文档库 最新最全的文档下载
当前位置:文档库 › 常微分方程试卷及答案

常微分方程试卷及答案

常微分方程试卷及答案
常微分方程试卷及答案

2010-2011 学年第 二 学期常微分方程考试 AB 卷答案

理学 院 年级 信息与计算科学 专业

填空题(每题4分,共20分)

1. 形如)()('x Q y x P y += ()(),(x Q x P 连续)的方程是 一阶线性微分 方程,它的通解为??

? ???+?-?

=c dx dx

x P e x Q dx x P e y )()()( .

2. 形如0y y '''-=的方程是 3 阶__齐次__(“齐次”还是”非齐次”)___常__系数的微分方程,它的特征方程为310λ-=.

3. 形如1

11

111

0n n n

n n n n n d y d y dy

x a x a x a y dx dx dx

----++++=的方程为 欧拉 方程, 可通过变换t x e =把它转化成常系数方程.

4. 2

(1)0,y dx x dy ++= 满足初始条件:x =0, y =1的特解11ln 1y

x

=

++

5.5.微分方程0000(,),(),:,dy

f x y y x y R x x a y y b dx

==-≤-≤满足的解存在且唯一的条件是:

(,)f x y 在

R 上连续且满足利普希茨条件

一、下列微分方程的解(每题5分,共30分) 1.

dx dy =2)

(1

y x + 解:令x+y=u ,则dx dy =dx

du -1 ……………………….3 d x d u -1=21

u

u-arctgu=x+c y-arctg(x+y)=c. (5)

2.()()053243

=+++xdy ydx y xdy ydx x

解:两边同乘以y x 2得:

()()

0532*******

=+++ydy x dx y x ydy x dx y x

(3)

()()

05324=+y x d y x d

故方程的通解为:c y x y x =+5324

(5)

3.2

?

?

?

??-=dx dy y x

解:令

p dx

dy

=,则2p x y +=, 两边对x 求导,得

dx

dp p

p 21+=

p

p dx dp 21-=, (3)

解之得 ()c p p x +-+=2

1ln 2,

所以()c p p p y +-++=2

21ln 2, (4)

且y=x+1也是方程的解,但不是奇解.

(5)

4. 04)5(='''-x x

解:特征方程0435=-λλ

有三重根0=λ,42λ=,52λ=- ............................3 故通解为54232221c t c t c e c e c x t t ++++=- . (5)

5. 4523x x x t ''''''--=+

解:特征方程32450λλλ--=有根=1λ0,231,5λλ=-=

齐线性方程的通解为x=5123t t c e c e c t -++ ……………………….3 又因为=λ0是特征根,故可以取特解行如2x At Bt =+代入原方程解得A=

14

25

,B=2

5

- (4)

故通解为x=521232

5

t t c e c e c t t -++- (5)

6. 2ln 0,xy y y '-=初值条件:y(1)=e 解: 原方程可化为

ln dy y y dx x

= ………………………1 分离变量可得

ln dy dx

y y x

=

...........................................................3 两边积分可得ln y cx = ...........................................................4 将初值代入上式求得方程的解: ln 2y x = . (5)

二、求下列方程(组)的通解(每题10分,共30分)

1.求一曲线,使其任一点的切线在OY 轴上的截距等于该切线的斜率. 解: 设(,)p x y 为所求曲线上的任一点,则在p 点的切线l 在Y 轴上的截距为:

dy

y x

dx - ……………………….3 由题意得 dy

y x x dx -= 即

1

1dy y dx x

=- 也即 y d x x d y d -+=

- 两边同除以2x ,得

2

y d x x d y d x x x

-+=- ………………….5 即

()l n y

d d x x

=- ……………………….7 即

ln y cx x x =+ (10)

为方程的解。

2.

'2'43x x y

y x y

=+??

=+? 满足初值条件(0)3(0)3x y =??=? 解:

方程组的特征值125, 1λλ==-, (2)

对应特征值15λ=的特征向量12u u u ??

= ???

应满足

11242()042u A E u u λ-??

??-== ? ?-????

对任意常数0α≠, 2u αα??

= ???, 取1α=, 得12u ??= ??? (4)

对应特征值21λ=-的特征向量12v v v ??

= ???

应满足

12222()044v A E v v λ--??

??-== ? ?--????

对任意常数0β≠, v ββ??= ?-??, 取1β=, 得11v ??

= ?-??

(6)

所以基解矩阵为: 55()2t

t t

t e e t e

e φ--??

= ?-??

……………………….8 51

051133

3()()()2

1323

3t

t t

t e e t t t e

e ?φφη---?? ?????== ? ? ?- ?????- ???

555512113333

12113

333t t t t t t t t e e e e e e e e ----??+- ?=

? ?-+

???

33?? ???=5524t t

t

t e e e e --??+ ?-??

(10)

3.求方程 2213dy

x y dx

=-- 通过点(1,0) 的第二次近似解.

解: 令0()0x ?=,于是

2

21001()[213()],x

x y x x dx x x ??=+--=-? (5)

223452011

1433

()[213()],1525

x

x y x x dx x x x x x ??=+--=

-+-+-? (10)

五、应用题(10分)

33. 摩托艇以5米/秒的速度在静水运动,全速时停止了发动机,过了20秒钟后,艇的速度减至13v =米/秒。确定发动机停止2分钟后艇的速度。假定水的阻力与艇的运动速度成正比例。

解:dv

F ma m dt

==,又1F k v =,由此

1dv

m

k v dt = 即 d v

kv dt

= ………………….5 其中1k

k m

=,解之得

ln v kt c =+ 又0t =时,5v =;2t =时,3v =。 故得 13

ln 205

k =

,ln 5c = 从而方程可化为 20

35()5

t v = (7)

当260120t =?=时,有 120

203(20)5()0.233285

v =?=米/秒 (8)

即为所求的确定发动机停止2分钟后艇的速度。 (10)

六、证明题 (10分)

1、试证: 非齐次线性微分方程组的叠加原理:

即: 设12(),()x t x t 分别是方程组

)()(1't f x t A x += )()(2't f x t A x +=

的解,则)()(21t x t x +是方程组

)()()(21't f t f x t A x ++=

的解.

