文档库 最新最全的文档下载
当前位置:文档库 › 美国药典色谱柱分类

美国药典色谱柱分类

美国药典色谱柱分类
美国药典色谱柱分类

L1—Octadecyl silane chemically bonded to porous silica or ceramic micro-particles,3to 10μm in diameter.

L2—Octadecyl silane chemically bonded to silica gel of a controlled surface porosity that has been bonded to a solid spherical core,30to 50μm in diameter. L3—Porous silica particles,5to 10μm in diameter. L4—Silica gel of controlled surface porosity bonded to a solid spherical core,30to 50μm in diameter. L5—Alumina of controlled surface porosity bonded to a solid spherical core,30to 50μm in diameter. L6—Strong cation-exchange packing–sulfonated fluorocarbon polymer coated on a solid spherical core,30to 50μm in diameter. L7—Octylsilane chemically bonded to totally porous silica particles,3to 10μm in diameter. L8—An essentially monomolecular layer of aminopropylsilane chemically bonded to totally porous silica gel support,10μm in diameter. L9—10-μm irregular or spherical,totally porous silica gel having a chemically bonded,strongly acidic cation-exchange coating. L10—Nitrile groups chemically bonded to porous silica particles,3to 10μm in diameter. L11—Phenyl groups chemically bonded to porous silica particles,5to 10μm in diameter. L12—Astrong anion-exchange packing made by chemically bonding a quaternary amine to a solid silica spherical core,30to 50μm in diameter. L13—Trimethylsilane chemically bonded to porous silica particles,3to 10μm in diameter. L14—Silica gel 10μm in diameter having a chemically bonded,strongly basic quaternary ammonium anion-exchange coating. L15—Hexylsilane chemically bonded to totally porous silica particles,3to 10μm in diameter. L16—Dimethylsilane chemically bonded to porous silica particles,5to 10μm in diameter. L17—Strong cation-exchange resin consisting of sulfonated cross-linked styrene-divinylbenzene copolymer in the hydrogen form,7to 11μm in diameter. L18—Amino and cyano groups chemically bonded to porous silica particles,3to 10μm in diameter. L19—Strong cation-exchange resin consisting of sulfonated cross-linked styrene-divinylbenzene copolymer in the calcium form,about 9μm in diameter. L20—Dihydroxypropane groups chemically bonded to porous silica particles,5to 10μm in diameter. L21—Arigid,spherical styrene-divinylbenzene copolymer,5to 10μm in diameter. L22—Acation-exchange resin made of porous polystyrene gel with sulfonic acid groups,about 10μm in size. L23—An anion-exchange resin made of porous polymethacrylate or polyacrylate gel with quaternary ammonium groups,about 10μm in size. L24—Asemi-rigid hydrophilic gel consisting of vinyl polymers with numerous hydroxyl groups on the matrix surface,32to 63μm in diameter.5 L25—Packing having the capacity to separate compounds with a molecular weight range from 100–5000(as determined by polyethylene oxide),applied to neutral,anionic,and cationic water-soluble polymers.Apolymethacrylate resin base,cross-linked with polyhydroxylated ether (surface contained some residual carboxyl functional groups)was found suitable. L26—Butyl silane chemically bonded to totally porous silica particles,5to 10μm in diameter. L27—Porous silica particles,30to 50μm in diameter. L28—Amultifunctional support,which consists of a high purity,100?,spherical silica substrate that has been bonded with anionic exchanger,amine functionality in addition to a conventional reversed

phase C8functionality. L29—Gamma alumina,reverse-phase,low carbon percentage by weight,alumina-based polybutadiene spherical particles,5μm in diameter with a pore volume of 80?. L30—Ethyl silane chemically bonded to totally porous silica particles,3to 10μm in diameter. L31—Astrong anion-exchange resin-quaternary amine bonded on latex particles attached to a core of 8.5-μm macroporous particles having a pore size of 2000?and consisting of ethylvinylbenzene cross-linked with 55%divinylbenzene. L32—Achiral ligand-exchange packing–L-proline copper complex covalently bonded to irregularly shaped silica particles,5to 10μm in diameter. L33—Packing having the capacity to separate dextrans by molecular size over a range of 4,000to 500,000Da.It is spherical,silica-based,and processed to provide pHstability.6 L34—Strong cation-exchange resin consisting of sulfonated cross-linked styrene-divinylbenzene copolymer in the lead form,about 9μm in diameter. L35—Azirconium-stabilized spherical silica packing with a hydrophilic (diol-type)molecular monolayer bonded phase having a pore size of 150?. L36—A3,5-dinitrobenzoyl derivative of L-phenylglycine covalently bonded to 5-μm aminopropyl silica.

L37—Packing having the capacity to separate proteins by molecular size over a range of 2,000to 40,000Da.It is a polymethacrylate gel. L38—Amethacrylate-based size-exclusion packing for water-soluble samples. L39—Ahydrophilic polyhydroxymethacrylate gel of totally porous spherical resin. L40—Cellulose tris-3,5-dimethylphenylcarbamate coated porous silica particles,5to 20μm in diameter.

L41—Immobilized a1-acid glycoprotein on spherical silica particles,5μm in diameter. L42—Octylsilane and octadecylsilane groups chemically bonded to porous silica particles,5μm in diameter.

L43—Pentafluorophenyl groups chemically bonded to silica particles by a propyl spacer,5to 10μm in diameter. L44—Amultifunctional support,which consists of a high purity,60?,spherical silica substrate that has been bonded with a cationic exchanger,sulfonic acid functionality in addition to a conventional reversed phase C8functionality. L45—Beta cyclodextrin bonded to porous silica particles,5to 10μm in diameter. L46—Polystyrene/divinylbenzene substrate agglomerated with quaternary amine functionalized latex beads,10μm in diameter. L47—High-capacity anion-exchange microporous substrate,fully functionalized with trimethlyamine groups,8μm in diameter.7 L48—Sulfonated,cross-linked polystyrene with an outer layer of submicron,porous,anion-exchange microbeads,15μm in diameter. L49—Areversed-phase packing made by coating a thin layer of polybutadiene onto spherical porous zirconia particles,3to 10μm in diameter.8 L50—Multifunction resin with reversed-phase retention and strong anion-exchange functionalities.The resin consists of ethylvinylbenzene,55%cross-linked with divinylbenzene copolymer,3to 15μm in diameter,and a surface area not less than 350m2per g.Substrate is coated with quaternary ammonium functionalized latex particles consisting of styrene cross-linked with

divinylbenzene.9

L51—Amylose tris-3,5-dimethylphenylcarbamate-coated,porous,spherical,silica particles,5to 10μm in diameter.10 L52—Astrong cation exchange resin made of porous silica with sulfopropyl groups,5to 10μm in diameter.11

L53—Weak cation-exchange resin consisting of ethylvinylbenzene,55%cross-linked with divinylbenzene copolymer,3to 15μm diameter.Substrate is surface grafted with carboxylic acid and/or phosphoric acid functionalized monomers.Capacity not less than 500μEq/column.12 L54—Asize exclusion medium made of covalent bonding of dextran to highly cross-linked porous agarose beads,about 13μm in diameter.13 L55—Astrong cation-exchange resin made of porous silica coated with polybutadiene–maleic acid copolymer,about 5μm in diameter.14 L56—Isopropyl silane chemically bonded to totally porous silica particles,3to 10μm in diameter.15 L57—Achiral-recognition protein,ovomucoid,chemically bonded to silica particles,about 5μm in diameter,with a pore size of 120?. L58—Strong cation-exchange resin consisting of sulfonated cross-linked styrene-divinylbenzene copolymer in the sodium form,about 7to 11μm in diameter.16 L59—Packing having the capacity to separate proteins by molecular weight over the range of 10to 500kDa.It is spherical (10μm),silica-based,and processed to provide hydrophilic characteristics and pHstability.17USP28

L60—Spherical,porous silica gel,3or 5μm in diameter,the surface of which has been covalently modified with palmitamidopropyl groups and endcapped with acetamidopropyl groups to a ligand density of about 6μmoles per m2.18USP28

L1是C18柱L1:十八烷基键合多孔硅胶或无机氧化物微粒固定相,简称ODS柱L2:30~50mm表面多孔薄壳型键合十八烷基固定相,简称C18柱L3:多孔硅胶微粒,即一般的硅胶柱L4:30~50mm表面多孔薄壳型硅胶柱L5:30~50mm表面多孔薄壳型氧化铝柱L6:30~50mm实心微球表面包覆磺化碳氟聚合物,强阳离子交换柱L7:全多孔硅胶微粒键合C8官能团固定相,简称C8柱L8:全多孔硅胶微粒键合非交联NH2固定相,简称NH2柱L9:强酸性阳离子交换基团键合全多孔不规则形硅胶固定相,即SCX柱L10:多孔硅胶微球键合氰基固定相(CN),简称CN柱

