文档库 最新最全的文档下载
当前位置:文档库 › 质子磁力仪平测岩矿标本磁参数的装置与计算方法

质子磁力仪平测岩矿标本磁参数的装置与计算方法

质子磁力仪平测岩矿标本磁参数的装置与计算方法
质子磁力仪平测岩矿标本磁参数的装置与计算方法

深部金属矿

深部找矿物探方法主要包括:磁法、激电、电磁法(瞬变电磁法、MT法和CSAMT 法)、地震法和井间物探方法。 磁法是通用的廉价、快速找矿方法,但以定性和半定量为主。它在圈定岩体范围,圈定断裂带,探测含磁性物质的矿产资源等方面具有独到作用。 电磁法种类繁多,包括时间域电磁法(TEM)、频率域电磁法(MT、AMT、CSAMT)、高密度电法和激发极化法(IP),其中勘探深度大于500m的是时间域电磁法和频率域电磁法。电磁法特别对低阻体敏感。由于断裂带和断层两侧岩层的电性差异较大,矿床和产出环境中常伴有低阻的蚀变带、角砾岩带、蛇纹岩化、剪切破碎带等,此外由硫化物颗粒组成的硫化物矿床往往电阻率很低,有些金属矿体也是低阻体,所以电磁法是勘探金属矿的重要方法。 地震法是物探方法中分辨率最高、最精确的方法。但由于金属矿床多产出在岩浆岩及其围岩和变质岩及火山岩之中,矿体与围岩没有明显的波阻抗差,而在基岩裸露地区激发条件又很差,所以地震法在金属矿勘探中很少应用。但近年来,随着数据处理方法和仪器设备的改善及提高,地震法在金属矿勘探中已取得了明显进展。 井间物探包括井中瞬变电磁法和井间高密度电法和井间地震,可以直接探测矿化带和矿体在井间的展布。井中瞬变电磁法勘探深度可达2000m。 对于金属矿产的勘查,除了利用传统的电法之外,电磁法仍然是主要的方法.近年来激电法(SIP/CR)、人工源和天然源的混合场源法(EH4)、人工源声频大地电磁法(CSAMT)、瞬变电磁(TEM)、大地电磁法(MT)等已逐步应用于金属矿勘查中,并在寻找深部隐伏矿床、构造复杂区的矿床等方面都取得了有用的成果。 MT是频率域电磁法的典型方法,是通过改变频率达到测深目的的天然源电磁法,所以MT在寻找深部隐伏矿中有不可替代的优势。MT的勘探深度不仅与频率有关,还与地表电导率及其厚度有关MT虽然在寻找深部隐伏矿中有不可替代的优势,但是它的信号很弱且抗干扰能力较差,所以MT经过几十年的发展,为了适应不同的观测环境,MT发展了很多变种方法且在找矿中得到了应用,如以提高信噪比的可控源音频大地电磁法(CSAMT)和以提高分辨率的混合源电磁法(EH 4),CSAMT的频率范围一般为n~8192Hz,勘探深度大于2km,EH 4的频率范围一般为10~100kHz,在1km以内有较高的分辨率。 TEM是时间域电磁法的典型方法,TEM直到上世纪七十年代,在澳大利亚得到了发展和应用,TEM与传统的直流电法、激电方法相比,其探测深度明显要大,垂向分辨率也高,易于探测到覆盖层下的良导体,探测深度可达300~400m.近年来,随着仪器设备的不断改进,探测深度可达1500m。

海洋磁力仪的原理与技术指标对比分析

海洋磁力仪的原理与技术指标对比分析第 26卷第 2期海洋测绘Vo l126 , No12 2006年 3 月 M a r1, 2006 H YDRO GRA PH IC SURV EY IN G AND CHAR T IN G 海洋磁力异常逼近方法研究 1 1 1 2 1金绍华 ,于波 ,刘雁春 ,翟国君 ,边刚 ( )11海军大连舰艇学院海洋与测绘科学系 ,辽宁大连 116018; 21海军海洋测绘研究所 ,天津 300061 摘要 : 通过对常用的数值逼近方法的分析和研究 ,针对海洋磁力测量的特点 ,仿真计算分析了移动曲面法、 H a rdy多面函数法、Shep a rd法和 Kriging法在不同情况下的插值精度。同时 ,给出了一个实例来计算分析四种逼近 方法插值精度。仿真与实例计算结果表明 ,已知点的分布情况及磁异常变化情况不同时 ,四种逼近方法的插值精 度是不同的。针对不同的情况 ,本文总结出了适合于海洋磁力异常逼近的方法。 关键词 : 海洋磁力异常 ;逼近 ;插值精度 + 中图分类号 : P31816 3 ( ) 文献标识码 : A 文章编号 : 1671 23044 2006 0220006 203 2 2 ( ) z x, y = a+ ax + ay + ax y + ax+ ay 0 1 2 3 4 5 1 引言 ( ) 1 ( ) ( ) 式中 , z x, y 为已知点 x, y 的磁力异常值 , a、a、 0 1 ,得到由于海洋磁力测量属于点线状测量模式

a、a、a、a为拟合系数。 2 3 4 5 的观测结果往往是离散的 ,然而海洋磁场 本身却是 ( ) 由 1 式依据最小二乘原则可以求得拟合系数连续的 ,因此 ,根据观测的 离散数据寻找磁场的解析 a、a、a、a、a、a, 即可得到曲面方程。然后依据曲 0 1 2 3 4 5 表达式一 直在不断研究探索。将离散的磁异常值表 面方程可求得任一未知点处的逼近值。示成解析形式 ,便于利用计算机仿真 技术模拟海洋 [ 3 ]磁场的变化形态 ,反映测区的总体特征。 212 H a rdy多面函数法 磁力异常逼近技术是能够反映磁场连续变化的( ) 在平面坐标系中 ,若将磁力 异常函数 z x, y 表主要手段 ,对于反映整个中国海区的磁力异常变化示为 : n 特性 ,可以选取均匀分布整个中国海区的离散磁异 )( )( ) ( z x, y = aQ x, y, x, y2 i j j ? 常值 ,利用多项式模型、矩 谐模型、冠谐模型等建立 j = 1 [ 1 ] 磁异常模型 ,来分析中国海区的磁异常变化。而 ( ) x , y 为式中 , n 为核函数的个数 ; a 为待定参数 ; i j j 对于 小范围的磁异常变化特性可以采用数学逼近方 ( ) 已知磁异常点坐标 ; Q x, y, x, y为核函数 , 一般选 j j 法进行分析与研究。目前 ,主要的逼近方法有移动 用如下形式 : 2 2 曲面法、多项式拟合法、多面函数法、移动曲面法、 2ΔδΔ ( ) Q x, y, x , y = x+y+ j jj j Kriging逼近法和 Shep a rd方法。它们在陆地上 重力ΔΔδ式中 , x = x - x; y = y - y;为平滑因子 , 在海 j j j j 异常逼 近中取得了良好的效果 ,不失一般性 ,这些方 2 ( δ洋磁力测量中可令 = 0。 对于 m 个已知点 x , 1 法也可用来对海洋磁力测量的异常进行逼近。本文 ) ( ) ( ) ( ) y, x, y,x, y由 2 式可列 m 个方, 1 2 2 m m 介绍了几种常用的

