文档库 最新最全的文档下载
当前位置:文档库 › 发电机—变压器组非全相运行故障分析和处理

发电机—变压器组非全相运行故障分析和处理

发电机—变压器组非全相运行故障分析和处理
发电机—变压器组非全相运行故障分析和处理

发电机—变压器组非全相运行故障分析和处理

?对于主结线方式采用发电机—变压器组接线方式的大中型汽轮发电机曾多次因主断路器非全相断开(或非全相合上),造成发电机定子电流严重不对称运行,负序电流烧损发电机转子的故障。为了从这类故障中吸收有益的教训,提高运行管理水平,杜绝类似事故的重复发生,在发电机—变压器组接线方式的汽轮发电机,发生主断路器非全相运行时,运行人员及时正确地处理,为此,现将该类故障有关的几个问题分述如下:

一、非全相运行故障的几个共同点

?1、结线方式:采用发电机—主变压器组接线方式

2、主变压器接线组别:Y0/△—11,且在非全相时,中性点直接接地。

?3、发电机状态(失磁、非全相):发电机转速接近同步转速,灭磁开关断开,发电机失去励磁。

4、主断路器采用分相操作机构,在发电机解列或并列过程中非全相断开或非全相合

上。

二、非全相运行故障时,发电机组运行工况的主要变化

?1、由于主断路器一相或两相在合闸状态,致使发电机定子电流严重不对称。

(1)在主断路器一相未断开时(一相运行)电流幅值的变化规律是:比故障相滞后的一相电流为零,其它两相电流基本相等。简要分析如下:不管哪相未断开,之所以发电机侧还有电流,是由于从系统反充电过来的缘故。若C相未断开,A、B相已断开,灭磁开关拉开的情况下,发电机侧(即主变压器的△侧)已无电源,但高压侧(变压器的Y侧)还与系统连着,由于中性点接地C相电流可以流通,C相高压侧电流能在C相低压线圈中感应起电势Ec来。这△侧的C相电势,要产生电流,以发电机为回路流通。在Y0/△—11接线的情况下,在低压侧的线电流中,主要从b相和c相流过(因b、c相组成的回路阻抗较小),且b、c相电流相等,a相电流为零,其大小与发电机、变压器及所连系统的参数有关。

?(2)在主断路器两相未断开时,电流幅值的变化规律是:比故障相滞后一相电流最大,其它两相电流基本相等。

简要分析如下:以B、C两相未断开为例。当A相开关已断开时,变压器高压侧(Y0)侧B、C相以及与大地是可以成回路有电流流通的。灭磁开关拉开后,发电机无电势,但变压器△侧b、c两相线圈中都会有高压侧感应过来的电势Eb、Ec。在Eb、Ec作用下,以发电机为回路,在低压侧线路中,三相都会有电流流过。其中b相电流最大,a、c两相电流基本相等。

?2、汽轮机打闸后,由于发变组处于非全相及失磁状态下与系统连着,处于稳定的异步电动机不对称运行状态(空载),发电机转速下降不明显。

?3、发电机出口电压明显下降。由于发电机失磁、主断路器非全相断开的状态下,发电机变成了一个感性负载,处于稳定的异步电动机的不对称运行状态,从系统吸取大量无功功率,使发电机出口电压明显下降。

?4、由于汽轮机打闸,发电机灭磁开关断开,发电机从系统吸收有、无功功率,使发电机有功功率表、无功功率表指示反向。

?5、非全相运行时,负序电流产生的负序磁场在转子上产生两倍频率的脉动转矩,使发电机组产生100周/秒的振动。

6、非全相运行时间过久,转子线槽端头铝槽楔会过热熔化,护环嵌装面紧力消失,

转子失去平衡,引起机组的强烈振动。

三、发电机转子本体烧损的主要部位和特征

?发电机失磁,主断路器非全相断开的状态下,发电机变成了一个感性负载,处于稳定的异步电动机不对称运行状态,从系统吸取大量无功功率,定子电流严重不对称,负序电流很大。该负序电流产生的旋转磁场会在转子各构件中感应产生两倍工频的电流,它集肤效应较强,穿透能力不大,透入深度浅,主要集中转子表面的薄层中,槽楔上的电流比齿上电流大,大齿板面上的电流比小齿上的电流大。

?过热烧损的部位主要集中在转子大齿板面,挠性槽的端头、槽楔、齿部、护环嵌装面等处。轻者能使各结构件表面漆膜变色、烧焦发黑。重者造成护环嵌装面烧损、熔化,失去紧力。护环外移或产生裂纹,端头槽楔熔化甩出,散落在定子膛内,甚至转子失去平衡,引起机组强烈振动。

四、主断路器非全相断开的常见原因

?1、断路器液压操作机构内储能器有砂眼漏气,致使油压到零,断路器不能断开。

2、断路器绝缘拉杆上的铝质连接件开裂,操作时主触头未断开,而操作机构动作正

常,二次回路位置显示正常。

?3、断路器操作回路的合闸线圈接线错误,加在合闸线路两端的电压低,合闸冲力小,有时不能合闸。

4、断路器操作机构检修时一元件装反而拒动,使自动、手动均不能断开。

五、非全相运行故障处理的要点

?运行实践证明,发电机—变压器组的非全相运行故障,大多数发生在机组解列、并列的操作过程中,正确地进行机组解列或并列的操作是大幅度地减少因负序电流烧损发电机转子的简单而有效的措施。因此只要遵循保持发电机励磁、稳定机组转速、减少机组出力、控制定子电流的原则,严格按照合理顺序进行操作和调整,完全可以把负序电流控制在允许的范围之内。

?1、解列时应遵守的操作顺序是:

?(1)降低发电机的有功功率和无功功率,当定子三相电流均接近于零时,断开主断路器。

?(2)缓慢地降低发电机转子电流,定子电压亦相应地下降,若在降压过程中,定子电流反而升高,且三相幅值严重不对称,(负序电流表指示较大)说明主断路器非全相断开,这时应增加转子电流,提高定子电压,使三相定子电流控制在最小。

(3)一般采用手动就地打闸,若主断路器仍然不能全相断开,应按现场运行规程规定,将发电机从系统中隔离出来,即拉开该发电机—变压器组所接母线上的其它所有断路器。

(4)关闭汽轮机主汽门停机

?2、并列后加负荷时应遵守的操作顺序是:

(1)并列后不要急于增加有功功率和无功功率,在加负荷的过程中,要特别注意定子三相电流是否对称相等,确认无异常后,再增加有功功率和无功功率。_

(2)当发现三相电流的不对称程度超过规定时,说明主断路器非全相合闸,应立即减少发电机的转子电流和功率,使定子三相的不平衡值控制在允许范围之内。

?(3)若主断路器仍不能全相断开,应按现场运行规程的规定,将发电机从系统中隔离出来。

?(4)关闭汽机主汽门停机。

3、若在发电机并列或解列中,合上或拉开主断路器后,发出“控制回路断线”“油压

异常”等信号以及红绿灯指示不正常时,应立即检查定子三相电流是否正常,如出现严重不对称或负序电流表指示较大超过规定值,应判断为主断路器出现非全相运行。

进行相应处理。

?4、在运行中若由于保护装置动作或主断路器误动,造成主断路器非全相断开,灭磁开关断开,汽机主汽门关闭,这时发电机失磁进入异步电动机的不对称运行状态,处理故障的操作顺序是:

?(1)立即合上灭磁开关,增加转子电流,使发电机进入同步电动机的不对称运行状态。

(2)减少转子电流至空载额定值,使三相电流的不平衡值控制在允许范围之内或最小。

(3)若主断路器仍不能全相断开,应按现场运行规程的规定,将发电机从系统中隔离出来。(4)若灭磁开关合不上,主断路器亦不能全相断开,应迅速拉开该发电机—变压器组所按母线上的所有断路器。

?5、在运行中若由于保护动作或主断路器误动,造成主断路器非全相断开,灭磁开关断开,而汽机主汽门没有关闭,这时发电机失磁进入异步发电机的不对称运行状态。

处理故障的操作顺序是:

(1)立即减少发电机的有功功率,同时合上灭磁开关,增加转子电流,使发电机拉入同步。

(2)减少转子电流至空载额定值,使定子三相电流的不平衡值控制在允许范围之内或最小。

(3)若主断路器仍不能全相断开,应按现场运行规程的规定,将发电机从系统中隔离出来。

?(4)若灭磁开关合不上,主断路器亦不能全相断开,应迅速拉开该发电机—变压器组所按母线上的所有断路器。

?(5)关闭汽机主汽门停机。

?6、故障处理时的注意事项

(1)解列停机时,决不可因机组停止运行,放松对盘上各种仪表指示的监视,以致不能及时发现异常情况,造成负序电流烧损发电机转子。

(2)发电机—变压器组接线方式,当主断路器两相断开一相接通时,恢复励磁后,即使发电机达到同步转速,这时,发电机和系统之间只有一相接近,仍处于失步状态,切不可在处理过程中将主断路器合闸。

(3)对主断路器位置状态的判断,应根据主断路器机械指示,盘上仪表指示以及二次回路的信号指示,进行综合分析判断,切不可只根据二次回路的信号指示来判断主断路器的位置状态。

(4)主断路器发生非全相运行时,不要试图对主断路进行消除缺陷的工作,以免延误处理。

六、防止非全相运行故障烧损发电机转子的措施

?1、运行维护方面

(1)根据厂家资料和发电机运行规程的规定,制定出机组允许的负序电流值和持续时间,作为运行人员进行监视和处理故障的依据。

?(2)主断路器非全相运行时,盘上的表计指示会有明显的变化,尤其是三相电流幅值的变化有一定的规律,应根据机组的具体情况,在现场规程中明确指出主断路器非全相运行时,出现的主要异常现象,供运行人员进行综合分析判断。

?(3)主断路器非全相运行时,将发电机从系统中隔离出来的处理步骤和操作顺序,应在现场运行规程中明确规定,便于运行人员及时地进行故障处理。

(4)发电机解列、并列的操作顺序和注意事项,应在现场运行规程中明确规定,便于运行人员正确地完成解列并列的操作。

(5)要严格认真地按照断路器安装和检修工艺要求,提高断路器的安装和检修水平,认真及时地做好日常维护工作,无论是哪种操作机构,当出现异常现象时,要认真进行分析,及时消除缺陷,切不可将表计指示的异常现象或信号,误认为是表计指示失常、不准,而丧失警惕,以致酿成后果。

?(6)发电机—变压器组非全相运行时,运行人员应做好发电机三相电流的变化、电压的变化、机组转速的变化、持续时间以及保护装置、信号装置的动作记录,以使进行综合分析、判断,制订检查处理对策。2、设备改进方面

(1)发电机—变压器组结线方式的高压侧主断路器应选用三相联动的操作机构。

(2)发电机加装负序电流表等。

七、由于主断路器非全相开合,发电机—变压器**进入非全相运行状态,负序电流烧损发电机转子的威胁确实存在,只要掌握非全相运行机组运行工况的变化规律和特点,正确地进行分析判断,遵循保持发电机励磁、稳定机组转速,减少机组出力,控制定子电流的原则和合理的操作顺序,烧损发电机转子的故障是完全可以避免的。

变压器油故障的在线检测与诊断

引言 在线监测技术是分析目前对电力变压器进行故障诊断最方便、有效的手段之一。在线检测技术极大地提高绝缘诊断的效率和准确性同时还可节约大量的人力和物力的损耗。并且,根据被测设备的当前工作数据,结合过去的经验,用先进的方法及时而全面地进行综合分析判断,为捕捉早期潜伏性故障隐患提供指导。在线监测是保障电力系统正常运行和工作的重要环节之一,它可以为设备的故障提早发出警示,以确保电网的安全运行。 大型变压器一般都为油浸式变压器,采用油纸绝缘结构。油在变压器当中起到绝缘和冷却的作用。变压器在运行过程中,由于热和电的作用,变压器油会逐渐老化并分解产生少量的低分子烃(氢气、甲烷、一氧化碳、二氧化碳、乙烯)等气体,当存在潜伏性故障时,会加快这些气体的产生速度,因此要监视变压器的运行状态,利用离线和在线技术对油中气体的定性定量分析,其意义是十分重要的,实践证明,也是非常有效的手段。 1、变压器油质劣化因素及其对策 1.1变压器油劣化因素 (1)设备条件。变压器设备设计制造采用小间隰,运行中易出现热点,不仅促使固体绝缘材料老化,也加速油的老化。一般温度从60一70℃起,每增加10°c油氧化速度约增加一倍。另外,设备的严密性不够,漏进水分,会促进油的老化,选用固体绝缘材料不当,与油的相溶性不好,也会促进油的老化,所以设备设计和选用绝缘材料都对油的使用寿命有影响。 (2)运行条件。变压器、电抗器等充油电气设备如在正常条件下运行,一般油品都应有一定的氧化安定性,但当设备超负荷运行或出现局部过热,油温增高时,油的老化相应加速。 (3)污染问题。新油注入设备时,都要通过真空精密过滤、脱气、脱水和除去杂质。当清洁干燥油注入设备后,油的介质损耗因数有时会增大,甚至超过运行中规定2%的最低限值。 (4)运行中维护。运行中油的维护很重要,目前变压器大部分不是全密封,如果呼吸器内的干燥剂失效不能及时更换,将潮气带人油内,油内抗吸附剂失效后,未能及时补加,会促使油的氧化变质。 1.2 对策 综上所述。影响变压器油质劣化的因素是多方面的。既有人的因素,也有设备因素,但归根结底是人的因素。只要充分认识油质对设备安全、经济运行的重要关系,增强责任感和事业心,那么不论设备问题,还是管理问题都会迎刃而解,就油质对策,在此不妨提出几点看法: (1)积极推广应用新技术,彻底改变变压器因密封不严而产生漏油的弊端; (2)加强管理,完善油务监督; (3)充分发挥油处理设备的作用; (4)完善新油的入库检验制度和变压器油的保管、发放(领用制度)规定; (5)加强变压器油务监督管理。 为使变压器油运行良好,这就要求变压器油具有较高的闪点、击穿电压、界面张力、水溶性酸ph值,同时保持较低的水分、介质损耗因数、酸值,同时还要求变压器油透明、无杂质或悬浮物,月前变k器用油的牌号以25号居多,其技术标准和运行要求如下表所示 2 、故障在线检测与诊断 在线监测技术中,由各种传感器所采集的信号,经过必要的转换和处理后,统一送进数据处理系统进行分析,综合分析判断后输出结果。如发现异常,可警 报或进行相应的操作,也可以与上一级检测中心相连[1],如图1一1所示。 2.1在线检测的原理与方法 由于温度对油中微水含量的变化状态及传感器测量过程的影响,所以为了精确地在线测量由衷的油中的微水含量,需要将温度传感器和温度传感器安装在变压器的油流回路中,同时对温度和温度信号采样,以便真实的反应油中的微水含量。 对变压器中微水含量实施在线监测时,传感器是其中非常关键的部分,用于油中微水含量在线监测的传感器需要承受变压器苛刻的运行环境,这包括100℃的顶层最高温度和140℃的最热点温度,与传统的醋酸纤维系湿敏材料相比,聚酰亚胺是一种耐热性非常好的湿敏材料,由于其具有一个高度芳香化结构,在-200℃~+400℃都有稳定的物理、化学性质,具有较强的抗化学腐蚀性,能很好地适应变压器的热油环境。聚酰亚胺的分子结构中含有酰亚胺环,具有一定的吸湿性,且吸水后其相对介电