L11:键合苯基多孔硅胶微球固定相,简称苯基柱

L12:无孔微球键合季胺功能团的强阴离子交换柱L13:三乙基硅烷化学键合全多孔硅胶微球固定相(C1),简称C1柱L14:10mm硅胶化学键合强碱性季铵盐阴离子交换固定相,简称SAX柱L15:已基硅烷化学键合全多孔硅胶微球固定相,简称C6柱L16:二甲基硅烷化学键合全多孔硅胶微粒固定相C2柱L17:氢型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换柱L18:3~10mm全多孔硅胶化学键合胺基(NH2)和氰基(CN)柱L19:钙型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换柱L20:二羟基丙烷基化学键合多孔硅胶微球固定相(Diol),简称二醇基柱L21:刚性苯乙烯-二乙烯基苯共聚物微球填料柱L22:带有磺酸基团的多孔苯乙烯阳离子交换柱L23:带有季胺基团的聚甲基丙烯酸甲酯或聚丙烯酸酯多孔离子交换柱L24:表面含有大量羟基的半刚性聚乙烯醇亲水凝胶柱

L25:聚甲基丙烯酸酯树脂交联羟基醚(表面含有残余羧基功能团)树脂。能分离分子量100~5000MW范围的水溶性中性、阳离子型及阴离子型聚合物(用聚氧乙烯测定)的固定相

L26:丁基硅烷化学键合全多孔硅胶微球固定相,即C4柱L27:30~50mm的全多孔硅胶微粒L28:多功能载体,100?的高纯硅胶加以氨基键合以及C8反相键合的官能团L29:氧化铝,反相键合,含碳量低,氧化铝基聚丁二稀小球,5mm,孔径80? L30:全多孔硅胶键合乙基硅烷固定相L31:季胺基改性孔径2000?的交联苯乙烯和二乙烯基苯(55%)强阴离子交换树脂

L32: L-脯氨酸铜配合物共价键合于不规则形硅胶微粒的配位体的交换手性色谱填料

L33:能够分离分子量4000~40000MW范围蛋白质分子的球形硅胶固定相, pH稳定性好L34:铅型磺化交联苯乙烯-二乙烯基苯共聚物强阳离子交换树脂,9mm球形L35:锆稳定的硅胶微球键合二醇基亲水分子单层固定相,孔径150? L36:5mm胺丙基硅胶键合L-苯基氨基乙酸-3,5二硝基苯甲酰L37:适合分离分子量2000~40000MW的聚甲基丙烯酸酯凝胶L38:水溶性甲基丙烯酸酯基质SEC色谱柱L39:亲水全多孔聚羟基甲基丙烯酸酯色谱柱L40:Tris 3,5-二甲基苯基氨基甲酸酯纤维素涂覆多孔硅胶微球L41:球形硅胶表面固定α1酸糖蛋白固定相L42: C8和C18硅烷化学键合多孔硅胶固定相L43:硅胶微球键合五氟代苯基固定相L44:多功能固定相,60 ?高纯硅胶基质键合磺酸阳离子交换功能团和C8反相功能团L45: β-环糊精键合多孔硅胶微球L46:季胺基改性苯乙烯-二乙烯基苯聚合物微球L1 Octadecyl silane chemically bonded to porous silica or ceramic. L1 十八烷基键合硅烷化学键合于多孔硅胶或陶瓷微粒,3-10u。

L2 Octadecyl silane chemically bonded to silica gel of a controlled surface porosity that has been bonded to a solid spherical core, 30 to 50 μm in diameter.

L2 十八烷基键合硅烷化学键合于表面空隙率一定的键合在紧密球核上的硅胶,粒径30-50u。L3 Porous silica particle s, 5 to 10 μm in diameter. L3 多孔硅胶颗粒,粒径5-10u。L4 Silica gel of controlled surface porosity bonded to a solid spherical core,30 to 50 μm in diameter.

L4 表面空隙率一定的硅胶键合于紧密球核上,粒径30-50u。

L5 Alumina of controlled surface porosity bonded to a solid spherical c ore,30 to 50 μm in diameter. L5 表面空隙率一定的氧化铝键合于紧密球核上,粒径30-50u。

L6 Strong cation-exchange packing: sulfonated fluorocarbon polymer coated on a solid spherical core, 30 to 50 μm in diameter.

L6 强阳离子交换填料:磺化氟代烃聚合物涂渍于紧密球核上,粒径30-50u。L7 Octyl silane chemically bonded to totally porous silica particles, 1.5 to 10 μm in diameter. L7 辛基硅烷化学键合于完全多孔硅胶担体,粒径10u。

L8 An essentially monomolecular layer of aminopropyl-silane chemically bonded to totally porous silica gel support, 3 to 10 μm in diameter.

L8 氨丙基硅烷单分子层化学键合于完全多孔硅胶担体,粒径10u。

L9 Irregular or spherical, totally porous silica gel having a chemically bonded, strongly acidic ation-exchange coating, 3 to 10 μm in diameter.

L9 10u不规则的完全多孔硅胶具有化学键合的强酸性阳离子交换涂层。L10 Nitrile groups chemically bonded to porous silica particles, 3 to 10 μm in diameter. L10 氰基团化学键合于多孔微粒硅,粒径3-10u。L11 Phenyl groups chemically bonded to porous silica particles, 1.5 to 10 μm in diame ter. L11 苯基化学键合于多孔微粒硅,粒径3-10u。

L12 Strong anion-exchange packing made by chemically bonding a quaternary amine to a solid silica spherical core, 30 to 50 μm in diameter

L12 由四元胺化学键合于精密硅球核形成的强阴离子交换填料,粒径30-50u。L13 Trimethylsilane chemically bonded to po rous silica particles,3 to 10 μm in diameter. L13 三甲基硅烷化学键合于完全多孔硅胶,粒径3-10u。L14 Silica gel having a chemically bonded, strongly basic quaternary ammonium anion-exchange

coating, 5 to 10 μm in diameter.

L14 具有强碱性四元胺阴离子交换涂层的10u硅胶化学键合相。L15 Hexyl silane c hemically bonded to totally porous silica particles,3 to 10 μm in diameter. L15 己基硅烷化学键合于完全多孔性微粒硅,粒径3-10u。L16 Dimethyl silane chemically bonded to totally porous silica particles, 5 to 10 μm in diameter. L16 二甲基硅烷化学键合于完全多孔性微粒硅,粒径3-10u。

L17 Strong cation-exchange resin consisting of sulfonated cross-linked styrene-divinylbenzene copolymer in the hydrogen form, 7 to 11 μm in diameter.

L17 由磺化的苯乙烯-二乙烯基苯交连共聚物组成的氢型阳离子交换树脂,粒径7-11u。L18 Amino and cyano groups chemically bonded to porous silica particles,3 t o 10 μm in diameter. L18 氨基和氰基化学键合于多孔微粒硅,粒径3-10u。

L19 Strong cation-exchange resin consisting of sulfonated cross-linked styrene-divinylbenzene copolymer in the calcium form, 9 μm in diameter.

L19 由磺化的苯乙烯-二乙烯基苯交连共聚物组成的钙型阳离子交换树脂,粒径7-11u。L20 Dihydroxypr opane groups chemically bonded to porous silica particles, 5 to 10 μm in diameter. L20 二甲氧基丙烷基化学键合于多孔硅胶微粒,粒径5-10u。L21 A rigid, spherical styrene-divinylbenzene copolymer, 5 to 10 μm in diameter. L21 刚性球形苯乙烯-二乙烯基苯共聚物,粒径5-10u。

L22 A cation exchange resi n made of porous polystyrene gel with sulfonic acid groups, about 10 μm in size.

L22 由多孔聚苯乙烯凝胶和磺酸基组成的阳离子交换树脂,粒径约为10u。

L23 An anion exchange resin made of porous polymethacrylate or polyacrylate gel with quaternary ammonium groups, about 10 μm in size.

L23 由多孔聚甲基丙烯酸酯或聚丙烯酸酯凝胶及四元胺基组成的阴离子交换树脂,粒径约为10u。

L24 A semi-rigid hydrophilic gel consisting of vinyl polymers with numerous hydroxyl groups on the matrix surface, 32 to 63 μm in diameter.

L24 由乙烯基聚合物和基质表面的无数羟基组成的半刚性亲水硅胶,粒径32u-63u。

L25 Packing having the capacity to separate compounds with a MW range from 100 to 5000 daltons (as determined by polyethylene oxide), applied to neutral, anionic, and cationic water-soluble polymers. A polymethacrylate resin base,crosslinked with poly-hydroxylated ether (surface contained some residual carboxyl functional groups) was found suitable.