证明:)()(1't f x t A x += (1)

)()(2't f x t A x += (2) 分别将)(),(21t x t x 代入(1)和(2) 则 )()(11'

1t f x t A x +=

)()(2'2t f x t A x += (5)

则)()()]()()[(2121'

2'

1t f t f t x t x t A x x +++=+

)()()]()()[()]()([2121'21t f t f t x t x t A t x t x +++=+ 令)()(21t x t x x +=

即证 )()()(21't f t f x t A x ++= (10)

2010-2011 学年第 二 学期常微分方程考试 B 卷答案

理学 院 年级 信息与计算科学 专业

一、填空题(每题4分,共20分)

1. 0),(),(=+dy y x N dx y x M 是恰当方程的充要条件是

M N

y x

??=??; 其通解可用曲线积分表示为

(,)(,)M x y dx N M x y dx dy c y ???

+-=?????

???. 3. 形如24y y x ''-=的方程是 2 阶 非齐次 (“齐次”还是”非齐次”)_常系数的微分方程,它的特征方程的特征根为 2, 2- .

4. 若 )(),(t t ψΦ是同一线性方程 X t A dt

dX

)(=的基解方阵,则它们间有关系 ()(), t C t C Φ=ψ为可逆矩阵 . 5.5.微分方程0000(,),(),:,dy

f x y y x y R x x a y y b dx

==-≤-≤满足的解存在且唯一的条件是:

(,)f x y 在

R 上连续且满足利普希茨条件

二、下列微分方程的解(每题5分,共30分)

1. 3

2

x y x y dx dy += 解: 令

u x

y

= …………….1 则:21u x u dx du x u dx dy +=+= 即2

1u x dx du x

= 得到22x dx

u du =

故c x

u +-=-11 即

2

1

1x x c y += …………………….4 另外0=y 也是方程的解。 . …………………….5 2.

dx

dy

=x y sin + 解: y = dx e ?(?x sin dx

e -?c dx +) (3)

=x e [-

21e x

-(x x cos sin +)+c] =c e x -2

1

(x x cos sin +)是原方程的解。 (5)

3.y y y '

+'=132。 设

t

t y t y 1

3,

2+==' (3)

dt t dt t

t t y dy dx 3261

6--=-='

=

(4)

C t t x ++

=2

21

6,

解为 ??

??

?

+

=++=t t y C t t X 1

321622 (5)

4. 2100y y y '''++=

解:特征方程01022=++λλ有复数根=1λ13i =-+,213i λ=-- ..........3 故通解为t e c t e c x t t 3sin 3cos 21--+= . (5)

5.0xdy ydx +=

解: 原方程可化为 0dxy =

故xy C = …………………….5 6. 268t x x x e -'''++=

解:特征方程2680λλ++=有根=1λ-2,=2λ-4 …………………….1 故齐线性方程的通解为x=2412t t

c e c e --+ (3)

=λ-2是特征方程的根,故2t x Ate -=代入原方程解得A=1

4

- (4)

故通解为x=t t e c e c 521--+21

4

t e - (5)

三、求下列方程(组)的通解(每题10分,共30分)

1.22x

y ay a y e '''++=

解:特征方程0222=++a a λλ有2重根=λ-a ………………..2 当a=-1时,齐线性方程的通解为s=t t

te c e c 21+,

=λ1

是特征方程的2重根,故t e At x 2~

=代入原方程解得A=2

1

通解为s=2

212

1t te c e c t t

+

+,……………………………………..6 当a ≠-1时,齐线性方程的通解为s=at at

te c e c --+21,

=λ1

不是特征方程的根,故t Ae x =~

代入原方程解得A=2

)1(1+a

故通解为s=at at

te c e c --+21+

t

e a 2

)

1(1+ (10)

2. 22dx

x y dt

dy x y dt

?=-+????=-+?? 求其基解矩阵.

解: det (λE -A )=0得1λ=3,2λ=-3 (3)

对应于1λ的特征向量为u =α????

??

+321, ( α≠0 ) 对应于2λ的特征向量为v =?

???

??

-321β, ( 0≠β ) ……………….5 ∴u =????

??

+321,v =????

??-321是对应于1λ,2λ的两个线性无关的特征向量 Ф(t)=???

?

?

?-+--

t t

t

t e e

e e

3333)32()32(是一个基解矩阵 (10)

3. 求方程

2dy

x y dx

=- 通过点(1,0) 的第二次近似解. 解: 令0()0x ?=,于是

22100111

()[()],22x

x y x x dx x ??=+-=

-? (5)

22352011111111

()[()],3042620

x x y x x dx x x x x ??=+-=--++-? (10)

五、应用题(10分)

1.求一曲线,过点(1,1), 其任一点的切线在OY 轴上的截距等于2a .

解: 设(,)p x y 为所求曲线上的任一点,则在p 点的切线l 在Y 轴上的截距为:

dy y x dx - (3)

由题意得 2dy

y x a dx

-=

两边同除以2x ,得

2

d y d x

y a x

=-- ………………………….5 即 2

l n l n d y a

d x -=- ............................7 即 2y c x a =+ ................................8 将1,1x y ==代入上式得21c a =-。. (10)

六、证明题 (10分)

1、 试证:如果)(t ?是'

x =A x 满足初始条件)(0t ?=η的解,那么

)(t ?=[exp A (t-t 0)]η

证明:由于)(t ?=Ф(t)Ф-1

(t 0) η+Ф(t)

?

t

t ds s f s 0

)()(1-φ (5)

又因为Ф(t)= exp A t , Ф-1

(t 0)=( exp A t 0)-1= exp(-A t 0), f(s)=0,

又因为矩阵 (A t ).(- A t 0)=(- A t 0).(A t ) ............................7 所以 )(t ?=[exp A (t-t 0)]η . (10)