井中质子磁力仪与高精度井中磁测方法技术

井中质子磁力仪与高精度井中磁测方法技术 雷振英米宏泽 (中国地质科学院地球物理地球化学勘查研究所) 一、井中高精度质子磁力仪研制 1、研制工作主要进展 在中国地质调查局的项目支持下,研制成功我国首台井中高精度质子磁力仪,为开展中弱磁性井中高精度磁测方法技术研究提供了技术支撑。主要取得以下研究进展: (1)研制成功高精度小口径(Φ<45mm)井中质子磁力仪传感器,解决了传感器的尺寸小型化、高精度测量、封装材料及其防水性结构等技术问题。 (2)研制开发了井中仪器磁测电路,包括探头的极化电路、调谐电路、放大电路、锁相环等,以及单片机为核心控制各部分工作的逻辑电路。 (3)采用先进的单片机技术,研制了地面控制采集器,解决了与井中仪器进行数据传输及仪器控制等技术问题。 (4)采用无磁的玻璃钢和钛钢外管材料,研制了适用于小口径深孔磁测的井中仪器结构。 研制的CZJ-1井中质子磁力仪(图1)是利用氢质子磁矩在地磁场中自由旋进的原理制成的高灵敏度弱磁测量装置,主要应用于井中地球磁场总向量的观测,是中弱磁性矿体勘查的有力工具。 CZJ-1井中质子磁力仪的特点是:高分辨率、全量程自动调谐、点阵式LCD 现场显示观测数据和曲线,数据自动记录和存储,全中文菜单,可与电脑串接进行数据处理。操作简单、结构合理、体积小、重量轻、抗干扰能力强、耗电量小、工作稳定可靠。 CZJ-1井中高精度质子磁力仪研制成功,为我国中—弱磁性矿区开展井中磁测找矿提供了可用设备,填补了我国在这一领域的空白。 2、仪器主要技术指标

CZJ-1井中质子磁力仪的主要技术参数: ①磁场测量范围:30000nT—70000nT; ②分辨率:0.1nT ; ③磁场测量精度:≤±5nT;总场绝对强度50000nT时±5nT; ④梯度允许范围:≤5000nT/m ⑤环境温度:-15℃~+50℃; ⑥环境湿度:≤95%(25℃); ⑦数据存储量:日变方式:不少于45h(在典型读数间隔为10秒时),点测方式:不少于8000个点; ⑧主机电源:锂离子电池:12.8V~16.8V/5 Ah,连续工作不少于17h(日变方式下,典型读数间隔为10s时)。探头电源:锂离子电池:18V~25.2V/2.2 Ah,连续读数不少于2200次; ⑨主机外形尺寸:(长×宽×高):220mm×90mm×200mm; ⑩主机重量:约2Kg;探头外形尺寸及重量:φ46 mm×1620mm,4Kg。 图1 CZJ-1井中高精度质子磁力仪 3、仪器性能测试 仪器经过中国计量科学研究院测试,各项性能指标和功能达到设计要求。在

WCZ-2质子磁力仪

WCZ-2质子磁力仪 WCZ-2质子磁力仪是在本公司WCZ-1质子磁力仪基础上,增加GPS定位功能实现的新一代质子磁力仪,其磁场测量精度为±1nT,分辨率高达 0.1nT,完全符合原地矿部发布的《地面高精度磁测工作规程》要求。其具有的大存储容量、高分辨率、灵活性使它得以成为便携式、移动式、基站式磁力仪。通过更改探头结构,可以以 0.1nT的分辨率进行总场和水平、垂直梯度的测量。 应用范围 矿产勘查,如铁矿、铅锌矿、铜矿等。 配合矿区勘探,研究矿体的埋深、产状和连续性,研究矿体的形状、大小,估计矿床规模。 石油、天然气勘查,研究与油气有关的地质构造及大地构造等问题。 普查、详查、地质填图。 航空及xx磁测的地面日变站。 断层定位。 考古。 水文。 工程勘查,如管线探测等。 地震前兆监测,火山观测以及其它环境及灾害地质工作。 小型铁磁物体的探测等。 主要特点

可进行地磁场总场测量及梯度测量(水平梯度或垂直梯度,需增配专用探头及探头架)。 可用于野外作业,也可用做基站测量。 GPS定位功能: 可预置测线端点的经纬度,仪器自动计算各测点的位置;可实时显示位置信息,以及和设定点位的偏差。 GPS授时功能: 自动xx仪器的内置实时时钟。 每个测量点均保存经纬度、高程和时间信息,且能定时测量、存储。 大屏幕显示,全中文界面,自动显示磁场强度曲线,操作简单。 带背光的液晶显示器,方便夜间测量。 人性化键盘设计,支持左、右手同时操作。 既可全量程自动调谐,也可人工调谐。 轻便便携,整套系统使用探头天线背架,一人可完成全部测量任务。 具有RS-232C计算机接口。 专业地质软件可绘制等值线图、剖面图等。技术指标 测量范围:20,000 nT~100,000nT 测量精度: ±1nT 分辨率: 0.1nT