L25 能分离MW从100到5000Da化合物的填料(取决于聚环氧乙烷),应用于中性、阴离子和阳离子的水溶性聚合物。聚甲基丙烯酸酯作为树脂基质,与聚羟基化醚(表面含一些残余羧基官能团)进行交连。

L26 Butyl silane chemically bonded to totally porous silica particles, 5 to 10 μm in diameter.

L27 Porous silica particles, 30 to 50 μm in diameter.

L28 A multifunctional support, which consists of a high purity, 100 , spherical silica substrate that has been bonded with anionic (amine) functionality in addition to a conventional reversed phase C8 functionality.

L29 Gamma alumina, reversed phase, low carbon percentage by weight, alumina-based polybutadiene spherical particles, 5 μm diameter with a pore diameter of 80 .

L30 Ethyl silane chemically bonded to a totally porous silica parti cle, 3 to 10 μm in diameter.

L31 A strong anion-exchange resin-quaternary amine bonded on latex particles attached to a core of 8.5 μm macroporous particles having a pore size of 2000 ?

and consisting of ethylvinylbenzene cross-linked with 55 % divinyl benzene.

L32 A chiral ligand-exchange packing- L-proline copper complex covalently bonded to irregularly shaped silica particles, 5 to 10 μm in diameter.

L33 Packing having the capacity to separate proteins of 4,000 to 400,000 daltons. It is spherical, silica-based and processed to provide pH stability.

L34 Strong cation-exchange resin consisting of sulfonated cross-linked styrene-divinylbenzene copolymer in the lead form, about 9 μm in diameter.

L35 A zirconium-stabilized spherical silica packing with a hydrophilic (diol-type) molecular monolayer bonded phase having a pore size of 150 .

L36 3,5-dinitrobenzoyl derivative of L-phenylglycine covalently bonded to 5 μm aminopropyl silica.

L37 Polymethacrylate gel packing having the capacity to separate proteins by molecular size over a range of 2,000 to 40,000D.

L38 Methacrylate-based size-exclusion packing for water-soluble samples.

L39 Hydrophilic polyhydroxymethacrylate gel of totally porous spherical resin.

L40 Cellulose tris-3,5-dimethylphenylcarbama te coated porous silica particles,5 μm to 20 μm in diameter.

L41 Immobilized á-acid glycoprotein on spherical silica particles, 5 μm in diameter.

L42 Octylsilane and octadecylsilane groups chemically bonded to porous silica particles,5 μm in diameter.

L43 Pentafluorophenyl groups chemically bonded to silica particles, 5 to 10 μm in diameter.

L44 A multifunctional support, which consists of a high purity, 60 , spherical silica substrate that has been bonded with a cationic exchanger, sulfonic acid functionality in addition to a conventional reversed phase C8 functionality.

L45 Beta cyclodextrin bonded to porous silica particles, 5 to 10 μm in diameter.

L46 Polystyrene/divinylbenzene substrate agglomerated with quaternary amine functionalized latex beads, 10 μm in diameter.

L47 High capacity anion-exchange microporous substrate, fully functionalized with a trimethylamine group, 8 μm in diameter.

L48 Sulfonated, cross-linked polystyrene with an outer layer of submicron, porous,anion-exchange microbeads, 15 μm in diameter.

L49 A reversed-phase packing made by coating a thin layer of polybutadiene on to spherical porous zirconia particles, 3 to 10 μm in diameter.

L50 Multifunction resin with reversed-phase retention and strong anion-exchange functionalities. The resin consists of ethylvinylbenzene, 55 % cross-linked with

divinylbenzene copolymer, 3 to 15 μm in diameter, and a surface area of not less than 350 m2/g, substrate is coated with quaternary ammonium functionalized latex particles consisting of styrene

cross-linked with divinylbenzene.

L51 Amylose tris-3,5-dimethylphenylcarbamate-coated, porous, spherical, silica particles, 5 to 10 μm in diameter.

L52 A strong cation exchange resin made of porous silica with sulfopropyl groups, 5 to 10 μm in diameter.

L53 Weak cation-exchange resin consisting of ethylvinylbenzene, 55 % cross-linked with

divinylbenzene copolymer, 3 to 15 μm diameter. Substrate is surface grafted with carboxylic acid and/or phosphoric acid functionalized monomers. Capacity not l ess than 500 μm in diameter.

L54 A size exclusion medium made of covalent bonding of dextran to highly cross-linked porous agarose beads, about 13 μm in diameter.

L55 A strong cation exchange resin made of porous silica coated with polybutadiene-maleic acid copolymer, about 5 μm in diameter.

L56 Isopropyl silane chemically bonded to totally porous silica particles, 3 to 10 μm in diameter.

L57 A chiral-recognition protein, ovomucoid, chemically bonded to silica particles, about 5 μm in diameter, with a pore size of 120 angstroms.

L58 Strong cation-exchange resin consisting of sulfonated cross-linked styrene- divinylbenzene copolymer in the sodium form, about 7 to 11 μm diameter.

L59 To separate proteins by molecular weight over the range of 10 to 500 kD a. Spherical 10 μm, silica-based, and processed to provide hydrophilic characteristics and pH stability.

L60 Spherical, porous silica gel, 3 to 10 μm in diameter, surface has been covalently modified with palmitamidopropyl groups and endcapped.

L61 Hydroxide-selective, strong anion-exchange resin consisting of a highly cross-linked core of 13 μm microporous particles, pore size less than 10 , and consisting of ethylvinylbenzene cross-linked with 55 % divinylbenzene with a latex coating

composed of 85 nm diameter microbeads bonded with alkanol quarternary ammonium ions (6 %).

L62 C30 silane bonded phase on a fully porous spherical silica, 3 to 15 μm in diameter.

色谱柱的分类及特点

3-1 柱的结构 1、堵棒(或导管) 2、接头 3、接头 4、密封圈 5、螺帽 6、柱密封圈 7、柱管 8、柱填料9 10、过滤片 3-2 柱的分类: 根据所有的担体材料分为三种: a.硅胶型:机械强度高,易制成小颗粒,理论塔板数高。 b.聚全物型:在广泛的PH值范围内稳定 c.羟基磷灰石型:对蛋白质等生物高分子样品有特殊的选择性。 根据分离方式分类: a.硅胶型

1)正相:SIL--磷脂、NH --糖、维生素E,CN--甾类激素。 2)反相:ODS(C18)、(C8 CN TMS Pheny1)低分子量化全物。 3)离子交换: WAX(弱碱阴离子交换)--核苷酸、蛋白质 WCX(弱酸阳离子交换)--蛋白质 SAX(强碱阴离子交换)--核苷酸 SCX(强酸阳离子交换)--儿茶酚胶 4)凝胶过滤: Diol--蛋白质GF--

蛋白质 b.聚合物型: 1)反相:ODP--50--肽,蛋白质,低分化合物。 2)离子交换:ISC--氨基酸,胍类化合物,ISA--糖,IC--无机离子,PA--蛋白质,ES--蛋白质。 3)配位交换:SCR(磺化聚苯乙烯)--糖。 4)离子排阻:SCR-101H 102H --有机酸 5)凝胶过滤:ION--多糖GS--水溶性分子 6)凝胶渗透色谱(GPC):GPD

--合成分子、橡胶。 7)羟基磷灰石型:HPC--蛋白质、核苷酸 按尺寸分类: 1.制备:30mm 50mm 内径,半制备:20mm内径。 2.分析:标准型柱:4_8mm内径。 快速色谱柱:3mm内径、5cm长、4.6mm内径。 小孔径柱:2.5mm内径,微孔径柱1mm内径。 3-3柱的技术指标 *耐压:不小于40Mpa。 *渗透性:反相--流动相甲醇1ml/min,压力3Mpa。