常微分方程习题及答案

第十二章 常微分方程 (A) 一、是非题 1.任意微分方程都有通解。( ) 2.微分方程的通解中包含了它所有的解。( ) 3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。( ) 4.函数x e x y ?=2是微分方程02=+'-''y y y 的解。( ) 5.微分方程0ln =-'x y x 的通解是()C x y += 2ln 2 1 (C 为任意常数)。( ) 6.y y sin ='是一阶线性微分方程。( ) 7.xy y x y +='33不是一阶线性微分方程。( ) 8.052=+'-''y y y 的特征方程为0522=+-r r 。( ) 9. 221xy y x dx dy +++=是可分离变量的微分方程。( ) 二、填空题 1.在横线上填上方程的名称 ①()0ln 3=-?-xdy xdx y 是 。 ②()()022=-++dy y x y dx x xy 是 。 ③x y y dx dy x ln ?=是 。 ④x x y y x sin 2+='是 。 ⑤02=-'+''y y y 是 。 2.x x y x y cos sin =-'+'''的通解中应含 个独立常数。 3.x e y 2-=''的通解是 。 4.x x y cos 2sin -=''的通解是 。 5.124322+=+'+'''x y x y x y x 是 阶微分方程。 6.微分方程()06 ='-''?y y y 是 阶微分方程。 7.y 1 = 所满足的微分方程是 。

8.x y y 2='的通解为 。 9. 0=+x dy y dx 的通解为 。 10.()2511 2+=+-x x y dx dy ,其对应的齐次方程的通解为 。 11.方程()012=+-'y x y x 的通解为 。 12.3阶微分方程3x y ='''的通解为 。 三、选择题 1.微分方程()043 ='-'+''y y y x y xy 的阶数是( )。 A .3 B .4 C .5 D . 2 2.微分方程152=-''-'''x y x y 的通解中应含的独立常数的个数为( )。 A .3 B .5 C .4 D . 2 3.下列函数中,哪个是微分方程02=-xdx dy 的解( )。 A .x y 2= B .2x y = C .x y 2-= D . x y -= 4.微分方程3 23y y ='的一个特解是( )。 A .13+=x y B .()3 2+=x y C .()2 C x y += D . ()3 1x C y += 5.函数x y cos =是下列哪个微分方程的解( )。 A .0=+'y y B .02=+'y y C .0=+y y n D . x y y cos =+'' 6.x x e C e C y -+=21是方程0=-''y y 的( ),其中1C ,2C 为任意常数。 A .通解 B .特解 C .是方程所有的解 D . 上述都不对 7.y y ='满足2|0==x y 的特解是( )。 A .1+=x e y B .x e y 2= C .2 2x e y ?= D . x e y ?=3 8.微分方程x y y sin =+''的一个特解具有形式( )。 A .x a y sin *= B .x a y cos *?= C .()x b x a x y cos sin *+= D . x b x a y sin cos *+= 9.下列微分方程中,( )是二阶常系数齐次线性微分方程。

常微分方程练习题及答案复习题)

常微分方程练习试卷 一、 填空题。 1. 方程23 2 10d x x dt +=是 阶 (线性、非线性)微分方程. 2. 方程 ()x dy f xy y dx =经变换_______,可以化为变量分离方程 . 3. 微分方程 3230d y y x dx --=满足条件(0)1,(0)2y y '==的解有 个. 4. 设常系数方程 x y y y e αβγ'''++=的一个特解*2()x x x y x e e xe =++,则此方程的系数α= ,β= ,γ= . 5. 朗斯基行列式 ()0W t ≡是函数组12(),(),,()n x t x t x t 在a x b ≤≤上线性相关的 条件. 6. 方程 22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 . 7. 已知 ()X A t X '=的基解矩阵为()t Φ的,则()A t = . 8. 方程组 20'05??=???? x x 的基解矩阵为 . 9.可用变换 将伯努利方程 化为线性方程. 10 .是满足方程 251y y y y ''''''+++= 和初始条件 的唯一解. 11.方程 的待定特解可取 的形式: 12. 三阶常系数齐线性方程 20y y y '''''-+=的特征根是 二、 计算题 1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直. 2.求解方程13 dy x y dx x y +-=-+. 3. 求解方程 222()0d x dx x dt dt += 。 4.用比较系数法解方程. . 5.求方程 sin y y x '=+的通解. 6.验证微分方程 22(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.

《常微分方程》期末试卷

《常微分方程》期末试卷(16) 班级 学号 姓名 得分 评卷人 一、填空题(每小题5分,本题共30分) 1.方程x x y x y e sin d d =+的任一解的最大存在区间必定是 . 2.方程04=+''y y 的基本解组是 . 3.向量函数组)(,),(),(21x x x n Y Y Y 在区间I 上线性相关的________________条件是在区间I 上它们的朗斯基行列式0)(=x W . 4.李普希兹条件是保证一阶微分方程初值问题解惟一的 条件. 5.n 阶线性齐次微分方程的所有解构成一个 维线性空间. 6.向量函数组)(,),(),(21x x x n Y Y Y 在其定义区间I 上线性相关的 条件是它们的朗斯基行列式0)(=x W ,I x ∈. 得分 评卷人 二、计算题(每小题8分,本题共40分) 求下列方程的通解 7. x y x y 2e 3d d =+ 8. 0)d (d )(3223=+++y y y x x xy x 9.0e =-'+'x y y 10.求方程x y y 5sin 5='-''的通解. 11.求下列方程组的通解. ???????+=+=y x t y y x t x 4d d d d 得分 评卷人 三、证明题(每小题15分,本题共30分)

12.设)(1x y ?=和)(2x y ?=是方程0)(=+''y x q y 的任意两个解,求证:它们的朗斯基行列式C x W ≡)(,其中C 为常数. 13.设)(x ?在区间),(∞+-∞上连续.试证明方程 y x x y sin )(d d ?= 的所有解的存在区间必为),(∞+-∞.