发电机的运行特性

1.为什么发电机在并网后,电压一般会有些降低? (2) 2.为什么调节无功功率时有功功率不会变,而调节有功功率时无功功率会自动变化? (2) 3.发电机运行时为什么会发热? (2) 4.定子绕组单相接地时对发电机有危险吗? (2) 5.大修后的发电机为什么要做空载和短路试验? (2) 6.什么是保护接地与保护接零? (3) 7.发电机启动前,对碳刷和滑环应进行那些检查? (3) 8.发电机升压操作时应注意什么? (3) 9.发电机并解列前为什么必须投入主变中性点地刀? (3) 10.何谓发动机的调相运行?如何实现? (4) 11.何谓发动机的进相运行,应注意什么,为什么? (4) 12.何谓发动机自励磁,一般在什么情况下发生,如何避免? (4) 13.失磁现象? (4) 14.转子两点接地的危害表现为: (5) 15.发动机非全相运行的危害? (5) 16.与发电厂相连的线路在什么情况下可采用零起升压? (5) 17.定子单相接地时对发电机是否有危险? (5) 18.转子一点接地时发电机是否可以继续运行? (6) 19.发电机为什么要做直流耐压试验并测泄漏电流? (6) 20.发电机的空载特性试验有什么意义?做发电机空载特性试验应注意哪些事项? (6) 21.发电机产生轴电压的原因是什么?它对发电机的运行有何危害? (6)

1.为什么发电机在并网后,电压一般会有些降低? 对于发电机来说,一般都是迟相运行,他的负载也一般是阻性和感性负载。当发电机升压并网后,定子绕组流过电流,此电流是感性的,感性电流在发电机内部的电枢反应作用比较大,他对转子磁场起削弱作用,从而引起端电压下降。当流过的只是有功电流时,也有相同的作用,只是影响比较小。这是因为定子绕组流过电流时产生磁场,这个磁场的一半对转子磁场起助磁作用,而另一半起去磁作用,由于转子磁场的饱和性,助磁一方总是弱于去磁的一方。因此,磁场会有所减弱,导致端电压有所下降。 2.为什么调节无功功率时有功功率不会变,而调节有功功率时无功功率会自动变化? 调无功功率时,因为励磁电流的变化引起功角的变化,从式看出,当发电机电动势增加,SIN¥值减小时,有功基本不变。 调有功功率时,对无功功率输出的影响就较大。发电机能不能送无功功率与电压差有关这个电压差指的是发电机电动势和端电压(系统电压)的同相部分的电压差,只有这个电压差才产生无功电流。当发电机送出有功功率,电动势就与系统电压错开一个角度,这样无功电压变小了。当有功变化越大,差角就越大,无功电压更小,因此无功自动减小,反之,当差角减小,无功会自动增加。 3.发电机运行时为什么会发热? 任何机器运转都会产生损耗,发电机也不例外,运行时他的内部损耗也很多。大致分四类: 铜损是指定子绕组的导线流过电流后在电阻上产生的损耗,即I2R而且定子槽内的导线产生的集肤效应额外引起损耗。 铁损是指铁芯齿部和轭部所产生的损耗,他有两种形式,一种是涡流损耗,另一种是磁滞损耗。涡流损耗是由于交变磁场产生感应电动势,在铁芯中引起涡流导致发热;磁滞损耗是由于交变磁场而使铁磁性材料克服交变阻力导致发热。 励磁损耗是转子绕组的电阻损耗。 另外,机械损耗就容易理解了。 这四种损耗都将使绕组、铁芯或其他部件发热,因此发电机在运行中会发热,这是不可避免的。 4.定子绕组单相接地时对发电机有危险吗? 发电机的中性点是绝缘的,如果一相接地,乍看构不成回路,但是由于带电体与处于地电位的铁芯间有电容存在,发生一相接地,接地点有会有电容电流流过。单相接地电流的大小,与接地线匝的份额a成正比。当机端发生金属性接地,接地电流最大,而接地点越靠近中性点,接地电流愈小,故障点有电流流过,就可能产生电弧,当接地电流大于5A时,就会有烧坏铁芯的危险。 5.大修后的发电机为什么要做空载和短路试验? 这两个试验都属于发电机的特性和参数试验,他与预防性试验的目的不同。这类试验是为了了解发电机的运行性能、基本量之间的关系的特性曲线以及被电机结构确定了的参数。做这些试验可以反映电机的某些问题。 空载试验是指电机以额定转速空载运行时,其定子电压与励磁电流之间的关系。他的用途很多,利用特性曲线,可以断定转子线圈有无匝间短路,也可判断定子铁芯有无局部短路如有短路,该处的涡流去磁作用也将使励磁电流因升至额定电

变压器常见故障大汇总及案例分析

电力变压器常见故障的分析与处理 变压器是靠电磁感应原理工作的,改变电压、联络电网、传输和分配电能;电力变压器是变电站核心设备,结构复杂,运行环境恶劣,发生故障和事故对电网和供电可靠性影响大,需要针对具体情况立即采取措施;变压器故障的分析判别牵扯的学科领域多,既要有电工、高电压、绝缘材料、化学分析等基础知识,还要熟悉自动化、热学等;变压器的故障种类多,表现形式千差万别,需要熟悉结构原理、熟悉现场运行条件、熟悉每台设备特点等,具体问题,具体分析。 第一章:大型变压器显性故障的特征与现场处理 显性故障:是指故障的特征和表现形式比较直观明显的故障,在此,结合现场实际,对大型变压器显性故障的原因和特征进行了叙述和分析,介绍了现场常见的处理办法,也是一些比较简单的办法。 一、外观异常和故障类型: 变压器在运行过程中发生异常和故障时,往往伴随相应外观特征,通过这些简单的外部现象,可以发现一些缺陷并对异常和故障进行定性分析,提出进一步分析或处理的方案。而且可以对一些比较复杂的故障确定检修和试验方案.以下从几个方面进行分析和处理:

1、防爆筒或压力释放阀薄膜破损。 当变压器呼吸不畅,进入变压器油枕隔膜上方的空气,在温度升高时,急剧膨胀,压力增加,若引起薄膜破损还会伴有大量的变压器油喷出;主要有以下原因和措施: 1)呼吸器因硅胶多或油封注油多、管路异物而堵塞。硅胶应占呼吸器的2/3,油封中有1/3的油即可,可用充入氮气的办法对管路检查2)(油枕)安装检修时紧固薄膜的螺栓过紧或油枕法兰不平,(压力释放阀)外力损伤或人员误碰。更换损坏的薄膜或油枕. 3)变压器内部发生短路故障,产生大量气体。一般伴随瓦斯继电器动作;可先从瓦斯继电器中取气样,若点火能够燃烧,需取油样色谱分析和进行电气检查,确定故障性质,故障原因未查明,消除缺陷前变压器不能投运。 4)弹性元件膨胀器内部卡涩.更换或由制造厂处理. 5)隔膜结构的油枕在检修或安装时注油方法不当,未按规定将油枕上部的气体排净。停电将变压器油注满油枕,再将变压器油放至合适的油位高度。 6)胶囊结构的油枕因油位低等原因,胶囊堵塞油枕与变压器本体的管路联结口。在管路联结口处装一支架,防止胶囊直接堵塞联结口。 2、套管闪络放电。 套管闪络放电会使其本身发热、老化,引发变压器出口短路事故;低压套管尤其严重;其主要原因和措施有:

10kV配电变压器引线设备线夹温度异常现象分析及解决措施

10kV配电变压器引线设备线夹温度异常现象分析及解决措施 2014年6月10日

10kV配电变压器引线设备线夹温度 异常现象分析及解决措施 [内容摘要]:本文主要针对XX地区10kV配电变压器运行时引线设备线夹出现的温度异常现象进行初步分析,提出了一些可行的温度异常处理方法和维护手段,可以给运行维护人员在日常巡视变压器时提供参考。 [关键词]:配电变压器设备线夹温度异常解决措施 前言 设备线夹是配电变压器与高低压引线连接的重要连接部件,在变压器长期运行过程中,设备线夹温度异常现象成为了导致配电变压器和线路故障的主要原因之一,设备线夹温度异常容易造成配电变压器引线断线造成线路接地、变压器缺相运行等。本文主要以XX电力公司地区公用配电变压器设备线夹温度异常现象为例,通过认真总结和分析变压器设备线夹温度异常的原因,提出了一些解决措施,为今后在变压器的运行维护人员提供借鉴和参考。 1.配电变压器设备线夹温度异常情况 2013年7月12日-7月15日,配电运检工区运维人员利用红外测温仪对地区公用配电变压器进行红外测温,在测温过程中发现多处配电变压器高低压引线设备线夹发热,如下图所示: 发热部位发热部位图一设备线夹发热139.4摄氏度图二设备线夹发热106.8摄氏度

发热部位 发热部位 图三设备线夹发热138摄氏度图四设备线夹发热117摄氏度在此次红外测温过程中共检测变压器52台,其中检测到配电变压器高低压引线设备线夹发热多达10多处,其中温度最高达150摄氏度。根据XX电力公司红外检测诊断工作条例,对所测设备、数据进行统计分析,对照XX电力公司电流致热设备缺陷诊断判据,对所测温度异常点进行缺陷分类如下: 表一电流致热设备缺陷诊断判据 表二变压器设备线夹发热统计表 (续表见下页)

10kV配电变压器故障分析与诊断技术研究 史 闯

10kV配电变压器故障分析与诊断技术研究史闯 发表时间:2019-07-15T14:10:08.747Z 来源:《当代电力文化》2019年第04期作者:史闯 [导读] 配电变压器作为直接面向用电终端客户供电的电力设备,也是电力公司电力供应的主要设备,其中10KV配电变压器拥有数量最多,关系配电网是否可靠运行。 国网宁夏电力有限公司中卫供电公司,宁夏中卫 755000 摘要:在我国电力配电网中,配电变压器作为直接面向用电终端客户供电的电力设备,也是电力公司电力供应的主要设备,其中10KV 配电变压器拥有数量最多,关系配电网是否可靠运行。10KV配电变压器应用于国计民生的各个领域,遍布城乡各个角落。 关键词:变压器;故障;分析;诊断;配电网 1配电变压器的意义 配电变压器,顾名思义其实就是改变电压的场所。我们知道电力系统网络是个庞大的网络系统,就像是南水北调、西气东输这类工程一样,我国的电力系统也在逐渐的发展成一个联通的网络系统,这个时候变电站的存在就显得格外重要。我们知道发电厂的电能都是要往外输送的,为了能够将发电厂出来的电能输送到较远的地方,我们必须将电压升高,改为高压电,在送到用户的用电场所的时候再将其电压降低,这一系列的工作是要靠变电站来完成的。变电站的主要设备是开关和配电变压器。在整个的电力系统中,配电变压器具有核心作用,就负责进行电流的升降压以及配电处理,然后经由输电线路向外运输。近些年来,随着智能化、信息化、科技化的迅速发展,变电站对于内外部的相关电气设施设备的安装与调试工作都在如火如荼的进行,综合考虑全面工作的后期检测与维修工作,维护电力系统的整体稳定性和安全性,为我们的用户百姓提供安全优质全面的服务,配电变压器是至关重要的。 2配电变压器发生故障原因分析 配电变压器因多种原因会导致其无法安全运行,通过对工作总结也可以发现,导致故障发生的主要原因有以下几点。 2.1绝缘性能降低 通过对过去的10年中在造成故障的起因分析,绝缘性能下降是导致配电变压器故障的重要主因之一。由于变压器绝缘老化,绝缘性能降低,极易因外部原因导致故障的产生与扩大。通常情况下,变压器的正常运行时间应为30-40年,有资料显示,因绝缘性能降低,导致变压器平均的使用寿命为17年左右,如果变压器使用时间超过20年,其因绝缘性能降低导致故障发生明显增加,无法保证供电网供电的可靠性与安全性。 2.2配电线路涌流 线路涌流也常称为线路干扰,产生的主要原因是误操作、有载调压分接头拉弧、变压器解并列等因素导致的闪络、线路故障、操作过电压、电压峰值、其他输配方面影响等配电网异常状况产生,进而导致变压器产生故障。通过相关数据分析也可以看出,在变压器故障中,这类起因在变压器故障中占有很大一部分的比例,因此,必须加以重视。 2.3潮湿 潮湿导致的变压器故障主要是由于变压器安装和使用环境出现改变,如顶盖渗漏、积水浸入、管道渗漏、水分沿配件或套管进入油箱或者绝缘油中存在水分等。 2.4雷电波冲击 变压器遭受雷电波,常见于雷电多发季节或区域,现在通常情况下,除非产生十分明显的雷击现象,一般都是会此类冲击产生的故障按“线路涌流”进行处理。 2.5维护、保养工作不到位 维护、保养工作不到位,也易导致变压器产生故障,这方面产生原因主要有变压器初始安装存在缺陷、变压器保护装置缺失、冷却剂泄漏、腐蚀、污垢未及时清查等。 2.6过载 如果变压器长期工作于超过其设计功率的状态,就会出现“小马拉大车”现象,而过负荷又会导致变压器出现温度升高,超出其设计运行温度,过高的温度对变压器的绝缘产生破坏,进而降低其绝缘性能,导致变压器发故障。 2.7连接不牢固 连接不牢固可能产生于变压器生产工艺和安装的某一个环节,也可能因维护不到位所导致,也有的是因为变压器不同性质金属之间的不当配合,有的是螺栓连接间的紧固不恰当。而随着电力设备生产工艺和安装工艺不断提升,此类现象在近些年有了很大改善,但仍需要给予充分的重视,尤其是重视设生产质量的检验、安装验收、设备维护等诸多环节。 3故障分析 3.1初步研判 智能配电网运行监控平台每个小时从用电信息采集系统调取各台区电压、电流等数据信息,供运维检修人员对辖区内台区负荷进行监控。通过智能配电网运行监控平台,该台区故障前负荷监控曲线,数据显示:该变压器故障前负荷未出现过载现象,初步研判故障原因为设备内部原因。 3.2吊芯检查 变压器故障原因错综复杂、形式多样化,为更准确、更直观、更深层次地发现其故障原因,试验人员对该变压器进行吊芯检查。检查情况:变压器油发黑,有焦糊气味;变压器器身上表面存在大量碳化及绕组融化后产生的铜瘤;变压器低压绕组B铜排引线出头与夹件之间有明显放电痕迹;变压器高压绕组外观良好,低压绕组C相严重变形;铁芯拆除后,低压C绕组因短路,其铜箔已经熔断。 3.3故障原因分析 根据吊芯数据分析,可以判定变压器内部出现了短路,且短路后变压器又经过了连续运行,直至铜箔在短路电流运行下,变形、绝缘大量击穿而出现了更严重的短路。分析引起变压器短路的原因可能为以下情况:由变压器低压B相绕组出头铜排引线及弯板夹件之间的灼烧痕迹可以看出,该变压器在运行过程中,其负载线路可能遭受过大气过电压(雷电)情况。 当低压输电线路遭受雷击时,雷电形成的过电压会使低压绕组对地产生放电,同时造成变压器绕组的绝缘损伤,使变压器绕组绝缘产