完整版实验常见矿物手标本的鉴定

实验一常见矿物手标本的鉴定 一、实验类型 验证性实验 二、实验目的 (一)熟悉与掌握用肉眼鉴定矿物的方法。 (二)熟练掌握常见矿物的形态特征及物理性质特征,并据此鉴别矿物。(三)为鉴定岩石打下基础。 三、实验仪器、设备 矿物标本,小刀,放大镜,盐酸,瓷板,马蹄形磁铁 四、实验原理 (一)矿物的形态 1.矿物单体的形态:一向延长——柱状或针状 二向延长——板状或片状 三向延长——立方体或八面体等。 2.矿物集合体的形态:矿物单体如为一向伸长——集合体常为纤维状或毛发状;矿物单体如为二向伸长——集合体常为鳞片状; 矿物单体如为三向伸长——集合体常为粒状或块状 (二)矿物的光学性质 1、透明度:矿物透过可见光的能力矿物薄片能透过光线者,称为透明矿物;基本上不能透过光线者,称为不透明矿物。 2、光泽:矿物对可见光的反射能力。根据反射能力的强弱可分为: 3、颜色与条痕:颜色是鉴定矿物的重要依据。某些矿物常常由于外来原因呈现出不很固定的颜色,如纯净的石英为无色,由于混有杂质等原因也可呈现各种颜色,许多透明矿物均具有这一特点。 条痕是矿物粉末的颜色。它对于某些金属矿物具有重要的鉴定意义,如赤铁矿可呈赤红、铁黑或钢灰等色,而它的条痕恒为樱红色 透明矿物的条痕都是白色或近于白色,无鉴定意义。 (三)矿物的力学性质 1、硬度:在肉眼鉴定中,主要指矿物抵抗外力刻划的能力。通常用摩氏硬度计作为标准进行测量。 2、解理:晶体受到打击时能够沿着一定结晶方向分裂成为平面(即解理面)的能力。 3、断口:断口是矿物受外力打击后不沿固定的结晶方向断开时所形成的断裂面。(四)常见矿物特征 滑石Mg[SiO](OH) 83104单晶体为片状,通常为鳞片状、放射状、纤维状、块状等集合体。无色或白色。解理面上为珍珠光泽。硬度1。平行片状方向有极解理。有滑感。薄片具挠性相对密度2.58—2.55。 石膏Ca[SO]·2HO 24单晶体常为板状。集合体为块状、粒状及纤维状等为无

G856质子磁力仪的使用说明

G856磁力仪操作按钮 1)清除一个(某个)键的顺序 CLEAR 2)读取并且保存一个读数 READ + STORE 3) 从内存中读取上一个读数 RECALL 4)从内存中读取某个点的数值 RECALL + SHIFT + 数字#+数字#+数字# + ENTER (例如:要读取第150点的数据,按RECALL+SHIFT+1+5+0+ENTER; 要读取第75点的数据,按RECALL+SHIFT+7+5+ENTER;) 5)设置调谐场(默认为51000或52000,填数字时填510或520就行了。) TUNE + SHIFT +

数字#+数字#+数字# + ENTER (例如:要设置为51000,按READ+TUNE+SHIFT+5+1+0+ENTER; ) 6)擦除――最后一个数据 RECALL + ERASE + ERASE 7) 擦除――某个点号本身和此点号后的数据 RECALL +SHIFT+ 数字#+数字#+数字# +ENTER + ERASE +ERASE (例如:要擦除第150点本身和此点后的数据,按 RECALL+SHIFT+1+5+0+ENTER; 要擦除第75点本身和此点后的数据,按RECALL+SHIFT+7+5+ENTER;) 8) 擦除――全部数据 RECALL+SHIFT + +

ENTER + ERASE +ERASE 9) 查看当前时间和线号 TIME 10)设置线号 TIME +SHIFT +数字#+数字#+数字#+ENTER (例如:要设置线号为135,按TIME+SHIFT+1+3+5+ENTER: 要设置线号为32 ,按TIME+SHIFT+3+2+ENTER ) 11) 设置日期 AUTO +TIME+SHIFT+ 数字#+数字#+数字#+ ENTER (例如:今天是今年的第182天,按AUTO +TIME+SHIFT+1+8+2+ENTER ) 12)设置日期和时间 AUTO +TIME+SHIFT+ (数字#+数字#+数字#)+(数字#+数字#+数字#+数字#) +ENTER

PMG-2质子磁力仪

产品名称:PMG-2质子磁力仪产品类别:物探设备 测量原理: 自然界的岩石和矿石具有不同磁性,可以产生各不相同的磁场,它使地球磁场在局部地区发生变化,出现地磁异常。利用磁力仪发现和研究这些磁异常,进而可以寻找磁性矿体和研究地质构造。磁法勘探是常用的地球物理勘探方法之一,它主要用来寻找和勘探有关矿产(如铁矿、铅锌矿、铜矿等)、进行地质填图等。 应用范围: 由于质子磁力仪具有精度高、便携等众多的优点,它已经被广泛地应用在以下领域: 矿产勘察,根据矿石中有用矿物质具有磁性或有磁性矿物与之共生的特点,进行直接找矿,或根据矿体在成因或空间上与某些磁性地质体构造有关的特点,进行间接找矿。这些矿包括铁矿、铅锌矿、铜矿等 地震前兆监测,火山观测以及其它环境及灾害地质工作 配合基础地质调查,进行地质填图 对铁桶、铁罐等铁制品埋藏物定位 探测与磁性相关的地质构造 铁制军火侦测 管线探测 断层定位 配合矿区勘探,研究矿体的埋深、产状和连续性,研究矿体的形状、大小,估计矿床规模 工程勘察 环境勘探 水文 石油、天然气勘察,研究与油气有关的地质构造及大地构造等问题 工作原理: 质子磁力仪与其它类别的磁力仪原理不同,它属于众多磁力仪中的一个精度较高的分支,它即使对较弱磁性物的测量,

如地球的磁场,仍能取得较高的分辨率和精度,所以即使对地球磁场的微弱的变化,也能够测知。 它的工作原理是利用氢质子在磁场中的旋进现象进行测量的。在传感器中,充满了含氢的液体,这些氢质子在被仪器强制极化之前,处于无规律的排列状态。当我们人为对其加上一个极化信号后,质子将做旋进运动。极化信号消失后,质子的旋进将主要受到外界磁场的影响会逐渐消失,通过对受旋进影响的传号器中频率的测量,来测知外界磁场的大小。不断对这个动作进行循环,即可持续测量。 主要特点:可进行梯度测量(水平或垂直) 具有RS-232C计算机接口 硬质铝合金外壳,专用防水接头,可适用于恶劣环境,防震、防雨 高分辨率,分辨率为0.1nT,符合原地矿部发布的《地面高精度磁测工作规程》要求 专用软件可输出通用格式数据给专业地质软件,用于绘制等值线图、剖面图等相关资料 内存大,可存1万个测点 可用于野外作业,也可用做基站测量 轻便便携,整套系统使用背包背带,一人即可完成全部测量任务 背光2x16位LCD液晶显示。LCD屏幕反应速度快、能耗低,背光灯可开关,无辐射、无闪烁,长期使用有利于健康 信号质量适时监控,信号质量下降可及时发现以便采取措施补救 既可全量程自动调谐,也可人工调谐 除主电池作为供电电源外,副电池用于保存设置和测量结果,数据可保存10年 系统描述:本质子磁力仪可以由内置电池或外接电源驱动。它利用质子旋进的原理,来测量地球磁场的磁场总量绝对值。它可以利用以下三种模式进行工作。 1.单点模式:只使用一个传感器进行工作,它检测传感器所在位置的地球磁场总量的绝对值。 2.自动模式:自动模式只使用一个传感器工作,它可以使仪器在设定的时间开始,以固定间隔的时间重复自动测量。其中仪