2.5常微分方程课后答案(第三版)王高雄

习题2.5 2.ydy x xdy ydx 2=- 。 解: 2x ,得: ydy x xdy ydx =-2 c y x y d +-=221 即c y x y =+2 2 1 4. xy x y dx dy -= 解:两边同除以x ,得 x y x y dx dy - =1 令u x y = 则dx du x u dx dy += 即 dx du x u dx dy +=u u -=1 得到 ()2ln 2 1 1y c u -=, 即2 ln 21?? ? ??-=y c y x 另外0=y 也是方程的解。 6.()01=-+xdy ydx xy 解:0=+-xydx xdy ydx x d x y x d y y d x -=-2 得到c x y x d +-=??? ? ??2 21

即 c x y x =+2 2 1 另外0=y 也是方程的解。 8. 32 x y x y dx dy += 解:令 u x y = 则: 21u x u dx du x u dx dy +=+= 即2 1u x dx du x = 得到22x dx u du = 故c x u +-=-11 即 21 1x x c y += 另外0=y 也是方程的解。 10. 2 1?? ? ??+=dx dy dx dy x 解:令 p dx dy = 即p p x 2 1+= 而 p dx dy =故两边积分得到 c p p y +-=ln 2 12 因此原方程的解为p p x 21+=,c p p y +-=ln 212 。 12.x y xe dx dy e =?? ? ??+-1 解: y x xe dx dy +=+1

常微分方程期末试题B答案

2005——2006学年第二学期 常微分方程课程试卷(B) 一、填空题(每空2 分,共16分)。 1.李普希滋条件是初值问题存在唯一解的充分条件. 2. 一阶微分方程的一个特解的图像是二 维空间上的一条曲线. 3.线性齐次微分方程组Y A Y ) ( d d x x =的一个基本解组的个数不能多于n个,其中R ∈ x,n R Y∈. 4.二阶线性齐次微分方程的两个解) ( 1 x y? =,) ( 2 x y? =成为其基本解组的充要条件是线性无关. 5.方程2 sin() y xy y '' =+的通解是 6.变量可分离方程()()()()0= +dy y q x p dx y N x M的积分因子是()() x P y N 1 7.性齐次微分方程组的解组) ( , ), ( ), ( 2 1 x x x n Y Y Y 为基本解组的充分必要条件是它们的朗斯基行列式0 ) (≠ x W. 8.方程540 y y y ''' ++=的基本解组是x x e e4 ,- - 二、选择题(每小题3 分,共15分)。 9.两个不同的线性齐次微分方程组( D )的基本解组. (A) 一定有相同(B) 可能有相同 (C) 一定有相似(D) 没有相同 10.方程组 ? ? ? ?? ? ? + = + = y x t y y x t x 4 3 d d 2 d d 的奇点)0,0(的类型是(D ). (A)稳定焦点(B)不稳定焦点(C)鞍点(D)不稳定结点11.方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是( C ). (A) 1± = x(B)1± = y

(C )1±=y , 1±=x (D )1=y , 1=x 12.n 阶线性非齐次微分方程的所有解( D ). (A )构成一个线性空间 (B )构成一个1-n 维线性空间 (C )构成一个1+n 维线性空间 (D )不能构成一个线性空间 13.方程4d d +-=x y x y ( A )奇解. (A) 无 (B) 有一个 (C) 有两个 (D) 可能有 三、计算题(每小题8分,共48分) 。 14.求方程 x y x y x y tan d d +=的通解 解:令x y u =,则u x u y '+=', u x u x tan d d = 当0tan ≠u 时,等号两边积分 1d tan d C x x u u +=?? C x u ln ln sin ln += 0≠C Cx x y =sin 15.求方程0d d )1(2=+--y x x y x 的通解 解:积分因子21)(x x =μ, 则 0d 1d 122=+--y x x x y x 为全微分方程.取10=x ,00=y ,于是通积分为 1012 2d d 1C y x x y x y x =+--?? 即 C x x x y =++1 16.求方程2221)(x y x y y + '-'=的通解 解:令 p y =',得到2 2 2x xp p y +-= (*) ,两端同时关于求导,

《常微分方程》期末模拟试题

《常微分方程》模拟练习题及参考答案 一、填空题(每个空格4分,共80分) 1、n 阶线性齐次微分方程基本解组中解的个数恰好是 n 个。 2、一阶微分方程 2=dy x dx 的通解为 2=+y x C (C 为任意常数) ,方程与通过点(2,3)的特解为 2 1=-y x ,与直线y=2x+3相切的解是 2 4=+y x ,满足条件3 3ydx =?的解为 22=-y x 。 3、李普希兹条件是保证一阶微分方程初值问题解惟一的 必要 条件。 4、对方程 2()dy x y dx =+作变换 =+u x y ,可将其化为变量可分离方程,其通解为 tan()=+-y x C x 。 5、方程过点共有 无数 个解。 6、方程 ''2 1=-y x 的通解为 42 12122=-++x x y C x C ,满足初始条件13|2,|5====x x y y 的特解为 4219 12264 =-++x x y x 。 7、方程 无 奇解。 8、微分方程2260--=d y dy y dx dx 可化为一阶线性微分方程组 6?=??? ?=+??dy z dx dz z y dx 。 9、方程 的奇解是 y=0 。 10、35323+=d y dy x dx dx 是 3 阶常微分方程。 11、方程 22dy x y dx =+满足解得存在唯一性定理条件的区域是 xoy 平面 。 12、微分方程22450d y dy y dx dx --=通解为 512-=+x x y C e C e ,该方程可化为一阶线性微分方程组 45?=??? ?=+??dy z dx dz z y dx 。 2 1d d y x y -=)1,2 (πx x y x y +-=d d y x y =d d

常微分方程教案(王高雄)第二章

第二章目录 内容提要及其它 (1) 第二章一阶微分方程的初等解法(初等积分) (2) 第一节变量分离方程与变量变换 (2) 一、变量分离方程 (2) 二、可化为变量分离方程的类型 (6) 1、齐次方程 (6) 2、可化为变量分离方程 (7) 三、应用例题选讲 (10) 第二节线性方程与常数变易法 (11) 第三节恰当方程与积分因子 (15) 一、恰当方程 (15) 二、积分因子 (20) 第四节一阶隐含方程与参数表示 (23) 一、可以解出y(或x)的方程 (24) 二、不显含y(或x)的方程 (25) 本章小结及其它 (27)