发电机非全相运行处理

现象: 发生非全相运行的开关显示绿色,但单相或两相有电流显示。 “发电机负序过负荷”保护可能动作,发变组保护屏上有对应的告警灯。 发电机产生振动 8.38.8.1.4 对发生非全相运行开关合闸状态的判断: 1)若发电机定子电流有两相相等或近似相等,且为另一相的1/2,则可判断发变组开关两相在合闸状态,一相在断开状态。 2)若发电机定子电流有两相相等或近似相等,而另一相为零,则可判断发变组开关一相在合闸状态,两相在断开状态。 处理: 1)当判明发电机非全相运行时,禁止拉开灭磁开关及关闭汽机主汽门,应在NCS 内对该发变组开关再手动分闸一次,若不成功,则应迅速降低发电机有功、无功负荷至零。 2)若发电机灭磁开关未跳闸,汽机主汽门未关闭,则禁止手动断开灭磁开关,应严密监视发电机定子电流,并根据电流表指示调节励磁电流,使三相定子电流接近于零,立即拉开串接在同一回路的开关,且汇报给调度通知对侧民丰变拉开开关,使发变组与系统解列;处理过程中应严密监视发电机各部分温度不超过允许值。 3)若发电机灭磁开关已跳闸,但汽机主汽门未关闭,发电机已进入异步不对称运行状态,则可合上灭磁开关增加励磁电流,使发电机重新拉入同步,然后再调节励磁电流至空载额定值,使三相定子电流接近于零。若灭磁开关合不上或发电机不能拉入同步,则应立即拉开发电机所串接的开关,且汇报给调度通知对侧民丰变拉开开关,使发-变组与系统解列。 4)若灭磁开关已跳闸,汽机主汽门已关闭,则应立即拉开发-变组所串接的开关,且汇报给调度通知对侧民丰变拉开开关,使发-变组与系统解列。 5)若开关自身所配置的“非全相运行2.5秒后跳三相”已动作跳开未跳开相或“断器失灵保护”已动作跳开非全相运行的相邻的开关及民丰变对侧开关,则按发-变组事故跳闸进行处理。 6)通知检修部门检查发生非全相运行的开关,在未处理好之前禁止将其投入运行。 7)若保护未动作或其它原因,非全相运行超过发电机负序电流允许水平,再次启动前,必须全面进行检查无问题后,经总工程师批准后方可并列。

探讨配电变压器故障分析及预防

探讨配电变压器故障分析及预防 发表时间:2019-06-13T09:21:39.990Z 来源:《电力设备》2019年第2期作者:张汉考[导读] 摘要:随着人类经济与科技的不断发展,电力系统也处于迅速发展的阶段。 (大唐国际陡河发电厂河北省唐山市 063028) 摘要:随着人类经济与科技的不断发展,电力系统也处于迅速发展的阶段。就现在情况而言,人类对电能的需求不断增大,在此基础之上,还需要对电力系统的安全性以及可靠性进行保障,才能够为用户提供更为优质的电能。在电网结构之中,配电变压器具有不可忽视的作用,配电变压器主要是对电能进行转换和传输。但是在整个电网进行运行的过程中,配电变压器经常会发生一些故障,在很大程度上影响了电力系统的运行。而本文将对配电变压器常见的故障进行分析,同时提出具有针对性的解决措施。 关键词:配电变压器;故障;原因;预防 一、变压器常见的故障与原因分析。 1.外部原因 1.1低压断线故障。对于变压器来说,在其低压测的低压引线与接线柱连接处,经常会发生低压断线故障。通常情况下,如果变压器发生低压断线故障,首先会出现局部发热的情况,进而就产生优质受氧化情况的发生。如果相关工作人员没有对低压断线故障进行及时的处理,很有可能会导致发热或者是跳火的情况出现,进而也会导致破坏绝缘烧断线路等严重的情况发生。 1.2套管闪络。变压器中引起套管闪络故障发生的因素,主要包括变压器胶珠没有得到及时的维修与管理,其老化进而引起渗油的情况,进而使套管表面吸附了空气中的尘埃,由于所吸附的尘埃具有导电性,所以在遇到像大雾或者小雨等自然天气之后,将会形成污闪的情况,进而也就导致了变压器高压侧单相接地短路的情况出现。 1.3过电压故障。对于电网内部来说,如果遇到雷击等自然天气下的状况,将会使其电磁能量异常转换,这样情况下电压就会突然升高,最为严重的时候,甚至会使变压器的绝缘结构造成一定的影响,甚至有可能会烧毁变压器。对于变压器来说,其高低压线路是架空线路,而且在平原地区所设立的高低压线路,是很容易受到雷击的。而且如果线路受到雷击,在这一过程中,教会是变压器产生比额定电压要高几十倍的电压。 1.4接地故障。变压器都需要一个中性点接地,如果在接地时显示接触不良,将会在很大程度上使电阻加大,进而会产生瞬间电流,导致线路烧毁。接地故障不仅出现短路故障以及烧毁设备,最为严重的甚至会危害人类安全。 1.5短路故障。本次所述的短路故障是指二次短路故障。如果变压器出现二次短路故障,将会使变压器承受巨大的电磁力,同时变压器也需要承受短路电流。而且在变压器的线圈内部,所产生的机械应力也较为巨大。二次短路故障,在很大程度上会使线圈压缩、铁芯夹板螺丝松动甚至会引起变压器油质劣化以及高压线圈畸形或开裂的情况发生。甚至会导致变压器的铁芯结构造成毁灭性的破坏。 2.内部故障 2.1绕组故障。如果变压器进行了时间较长的运行,那么将会导致绝缘油质差,或者是有面过低的情况出现,进而也就导致了绕组发热的故障出现。而且有些变压器过于陈旧,而且也没有专业人员对其进行维护,其绝缘油与空气进行长时间的接触,也就导致了绝缘性较差。 2.2铁心故障。如果变压器内部发生铁心故障。将会在很大程度上是铁心环境损耗出现异常。甚至更为严重的会导致铁心烧毁的情况出现。 2.3分接开关故障。在变压器内部故障之中,分接开关故障是较为常见的故障之一,所以分接开关的质量是至关重要的。在变压器进行实际的工作过程中,很有可能在分接开关连接处,其螺丝连接不够紧实,或者螺丝连接,没有足够的压力,进而也就导致了分接开关故障出现。对此相关工作人员会对其进行润滑剂处理。所以载分接开关处受到油污的情况较为严重,这样一来也就家化了其氧化程度。 2.4变压器油质劣化或漏油。在变压器使用过程中其使用的油质是至关重要的,如果油质较差,很容易发生氧化情况,进而也就导致了变压器的正常运行,或者是导致绝缘性能降低,发生短路故障。 二、变压器故障的预防措施。 1.外部故障的预防措施。 相关部门需要设立专业人员,对变压器的外部螺栓接触情况进行定期检查,与此同时,专业人员还需要对变压器附近的温度进行测量,在此测量的过程中,主要应用红外测温仪进行测量。同时对于各线的连接处,也需要对其可靠性进行注意。在变压器的二侧都需要安装避雷器,与此同时,对于在雷雨季节,相关工作人员需要对其进行监测与控制。而且相关工作人员还需要对接地电阻进行测量,对其连接状况进行注意,避免发生接地故障。 2.内部故障的预防措施。 相关工作人员需要对变压器铁芯的绝缘状况进行定期检查,一旦发现变压器内绝缘电阻的测量值相较于规定值较小,则需要对其进行及时的处理,防止铁心故障的发生。而且相关工作人员应该定期的转动分接开关,同时对于其中存在的油污和氧化膜进行及时的清理。并做到对油质和油位进行定期监测。 结论 就目前情况而言,人类对电能的需求还在不断的增大,在这种情况之下,电网负荷量也不断的增加。对此需要设立相关工作人员,对配电变压器进行及时的维护与检修,只有这样才能够及时的发现配电变压器存在的问题,并对其进行及时的处理,进而确保电网的安全平稳运行。 参考文献: [1]蔡玉明,变压器运行维护与故障分析处理[J]沿海企业与科技,2014(8). [2]周志敏,配电线路及设备运行规程[M].沿海企业与科技,2014(22).