美国药典规定色谱柱类型

L1:十八烷基键合多孔硅胶或无机氧化物微粒固定相,简称ODS柱 L2:30~50mm表面多孔薄壳型键合十八烷基固定相,简称C18柱 L3:多孔硅胶微粒,即一般的硅胶柱 L4:30~50mm表面多孔薄壳型硅胶柱 L5:30~50mm表面多孔薄壳型氧化铝柱 L6:30~50mm实心微球表面包覆磺化碳氟聚合物,强阳离子交换柱 L7:全多孔硅胶微粒键合C8官能团固定相,简称C8柱 L8:全多孔硅胶微粒键合非交联NH2固定相,简称NH2柱 L9:强酸性阳离子交换基团键合全多孔不规则形硅胶固定相,即SCX柱 L10:多孔硅胶微球键合氰基固定相(CN),简称CN柱 L11:键合苯基多孔硅胶微球固定相,简称苯基柱 L12:无孔微球键合季胺功能团的强阴离子交换柱 L13:三乙基硅烷化学键合全多孔硅胶微球固定相(C1),简称C1柱 L14:10mm硅胶化学键合强碱性季铵盐阴离子交换固定相,简称SAX柱 L15:已基硅烷化学键合全多孔硅胶微球固定相,简称C6柱 L16:二甲基硅烷化学键合全多孔硅胶微粒固定相C2柱 L17:氢型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换柱 L18:3~10mm全多孔硅胶化学键合胺基(NH2)和氰基(CN)柱 L19:钙型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换柱 L20:二羟基丙烷基化学键合多孔硅胶微球固定相(Diol),简称二醇基柱 L21:刚性苯乙烯-二乙烯基苯共聚物微球填料柱 L22:带有磺酸基团的多孔苯乙烯阳离子交换柱 L23:带有季胺基团的聚甲基丙烯酸甲酯或聚丙烯酸酯多孔离子交换柱 L24:表面含有大量羟基的半刚性聚乙烯醇亲水凝胶柱 L25:聚甲基丙烯酸酯树脂交联羟基醚(表面含有残余羧基功能团)树脂。能分离分子量100~5000MW 范围的水溶性中性、阳离子型及阴离子型聚合物(用聚氧乙烯测定)的固定相 L26:丁基硅烷化学键合全多孔硅胶微球固定相,即C4柱 L27:30~50mm的全多孔硅胶微粒 L28:多功能载体,100?的高纯硅胶加以氨基键合以及C8反相键合的官能团 L29:氧化铝,反相键合,含碳量低,氧化铝基聚丁二稀小球,5mm,孔径80? L30:全多孔硅胶键合乙基硅烷固定相 L31:季胺基改性孔径2000?的交联苯乙烯和二乙烯基苯(55%)强阴离子交换树脂 L32: L-脯氨酸铜配合物共价键合于不规则形硅胶微粒的配位体的交换手性色谱填料 L33:能够分离分子量4000~40000MW范围蛋白质分子的球形硅胶固定相, pH稳定性好 L34:铅型磺化交联苯乙烯-二乙烯基苯共聚物强阳离子交换树脂,9mm球形 L35:锆稳定的硅胶微球键合二醇基亲水分子单层固定相,孔径150? L36:5mm胺丙基硅胶键合L-苯基氨基乙酸-3,5二硝基苯甲酰 L37:适合分离分子量2000~40000MW的聚甲基丙烯酸酯凝胶 L38:水溶性甲基丙烯酸酯基质SEC色谱柱 L39:亲水全多孔聚羟基甲基丙烯酸酯色谱柱 L40:Tris 3,5-二甲基苯基氨基甲酸酯纤维素涂覆多孔硅胶微球 L41:球形硅胶表面固定α1酸糖蛋白固定相 L42: C8和C18硅烷化学键合多孔硅胶固定相 L43:硅胶微球键合五氟代苯基固定相

色谱柱的种类与评价

色谱柱的种类与评价 一般地说,根据样品的性质决定采用何种液相色谱方法,然后再选择不同类型的柱。即不同类型的柱则代表了不同的色谱方法。 不同种类色谱柱的差异在于柱结构、柱填料和柱尺寸的不同。 色谱柱有不同的尺寸(长度和内径),分制备型、常规分析型和微型。不同类型柱的硬件也不同,(包括接头、柱管等方面),还有径向加压柱和夹套加热柱等。 不同液相色谱法的尺寸根据需要可以选取,普通分析3~30cm 长,内径4~8mm。常用20cm长、4.6mm内径的柱。制备型柱内径一般为8mm、25cm长。微型柱内径l~3mm,长10~20cm。不同的填料分析的效果可能不同,这是因为生产过程不同所致。同一厂商生产的同种填料因批号不同也会有差异,这种差异可能从基质就开始(表面积、杂质、特殊处理),还有键合的化学物质(一氯或三氯硅烷反应剂),不同厂家生产的填料还会因专利技术(预处理、键合过程、填装技术)等不同而呈现较大差异。由于种种差异、仅能假设同一批号的柱有基本相同的性质。

多数柱填料基质采用多孔硅胶微粒,通常有球形和无定形两种,具有不同的粒度、孔径和表面积。多孔聚合物微粒也适用于反相色谱。聚合物柱的流动相范围广,流动相pH值可在1至13之间。而硅胶基质pH仅能在2.5和7之间。显然,聚合物柱要好一些,但目前仍是以硅胶基质的柱为主。原则上,聚合物柱可以克服硅胶基质柱的某些不足,但需要大量的实验来证实,要进一步考查聚合物基质填料的全面优越性。 在实际工作中,选择性能良好的色谱柱可得到好的结果,首先要注意柱径、长度、填料种类和填料粒度。 评价色谱柱的好坏不仅只是N数,还应考虑组分在柱上的保留、键合相表面的物性、柱压降以及峰不对称因子As等。每一根新色谱柱都应标出详细参数,主要内容包括公司名称、柱名称(商标)、柱填料、尺寸。附一张标准参考色谱图,并标出色谱条件、样品名称、流动相组成、流速、柱温、进样体积、检测器、峰的保留时间及峰名称等。评价一根色谱柱的主要指标是:①塔板数N值;②峰不对称因子As;③柱压降;④键合相浓度。 此文章由广州深华生物技术有限公司编辑修改。

气相色谱柱知识详解

气相色谱柱知识详解 第一节气相色谱柱的类型 气相色谱法(gas chromatography, 简称GC)亦称气体色谱法,气相层析法。其核心即为色谱柱。 气相色谱柱有多种类型。从不同的角度出发,可按色谱柱的材料、形状、柱内径的大小和长度、固定液的化学性能等进行分类。色谱柱使用的材料通常有玻璃、石英玻璃、不锈钢和聚四氟乙烯等,根据所使用的材质分别称之为玻璃柱、石英玻璃柱、不锈钢柱和聚四氟乙烯管柱等。在毛细管色谱中目前普遍使用的是玻璃和石英玻璃柱,后者应用范围最广。对于填充柱色谱, 大多数情况下使用不锈钢柱,其形状有U型的和螺旋型的,使用U 型柱时柱效较高。按照色谱柱内径的大小和长度,又可分为填充柱和毛细管柱。前者的内径在24mm,长度为110m左右;后者内径在0.20.5mm,长度一般在25100m。在满足分离度的情况下,为提高分离速度,现在也有人使用高柱效、薄液膜的10m短柱。 根据固定液的化学性能,色谱柱可分为非极性、极性与手性色谱分离柱等。固定液的种类繁多,极性各不相同。色谱柱对混合样品的分离能力,往往取决于固定液的极性。常用的固定液有烃类、聚硅氧烷类、醇类、醚类、酯类以及腈和腈醚类等。新近发展的手性色谱柱使用的是手性固定液,主要有手性氨基酸衍生物、手性金属配合物、冠醚、杯芳烃和环糊精衍生物等。其中以环糊精及其衍生物为色谱固定液的手性色谱柱,用于分离各种对映体十分有效,是近年来发展极为迅速且应用前景相当广阔的一种手性色谱柱。 在进行气相色谱分析时,色谱柱的选择是至关重要的。不仅要考虑被测组分的性质,实验条件例如柱温、柱压的高低,还应注意和检测器的性能相匹配。有关内容我们将在以后章节中加以详细讨论。 第二节填充气相色谱柱 填充气相色谱柱通常简称填充柱,在实际分析工作中的应用非常普遍。据资料统计,日常色谱分析工作大约有80%是采用填充柱完成的。填充柱在分离效能和分析速度方面比毛细管柱差,但填充柱的制备方法比较简单,定量分析的准确度较高,特别是在某些分析领域(例如气体分析、痕量水分析)具有独特用途。从发展上看,虽然毛细管柱有逐步取代填充柱的趋势(例如已有一些日常分析使用PLOT柱代替过去常用的气固色谱填充柱),但至少在目前一段时期内,填充柱在日常分析中仍是一种十分有价值的分析分离手段。 填充柱主要有气固色谱柱和气液色谱填充柱两种类型。在色谱柱中关键的部分是固定相。在本节我们将首先介绍柱管的选择及其处理方法,然后再分别重点讨论气固色谱柱和气液色谱填充柱有关固定相的内容。