内容提要及其它 授课题目 (章、节) 第二章:一阶微分方程的初等解法 教材及主要参考书(注明页数)教材:常微分方程(第三版),王高雄等,高等教育出版社,2006年,p30-74 主要参考书: [1]常微分方程,东北师范大学微分方程教研室编,高等教育出版社,2005, p1-70 [2]常微分方程教程,丁同仁等编,高等教育出版社,1991,p1-20 [3]偏微分方程数值解法(第2版),陆金甫关治,清华大学出版社,2004, p1-12 [4]常微分方程习题解,庄万主编,山东科学技术出版社,2003,p28-169 [5]微分方程模型与混沌,王树禾编著,中国科学技术大学出版社,1999, p15-158 [6]差分方程和常微分方程,阮炯编著,复旦大学出版社,2002,p38-124 目的与要求: 掌握变量分离方程、齐次方程、线性方程、伯努利方程和恰当方程的解法.理解变量变换思想方法和积分因子方法,并能应用于求解一些特殊的常微分方程.掌握四类典型的一阶隐方程的解法. 能熟练求解变量分离方程、齐次方程、线性方程、伯努利方程、恰当方程和四类典型的一阶隐方程.领会变量变换思想方法和积分因子方法,并能应用于求解一些特殊的常微分方程. 教学内容与时间安排、教学方法、教学手段: 教学内容: 第1节变量分离方程与变量变换; 第2节线性方程与常数变易法; 第3节恰当方程与积分因子; 第4节一阶隐方程与参数表示:可以解出(或 y x)的方程、不显含(或 y x)的方程.时间安排:8学时 教学方法:讲解方法 教学手段:传统教学方法与多媒体教学相结合。 教学重点分析: 熟悉各种类型方程的初等解法,并且能正确而又敏捷地判断方程的类型,从而用初等方法求解。 教学难点分析: 本章的教学难点是判断微分方程的类型,以及方程的转化(即把能转化为用初等方法求解的方程)。

常微分方程习题集

《常微分方程》测试题1 一、填空题30% 1、形如的方程,称为变量分离方程, 这里.分别为的连续函数。 2、形如-的方程,称为伯努利方程, 这里的连续函数.n 3、如果存在常数-对于所有函数称为在R上 关于满足利普希兹条件。 4、形如-的方程,称为 欧拉方程,这里 5、设的某一解,则它的任一解 - 。 二、计算题40% 1、求方程 2、求方程的通解。 3、求方程的隐式解。 4、求方程 三、证明题30% 1.试验证=是方程组x=x,x= ,在任何不包含原点的区间a上的基解矩阵。 2.设为方程x=Ax(A为nn常数矩阵)的标准基解矩阵(即(0)=E),证明: (t)=(t- t)其中t为某一值.<%建设目标%> 《常微分方程》测试题2

一、填空题:(30%) 1、曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项,则曲线所满足的 8、已知是二阶齐次线性微分方程的一个非零解,则与线性无关的另一 10、线性微分方程组的解是的基本解组的充要条件是. 二、求下列微分方程的通解:(40%) 1、 2、 3、 4、 5、求解方程. 三、求初值问题的解的存在区间,并求第二次近似解,给出在解的存在区间的误差估计. (10分)

四、求解微分方程组 满足初始条件的解. (10%) 五、证明题:(10%) 设,是方程 的解,且满足==0,,这里在上连续,.试证明:存在常数C使得=C 《常微分方程》测试题3 1.辨别题 指出下列方程的阶数,是否是线性方程:(12%) (1)(2)(3) (4)(5)(6) 2、填空题(8%) (1).方程的所有常数解是___________. (2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________. (3).若方程M(x, y)d x + N(x, y)d y= 0是全微分方程,同它的通积分是 ________________. (4).设M(x0, y0)是可微曲线y=y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________. 3、单选题(14%) (1).方程是().

(整理)常微分方程试题及参考答案

常微分方程试题 一、填空题(每小题3分,共39分) 1.常微分方程中的自变量个数是________. 2.路程函数S(t)的加速度是常数a,则此路程函数S(t)的一般形式是________. 3.微分方程=g( )中g(u)为u的连续函数,作变量变换________,方程可化为变 量分离方程. 4.微分方程F(x,y′)=0中令P=y′,若x、P平面上的曲线F(x,P)=0的参数形式 为x= (t),P=ψ(t),t为参数,则方程参数形式的通解为________. 5.方程=(x+1)3的通解为________. 6.如果函数f(x,y)连续,y= (x)是方程=f(x,y)的定义于区间x0≤x≤x0+h上,满 足初始条件 (x0)=y0的解.则y= (x)是积分方程________定义于x0≤x≤x0+h 上的连续解. 7.方程=x2+xy,满足初始条件y(0)=0的第二次近似解是________. 8.方程+a1(t) +…+a n-1(t) +a n(t)x=0 中a i(t) i=1,2,…,n是〔a,b〕上的连续函数,又x1(t),x2(t),…,x n(t)为方程n 个线性无关的解,则其伏朗斯基行列式W(t) 应具有的性质是:________. 9.常系数线性方程x(4)(t)-2x″(t)+x(t)=0的通解为________. 10.设A(t)是区间a≤t≤b上的连续n×n矩阵,x1(t),x2(t),…,x n(t)是方程组 x′=A(t)x的n个线性无关的解向量.则方程组的任一解向量x(t)均可表示为:x(t)=________的形式. 11.初值问题(t)+2x″(t)-tx′(t)+3x(t)=e-t,x(1)=1,x′(1)=2,x″(1)=3 可化为与之 等价的一阶方程组________. 12.如果A是3×3的常数矩阵,-2为A的三重特征值,则方程组x′=Ax的基 解矩阵exp A t=________. 13.方程组 的奇点类型是________. 二、计算题(共45分) 1.(6分)解方程 = . 2.(6分)解方程 x″(t)+ =0. 3.(6分)解方程 (y-1-xy)dx+xdy=0. 4.(6分)解方程