110kV变压器缺相运行的分析

110kV 变压器缺相运行的分析 摘 要:用对称分量法和过电压理论分析中性点不接地110kV Yd11变压器高压侧单相断线时低压侧电压、电流特征,并找出其规律,得出结论,为调度人员及时根据故障现象特征隔离故障点,调整运行方式,从而确保了地区电网供电的质量和可靠性。 关键词:变压器 缺相运行 1. 引 言 县级电网的110kV 变电所大多为终端变电所,110kV 变压器大多处于中性点 不接地运行状态,当110kV 线路单相断线时,线路保护和变压器保护不会动作,但10kV 侧电压、电流异常,有些特征类似10kV 单相接地。本文主要分析了110kV 线路单相断线时变压器10kV 侧电压、电流的特征,帮助运行、调度人员及时对运行异常定性和排除。 2. 模型与参数 2.1 模型 图(1) 110kV 线路单相断线系统模型 线路中间A 相QK 断线,断口两端距离较近,即Zqk ≈0 2.2序网图 图(2)序网图 参数:U qk ∣0∣=E ,Z (0)= ∞, Z (1)=Z (2)=j (X1+X2+X3+X4+X D )=j X ,电压基准值为E 。 3. 线路电流计算 注:正常运行中三相电流大小为 。单相断线后,健全两相电流方向相反且比正常时略

小。 4. 断口电压 4.1断口QK三序电压为 4.2 A相断口电压为 5. F1母线(110kV母线)电压的计算 5.1 F1母线三序电压 5.2 F1母线三相电压 6. F2母线(10kV母线)电压的分析计算 6.1 F1母线三相电压近似值 一般情况下,X4 + X ≈X,于是有 D 即,110kV母线电压健全相仍保持正常状态。后续计算以该近似进行。 6.2 F1母线、F2母线三序电压关系 6.2.1正序、负序电压 由于变压器为Y/Δ,d11接线,所以对于正序、负序分量有 6.2.2 零序电压 1)F2母线零序电压的产生 由于变压器110kV侧中性点不接地,零序阻抗∞,零序电流为0,零序电压通过高低压绕组间电容和低压侧三相对地电容所组成的电容传递回路传递至10kV侧,使10kV侧三相出现相同的零序传递电压Ua0,Ub0,Uc0。如图(3)。

变压器的常见故障及处理方法

浅议变压器常见故障及处理 令狐采学 摘要:变压器在电力系统的安全、平稳运行中起着至关重要的作用。本文从变压器的结构和原理入手,结合我场变压器的实际情况,针对实际变电运行中变压器的主要异常现象和原因进行分析,提出一些自己的观点。 关键词:变压器原理结构参数异常处理 引言:电力是现在工业的主要能源,并且电能的输送能量之大、距离之远也决定了必须采用超高压输送电能,以减少此过程中的损耗。而实际中由于发电机结构上的限制,通常只能发出10kv 的电压,因此,必须经过变压器的升压才可以完成电能的输送。变压器也理所应当成为电力系统中核心设备之一。如果变压器出现了故障,就会在很大程度上影响电能的输送以及正常的变电运行,所以能够掌握和分析变压器常见的故障和异常现象,及主要原因,提出防范解决措施,就显得尤为重要。 电力变压器是利用电磁感应原理制成的一种静止的电力设备。它可以将某一电压等级的交流电能转换成频率相同的另一种或几种电压等级的交流电能,是电力系统中重要电气设备。下面将从变压器的分类、结构、异常现象和原因分析等几个方面进行介绍: 一、变压器的分类、结构及主要参数

(一)、变压器的分类 根据用途的不同,变压器可以分为电力变压器(220kv以上的是超高压变压器、35-110kv的是中压变压器、10kv为配电变压器)、特种变压器(电炉变压器、电焊变压器)、仪用互感器(电压、电流互感器)。 根据相数分为,单相变压器和三相变压器。 根据冷却方式分为,油浸自冷式、强迫风冷式、强迫油冷式和水冷式变压器。 根据分接开关的种类分为有载调压变压器和无载调压变压器。 根据绕组数分为,单绕组变压器、双绕组变压器和三绕组变压器。 (二)、变压器的结构 虽然变压器的种类依据不同方式进行分类,有很多种,但是一般常用的变压器的结构都很相似: 1、绕组:变压器的电路部分。 2、铁芯:变压器的磁路部分。 3、油箱:变压器的外壳,内装满变压器油(绝缘、散热)。 4、油枕:对油箱里的油起到缓冲作用,同时减小油箱里的油与空气的接触面积,不易受潮和氧化。 5、呼吸器:利用硅胶吸收空气中的水分。 6、绝缘套管:变压器的出线从油箱内穿过油箱盖时必须经过绝缘套管以使带电的引线与接地的油箱绝缘。

变压器7种常见故障解析

变压器7种常见故障解析 变压器是输配电系统中极其重要的电器设备,根据运行维护管理规定变压器必须定期进行检查,以便及时了解和掌握变压器的运行情况,及时采取有效措施,力争把故障消除在萌芽状态之中,从而保障变压器的安全运行。 1、绕组故障 主要有匝间短路、绕组接地、相间短路、断线及接头开焊等。产生这些故障的原因有以下几点: ①在制造或检修时,局部绝缘受到损害,遗留下缺陷; ②在运行中因散热不良或长期过载,绕组内有杂物落入,使温度过高绝缘老化; ③制造工艺不良,压制不紧,机械强度不能经受短路冲击,使绕组变形绝缘损坏; ④绕组受潮,绝缘膨胀堵塞油道,引起局部过热; ⑤绝缘油内混入水分而劣化,或与空气接触面积过大,使油的酸价过高绝缘水平下降或油面太低,部分绕组露在空气中未能及时处理。 由于上述种种原因,在运行中一经发生绝缘击穿,就会造成绕组的短路或接地故障。匝间短路时的故障现象使变压器过热油温增高,电源侧电流略有增大,各相直流电阻不平衡,有时油中有吱吱声和咕嘟咕嘟的冒泡声。轻微的匝间短路可以引起瓦斯保护动作;严重时差动保护或电源侧的过流保护也会动作。发现匝间短路应及时处理,因为绕组匝间短路常常会引起更为严重的单相接地或相间短路等故障。 2、套管故障 这种故障常见的是炸毁、闪落和漏油,其原因有: ①密封不良,绝缘受潮劣比,或有漏油现象; ②呼吸器配置不当或者吸入水分未及时处理; ③变压器高压侧(110kV及以上)一般使用电容套管,由于瓷质不良故而有沙眼或裂纹; ④电容芯子制造上有缺陷,内部有游离放电; ⑤套管积垢严重。 3、铁芯故障 ①硅钢片间绝缘损坏,引起铁芯局部过热而熔化; ②夹紧铁芯的穿心螺栓绝缘损坏,使铁芯硅钢片与穿心螺栓形成短路; ③残留焊渣形成铁芯两点接地; ④变压器油箱的顶部及中部,油箱上部套管法兰、桶皮及套管之间。内部铁芯、绕组夹件等因局部漏磁而发热,引起绝缘损坏。 运行中变压器发生故障后,如判明是绕组或铁芯故障应吊芯检查。首先测量各相绕组的直流电阻并进