L1和L8是美国药典

L1和L8是美国药典(USP)规定的色谱柱编号(2009-08-13 19:33:47)转载标签:杂谈分类:学术L1和L8是美国药典(USP)规定的色谱柱编号,其实就是ODS柱和NH2柱。下面是USP规定的编号所对应的色谱柱类型。 L1:十八烷基键合多孔硅胶或无机氧化物微粒固定相,简称ODS柱 L2:30~50mm表面多孔薄壳型键合十八烷基固定相,简称C18柱 L3:多孔硅胶微粒,即一般的硅胶柱 L4:30~50mm表面多孔薄壳型硅胶柱 L5:30~50mm表面多孔薄壳型氧化铝柱 L6:30~50mm实心微球表面包覆磺化碳氟聚合物,强阳离子交换柱 L7:全多孔硅胶微粒键合C8官能团固定相,简称C8柱 L8:全多孔硅胶微粒键合非交联NH2固定相,简称NH2柱 L9:强酸性阳离子交换基团键合全多孔不规则形硅胶固定相,即SCX柱 L10:多孔硅胶微球键合氰基固定相(CN),简称CN柱 L11:键合苯基多孔硅胶微球固定相,简称苯基柱 L12:无孔微球键合季胺功能团的强阴离子交换柱 L13:三乙基硅烷化学键合全多孔硅胶微球固定相(C1),简称C1柱 L14:10mm硅胶化学键合强碱性季铵盐阴离子交换固定相,简称SAX柱 L15:已基硅烷化学键合全多孔硅胶微球固定相,简称C6柱 L16:二甲基硅烷化学键合全多孔硅胶微粒固定相C2柱 L17:氢型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换柱 L18:3~10mm全多孔硅胶化学键合胺基(NH2)和氰基(CN)柱 L19:钙型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换柱 L20:二羟基丙烷基化学键合多孔硅胶微球固定相(Diol),简称二醇基柱 L21:刚性苯乙烯-二乙烯基苯共聚物微球填料柱

气相色谱检测器的分类和工作原理及应用范围

气相色谱检测器的分类和工作原理及应用范围 待测组分经色谱柱分离后,通过检测器将各组分的浓度或质量转变成相应的电信号,经放大器放大后,由记录仪或微处理机得到色谱图,根据色谱图对待测组分进行定性和定量分析。 气相色谱监测器根据其测定范围可分为: 通用型检测器:对绝大多数物质够有响应; 选择型检测器:只对某些物质有响应;对其它物质无响应或很小。 根据检测器的输出信号与组分含量间的关系不同,可分为: 浓度型检测器:测量载气中组分浓度的瞬间变化,检测器的响应值与组分在载气中的浓度成正比,与单位时间内组分进入检测器的质量无关。 质量型检测器:测量载气中某组分进入检测器的质量流速变化,即检测器的响应值与单位时间内进人检测器某组分的质量成正比 目前已有几十种检测器,其中最常用的是热导池检测器、电子捕获检测器(浓度型);火焰离子化检测器、火焰光度检测器(质量型)和氮磷检测器等。 一.检测器的性能指标——灵敏度(高)、稳定性(好)、响应(快)、线性范围(宽) (一)灵敏度——应答值 单位物质量通过检测器时产生的信号大小称为检测器对该物质的灵敏度。 响应信号(R)—进样量(Q)作图,可得到通过原点的直线,该直线的斜率就是检测器的灵敏度,以S表示: (3) 由此可知:灵敏度是响应信号对进入检测器的被测物质质量的变化率。 气相色谱检测器的灵敏度的单位,随检测器的类型和试样的状态不同而异: 对于浓度型检测器: 当试样为液体时,S的单位为mV·ml/mg,即1mL载气中携带1mg的某组分通过检测器时产生的mV数; 当试样为气体时,S的单位为mV·ml/ml,即1ml载气中携带1ml的某组分通过检测器时产生的mV数;

气相色谱柱分类和比较

A gilentGC色谱柱应用范围及与其他公司GC色谱柱对照表

HP-1-二甲基聚硅氧烷柱 说明:这是最常用的非极性键合固定相,HP-1(二甲基聚硅氧烷),具有极好的热稳定性并且在高温下流失很小,具有低的检测限 相似的固定相:DB-1,Rtx-1,SPB-1,CP Sil 5CB,MDN-1,DB-1h.t.,AT-1 007-1 恒温/程序升温温度范围:-60至325/350℃,-60至300/320℃0.53内径,-60至260/280℃>2.0mm液膜 应用:胺类、烃类、农药、多氯联苯、酚类、含硫化合物 HP-1 25m, 0.20mm, 0.33um HP-1 30m, 0.32mm, 0.25um HP-1 15m, 0.25mm, 0.25um HP-1 30m, 0.32mm, 1.0um HP-1 30m, 0.25mm, 0.25um HP-1 60m, 0.32mm, 0.25um HP-1 60m, 0.25mm, 0.25um HP-1 15m, 0.53mm, 1.5um HP-1 30m, 0.53mm, 2.65um HP-35-二苯基-65%-二甲基硅氧烷共聚物 说明:HP-35柱是用苯基取代甲基的聚硅氧烷固定相柱。EPA(美国环保暑)方法8081和UPS(美国药典)G-42中已经指定用此固定相。HP-3 5的中极性使其成为分析杀虫剂、除草剂、药物和胺的良好选择。 相似的固定相:DB-35,Rtx-35,SPB-35,AT-35,Sup-herb 等温/程序升温温度范围:-40至300/320℃40至280/300℃ 应用:芳氯物(Aroclors)、胺类、杀虫剂、药品 HP-35 15m, 0.25mm, 0.25um HP-35 30m, 0.32mm, 0.15um HP-35 30m, 0.25mm, 0.25um HP-35 30m, 0.32mm, 0.25um HP-35, 60 meter, 0.25mm, 0.25um HP-35 30m, 0.32mm, 0.5um HP-FFAP(键合和改性的交联聚乙二醇) 说明:HP-FFAP柱主要特点是能够分析有机酸、游离脂肪酸或用于一些需要定量分析微量酸样品。这一固定相经过改性并具有很强惰性,适合于分析溶于水的酸,碳数高达C24的脂肪酸可以用此柱进行分析,而无需费时费钱的衍生化处理。HP-FFAP柱是交联又键合的色谱柱,可以避免在进水样是色谱柱被毁坏,操作在60℃到260℃之间,不需要事先进行预处理即可得到好的结果,此柱可以用溶剂冲洗,延长寿命。 相似的固定相:DB-FFAP Stabilwax,OP WAX58cb,Nukol SP 1000D 等温/程序升温温度范围:60至240/250℃对0.35mm内径柱,60℃到230/240℃ 应用:磷类、醇类、醛类、酮类、腈类。 HP-FFAP 25m, 0.20mm, 0.3um HP-FFAP, 30m, 0.32mm, 0.25um HP-FFAP, 30m, 0.25mm, 0.25um HP-FFAP 30m, 0.53mm, 1.0um

美国药典(USP)规定的色谱柱编号

美国药典(USP)规定的色谱柱编号 L1和L8是美国药典(USP)规定的色谱柱编号,其实就是ODS柱和NH2柱。下面是USP规定的编号所对应的色谱柱类型。 L1:十八烷基键合多孔硅胶或无机氧化物微粒固定相,简称ODS柱 L2:30~50m m表面多孔薄壳型键合十八烷基固定相,简称C18柱 L3:多孔硅胶微粒,即一般的硅胶柱 L4:30~50m m表面多孔薄壳型硅胶柱 L5:30~50m m表面多孔薄壳型氧化铝柱 L6:30~50m m实心微球表面包覆磺化碳氟聚合物,强阳离子交换柱 L7:全多孔硅胶微粒键合C8官能团固定相,简称C8柱 L8:全多孔硅胶微粒键合非交联NH2固定相,简称NH2柱 L9:强酸性阳离子交换基团键合全多孔不规则形硅胶固定相,即SCX柱 L10:多孔硅胶微球键合氰基固定相(CN),简称CN柱 L11:键合苯基多孔硅胶微球固定相,简称苯基柱 L12:无孔微球键合季胺功能团的强阴离子交换柱 L13:三乙基硅烷化学键合全多孔硅胶微球固定相(C1),简称C1柱 L14:10m m硅胶化学键合强碱性季铵盐阴离子交换固定相,简称SAX柱 L15:已基硅烷化学键合全多孔硅胶微球固定相,简称C6柱 L16:二甲基硅烷化学键合全多孔硅胶微粒固定相 C2柱 L17:氢型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换柱 L18:3~10m m全多孔硅胶化学键合胺基(NH2)和氰基(CN)柱 L19:钙型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换柱 L20:二羟基丙烷基化学键合多孔硅胶微球固定相(Diol),简称二醇基柱 L21:刚性苯乙烯-二乙烯基苯共聚物微球填料柱