《常微分方程》第三次作业

《常微分方程》第三次作业 第3章 一阶线性微分方程组 1.完成定理3.1的证明. 2.完成定理3.1′的证明 3.将下列方程式化为一阶方程组 (1)0)()(=++x g x x f x &&& (2))(d d d d 22t f kx t x c t x m =++ (3)0)()()(321=+'+''+'''y x a y x a y x a y 4.求解方程组 ?????? ?+=+=y t p x t q t y y t q x t p t x )()(d d )()(d d 其中)(),(t q t p 在[a , b ]上连续. 5.设n n ?矩阵函数)(1t A ,)(2t A 在(a , b )上连续,试证明,若方程组 X A X )(d d 1t t = 与X A X )(d d 12t t = 有相同的基本解组,则)(1t A ≡)(2t A . 6.求解下列方程组: (1)???????==y t y x t x 2d d d d (2)???????+=+=x y t y x y t x 54d d 45d d (3)???????+-=+=y x t y y x t x αββαd d d d 7.求解下列方程组: (1)???-=+=x y y y x x 23&& (2)??? ??+-=-+=+-=z y x z z y x y z y x x 222&&& 8.求解下列方程组: (1)???????=+=y t y y x t x 3d d 3d d (2)???? ?????=+=+=333222 11 2d d 2d d 2d d y x y y y x y y y x y (3)?????+=+=2 e 2t x y y x t && (4)???++=++=t y x y t y x x e 823532&&

2018常微分方程考研复试真题及答案

常微分方程计算题 2.指出下列方程中的阶数,是线性方程还是非线性方程,并说明理由; (1) t 2 2 2dt u d +t dt du +( t 2 -1)u=0 (2) dx dy =x 2+y 2 ; (3)dx dy + 2 x y =0 3.求曲线族y=C 1e x +C 2x e x 所满足的微分方程 4.验证函数y= C 1e x 2+ C 2e x 2-是微分方程y `` -4y=0的解,进一步验证它是通解。 5.试用一阶微分方程形式不变性求解方程dx dy =2x 6.什么叫积分一个微分方程 7.什么是求解常微分方程的初等积分法 8.分离变量一阶方程的特征是什么 9.求下列方程的通解 (1) y ` =sinx (2) x 2 y 2 y ` +1=y (3) tgx dx dy =1+y (4) dx dy =exp(2x-y) (5) dx dy =21y 2- (6) x 2 ydx=(1- y 2 +x-2 x 2 y 2 )dx (7)( x 2 +1)( y 2 -1)dx+xydy=0 10.叙述齐次函数的定义 11.试给出一阶方程y ` =f(x,y)或p(x,y)dx+ q(x,y)dy=0为齐次方程的特征。说明二

个方程的关系。 12.求解齐次方程通常用什么初等变换,新旧函数导数关系如何 13.求解下列方程 dx dy =2 22y x xy - 14.求解下列方程 (1)(x+2y )dx —xdy=0 (2) dx dy =x y +y x 2 15. dx dy =22y x xy + 16(x 2 +y 2 )dx —2xydy=0 17. dx dy =5 242+---y x x y 18―――――19 20―――――――27

最新常微分方程期末考试题大全(东北师大)

证明题: 设()x f 在[)+∞,0上连续,且()b x f x =+∞ →lim ,又0>a ,求证:对于方程 ()x f ay dx dy =+的一切解()x y ,均有()a b x y x =+∞→lim 。 证明 由一阶线性方程通解公式,方程的任一解可表示为 ()()?? ????+=?-x at ax dt e t f C e x y 0, 即 ()()ax x at e dt e t f C x y ?+= 。 由于b x f x =+∞ →)(lim ,则存在X ,当X x >时,M x f >)(。因而 ()dt e M dt e t f dt e t f x X at X at x at ??? +≥0 )( ())(0 aX ax X at e e a M dt e t f -+ = ? , 由0>a ,从而有()∞=?? ????+?+∞→x at x dt e t f C 0lim ,显然+∞=+∞ →ax x e lim 。 应用洛比达法则得 ()()ax x at x x e dt e t f C x y ?+=+∞ →+∞ →0 lim lim ()ax ax x ae e x f +∞→=lim ()a b a x f x ==+∞ →lim 。 证明题:线性齐次微分方程组x A x )(t ='最多有n 个线性无关的解,其中)(t A 是定义在区间b t a ≤≤上的n n ?的连续矩阵函数。 证 要证明方程组x A x )(t ='最多有n 个线性无关的解,首先要证明它有n 个线性无关的解,然后再证明任意1+n 个解都线性相关。

秋华师《常微分方程》在线作业

秋华师《常微分方程》在线作业

————————————————————————————————作者:————————————————————————————————日期:

奥鹏17春16秋华师《常微分方程》在线作业 一、单选题(共20 道试题,共60 分。) 1. 微分方程y''+y=sinx的一个特解具有形式()。 A. y*=asinx B.y*=acosx C.y*=x(asinx+bcosx) D.y*=acosx+bsinx 正确答案: 2. y'''+sinxy'-x=cosx的通解中应含()个独立常数。 A. 1 B. 2 C.3 D. 4 正确答案: 3.微分方程xyy''+x(y')^3-y^4-y'=0的阶数是()。 A. 3 B. 4 C. 5 D. 2 正确答案: 4.微分方程y'''-x^2y''-x^5=1的通解中应含的独立常数的个数为()。 A. 3 B. 5 C. 4 D. 2 正确答案: 5. 过点(1,3)且切线斜率为2x的曲线方程y=y(x)应满足的关系是()。 A.y'=2x B. y''=2x C. y'=2x,y(1)=3 D. y''=2x,y(1)=3 正确答案: 6.方程dy/dx=3y(2/3)过点(0,0)有(). A. 无数个解 B. 只有一个解 C.只有两个解 D.只有三个解

