的均值、方差和标准差. 跟踪训练ξ 0 1 x P 12 13 p 若E (ξ)=2 3. (1)求D (ξ)的值; (2)若η=3ξ-2,求D η的值. 探究点二 两点分布与二项分布的方差 问题 若随机变量X ~B (n ,p ),怎样计算D (X )?两点分布呢? 例2 在某地举办的射击比赛中,规定每位射手射击10次,每次一发.记分的规则为:击中目标一次得3分;未击中目标得0分;并且凡参赛的射手一律另加2分.已知射手小李击中目标的概率为0.8,求小李在比赛中得分的数学期望与方差. 小结 解决本题的关键是建立二项分布模型,搞清随机变量的含义,利用公式简化解题过程. 跟踪训练2 一出租车司机从某饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率是13 . (1)求这位司机遇到红灯数ξ的期望与方差; (2)若遇上红灯,则需等待30秒,求司机总共等待时间η的期望与方差.

相关文档
相关文档 最新文档