气相色谱之气路载气篇解读

气体种类及优劣分析 现代的气相色谱操作需要多种不同的气体。进样口、色谱柱和检测器的类型决定了所需气体的性质和纯度。载气数量和类型的选取主要取决于系统所使用的检测器。 在前面已经讨论过, 载气的选择对气相色谱柱效的影响是很重要。我们已经了解到, 不同类型的载气对填充柱和毛细管柱都适用,这是因为色谱柱内径大小不同(例如典型的0.32mm毛细管柱和4mm的填充柱)载气通过时的线速度会发生改变。 载气通过色谱柱的体积流速受色谱柱炉温度和程序升温控制,如果压力补偿不够,载气流速会明显下降。选择一种在较大流速和温度范围内使用且能维持较高柱效率的载气是很重要的。从这点上来说,氢气是毛细管色谱法最合适的载气,其次分别是氦气和氮气。因为在较大的气体线速度范围内,氢气的范第姆特曲线最平坦,塔板高度(H)最低,柱效(N)最高。线速度较低时,氮气的柱效率最高,但是范第姆特曲线上最小线速度的取值范围很窄。 气源 气体供应和调控对气相色谱至关重要,因为高纯度和持续不断的载气补充才能维持气相色谱的分析功能。 从气瓶或气体发生器出来的气体依次通过减压阀、管道系统(包括挠性管或猪尾管)、稳压阀和调节阀。(在第2、3节查看更多内容) 操作使用高压气瓶时必须十分小心,为了防止气瓶跌倒,应该用锁链或安全绳捆绑并靠墙存放。为避免气体流速的干扰建议在气瓶与备用气瓶之间安装调节阀,尤其对载气来说安装调节阀是非常重要的,例如当色谱柱正在升温时载气供应不足将严重损坏气相色谱柱。使用二级减压阀将从气瓶出来的气体压力调节到所需的工作压力。在更换气瓶和安装减压阀时应尽量远离。新安装完成的气瓶减压阀尤其是在刚开始使用的24小时内应完全打开,目的是防止减压阀内部的压力降造成压力不稳。 一般来说气瓶总压力下降到200-300 psi(或初始压力的10%)时需要更换气瓶,因为随着气瓶压力下降,杂质如水分、碳氢化合物和小颗粒会集中在气体中大大降低了气体纯度。

USP色谱柱解释

L1和L8是美国药典(USP)规定的色谱柱编号,其实就是C18柱和NH2柱。下面是对应的色谱柱类型。 L1:十八烷基键合多孔硅胶或无机氧化物微粒固定相,简称C18或ODS L2:30~50um表面多孔薄壳型键合C18(ODS)固定相 L3:多孔硅胶微粒即一般的硅胶柱 L4:30~50um表面多孔薄壳型硅胶 L5:30~50um表面多孔薄壳型氧化铝 L6:30~50um实心微球表面包覆磺化碳氟聚合物-强阳离子交换固定相 L7:全多孔硅胶微粒键合C8官能团固定相简称C8柱 L8:全多孔硅胶微粒键合非交联NH2固定相简称NH2柱 L9:强酸性阳离子交换基团键合全多孔不规则形硅胶固定相 L10:多孔硅胶微球键合氰基固定相(CN)简称CN柱 L11:键合苯基多孔硅胶微球固定相简称苯基柱 L12:无孔微球键合季胺功能团的强阴离子填料 L13:三乙基硅烷化学键合全多孔硅胶微球固定相(C1)简称C1柱 L14:10um硅胶化学键合强碱性季铵盐阴离子交换固定相简称SAX柱 L15:已基硅烷化学键合全多孔硅胶微球固定相简称C6柱 L16:二甲基硅烷化学键合全多孔硅胶微粒固定相 L17:氢型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换树脂 L18: 3~10um全多孔硅胶化学键合胺基(NH2)和氰基(CN) L19:钙型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换树脂 L20:二羟基丙烷基化学键合多孔硅胶微球固定相(Diol)简称二醇基柱 L21:刚性苯乙烯-二乙烯基苯共聚物微球 L22:带有磺酸基团的多孔苯乙烯阳离子交换树脂 L23:带有季胺基团的聚甲基丙烯酸甲酯或聚丙烯酸酯多孔离子交换树脂 L24:表面含有大量羟基的半刚性聚乙烯醇亲水凝胶 L25:聚甲基丙烯酸酯树脂交联羟基醚(表面含有残余羧基功能团)树脂。能分离分子量100~5000MW范围的水溶性中性、阳离子型及阴离子型聚合物(用聚氧乙烯测定)的固定相 L26:丁基硅烷化学键合全多孔硅胶微球固定相 L27:30~50um的全多孔硅胶微粒

高效液相色谱法的分类及原理

高效液相色谱法的分类及其分离原理 高效液相色谱法分为:液-固色谱法、液-液色谱法、离子交换色谱法、凝胶色谱法。 1.液-固色谱法(液-固吸附色谱法) 固定相是固体吸附剂,它是根据物质在固定相上的吸附作用不同来进行分配的。 ①液-固色谱法的作用机制 吸附剂:一些多孔的固体颗粒物质,其表面常存在分散的吸附中心点。 流动相中的溶质分子X(液相)被流动相S带入色谱柱后,在随载液流动的过程中,发生如下交换反应: X(液相)+nS(吸附)<==>X(吸附)+nS(液相) 其作用机制是溶质分子X(液相)和溶剂分子S(液相)对吸附剂活性表面的竞争吸附。 吸附反应的平衡常数K为: K值较小:溶剂分子吸附力很强,被吸附的溶质分子很少,先流出色谱柱。 K值较大:表示该组分分子的吸附能力较强,后流出色谱柱。 发生在吸附剂表面上的吸附-解吸平衡,就是液-固色谱分离的基础。 ②液-固色谱法的吸附剂和流动相 常用的液-固色谱吸附剂:薄膜型硅胶、全多孔型硅胶、薄膜型氧化铝、全多孔型氧化铝、分子筛、聚酰胺等。 一般规律:对于固定相而言,非极性分子与极性吸附剂(如硅胶、氧化铜)之间的作用力很弱,分配比k较小,保留时间较短;但极性分子与极性吸附剂之间的作用力很强,分配比k大,保留时间长。 对流动相的基本要求: 试样要能够溶于流动相中 流动相粘度较小 流动相不能影响试样的检测 常用的流动相:甲醇、乙醚、苯、乙腈、乙酸乙酯、吡啶等。 ③液-固色谱法的应用 常用于分离极性不同的化合物、含有不同类型或不;数量官能团的有机化合物,以及有机化合物的不同的异构体;但液-固色谱法不宜用于分离同系物,因为液-固色谱对不同相对分子质量的同系物选择性不高。 2.液-液色谱法(液-液分配色谱法) 将液体固定液涂渍在担体上作为固定相。 ①液-液色谱法的作用机制 溶质在两相间进行分配时,在固定液中溶解度较小的组分较难进入固定液,在色谱柱中向前迁移速度较快;在固定液中溶解度较大的组分容易进入固定液,在色谱柱中向前迁移速度较慢,从而达到分离的目的。 液-液色谱法与液-液萃取法的基本原理相同,均服从分配定律:K=C固/C液 K值大的组分,保留时间长,后流出色谱柱。 ②正相色谱和反相色谱 正相分配色谱用极性物质作固定相,非极性溶剂(如苯、正己烷等)作流动相。 反相分配色谱用非极性物质作固定相,极性溶剂(如水、甲醇、己腈等)作流动相。

气相色谱色谱柱的选择及分类

气相色谱色谱柱的选择及分类 1.1 固定相的选择 当面对一个未知物时,先试用现有GC柱,如果该柱分离不理想,根据你对样品的了解,基本原则是分析物与固定相有相似化学性质时才会相互作用。这说明对样品越了解,越容易找到合适的固定相。 非极性分子——通常仅由C和H组成并且无偶极矩,直联(正烷)是常见的非极性化合物的例子。 极性分子——主要由C和H组成同时也有其他原子,如:N、O、P、S或卤素。样品包括有醇类、胺类、硫醇类、酮类、有机卤化物等。 可极化物质——主要由C和H组成同时包含不饱和键。通常有:炔和芳香族化合物。 如果你的样品是具有相似的化学性质的非极性组分的混合物,比如大多数石油馏分中的烃,你可以试用OV-1毛细管色谱柱,它按沸点顺序分离。如果你怀疑有芳族化合物,试着用有苯基的SE-52或SE-54柱。 极性或可极化组分样品能够在中极性和/或可极化固定相色谱柱上进行分析,如有苯基或类似基团固定相,比如OV-17或OV-225柱。如果需要更高极性,可以选用聚乙二醇(PEG)固定相,即通常所说的WAX固定相。 1.2膜厚选择 薄膜比厚膜洗脱组分快、峰分离好、温度低。 一般而言,色谱柱的膜厚为0.25到0.5μm。对于流出达300℃的大多数样品(包括蜡、甘油三脂、甾族化合物等)能够很好的分析。对于更高的洗脱温度,可以用0.1μm的液膜。而厚液膜对于低沸点化合物有利,对于流出温度在100℃~200℃之间的物质,用1~1.5μm的液膜效果较好。超厚膜(3~5μm)用于分析气体、溶剂和可吹扫出来的物质,以增加样品组分与固定相的相互作用。另一个选择厚膜的原因是当用大口径柱时保持分离度和保留时间。由于这个原因,大口径柱都只有厚膜。厚膜的流失较大,温度极限必须随膜厚度增加而下降。 1.3长度选择 一般情况,15m柱用于快速筛选简单混合物或分子量极高的化合物。30m柱是最普遍的柱长。超长柱(50、60或100m、150m)用于非常复杂的样品。