正确答案: 7. 方程y'-2y=0的通解是()。 A. y=sinx B. y=4e^(2x) C.y=Ce^(2x) D.y=e^x 正确答案: 8. 下列函数中,是微分方程y''-7y'+12y=0的解()。 A. y=x^3 B. y=x^2 C. y=e^(3x) D.y=e^(2x) 正确答案: 9.按照微分方程通解定义,y''=sinx的通解是()。 A. -sinx+C1x+C2 B. -sinx+C1+C2 C. sinx+C1x+C2 D.sinx+C1x+C2 正确答案: 10.方程组dY/dx=F(x,Y),x∈R,Y∈R^n的任何一个解的图象是()维空间中的一条积分曲线. A. n B.n+1 C.n-1 D. n-2 正确答案: 11.下列函数中,哪个是微分方程dy-2xdx=0的解()。 A. y=2x B.y=x^2 C. y=-2x D.y=-x 正确答案: 12. 微分方程cosydy=sinxdx的通解是()。 A. sinx+cosx=C B.cosy-sinx=C C. cosx-siny=C D.cosx+siny=C 正确答案: 13. 微分方程2ydy-dx=0的通解为()。 A. y^2-x=C B. y-x^(1/2)=C C. y=x+C D. y=-x+C 正确答案:

常微分方程应用题和答案

应 用 题(每题10分) 1、设()f x 在(,)-∞∞上有定义且不恒为零,又()f x '存在并对任意,x y 恒有 ()()()f x y f x f y +=,求()f x 。 2、设()()()F x f x g x =,其中函数(),()f x g x 在(,)-∞∞内满足以下条件 ()(),()(),(0)0,()()2x f x g x g x f x f f x g x e ''===+= (1)求()F x 所满足的一阶微分方程; (2)求出()F x 的表达式。 3、已知连续函数()f x 满足条件320 ()3x x t f x f dt e ??=+ ??? ?,求()f x 。 4、已知函数()f x 在(0,)+∞内可导,()0,lim ()1x f x f x →+∞ >=,且满足 1 1 0()lim ()h x h f x hx e f x →? ?+ ?= ? ?? ? ,求()f x 。 5、设函数()f x 在(0,)+∞内连续,5 (1)2 f =,且对所有,(0,)x t ∈+∞,满足条件 1 1 1 ()()()xt x t f u du t f u du x f u du =+? ??,求()f x 。 6、求连续函数()f x ,使它满足10 ()()sin f tx dt f x x x =+?? 。 7、已知可微函数()f t 满足 31() ()1()x f t dt f x t f t t =-+?,试求()f x 。 8、设有微分方程 '2()y y x ?-=, 其中21 ()01x x x ?? 。试求在(,)-∞∞内的连续函 数()y y x =使之在(,1)-∞和()1,+∞内部满足所给方程,且满足条件(0)0y =。 9、设位于第一象限的曲线()y f x = 过点122?? ? ? ?? ,其上任一点(,)P x y 处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分。 (1)求曲线()y f x =的方程; (2)已知曲线sin y x =在[0,]π上的弧长为l ,试用l 表示曲线()y f x =的弧长s 。 10、求微分方程(2)0xdy x y dx +-=的一个解()y y x =,使得由曲线()y y x =与直线 1,2x x ==以及x 轴所围成的平面图形绕x 轴旋转一周的旋转体体积最小。 11、设曲线L 位于xOy 平面的第一象限内,L 上任一点M 处的切线与y 轴总相交,交点记为

常微分方程课后答案(第三版)王高雄

习题2.2 求下列方程的解。 1.dx dy =x y sin + 解: y=e ?dx (?x sin e ?-dx c dx +) =e x [- 2 1e x -(x x cos sin +)+c] =c e x -21 (x x cos sin +)是原方程的解。 2.dt dx +3x=e t 2 解:原方程可化为: dt dx =-3x+e t 2 所以:x=e ?-dt 3 (?e t 2 e -? -dt 3c dt +) =e t 3- (5 1e t 5+c) =c e t 3-+5 1e t 2 是原方程的解。 3.dt ds =-s t cos +21t 2sin 解:s=e ?-tdt cos (t 2sin 2 1?e dt dt ?3c + ) =e t sin -(?+c dt te t t sin cos sin ) = e t sin -(c e te t t +-sin sin sin ) =1sin sin -+-t ce t 是原方程的解。 4. dx dy n x x e y n x =- , n 为常数. 解:原方程可化为:dx dy n x x e y n x += )(c dx e x e e y dx x n n x dx x n +??=?- )(c e x x n += 是原方程的解.

5. dx dy +1212--y x x =0 解:原方程可化为:dx dy =-1212+-y x x ?=-dx x x e y 1 2(c dx e dx x x +?-221) )21(ln 2+=x e )(1 ln 2?+--c dx e x x =)1(1 2 x ce x + 是原方程的解. 6. dx dy 234xy x x += 解:dx dy 234xy x x += =23y x +x y 令 x y u = 则 ux y = dx dy =u dx du x + 因此:dx du x u +=2u x 21u dx du = dx du u =2 c x u +=33 1 c x x u +=-33 (*) 将x y u =带入 (*)中 得:3433cx x y =-是原方程的解.