野外数据采集方法

野外数据采集方法 野外数据采集包括两个阶段:控制测量、碎部点采集。控制测量的方法与传统的测图中的控制测量基本相似,但以导线测量为主的方式测定控制点位置。碎部点数据采集与传统的作业方法有较大的差别。这里主要介绍采用全站仪进行碎部点数据采集的两种方法。 一、测记法数据采集 碎部点的数据采集每作业组一般需要仪器观测员1人、绘草图领尺(镜)员1人、立尺(镜)员1~2人,其中绘草图领尺员是作业组的核心、指挥者。作业组的仪器配备:全站仪1台、电子手簿1台、通讯电缆1根、对讲机1副、单杆棱镜1~2个,皮尺1把。 数据采集之前,先将作业区的已知点成果输入电子手簿。绘草图领尺员了解测站周围地形、地物分布,并及时勾绘一份含主要地物、地貌的草图(也可在放大的旧图上勾绘),以便观测时标明所测碎部点的位置及点号。仪器观测员在测站点上架好仪器、连接电子手簿,并选定一已知点进行观测以便检查。之后可以进行碎部点的采集工作。采集碎部点时,观测员与立镜员或绘草图员之间要及时联络,以便使电子手簿上记录的点号和草图上标注的点号保持一致。绘草图员必须把所测点的属性标注在草图上,以供内业处理、图形编辑时用。草图的勾绘要遵循清晰、易读、相对位置准确、比例一致的原则。一个测站的所有碎部点测完之后,要找一个已知点重测进行检查。 二、电子平板数据采集 测图时作业人员一般配备:观测员1人、电子平板(便携机)操作员1人、立尺(镜)员1~2人。 进行碎部测图时,在测站点安置全站仪,输入测站信息:测站点号、后视点号及仪器高,然后以极坐标法为主,配合其它碎部点测量方法施测碎部点。例如电子平板测 绘系统中,常用的方法有极坐标法、坐标输入法,它们的数据输入 可以通过通信方式由全站仪直接传送到计算机,也可以采用设计友 好、清晰的图形界面对话框输入,如图6-31。 对于电子平板数字测图系统,数据采集与绘图同步进行,即 测即绘,所显即所测。 图6-31 碎部点测量输入对话框

海洋磁力仪的应用

试析海洋磁力仪的应用姜进胜 摘要:目前来说,磁力仪分为质子旋进式与光泵式两种基本类型,本文就围绕着质子旋进式与光泵式两种海洋磁力仪对其应用展开 了探讨,并且对质子旋进式海洋磁力的一个发展分支——sea spy磁力仪的原理及应用进行了介绍,最后,对海洋磁力仪的其他应用做 了简要概述。 关键词:质子旋进式光泵式 sea spy 中图分类号:tp212.13 文献标识码:a 文章编 号:1672-3791(2012)06(b)-0089-01 人们在早期的生产实践活动中就已经对地磁场有了初步的认识,磁力线是从地球的北极出发一直延伸到地球的南极的,随着时间的推移,科技在不断进步,磁力仪的种类发展越来越来多。众所周知,磁法勘测在海洋地理调查中起着至关重要的作用,所以海洋磁力仪的普及使用也在海洋调查中大面积开展起来。 1 海洋磁力仪的原理与应用 在被大家熟知每一片地球区域,相关磁力场都是有规律的存在与分布着的。某一区域的的磁力场如果受到外界铁质物体的入侵,则这个磁力场将会受到铁质物体在磁力场中产生的相对于本磁力场 的外力作用,从而对该磁力场造成干扰。这些外力干扰基本上都是存在于这个入侵的铁质物体的周围的。磁力在磁场中的相关应用可以帮助工作人员测量出某个地球区域的磁场强度,如果磁场受到外

来入侵,导致了场强变化,放置在其中的磁力仪也会相应地改变磁力数值,由于能够改变磁力场的物质都是铁磁物质构成的,所以磁力仪能够勘测出任何会使磁力场发生改变的物体,同样,磁力仪的使用能够满足人们的应用需要。海洋磁力仪就是测量地球磁力场强度的一款精度很高的测量设备。磁力仪的两种基本类型分为质子旋进式与光泵式两种,sea spy磁力仪是质子旋进式的一个发展分支,它也属于质子旋进式。 1.1 质子旋进式磁力仪 标准质子旋进式磁力仪是将少量附有氢原子核的液体,比如说甲醇或者煤油之类的,装入其传感器中。在这些液体中,除了氢原子核能够显示较为微弱的磁矩,其的自旋磁矩并没有被抵消,液体中的其他分子的自旋、电子轨道以及原子核自选的所有相关磁矩都被成对地进行了彼此抵消。氢原子在外磁场强度为零值时的磁矩取向是任意无规则的。 当传感器中富含氢原子的液体周围被附加上了由线圈产生的强大的人造磁场,则这个然早磁场会引起液体中的大量质子向同一方向自旋,并且这些质子的排列方向都是定向地以人造磁场方向为自旋轴进行排列的。一旦这种人造磁场消失,就会发生质子旋进现象,具体表现为氢原子在地磁场力与其的原本持有的自旋惯性的相互作用下以同样的相位往磁场方向旋进。 在质子旋进的初期阶段,由于质子的相位相同,通过其磁性的宏