变压器的常见故障分析及维护措施实用版

YF-ED-J1765 可按资料类型定义编号 变压器的常见故障分析及维护措施实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

变压器的常见故障分析及维护措 施实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 摘要: 在中国高速的现代化发展中,电 力工业的安全运行起着关键作用。本文主要从 变压器的常见故障的原因进行分析,并对变压 器的维护提出一点建议。 关键词:变压器故障原因输电线路 变压器是电力系统的重要设备,其状态好 坏,直接影响电网的安全进行。由于变压器在设 计、制造、安装和进行维护等方面原因使绝缘 存在缺陷,抗短路能力降低,因此近年来主变的 事故较多,其中威胁安全最严重的为绕组局部放

电性故障。根据国家电力公司对 2001 年全国110kV 及以上主变事故的调查,得知绕组的事故占总事故台数的 74.6%(福建省网为80%)。因此,提高变压器安全运行是极其重要的。 1 变压器故障原因分析 多种因素都可能影响到绝缘材料的预期寿命,负责电气设备操作的人员应给予细致地考虑。这些因素包括:误用、振动,过高的操作温度、雷电或涌流、过负荷、对控制设备的维护不够、清洁不良、对闲置设备的维护不够、不恰当的润滑以及误操作等。 1.1 雷击 雷电波看来比以往的研究要少,这是因为改变了对起因的分类方法。现在,除非明确属于

变压器故障分析及诊断方式简述

变压器故障分析及诊断方式简述 发表时间:2019-09-18T09:35:40.937Z 来源:《电力设备》2019年第7期作者:苏恩华 [导读] 摘要:本文综述了变电站变压器故障来源,分析了大量调查及测试案例中电力系统变压器故障的根本原因,并提出对应的预防措施。 (正泰电气股份有限公司上海市 201614) 摘要:本文综述了变电站变压器故障来源,分析了大量调查及测试案例中电力系统变压器故障的根本原因,并提出对应的预防措施。研究表明变压器击穿的主要原因是套管失效,老化分析过程除确定高压套管的绝缘寿命及其他影响因素外,应考虑湿度对其影响。本文研究了电力变压器的常见故障,并对处理电力变压器常见故障的措施提出了相关建议。 关键词:变压器;故障;诊断方式 前言 随着日常生活之中电力资源需求量的持续增加,其电力系统的稳定性和安全性受到广泛的重视。作为电力系统的重要组成,其变压器的安全性、持续性就决定了电力系统本身的安全运行。所以针对变压器故障进行合理的分析,并且做好对应的处理就显得格外的关键。 1电力变压器常见故障 电力变压器的常见故障主要有变压器渗油漏油、接头过热、铁芯多点接地等,下面就对此进行分析: 1.1变压器渗油漏油 变压器渗油漏油在电力变压器当中属于很常见的一种故障,其危害主要体现在三个方面:(1)对变压器的运行产生负面影响;(2)漏油会对环境造成污染;(3)极有可能引发较大经济损失,严重时还会导致电力系统存在停运风险。所以这一类故障不容忽视,站在其表现角度加以分析,可以把变压器渗油漏油故障分成油箱焊缝漏油以及低压侧套管漏油、防爆管漏油。通过分析发现产生该类故障的原因主要包括三点:(1)在焊接油箱的过程中存在操作不规范的问题,造成设备在运行时漏油;(2)在安装高压套管的升高座等部件时使用胶垫,造成连接漏缝,引发漏油问题;(3)电力变压器的低压侧遭受引线过短、母线拉伸等影响,并且螺纹也会因受到胶珠的压力出现漏油问题 1.2接头过热 载流接头是电力系统里面将变压器与其他系统连接起来的桥梁,使用载流接头的情况会对运行电力系统的效率产生直接影响,只是载流接头在实际操作中发生过热现象的可能性较大。引载流接头过热故障的成因主要有:(1)变压器的引出端和铝制连接的引出端会有1.86伏电位差出现,造成发热严重,酿成重大生产安全事故;(2)如果电力变压器接头的表面覆盖着杂质,也有引发过热现象的可能,抑或是接头上既有的导电膏铺膜因使用时间过长逐渐变薄,引发过热现象;(3)油浸式变压器的电容式套管的顶部导电密封头因密封不彻底造成截流接头粘连或者松动,引发过热现象。 1.3铁芯多点接地 针对电力变压器,一个变压器只能放置在同一个接地点,当接地点的数量增加时,不仅不能缓和变压器的压力,还会增加变压器铁芯的运行量,导致其在高速运行环节发生故障。并且变压器接地点数量增加会导致变压器停止运行,严重时还会威胁变压器电力工作人员的人身安全。 1.4短路故障 电力系统运行过程中,如果电力变压器的温度过高,极易造成短路故障。绝缘过热故障与绕组变形故障是短路故障中最为常见的两种情况。绝缘过热故障是因为电力系统中出现了极高的电流,产生了极高的热量。电力变压器受到高温影响,发生短路故障。绕组变形故障是短路电流对继电保护装置产生了冲击,影响了机电保护装置的正常动作。如果冲击的短路电流较小,电力变压器的绕组变形情况不会很明显,但仍会带来巨大的经济损失。 1.5绝缘故障 绝缘故障会严重影响电力变压器的安全稳定运行和电力企业的健康稳定发展,引发绝缘故障的原因大致如下:少量的金属杂质掺杂在变压器内部;变压器油道较小且绝缘较薄;变压器的绝缘成型件被导电质污染,电力变压器设备各相间的绝缘裕度不符合实际运转要求;变压器油道设计不合理。 1.6自动跳闸故障 电力变压器正常使用过程中出现自动跳闸故障,主要是因为人为操作与变压器内部破坏。要想有效解决电力变压器自动跳闸故障问题,必须安排专业人员进行故障排查,制定科学合理的检修策略,避免电力变压器出现爆炸情况。 2处理电力变压器常见故障的措施建议 对于电力变压器经常会发生的故障,应提出针对性的措施进行处理,以便更好地满足处理变压器常见故障的要求,提升变压器整体运行的稳定性、安全性。 2.1检修变压器渗油漏油故障 在检修变压器渗油漏油现象时应对不同情况采取不同焊接方式,针对平面接缝使用直接焊接的方式加以处理,不同平面接缝则可把剪裁铁板,将其变成纺锤形状之后再补焊,排除变压器再次漏油故障。对于变压器不同渗油漏油区也要使用不同检修策略:(1)油箱焊缝漏油故障,直接焊接其平面接缝,对于拐角处则向找出渗漏点,接着专门焊接渗漏点,此时还要注意考虑拐角内的应力参数,避免因应力引发再次漏油故障。(2)针对低压侧套管区域的漏油故障,应先排除母线过度拉伸或者引线过短等因素,在伸缩母线、调整引线长度之后通常就能解决问题。(3)面对变压器防爆管区域漏油故障,如果发现是因为变压器的内部压力太大,油箱破裂,那么就会震荡防爆管,应及时将防爆管拆除,或改装变压器的压力释放阀门,排除故障。 2.2检修接头过热故障 检修变压器接头过热的故障时,先要把接头本身的连接问题排除,如果接头连接情况不佳就会造成接头发热,不利于变压器运行的安全性。如果是其他原因造成接头过热,就可在检修工作做出两种处理:(1)针对普通连接,即变压器在电力运行中使用的最普遍方式,这也是最容易发生接头过热现象的区域,可通过定位套的方式固定好发热的套管,控制接头的发热程度,使其不超过允许范围;(2)因铜铝