常微分方程习题

第一章习题 1-1求下列两个微分方程的公共解。 (1)422x x y y -+=' (2)2422y y x x x y --++=' 解 两方程的公共解满足条件 4224222x x y y y x x x -+=--++, 即 022224=-+-y x y x , 0))(122(22=-++y x y x , 所以2 x y =或2212 x y +-=。 代入检验可知2 212 x y +-=不符合,所以两方程的公共解为2x y =。 评注:此题是求解方程满足一定条件的解,即求两个微分方程的公共解。在求解时由于令其导数相等,很容易产生增解,因而要对所求结果回代原方程进行检验,舍去增解。 1-2 求微分方程02 =-'+'y y x y 的直线积分曲线。 解 设直线积分曲线为b ax y +=,则a y =',代入原方程得 02≡--+b ax xa a , 即0)()(2 ≡-+-b a a a x , 所以 ???=-=-0 02b a a a , 可得0==b a 或1==b a 。 因而所求直线积分曲线为0=y 或1+=x y 。 评注:此题是求解方程的部分解,采用的是待定系数法。待定系数法是求解常微分方程常用的方法之一,有待定常数法和待定函数法。本题首先设出满足题设条件的含有待定常数

的解,然后代入原方程来确定待定常数,解决此类问题的关键在于正确地设出解的形式。 1-3 微分方程32224xy y y x =-',证明其积分曲线是关于坐标原点成中心对称的曲线。 证 设)(x y ?=满足微分方程,只须证明)(x y --=?也满足方程即可。 作变换x t -=,则证明)(t y ?-=满足方程即可,代入方程两端,并利用)(x y ?=满足此方程,得 左=)())((42222t dx dt t t ??-', )()1)((42222t t t ??--'= )()(4222t t t ??-'=)(3t t ?==右 故)(t y ?-=也满足方程32224xy y y x =-'。 评注:为了验证)(x y --=?也满足方程,利用积分曲线的性质,进行变量代换x t -=,将)(x y --=?变换成)(t y ?-=后,问题就很容易解决了。 1-4 物体在空气中的冷却速度与物体和空气的温差成正比,如果物体在20分钟内由100℃冷却至60℃,那么,在多长时间内,这个物体由100℃冷却至30℃?假设空气的温度为20℃ 解 设物体在空气中时刻t 的温度为)(t T T =,则依牛顿冷却定理得 )20(--=T k dt dT , 其中k 是比例常数。 两边积分,得通解为kt Ce T -+=20。 由于初始条件为:,100)0(=T 故得80=C ,所以kt e T -+=8020。 将60,20==T t 代入上式后即得:202ln = k , 即 20202ln )2 1(80208020t t e T ?+=+=-。 故当30=T 时,有20)2 1(802030t ?+=,从中解出60=t (分钟),因此,在一小时内,可使物体由100℃冷却至30℃。

(完整版)常微分方程期末考试试卷(6)

常微分方程期末考试试卷(6) 学院 ______ 班级 _______ 学号 _______ 姓名 _______ 成绩 _______ 一. 填空题 (共30分,9小题,10个空格,每格3分)。 1.当_______________时,方程M(x,y)dx+N(x,y)dy=0称为恰当方程,或称全 微分方程。 2、________________称为齐次方程。 3、求dx dy =f(x,y)满足00)(y x =?的解等价于求积分方程____________________的连续解。 4、若函数f(x,y)在区域G 内连续,且关于y 满足利普希兹条件,则方程),(y x f dx dy = 的解 y=),,(00y x x ?作为00,,y x x 的函数在它的存在范围内是__________。 5、若)(),...(),(321t x t x t x 为n 阶齐线性方程的n 个解,则它们线性无关的充要条件是__________________________________________。 6、方程组x t A x )(/=的_________________称之为x t A x )(/=的一个基本解组。 7、若)(t φ是常系数线性方程组Ax x =/的基解矩阵,则expAt =____________。 8、满足___________________的点(**,y x ),称为方程组的奇点。 9、当方程组的特征根为两个共轭虚根时,则当其实部________时,零解是稳定 的,对应的奇点称为___________。 二、计算题(共6小题,每题10分)。 1、求解方程:dx dy =3 12+++-y x y x 2.解方程: (2x+2y-1)dx+(x+y-2)dy=0

常微分方程王高雄第三版答案

习题2.2 求下列方程的解 1. dx dy =x y sin + 解: y=e ?dx (?x sin e ?-dx c dx +) =e x [- 21 e x -(x x cos sin +)+c] =c e x -2 1 (x x cos sin +)是原方程的解。 2. dt dx +3x=e t 2 解:原方程可化为: dt dx =-3x+e t 2 所以:x=e ? -dt 3 (?e t 2 e -?-dt 3c dt +) =e t 3- (5 1 e t 5+c) =c e t 3-+5 1 e t 2 是原方程的解。 3. dt ds =-s t cos + 21t 2sin 解:s=e ? -tdt cos (t 2sin 2 1 ?e dt dt ? 3c + ) =e t sin -(?+c dt te t t sin cos sin ) = e t sin -(c e te t t +-sin sin sin ) =1sin sin -+-t ce t 是原方程的解。 4. dx dy n x x e y n x =- , n 为常数. 解:原方程可化为: dx dy n x x e y n x += )(c dx e x e e y dx x n n x dx x n +??=?- )(c e x x n += 是原方程的解.

5. dx dy + 1212 --y x x =0 解:原方程可化为: dx dy =-1212 +-y x x ? =-dx x x e y 2 1 2(c dx e dx x x +? -2 21) ) 2 1(ln 2 + =x e )(1ln 2 ?+- -c dx e x x =)1(1 2 x ce x + 是原方程的解. 6. dx dy 2 3 4xy x x += 解: dx dy 2 3 4 xy x x += =2 3y x + x y 令 x y u = 则 ux y = dx dy =u dx du x + 因此:dx du x u += 2 u x 2 1u dx du = dx du u =2 c x u +=3 31 c x x u +=-33 (*) 将 x y u =带入 (*)中 得:3 4 3 3cx x y =-是原方程的解.

常微分方程基本概念习题附解答

§1.2 常微分方程基本概念习题及解答 1.dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解:y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2 x . 2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=| )1(|ln 1+x c 3.dx dy =y x xy y 32 1++ 解:原方程为:dx dy =y y 21+31x x + y y 21+dy=3 1x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c

另外 x=0,y=0也是原方程的解。 5.(y+x )dy+(x-y)dx=0 解:原方程为: dx dy =-y x y x +- 令 x y =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x ||-2)(1x y - 则令 x y =u dx dy =u+ x dx du 211 u - du=sgnx x 1dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32 +=0 解:原方程为:dx dy =y e y 2e x 3

相关文档
相关文档 最新文档