黑龙江大兴安岭地区航磁异常特征及找矿效果

黑龙江大兴安岭地区航磁异常特征及找矿效果 摘要:航空磁测是航空物探中的重要方法,具有较高的应用价值。本文分析了 黑龙江大兴安岭地区航磁异常特征及找矿效果。 关键词:大兴安岭;航磁异常;找矿方向 航空磁测作为一种快速有效的地球物理手段,在矿产勘查中的应用具有较长 的历史。随着经济发展对资源需求的不断增加,矿产勘查工作逐渐由地表矿向浅 覆盖矿、深部隐伏矿转变,找矿难度逐渐加大,航磁在大兴安岭浅覆盖森林区寻 找深部隐伏磁性矿产和控矿构造研究方面的作用越来越大。 1 大兴安岭简介 大兴安岭是兴安岭的西部组成部分,位于黑龙江省大兴安岭地区、内蒙古自 治区呼伦贝尔市东北部,是内蒙古高原与松辽平原的分水岭。同时,大兴安岭北 起黑龙江畔,南至西拉木伦河上游谷地,东北-西南走向,全长1200多公里,宽200~300公里,海拔1100~1400米。 2 区域地质背景 区内前中生代地层时代为古元古代一早三叠世,属天山一兴安地层大区,大 兴安岭地层区包括额尔古纳、呼玛一兴隆、扎兰屯一多宝山3个地层分区。 中一新生代地层分区的地层时代为中三叠世一全新世,属滨太平洋地层区, 大兴安岭一燕山分区,漠河、大兴安岭、小兴安岭地层小区。 区内地层自古元古代至新生代各时期都有发育,沉积类型齐全,以活动型和 过渡型为主。元古宇不均匀地散布,岩性主要为变质岩,局部已混合岩化。下古 生界以中东部出露较好。奥陶系分布较普遍,为深海的泥砂质岩、碳酸盐岩组合,伴有基性-酸性火山岩及其碎屑岩。志留系主要为浅海一半深海的砂泥质复理石及 碳酸盐岩组合。上古生界分布广泛,泥盆系属半深海泥质岩、碎屑岩、碳酸盐岩 组合,伴有火山岩;石炭系为海相和陆相沉积,下统由厚度巨大的浅海及海陆交 替相组成,上统为陆相碎屑岩夹火山岩。三叠系为海相及海陆交替相,属碎屑岩 及火山岩组合,含混杂堆积和蛇绿岩套,分布局限。侏罗系十分发育,为火山岩 与碎屑岩组合,多分布于北部地区。白垩系以发育火山岩为特征口卅。古近系、 新近系主要分布于南大小沉积盆地中。第四系为冲一洪积;更新世有玄武岩,并 有少量安山岩、粗面岩等。 3 航磁数据处理 航磁△T原等值线平面图是各种磁性体引起磁异常的综合反映,各种磁异常 在纵向和横向上相互叠加、干扰,无疑会对磁异常的分析、解释带来较大的困难。为了满足地质解释的需要,对大兴安岭1:5万航磁数据用GeosofI软件做了网格 化数据,网格化间距200m,网格化处理后,用GoldensoftwareSurfer8、北京航空遥感中心的AgMGis、中国地质调查局的RGIS软件做了变纬度化极处理,并用化 极后的网格文件做了1km、3km、5km上延处理,用上延2km的网格数据做了0°、45°、90°和135°四个方向的水平一阶导数处理,从航磁上延5km等值线平面图可知,大兴安岭地区异常趋于简单,多数小异常已被过滤掉,这说明多数小异常埋 深较浅,是由地表或近地表的浅部地质地体影响,异常杂乱。通过4个水平方向 一阶导数可知,大兴安岭地区构造以NE、WE方向为较多,近SN向和NW向构 造相对较少,构造线非常清晰。 4 区域磁场特征

WCZ-1质子磁力仪

WCZ-1质子磁力仪 WCZ-1质子磁力仪是本所在参照国外先进磁力仪基础上针对本国实际情况采用先进技术研制的新一代质子磁力仪,其磁场测量精度为±1nT,分辨率高达0.1nT,完全符合原地矿部发布的《地面高精度磁测工作规程》要求。其具有的大存储容量、高分辨率、灵活性使它得以成为便携式、移动式、基站式磁力仪。通过更改探头结构,可以以0.1nT的分辨率进行总场和水平、垂直梯度的测量。 应用范围 ●矿产勘查,如铁矿、铅锌矿、铜矿等。 ●配合矿区勘探,研究矿体的埋深、产状和连续性,研究矿体的形状、大小, 估计矿床规模。 ●石油、天然气勘查,研究与油气有关的地质构造及大地构造等问题。 ●普查、详查、地质填图。 ●航空及海洋磁测的地面日变站。 ●断层定位。 ●考古。 ●水文。 ●工程勘查,如管线探测等。 ●地震前兆监测,火山观测以及其它环境及灾害地质工作。 ●小型铁磁物体的探测等。 主要特点 ●可进行地磁场总场测量及梯度测量(水平梯度或垂直梯度,需增配专用探 头及探头架)。 ●可用于野外作业,也可用做基站测量。 ●内置实时时钟,测量结果连同测量时刻一并存储,还能定时测量、存储。 ●大屏幕显示,全中文界面,自动显示磁场强度曲线,操作简单。 ●带背光的液晶显示器,方便夜间测量。 ●人性化键盘设计,支持左、右手同时操作。 ●既可全量程自动调谐,也可人工调谐。 ●轻便便携,整套系统使用背包背带,一人可完成全部测量任务。 ●具有RS-232C 计算机接口。 ●专业地质软件可绘制等值线图、剖面图等。

技术指标 ●测量范围:20,000 nT~100,000nT ●测量精度:±1nT ●分辨率:0.1nT ●允许梯度:≤5,000nT/m ●存贮数据:100,000 个读数,带掉电保护功能 ●液晶显示:240×128 图形液晶 ●键盘输入:22 键 ●接口:RS-232C标准串口 ●电源:外置可充电电池12V/2.3Ah ,也可选用外接电源 ●主机体积:230 × 155 ×65mm3 ●主机重量:2.5Kg(包括电池) ●探头体积:φ75mm×155mm ●探头重量:0.8 Kg ●工作温度:-10 ℃~+50 ℃ 标准配置 ●主机 1 台 ●探头 1 只 ●测杆 1 付 ●充电器 1 台 ●可充电电池 2 个 ●背带 1 根 ●探头注油孔密封用生胶带 1 卷 ●探头注油孔密封螺丝用呆扳手 1 把 ●探头连接线 1 根 ●探头夹 1 只 ●手提箱 1 个 ●专用通讯电缆 1 根 ●USB转串口线 1 套 ●无磁螺丝刀(一字和十字)各1把 ●软件及操作手册 1 套 ●探头盖备用紧固螺钉(M4×16)3颗 ●探头夹电缆备用紧固螺钉(M3×12)2颗 ●探头线接线端备用紧固螺钉(M4×7)3颗 ●插头线备用紧固螺钉(M2×6)6颗