220KV变电站母联开关非全相运行的事故处理(精)

第二十八届中国电网调度运行会收录论文全集.. 2 220KV变电站母联开关发生非全相运行时的事故处理丁立湖北省电力公司调度中心摘要:对220KV变电站母联开关非全相运行及其危害进行了分析,提出利用旁路开关短时代替母联开关运行,进而将母联开关退出运行的操作方法。关键词:非全相、母联开关、旁路开关.. 1、母联开关偷跳一相问题的提出.. 1.1事故示例:.. 1.1-1事故前接线方式湖北省网2002年8月6日,220KV路口变当时运行方式如下:220KV#2母线接路01板路线开关,路02开关#2主变;#1母线接天路线路03开关充电运行及路#1主变路05开关,阳路线路07开关及线路检修;.. 220KV母联开关路08及110KV母联开关路15开关均在合闸位置;两台主变并列运行,#1、2主变负荷均为50MW 左右;路#1主变220KV/110KV侧中性点直接接地运行;路220KV母差保护因当天有工作而停用。.. 1.1-2事故现象: -1 第二十八届中国电网调度运行会收录论文全集 - 2 - 10:03 路口变反映路08 母联开关A、C 相跳闸,原因不明,询问现场发现路220KV#1 母线三相电压平衡,路08 开关B 相电流很小;路#1 主变负荷减至1.2MW,路#2 主变负荷增至98MW 1.1-3 处理步骤:由于路变检修方式下只有220KV 板路线一个电源馈送全站负荷,且#1、2 主变并列运行,路08 开关非全相时,220KV 板路线路01 开关通过路#2 主变.110KV#4 母线.110KV 母联路15 开关.110KV#5 母线.倒充路#1 主变.路220KV#1 母线。 10:03 断开路08 母联开关、路#1 主变高压侧路05 开关后,路220KV#1 母线备用。 10;30 路#2 主变220KV 侧中性点改为直接接地运行 10:37 断开220KV 天路线路03 开关(原在#1 母线充电运行) 11:00 路#1 主变在路220KV#2 母线恢复送电 11:07 路08 母联开关转为检修状态 12:46 天路线路03 开关在路220KV#2 母线送电事后经湖北省电力试验研究院专家检查和试验后得出结论为:系继电保护人员在220KV 母差及阳路线路07 开关保护回路工作时由于频繁拉、合控制保险,在失灵保护屏上产生 123V 的电压脉冲干扰导致母联开关误动,并烧坏失灵保护B 相跳闸回路信号继电器;路08 母联开关机构则检查无异常。 1.2 母联开关运行中发生一相开关偷跳问题的提出上述事例只是正好发生在单回线的末端变电站,且母联开关误跳两相,对系统影响很小。但如果是一个较大220KV 枢纽变电站在运行中发生母联开关偷跳一相时对系统稳定运行会有什么影响? 2、母联开关发生非全相运行后对系统安全、

35kV变压器缺相运行的分析

35 kV变压器缺相运行的分析 摘要:用对称分量法来分析不同接线组别的变压器高压侧缺相运行时其低压侧电压反映的不同情况,并找出其规律,得出结论,为调度人员及时根据故障现象特征隔离故障点,调整运行方式,从而确保了地区电网供电的质量和可靠性。 关键词:变压器;缺相运行;接线组别;对称分量法 如皋是一个以农业为主的县级市,35 kV变电 所共有14座,其中有2座是农村小型变电所,主变 高压侧采用高压熔丝保护,而其余35 kV 变电所为 了节约投资和减少设备故障几率,大部分35 kV母 线均未安装电压互感器。因此,当高温高负荷期或 雷雨季节,主变一相熔丝熔断或35 kV线路缺一相 运行时,经过接线组别均为Yd11的主变和YY0的 电压互感器变换后,在10 kV母线反映出异于正常 运行时的故障现象。此现象与10 kV母线电压互感 器高压熔丝熔断有点相似,容易引起调度人员误判 断而延误了事故处理时间。 35 kV线路缺相运行或主变高压熔丝熔断一相, 虽在一般情况下没有危险的大电流和高电压产生, 但输送给用户的却是不合格的电能,因此,需调度 人员根据故障现象快速判断,隔离故障点并调整运 行方式;同时及时通知设备主人有针对性地进行查 寻并相应地处理故障。 为了调度人员能够根据10 kV母线电压情况, 很快区分出是主变高压侧缺相运行还是电压互感器 高压熔丝熔断(因电压互感器也属变压器,只是和 一般主变接线组别有所不同),对在生产过程中运用 较多的接线组别Yd11和YY0的变压器进行了分析 研究。 1 Yd11变压器高压缺相运行 以35 kV江安变为例,正常运行时,35 kV石江 线供江安变全所负荷,35kV龙常线作备用,并启用 35 kV备用电源自投装置。其主接线图如图1所示。 其中,江安变2台主变接线组别均为Yd11,10 kV母线电压互感器接线组别为YY0,表示运行状 态,表示开关在热备用状态。若35 kV石江线B相 断线,假设变压器为无损耗变压器,正常运行时高 压侧相电压值为U A,低压侧电压值为U a,则当35 kV 石江线B相断线后,变压器高压侧 ? B I=0,根据戴 维宁定理,则 ? A I=- ? C I。根据变压器的接线组别, 变压器连接方式如图2所示。 运用对称分量法进行分析,将 ? A I, ? B I, ? C I分解 成3组对称分量,即正序分量电流C1 B1 A1 ? ? ? , ,I I I;负 序分量的电流C2 B2 A2 ? ? ? , ,I I I;零序分量电流C0 B0 A0 ? ? ? , ,I I I;设 ? A I=00 ∠ A则, ? B I=0; ? C I=0 180 ∠ A 则0 C 2 B A A130 3 1 ∠ = ) + + (? = ? ? ? ? A I I I I 3 3 α α 式中; + = 2 3 j 2 1 - α; - = 2 3 j 2 1 - 2 α C B 2 A A130 3 1 ∠ = ) + + (? = ? ? ? ? A I I I I 3 3 α α 3 1 = ) + + (? = ? ? ? ? C B A I I I I AO 同理 B1 90 - A I∠ = ? 3 3 ;0 B2 90 - A I∠ = ? 3 3 ; ? B0 I=0 C1 150 - A I∠ = ? 3 3 ;0 C2 150 - A I∠ = ? 3 3 ; ? C0 I=0 假设变压器高压侧绕组为纯感抗,数据为j1,其电流、电压相量图如图(3)所示。 因变压器接线组别为Yd11,无零序电压与电流,在正序电压作用下,低压侧相电压相量则超前高压相应相电压30o,在负序电压作用下,低压侧相电压相量则滞后高压相应相电压30o。则低压侧各相电压相量图如图4所示。

相关文档
相关文档 最新文档