美国药典色谱柱分类

L1—Octadecyl silane chemically bonded to porous silica or ceramic micro-particles,3to 10μm in diameter. L2—Octadecyl silane chemically bonded to silica gel of a controlled surface porosity that has been bonded to a solid spherical core,30to 50μm in diameter. L3—Porous silica particles,5to 10μm in diameter. L4—Silica gel of controlled surface porosity bonded to a solid spherical core,30to 50μm in diameter. L5—Alumina of controlled surface porosity bonded to a solid spherical core,30to 50μm in diameter. L6—Strong cation-exchange packing–sulfonated fluorocarbon polymer coated on a solid spherical core,30to 50μm in diameter. L7—Octylsilane chemically bonded to totally porous silica particles,3to 10μm in diameter. L8—An essentially monomolecular layer of aminopropylsilane chemically bonded to totally porous silica gel support,10μm in diameter. L9—10-μm irregular or spherical,totally porous silica gel having a chemically bonded,strongly acidic cation-exchange coating. L10—Nitrile groups chemically bonded to porous silica particles,3to 10μm in diameter. L11—Phenyl groups chemically bonded to porous silica particles,5to 10μm in diameter. L12—Astrong anion-exchange packing made by chemically bonding a quaternary amine to a solid silica spherical core,30to 50μm in diameter. L13—Trimethylsilane chemically bonded to porous silica particles,3to 10μm in diameter. L14—Silica gel 10μm in diameter having a chemically bonded,strongly basic quaternary ammonium anion-exchange coating. L15—Hexylsilane chemically bonded to totally porous silica particles,3to 10μm in diameter.

常用液相色谱柱选择

常用色谱柱简介 气相色谱毛细柱 (键合,聚二甲基硅氧烷) HP-1,DB-1,P-1,CP-SIL5CB, Ultra-1,007-1,RTx-1,AT-1 类似固定相:SE-30,SP-2100,OV-1,OV-101,使用 温度:-60℃-320℃ 应用范围:烷烃,芳烃,多环芳烃,醇,酚,酮,酯,醛,胺,卤代烃,吡啶,糖衍生物,氨基酸衍 生物,维生素衍生物,镇痛药,农药,溶剂,胆固SPB-50型中等极性柱 醇,香料,咖啡,食品添加剂等。 (键合, 50%二苯基,50%二甲基聚硅氧烷) 对照品牌:HP-50,HP-17,DB-17,RTx-50,AT-50 SPB-5型弱极性柱 类似固定相:OV-17, SP-2250,使用温度:30℃-310℃(键合,5%苯基,95%甲基聚硅氧烷) 应用范围:烷烃,低沸点芳烃,多环芳烃,醇,甘 对照品牌:HP-5,DB-5,BP-5,CP-SIL 8CB, 油三酸酯,喹啉,卤素化合物,香料,农药,酯,Ultra-2, ,RTx-5,AT-5 镇痛药,除草剂等。 类似固定相:SE-54,SE-52,OV-73 使用温度: -60℃-320℃ PTE-5,PTE-5QTM型弱极性柱 应用范围:烷基苯,多环芳烃,醇,酚,酮,脂肪(MS专用柱,键合,5%苯基,95%甲基聚硅氧烷) 酸酯,苯二甲酸酯,硝基芳烃,芳胺,烷基胺,联 对照品牌:HP-5 MS,DB-5 MS, DB-5.625,XTI-5, 苯胺,卤代烃,多氯联苯,,糖类衍生物,维生素衍BPX625,半挥发污染物分析柱(US EPA方法525, 生物,有机酸,镇痛药,农药,抗组胺药,溶剂,625.5,625) 生物碱,防腐剂,香料等。 类似固定相:SE-54,SE-52 使用温度:-60℃-320℃ 应用范围:多氯联苯,胺,有机磷,有机氯农药,SUPELCOWAX 10型极性柱 含氯除草剂,酚,苯胺,香料等。 (键合,聚乙二醇二万) 对照品牌:HP-Wax,DB-Wax,BP-20,CP-Wax 52CB,SPB-1701型中等极性柱 HP-INNO Wax,AT-Wax (键合, 14%氰丙基,86%二甲基聚硅氧烷) 类似固定相:PEG-20M, CARBOWAX-20M,使用温

美国药典621

<621>色谱法 介绍 色谱分离技术是通过样品组分在固定相和流动相两相中的分布差异进行分离的技术。其中固定相可以是固体、有固相支持的液体或凝胶。固定相可以填充于柱、分散成层、分布为膜或者应用于其他技术中。流动相可以为气态、液态或超临界流体。分离可以基于吸附性、质量分布(分配)或离子交换,也可以基于分子物理化学性质的差异,如大小、质量和体积。本章节包括了基本步骤、定义和对一般参数的计算并描述了对于系统适应性的基本要求。在USP中应用于定量和定性分析的色谱方法类型有柱色谱法、气象色谱法、纸色谱法、薄层色谱法(包括高效薄层色谱)和加压液相色谱法(一般称作高压或高效液相色谱)。 基本步骤 本部分描述了使用某种色谱方法的基本步骤。除另有各论规定外,以下色谱分离方法的步骤将会被遵循。 纸色谱法 固定相:固定相为一张适当质地和厚度的纸。色谱图的形成过程可以是上行的,这样溶剂被毛细管作用力支撑着沿着纸向上,这个过程也可以是下行的,在此情况下溶剂流动也受到重力的影响。与溶剂流动有关的纸张纹理定向应该在一系列色谱图中保持恒定。(纤维方向通常由制造商在色谱纸的包装上标出。) 仪器:纸色谱法的必备仪器包括装有添加溶剂的入口的气密室和短于该室内部高度5cm的耐腐蚀材料支架。该支架作为用于溶剂槽以及用于抗虹吸棒的支撑,这些抗虹吸棒依次撑起色谱纸。气密室的底部以规定的容积系统或流动相覆盖。使用以规定溶剂系统润湿的纸张衬托于气密室的内壁,以增加气密室的溶剂蒸汽饱和度。 斑点:将待分析的一个或多个物质溶解于适当溶剂中。以微量吸管吸取适当体积的溶液,其中通常含有1-20μg该化合物,点样为6-10mm大小斑点且斑点间的间隔不小于3cm。 下行色谱法步骤 1. 带斑点的色谱纸以抗虹吸棒悬挂在气密室内,该棒将该色谱纸的上端固定在溶剂槽中。(注:确保色谱纸挂在抗虹吸棒下的部分自由的悬挂在气密室中,没有接触到支架、室壁或室内的液体。 2. 气密室被密闭,以便使该室与色谱纸达到溶剂蒸汽平衡(饱和)释放任何多余压力。 3. 在气密室平衡后,将配制好的流动相溶剂通过入口添加到溶剂槽中。 4. 关闭入口,且让流动溶剂相沿着色谱纸向下行进需要的距离。 5. 从气密室内取出色谱纸。 6. 迅速标注溶剂前沿的位置,并干燥色谱纸。 7. 直接或用适当措施显示被分离出来的一个或多个药物的斑点位置之后,观察并测量该色谱图。 上行色谱法步骤

气相色谱色谱柱的选择及分类

气相色谱色谱柱的选择及 分类 Prepared on 24 November 2020

气相色谱色谱柱的选择及分类 固定相的选择 当面对一个未知物时,先试用现有GC柱,如果该柱分离不理想,根据你对样品的了解,基本原则是分析物与固定相有相似化学性质时才会相互作用。这说明对样品越了解,越容易找到合适的固定相。 非极性分子——通常仅由C和H组成并且无偶极矩,直联(正烷)是常见的非极性化合物的例子。 极性分子——主要由C和H组成同时也有其他原子,如:N、O、P、S或卤素。样品包括有醇类、胺类、硫醇类、酮类、有机卤化物等。 可极化物质——主要由C和H组成同时包含不饱和键。通常有:炔和芳香族化合物。 如果你的样品是具有相似的化学性质的非极性组分的混合物,比如大多数石油馏分中的烃,你可以试用OV-1毛细管色谱柱,它按沸点顺序分离。如果你怀疑有芳族化合物,试着用有苯基的SE-52或SE-54柱。 极性或可极化组分样品能够在中极性和/或可极化固定相色谱柱上进行分析,如有苯基或类似基团固定相,比如OV-17或OV-225柱。如果需要更高极性,可以选用聚乙二醇(PEG)固定相,即通常所说的WAX固定相。 膜厚选择 薄膜比厚膜洗脱组分快、峰分离好、温度低。 一般而言,色谱柱的膜厚为到μm。对于流出达300℃的大多数样品(包括蜡、甘油三脂、甾族化合物等)能够很好的分析。对于更高的洗脱温度,可以用μm的液膜。而厚液膜对于低沸点化合物有利,对于流出温度在100℃~200℃之间的物质,用1~μm的液膜效果较好。超厚膜(3~5μm)用于分析气体、溶剂和可吹扫出来的物质,以增加样品组分与固定相的相互作用。另一个选择厚膜的原因是当用大口径柱时保持分离度和保留时间。由于这个原因,大口径柱都只有厚膜。厚膜的流失较大,温度极限必须随膜厚度增加而下降。 长度选择 一般情况,15m柱用于快速筛选简单混合物或分子量极高的化合物。30m柱是最普遍的柱长。超长柱(50、60或100m、150m)用于非常复杂的样品。