矿物鉴定

偏光显微镜下透明矿物的鉴定 岩石磨成厚约0.03mm 的薄片,置于偏光显微镜下观察,我们可以发现有的矿物是透明的(绝大多数硅酸盐、碳酸盐矿物和部分氧化物),有的矿物是不透明的(金属硫化物及部分氧化物)。鉴定不透明矿物需要反光显微镜,将在本书的下篇介绍,这里只介绍透明矿物在偏光显微镜下的鉴定方法。 偏光显微镜下鉴定矿物,分为单偏光、正交偏光、聚敛光下观察三个步骤,其原理在晶体光学中有详尽的论述,这里只介绍和岩石薄片观察描述有关的部分,而形成这些光性特征的光学原理就不详细说明。单偏光镜下观察 1 晶形 晶形对识别典型的表现有良好晶面的矿物很有用。如石榴子石在薄片中常为自形的六边形,白榴石常呈八边形,磷灰石横断面常为六边形而纵断面为柱状,榍石常为菱形,白云石常为信封状,电气石横断面呈弧状三角形而纵断面为柱状,锆石常常呈四方柱状或两端为锥形的长柱状。需要注意的是,由于薄片切面的随机性,上述矿物的斜切面也可以表现为其他的形状,如石榴石和白榴石还可以出现正方形、长方形甚至三角形的晶形,磷灰石也可以表现为正方形或长方形晶形。 2 解理和裂理 某些解理特征明显的矿物,能根据其解理很快确定,如云母具有一组细密、平直而不间断的解理,角闪石的两组解理以56 度相交,辉石、红柱石、方柱石的两组解理近于正交。但与解理斜交的切面上所表现的角度要比其最大交角要小。具两组解理的矿物,在其纵断面上只表现一组解理,如角闪石、辉石在薄片中经常只出现一组解理。由于切面的限制,具有三6组以上解理的矿物在薄片上常常只显示一组或两组解理,甚至表现出没有解理。如方解石和白云石有三组解理,但在薄片中一般只能看到两组。 裂理和解理很相似,但它们的成因不同,薄片中的特征也有所不同。解理往往是沿着矿物晶体中面网间化学键力最弱的方向产生,而裂理面一般是沿双晶结合面或某种细微包裹体的夹层而产生;在形态上,裂理的宽度也明显比解理大,而且大多数情况也没有解理平直。如橄榄石解理不发育,但裂理常见,是一个鉴定特征。 3 颗粒形态和交生关系 某些矿物虽然没有完整的晶形,但其颗粒形态有某种特征,可以做为识别的一种标记。如蛇纹石常为纤维状和网脉纤维状,蓝晶石和硅灰石常呈板片状,云母、绿泥石、滑石、粘土矿物也多呈板状或叶片状产出。

测记法 野外数据采集及制图实验报告

数字测图实验报告 班级2013012班 专业地理信息科学 组别第六组 组员王宁 华北水利水电大学资源与环境学院地理信息科学教研室

野外数据采集及制图 [实验名称] 测记法野外数据采集及制图 [实验目的] 掌握用全站仪的程序进行碎部点数据采集,并利用内存记录数据的方法,掌握全站仪和计算机之间进行数据传输的方法,并学会画草图,学会用CASS软件把草图展绘在计算机上。 [仪器和工具] 全站仪,脚架,棱镜杆,棱镜,钢卷尺 [实验原理] 测记法是在观测碎部点时,绘制工作草图,在工作草图记录地形要素名称、碎部点连接关系。然后在室内将碎部点显示在计算机屏幕上,根据工作草图,采用人机交互方式连接碎部点,输入图形信息码和生成图形的一种测量方法。 [实验步骤] 1.认识测区 进入测区后,领镜(尺)员首先对测站周围的地形、地物分布情况大概看一遍,认清方向,制作含主要地物、地貌的工作草图(若在原有的旧图上标明会更准确),便于观测时在草图上标明所测碎部点的位置及点号。 2.野外数据采集 用全站仪进行数据采集可采用三维坐标测量方式。测量时,应有一位

同学绘制草图。草图上须标注碎部点点号(与仪器中记录的点号对应)及属性。 (1)安置全站仪,对中整平,量取仪器高,检查中心连接螺旋是否旋紧。 (2)打开全站仪电源,并检查仪器是否正常。 (3)建立控制点坐标文件,并输入坐标数据。 (4)建立(打开)碎部点文件。 (5)设置测站,选择测站点点号或输入测站点坐标,输入仪器高并记录。 (6)定向和定向检查,选择已知后视点或后视方位进行定向,并选择其他已经点进行定向检查。 (7)碎部测量,测定各个碎部点的三维坐标并记录在全站仪内存中,记录时注意棱镜高、点号和编码的正确性。 (8)归零检查,每站测量一定数量的碎部点后,应进行归零检查,归零差不得大于1′。 (9)数据编码,测记法数据采集通常区分为有码作业和无码作业,有码作业需要现场输入野外操作码(如CASS7.0)。无码作业现场不输入数据编码,而用草图记录绘图信息,绘草图人员在镜站把所测点的属性及连接关系在草图上反映出来,以供内业处理、图形编辑时用。野外采集时,能测到的点要尽量测,实在测不到的点可利用皮尺或钢尺量距,将丈量结果记录在草图上,室内用交互编辑方法成图。(10)搬站,在一个测站上当所有的碎部点测完后,要找一个已知点

质子磁力仪介绍

磁力仪介绍 磁法勘探是研究地质构造和找矿勘探的一种重要的地球物理方法,它通过磁力仪来测量地磁场和磁异常,通常把采集磁场数据和测定岩石磁参数的仪器称为磁力仪。 从20 世纪初至今,磁法勘探仪器经历了由简单到复杂,由利用机械原理到利用现代物理原理与电子技术的发展过程。 一、磁力仪的类别 按照磁力仪的发展历史,以及它们所应用的物理原理,可分为: 第一代磁力仪:根据永久磁铁与地磁场之间相互力矩作用原理,或利用感应线圈以及辅助机械装置制作的,如机械式磁力仪、感应式航空磁力仪等。 第二代磁力仪:根据核磁共振特征,利用高磁导率软磁合金,以及复杂的电子线路制作的,如质子磁力仪、光泵磁力仪及磁通门磁力仪等。 第三代磁力仪:根据低温量子效应原理制作的,如超导磁力仪。 目前应用于物探磁法工作的磁力仪主要有质子磁力仪、光泵磁力仪等,其中光泵磁力仪价格昂贵、重量较重、功耗大主要用于航空磁测;质子磁力仪轻便、稳定、分辨率较高而广泛应用于地面高精度磁测中。注:超导磁力仪体积庞大,主要用于地磁监测及其它磁场研究工作中。 二、磁力仪的主要技术指标 技术指标是反映仪器总体性能的技术参数,通常包括:灵敏度、精密度、准确度、稳定性、测程范围等等。 灵敏度系指磁力仪反映地磁场强度最小变化的能力(敏感程度),有时也称作分辨率。、精密度它是衡量仪器重复性的指标,系指仪器自身测定磁场所能达到的最小可靠值。由一组测定值与平均值的平方偏差表示。在仪器说明书中称为自身重复精度。 准确度系指仪器测定真值的能力,即与真值相比的总误差。 在磁法勘探工作中,通常把精密度与准确度不予区分,统称为精度。 三、质子磁力仪的研究现状及发展趋势 质子旋进磁力仪的工作原理是在受到激励场激励氢核(质子)后,质子极化,当激励场去掉后,氢核(质子)会在地磁场的作用下,产生一个以地磁场方向为轴的旋进,其旋进信号的频率与地磁场强度之间有着固定关系,从而地磁场强度的测量即转化为质子旋进信号的

矿物手标本鉴定

硬绿泥石 硬绿泥石Fe22+Al[Al2Si2O10](OH)4 [化学组成] FeO 22-28%, MgO2-6%, Al2O3 38-42%, SiO2 22-28%, H2O 6-8%。还可含少量CaO,MnO等。 [形态] 单斜晶系。晶体少见,通常呈片状或弯曲的壳状集合体。 [物理性质] 黄绿色,有时为黑绿色。条痕为带绿的白色。玻璃光泽,解理面有时具微弱的珍珠光泽。硬度5-6。性脆。平行{001}解理完全。比重3.4-3.6。 [成因及产状] 为变质成因的矿物。产于变质较浅的粘土质千枚岩、片岩中。含量多时称硬绿泥石片岩。此外,硬绿泥石与刚玉、绿泥石等也见于大理岩中的接触交代矿床中。 [鉴定特征] 以较大的硬度,具脆性及成因产状等与相似矿物绿泥石相区别。 绿泥石 [化学组成] 绿泥石是一族化学成分相当复杂的矿物。它包括种类很多,可简单略把它们分成两个亚族: (1)正绿泥石亚族:是富含镁的绿泥石,即一般常见的绿泥石都属此类,主要包括叶绿泥石,斜绿泥石。其化学式如下:(Mg,Fe2+)8-P(Al,Fe3+)2PSi4-PO10(OH)8 (2)鳞绿泥石亚族:是富含铁的其大多数成胶体的绿泥石。主要为鲕绿泥石和鳞绿泥石,其化学式如下:(Fe2+,,Mg)n-p(Fe3+,Al)2PO10(OH)2(n-2)·XH2O [形态] 单斜晶系。晶体呈假六方板状、片状。常见为鳞片状集合体。富含铁的鲕绿泥石常呈鲕状集合体,具同心圆状构造,也有成砂岩的胶结物或隐晶致密块状和土状。 [物理性质] 绿泥石族矿物一般为不同程度的绿色。玻璃光泽,解理面上为珍珠光泽。硬度2-2.5。具挠性。{001}解理极完全。比重2.6-2.85。具滑腻感。 [成因及产状] 本族矿物分布很广。富含镁的绿泥石即叶绿泥石,斜绿泥石主要产于变质岩(如绿泥片岩)及各种中低温热液蚀变岩中。岩浆岩中的铁镁矿物受热液作用也最易转变成绿泥石。富铁的绿泥石(以鲕绿泥石为主)主要产于沉积铁矿中与黄铁矿。菱铁矿共生。 [鉴定特征] 以绿色、一组极完全解理、硬度低、薄片具有挠性等为主要特征,形态及成因产状是鉴别鲕绿泥石的主要依据。 蛭石 蛭石(Mg,Fe2+,Fe3+)3[(Si,Al)4O10](OH)2·4H2O

全站仪数据采集的具体操作步骤

数据采集的具体操作步骤: 1、在测站点上安置仪器,对中、整平。 2、按电源键开机。屏幕显示垂直角过零。 3、转动望远镜,屏幕显示V,HR,进入角度测量界面。 4、按面板上MENU键,屏幕显示菜单1/2. 5、按F1数据采集,屏幕显示选择一个文件。 6、按F1输入进行文件名的输入,再按面板上的数字键将在屏幕下方显示该键所代表的字母和数字,分别对应F1,F2,F3,F4.完成文件名的输入后按F4回车,屏幕返回数据采集1/2菜单。 7、按F1输入测站点,屏幕显示点名,编码,仪器高的输入界面。 8、按F1输入,依次输入点名,仪高后,按F3测站,屏幕进入测站点界面。 9、按F3坐标,屏幕进入测站点坐标N,E,Z输入界面。 10、按F1输入,分别输入对应的坐标值,完成后按F4回车,屏幕返回第7步界面。 11、按F4记录,屏幕显示记录?[是][否],按F4选择[是],屏幕返回数据采集1/2菜单。 12、按F2输入后视点,屏幕显示后视点点名,编码,棱镜高参数设置状态。 13、按F1输入,依次输入后视点点名,棱镜高各参数,完成后按F3后视,屏幕进入后视点界面。 14、按F3坐标,屏幕进入后视点坐标N,E,输入界面。

15、按F1输入,分别输入对应的坐标值,完成后按F4回车,屏幕返回第12步界面。 16、按F4测量,仪器显示[角度][斜距][坐标]。在转动全站仪精确瞄准后视点棱镜。 17、按F1角度,仪器显示当前竖直角V和方位角HR。 18、按F4记录,仪器返回数据采集1/2菜单。 19、按F3测量,屏幕显示待求坐标点的点名,编码,棱镜高输入界面。 20、按F1输入,依次输入待求点点名,棱镜高各参数。完成后按F3测量,屏幕显示[角度][斜距][坐标][偏心]。转动全站仪对准待测点棱镜中心。 21、按F3坐标,仪器显示待求点的N,E,Z值。 22、按F4记录,仪器返回第18步,输入新的待求点的参数,按F4同前即可进行新的待

实验: 常见岩浆岩手标本的鉴定

实验二常见岩浆岩手标本的鉴定 一、实验类型 综合性实验 二、实验目的 通过对岩浆岩特征的认识加深对岩浆作用的了解。 三、实验仪器、设备 岩浆岩标本,小刀,放大镜 四、实验原理 1 岩浆岩的主要矿物成分 暗色矿物:橄榄石,辉石,角闪石,黑云母 浅色矿物:斜长石,正长石,石英 2 岩浆岩的结构 岩浆岩中矿物的结晶程度、晶粒大小与形态及晶粒间的相互关系,称为岩浆岩的结构。 (1)按照矿物晶粒的大小分为 显晶质结构:用肉眼均可加以识别,又细分为 粗粒(粒径>5mm)、中粒(粒径5—1mm),细粒(粒径1—0.1mm) 隐晶质结构:用肉眼难以识别 (2)按矿物颗粒的相对大小可分为 等粒结构:矿物颗粒大小相等 不等粒结构:在不等粒结构中又分为: 斑状结构:基质为隐晶质或非晶质者 似斑状结构:基质为显晶质,且基质的成分与斑晶的成分相同 3岩浆岩的构造 岩浆岩的构造是指岩浆岩中矿物集合体的形态、大小及相互关系分为 块状构造:岩石中矿物排列无一定规律,岩石为均匀的块体。 流动构造:岩石中柱状或片状矿物或捕虏体平行而定向排列。火山熔岩中不同成分和颜色的条带,以及拉长的气孔相互平行排列,称为流纹构造。 气孔构造:岩石中呈圆球形、椭球形或不规则形态的空洞。直径由数毫米到