气相色谱柱知识详解

气相色谱柱知识详解

————————————————————————————————作者:————————————————————————————————日期:

气相色谱柱知识详解 第一节气相色谱柱的类型 气相色谱法(gas chromatography, 简称GC)亦称气体色谱法,气相层析法。其核心即为色谱柱。 气相色谱柱有多种类型。从不同的角度出发,可按色谱柱的材料、形状、柱内径的大小和长度、固定液的化学性能等进行分类。色谱柱使用的材料通常有玻璃、石英玻璃、不锈钢和聚四氟乙烯等,根据所使用的材质分别称之为玻璃柱、石英玻璃柱、不锈钢柱和聚四氟乙烯管柱等。在毛细管色谱中目前普遍使用的是玻璃和石英玻璃柱,后者应用范围最广。对于填充柱色谱, 大多数情况下使用不锈钢柱,其形状有U型的和螺旋型的,使用U 型柱时柱效较高。按照色谱柱内径的大小和长度,又可分为填充柱和毛细管柱。前者的内径在2~4mm,长度为1~10m左右;后者内径在0.2~0.5mm,长度一般在25~100m。在满足分离度的情况下,为提高分离速度,现在也有人使用高柱效、薄液膜的10m短柱。 根据固定液的化学性能,色谱柱可分为非极性、极性与手性色谱分离柱等。固定液的种类繁多,极性各不相同。色谱柱对混合样品的分离能力,往往取决于固定液的极性。常用的固定液有烃类、聚硅氧烷类、醇类、醚类、酯类以及腈和腈醚类等。新近发展的手性色谱柱使用的是手性固定液,主要有手性氨基酸衍生物、手性金属配合物、冠醚、杯芳烃和环糊精衍生物等。其中以环糊精及其衍生物为色谱固定液的手性色谱柱,用于分离各种对映体十分有效,是近年来发展极为迅速且应用前景相当广阔的一种手性色谱柱。 在进行气相色谱分析时,色谱柱的选择是至关重要的。不仅要考虑被测组分的性质,实验条件例如柱温、柱压的高低,还应注意和检测器的性能相匹配。有关内容我们将在以后章节中加以详细讨论。 第二节填充气相色谱柱 填充气相色谱柱通常简称填充柱,在实际分析工作中的应用非常普遍。据资料统计,日常色谱分析工作大约有80%是采用填充柱完成的。填充柱在分离效能和分析速度方面比毛细管柱差,但填充柱的制备方法比较简单,定量分析的准确度较高,特别是在某些分析领域(例如气体分析、痕量水分析)具有独特用途。从发展上看,虽然毛细管柱有逐步取代填充柱的趋势(例如已有一些日常分析使用PLOT柱代替过去常用的气固色谱填充柱),但至少在目前一段时期内,填充柱在日常分析中仍是一种十分有价值的分析分离手段。 填充柱主要有气固色谱柱和气液色谱填充柱两种类型。在色谱柱中关键的部分是固定相。在本节我们将首先介绍柱管的选择及其处理方法,然后再分别重点讨论气固色谱柱和气液色谱填充柱有关固定相的内容。

液相色谱柱的分类和维护

液相色谱柱的分类和维护 一、色谱柱基本知识 色谱是一种分离分析手段,分离是核心,因此担负分离作用的色谱柱是色谱系统的心脏。对色谱柱的要求是柱效高、选择性好,分析速度快等。市售的用于HPLC的各种微粒填料好多孔硅胶以及以硅胶为基质的键合相、氧化铝、有机聚合物微球(包括离子交换树脂)、多孔碳等,其粒度一般为3,5,7,10um等,柱效理论值可达5~16万/米。对于一般的分析只需5000塔板数的柱效;对于同系物分析,只要500即可;对于较难的分离物质对则可采用高达2万的柱子,因此一般10~30cm左右的柱长就能满足复杂混合物分析的需要。 柱效受柱内外因素影响,为使色谱柱达到最佳效率,除柱外死体积要小外,也要有合理的柱结构(尽可能减少填充床以外的死体积)及装填技术。即使最好的装填技术,在柱中心部位和沿管壁部位的填充情况总是不一样的,靠近管壁的部位比较疏松,易产生沟流,流速较快,影响冲洗剂的流形,使谱带加宽,这就是管壁效应。这种管壁区大约是从管壁向内算起30倍料径的厚度。在一般的液相色谱系统中,柱外效应对柱效的影响远远大于管壁效应。 1.柱的构造 色谱柱由柱管、压帽、卡套(密封环)、筛板(滤片)、接头、螺丝等组成。柱管多用不锈钢制成,压力不高于70Kg/cm2 时,也可采用厚壁玻璃或石英管,管内壁要求有很高的光洁度。为提高柱效,减小管壁效应,不锈钢柱内壁多经过抛光。也有人在不锈钢柱内壁涂敷氟塑料以提高内壁的光洁度,其效果与抛光相同还有使用熔融硅或玻璃衬里的,用于细管柱。色谱柱两端的柱接头内装有筛板,是烧结不锈钢或钛合金,孔径0.2-20um(5-10 um),取决于填料粒度,目的是防止填料漏出,柱内径一般是根据柱长、填料粒径和折合流速来确定,目的是为了避免管壁效应。 2.柱的发展方向 因强调分析速度而发展出短柱,柱长3~10cm,填料粒径2~3um。为提高分析灵敏度,与质谱(MS)联接,而发展出窄径柱、毛细管柱和内径小于0.2mm的微径柱(MICROBORE)。细管径柱的优点是:①节省流动相;②灵敏度增加; ③样品量少;④能使用长柱达到高分离度;⑤容易控制柱温;⑥易于实现LC-MS联用。 但由于柱体积越来越小,柱外效应的影响就更加显著,需要更小池体积的检测器(甚至采用柱上检测),更小死体积的柱接头和连接部件。配套使用的设备应具备如下性能:输液泵能精密输出1~100ul/min的低流量,进样阀能准确、重复地进样微小体积的样品。且因进样量小,要求高灵敏度检测器,电化学检测帮质谱仪在这方面具有突出优点。 3.柱的填充 色谱柱的性能除了与固定相性能有关外,还与填充技术有关。在正常条件下,填料粒度>20um 时,干法填充制备柱较为合适;颗粒<20um时,湿法填充较为理想。填充方法一般有四种:①高压匀浆法,多有用于分析柱和小规模制备柱的填充;②径向加压法,Waters 专利;③轴向加压法,主要用于装填大直径柱;④干法,柱填充的技术性强,大多数实验室使用己填充好的商品柱。 必须指出,高效液相色谱柱的获得,装填技术是重要环节,但根本问题还在于填料本身性能的优劣,以及配套的色谱仪系统的结构是否合理。 二、液相色谱柱规格 色谱柱按用途可分为分析型和制备型两类 ①常规分析柱(常量柱),内径2~5mm,柱长10~30cm; ②窄径柱(narrow bore),内径1~2mm,柱长10~20cm; ③毛细管柱(又称微柱microcolumn),内径0.2~0.5mm; ④半制备柱,内径>5mm; ⑤实验室制备柱,内径20~40mm,柱长10~30cm; ⑥生产制备柱内径可达几十厘米。 色谱柱了解 1)平均颗粒度,颗粒度分布颗粒度(dp)越小:柱效越高(传质好,涡流扩散小)柱压越高(渗透性差) 颗粒分布颗粒分布越宽∶柱效低(渗透性差) 颗粒形状球型∶柱效高、重现性好、柱床结构均匀 无定型:柱床结构不均匀流动相线性速度不均匀,谱带扩展 2)键合相化学 1.影响化合物的分离度: 2.不同键合相对不同种类的化合物分离不同a 3.可能导致色谱的分离机理不同3.如:C18、C8、CN

相关文档