数厘米。基性熔岩中气孔较大、较圆;酸性熔岩中气孔较小、较不规则,或呈棱角状。 杏仁构造:气孔中有矿物质充填者。 层状构造:岩石具有成层性状,它是多次喷出的熔岩或火山碎屑岩逐层叠置的结果。 4岩浆岩的分类 (1)岩浆岩 (2)火山碎屑岩 火山碎屑岩既有喷出岩的特征也有沉积岩的特征,按火山碎屑的粒径大小分类: (1)凝灰岩:粒径<2mm (2)火山角砾岩:粒径2-50mm (3)浮岩:粒径2-50mm多孔洞,色浅、质轻、能浮于水 (4)集块岩粒径>50mm 五、实验内容 1.常见岩浆岩手标本观察实验观察常见岩浆岩手标本的颜色、造岩矿物组成、结构、构造特征,描述并鉴定。 2.四大类岩浆岩对比观察鉴定实验,观察四大类岩浆岩(超基性岩、基性岩、中性岩、酸性岩)的特征及区别,并对比描述、鉴定。 3.侵入岩和喷出岩对比观察鉴定实验,对比观察侵入岩和喷出岩,描述其矿物、结构构造,并定名写综合鉴定报告。并把观察结果写在实习报告中。

质子实验

质子 百科名片 质子(proton)是一种带 1.6 × 10-19 库仑(C)正电荷的亚原子粒子,直径约 1.6 to 1.7×10?15 m 1,质量是938百万电子伏特/c?(MeV/c?),即1.6726231 × 10-27 kg,大约是电子质量的1836.5倍。质子属于重子类,由两个上夸克和一个下夸克通过胶子在强相互作用下构成。原子核中质子数目决定其化学性质和它属于何种化学元素。 目录 科学含义 1. 稳态 2. 历史 3. 应用 4. 反质子 5. 负质子 6. 基本信息 7. 基本性质 8. 质子各国的读法 9. 关于中子态的形成 10. 质子的发现 11. 质子理论 12. 质子守恒 文学含义 1. 解释 2. 历史典籍中的记录 科学含义 1. 稳态 2. 历史 3. 应用 4. 反质子 5. 负质子 6. 基本信息 7. 基本性质 8. 质子各国的读法 9. 关于中子态的形成 10. 质子的发现 11. 质子理论 12. 质子守恒 文学含义 1. 解释 2. 历史典籍中的记录 展开 编辑本段 科学含义 质子(proton)是一种带 1.6 × 10-19 库仑(C)正电荷的亚原子粒子,直径约 1.6 to 1.7×10?15 m [1],质量是938百万电子伏特/c²(MeV/c²),即1.6726231 × 10-27

kg,大约是电子质量的1836.5倍。质子属于重子类,由两个上夸克和一个下夸克通过胶子在强相互作用下构成。 原子核中质子数目决定其化学性质和它属于何种化学元素。氢原子最常见的同位素1H 的原子核由一个质子构成。其它原子的原子核则由质子和中子在强相互作用下构成。 稳态 至今为止质子被认为是一种稳定的、不衰变的粒子。但也有理论认为质子可能衰变,只不过其寿命非常长。到今天为止物理学家没有能够获得任何可能理解为质子衰变的实验数据。 水中的氢离子绝大多数都是水合质子。质子在化学和生物化学中起非常大的作用。根据酸碱质子理论,可以在水溶液中提供质子的物质一般被称为酸,可以在水溶液中吸收质子的物质一般被称为碱。 然而,质子是通过中子的过程中电子捕获。这一过程不会自发发生,但只有当能源供应。其计算公式: 于此 p 是一个质子, e 是一个电子, n 是一个中子,而且 νe 是一个电子中微子 这个过程是可逆的:中子可转换回质子通过β-衰变,共同形成放射性衰变。事实上,在一个自由中子衰变这样一个平均寿命约15分钟。 历史 卢瑟福被公认为质子的发现人。1918年他任卡文迪许实验室主任时,用α粒子轰击氮原子核,注意到在使用α粒子轰击氮气时他的闪光探测器纪录到氢核的迹象。卢瑟福认识到这些氢核唯一可能的来源是氮原子,因此氮原子必须含有氢核。他因此建议原子序数为1的氢原子核是一个基本粒子。在此之 ?? 质子 前尤金·戈尔德斯坦(Eugene Goldstein)就已经注意到阳极射线是由正离子组成的。但他没有能够分析这些离子的成分。卢瑟福发现质子以后,又预言了不带电的中子存在。 今时今日,以粒子物理学的标准模型理论为基础而论,因为质子是复合粒子,所以不再被编入基本粒子的家族中。 应用 物理中质子常被用来在加速器中加速到近光速后用来与其它粒子碰撞。这样的试验为研究原子核结构提供了极其重要的数据。慢速的质子也可能被原子核吸收用来制造人造同位素或人造元素。核磁共振技术使用质子的自旋来测试分子的结构。 反质子 质子的反粒子是反质子,反质子是1955年埃米利奥·塞格雷(Emilio Gino Segrè)和欧文·张伯伦(Owen Chamberlain)发现的,两人为此获得了1959年的诺贝尔物理学奖。 反质子的发现:正电子的发现证实了狄拉克反粒子理论,一些理论物理学家开始认真对待这一理论。1934年泡利与克拉夫证明,即使不能形成稳定的负能粒子海,也会有相应的反粒子存在。于是人们就开始寻找其他粒子的反粒子。早在1928年,狄拉克便预言了反质子的存在,但证实它的存在却花了20多年的时间。根据狄拉克的理论,反质子的质量与质子相同,所带电荷相反,质子与反质子成对出现或湮没,用两个普通的质子碰撞便可获得反质子,但反质子的产生阈能为6.8GeV。1954年,在加利福尼亚大学的劳伦斯辐射实验室,建成了64亿电子伏的质子同步稳相加速器,这为寻找反粒子提供了条件。1955年,张伯伦和塞格雷用

相关文档
相关文档 最新文档