文档库 最新最全的文档下载
当前位置:文档库 › 一种新颖的工频锁相同步电路

一种新颖的工频锁相同步电路

一种新颖的工频锁相同步电路
一种新颖的工频锁相同步电路

一种新颖的三相工频锁相同步电路

摘要:本文描述了一种新颖的工频锁相电路,具有谐波抑制能力强,灵敏度高和缺相仍能正常工作等特点。根据本文制作的电路已成功运用于商品化的SVC调节器系统。

关键词:锁相环,谐波抑制,SVC

电网系统的信号是实时变化的,自身的频率有一定的误差,因此如果采用固定的频率对电网一个周波的信号进行采样,往往会产生误差,而且此误差随时间变化。为了解决这个问题,通常采用锁相环电路。锁相环的基本功能是完成对输入信号的频率跟踪。

一.基本原理

锁相环(Phase Lock Loop,简称PLL)是完成两个电信号相位同步的自动控制系统,能实现对输入信号频率和相位的跟踪。它是频率无差调节控制系统,采用二阶环路可以对电网频率实现无相位误差的稳态跟踪,稳态时可以消除同步误差。锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。

锁相环的原理示意图如图1所示,由鉴相器(PD)、低通滤波器(LPF)、压控振荡器(VCO)以及分频器四个基本部分组成。鉴相器是用来将两输入信号v i(t)与v o(t)之间的相位差转换成误差电压输出,通常可以采用模拟乘法器或异或门来完成。低通滤波器用以滤除鉴相器输出的高次谐波及噪声,以保证环路所要求的性能,增加系统的稳定性,并让有用信号顺利通过。压控振荡器,是指其振荡频率可以受外加电压控制的振荡器。而分频器则是用来对压控振荡器输出的高频信号进行分频,然后与输入信号v i(t)的频率进行比较,以实现对输入信号的无相位误差的频率跟踪。

图1 锁相环原理图

锁相环基本工作过程是:PD 用来比较输入信号和反馈信号的相位偏差,并产生一个误差电压V c(t)。误差电压中的高频成分(包括噪声中的高频成分) 被L PF 滤除,形成控制电压V d(t)。在控制电压作用下,VCO的频率和相位逐渐接近环路输入信号的频率和相位。若压控振荡器的频率能够变化到与输入信号频率相同,在满足稳定性条件下,就会在这个频率上稳定下来。达到稳定后,输入信号和压控振荡器输出信号之间的频差为零,相差不再随时间变化,误差电压为一固

定值,这时环路就进入“锁定”状态。当锁定后,VCO能使输出信号的频率跟随输入信号的频率改变,输入与输出信号保持同步。这就是锁相环工作的过程。

二.锁相环电路的设计

系统电压虽然一般为50Hz工频,但也会上下波动。为了保证TCR控制器无功补偿的计算,产生与电网频率严格同步的触发脉冲,必须进行电网频率跟踪。为此,在本系统中采用了锁相环装置,以实现对电网频率的跟踪。

TCR控制器为了实现无功补偿精度0.1%的指标,采用密集的时间控制算法。将一个工频周波(20mS)均分为1200等份,产生1200个触发脉冲(频率为50Hz*1200=60KHz),每个脉冲触发DSP和A/D各一次。A/D用于采集并保持数据;DSP用于接收A/D数据并开始计算和判断是否激发晶闸管触发脉冲。因此DSP的计算周期和A/D的数据采集周期均为1/60K=16.7μS。由于A/D和DSP 是同步触发的,所以DSP被触发的时刻是A/D当前数据正在采集的时刻,DSP 接收的数据是A/D保持的上一次采集下来的数据,这样在数据采集和处理上存在一个时间差,也就是16.7μS。这段时间对于工频电压来说只有1/1200周期,对SVC的无功补偿来说影响是很小的。

在本控制系统中我们采用锁相环的目的主要是为了控制采样信号的频率和A/D转换器的起始转换时间,提供DSP系统A/D转换的启动信号,同时产生与电网严格同步的电压过零脉冲给DSP,指示DSP开始无功补偿计算。由于所有的计算和触发均起始于三相电压准确的相位过零点,锁相环在整个无功计算中占有极其重要的地位,不仅锁相环的误差会引起无功补偿的质量,锁相环的失锁更会导致整个系统的崩溃,具体的设计图见图2 锁相环设计图:

图2 锁相环设计图

如图所示,VCO为压控振荡器,CPLD起分频器的作用,移位/滤波相当于LPF,其它部分起鉴相器的作用。锁相环整体形成闭环控制,输入量为来自电网、经过数据采集电路处理后的三相相电压U A、U B、U C;输出为三相相位过零脉冲信号:P A、P B、P C,和A/D触发信号P AD。

Flash查找表中存放的正弦波是以工频(50Hz)正弦波和直流量叠加的形式存放的,波形如图3 Flash查找表中存放的波形图:

图错误!文档中没有指定样式的文字。 Flash 查找表中存放的波形图

前面已经介绍过控制器是把一个工频周期分成1200个触发点,Flash 查找表中的正弦波是按每周期1200个点的形式以数字量存放,相邻两点的间隔是工频周期的1/1200(16.7μS )。上图中横坐标N 表示点数,当N 为0、300、600、900、1199时分别对应正弦波的0o 、90o 、180o 、270o 、360o ;纵坐标U 表示正弦波数字量,由于存放的位数是12位,即数字表示范围是0~4095,这也是Flash 中正弦波的幅值范围。因此当n 为0、300、600、900、1199时U 分别为2048、4095、2048、0、2048,数据D A 、D B 、D C 的表示公式分别为:

(1sin

2)1200

21sin(2)1200341sin(2)12003A B C N D K N D K N D K πππππ=?+???=?+?+??????=?+?+???

? (式1) 式中:

A D ——Flash 查找表中A 相电压的数字量;

B D ——Flash 查找表中B 相电压的数字量;

C D ——Flash 查找表中C 相电压的数字量;

K ——Flash 查找表中正弦波的幅值,大小为4096/2=2048;

N ——Flash 查找表中正弦波的相位离散点,范围是0~1199,间隔1。

锁相环稳定的时候,通过相加/积分环节后的输出电压V 1为0V ,移位后的输出电压V 2为2.5V 的直流电压信号。VCO 是TI 公司74HC4046A 型压控振荡器,当输入电压V 2为2.5V 时,输出信号f 1是600KHz 的方波。f 1作为时钟脉冲输入CPLD ,CPLD 在以600KHz 的频率处理逻辑的时候,输出频率为60KHz 的方波信号f 2和Flash 的地址信号Add 。Flash 内是以查找表形式存储的12位的三相标准正弦电压信号的数字量。当输入以相位为地址的信号Add 时,Flash 输出相应相位的正弦电压数字信号。因此D A 、D B 、D C 分别是相位相差120o 的三相电压信号的数字量。

锁相环的D/A 采用的是AD 公司12位的AD7547,共有3个D/A 元件。D A 、D B 、D C 经过D/A 分别输出3路模拟电压V A 、V B 和V C 。以A 相为例:D A 作为D/A 的数字输入端,U A 作为D/A 的参考电压端,V A 是D A 的输出端。根据D/A

的转化原理,A A A A V K D U =??,其中K A 是比例系数。因为D A 是理想的工频正弦电压,U A 是实际工频正弦电压,两者频率和相位在未锁定的时候均有不同,因此设:

[]A 111D 1sin()K t ω?=++ (式2)

A 22U sin()t ω?=+ (式3)

则:

[][]11221122221sin()sin()

sin()sin()sin()A A A V K D U K t t K t t t ω?ω?ω?ω?ω?=??=++?+ =+?+++ (式4) 通过相加/积分环节后,图2 锁相环设计图中的V 1为:

(式5) 由于22222224sin()sin()sin()33t t t ππω?ω?ω?+++++++是三个相位相差23

π的正弦量的和,值为零。即使由于电网频率变化致使三相不平衡,它们也是高频电压(12ωω+约100Hz ,相对于12ωω-来说是高频),在锁相环的滤波/移位环节可以滤除。因此

(式6)

由于

[]1212cos ()t ωω??++++12124cos ()3t πωω????++++????+12128cos ()3t πωω????++++???

?的和是三个相位相差2/3π的正弦量的和,值为零。即使由于电网频率变化致使三相不平衡,它们也是高频电压(12ωω+约100Hz ,相对于12ωω-来说是高频),在锁相环的滤波/移位环节可以滤除。因此

[]11212()3cos ()2

A B C V V V V dt

t dt ωω??=++K =-+-?? (式7) 这是一个关于1ω与2ω的差值ω?,和1?与2?的差值??的关系式。当??不变而ω?是一个很小的正数时,V 1变为cos ω?的一个积分,且在一定的时间范围内随t 的增大而增大;当ω?不变而??是一个很小的正数时,V 1是一个常数的积分,且在一定的时间范围内随t 的增大而增大;这样,在一定的时间范围内,ω?和??的变化都会导致V 1的变化,通过闭环反馈,反馈量又促使ω?和??的反方向变化,最终稳定在ω?=0和??=0,即1ω=2ω且1?=2?。

三.电路的特点

此电路的特点在于:

1. 采用了四象限乘法式D/A 转换器作为鉴相器;

2. 压控正弦波输出用了通用VCO+FLASH 查表的输出形式;

3. 采用3相鉴相叠加输出,缺相时仍可正常工作。

此电路有较强的谐波抑制能力。原因分析如下:从式4可以看出,在锁相环达到稳定状态后,VCO的控制电压实际上是可能带有谐波干扰的输入信号和FLASH查表输出的基波信号的卷积。由于基波信号和谐波信号之间的正交性,卷积后的直流输出量将是零,因此有效得抑制了谐波信号对锁相环输出的干扰。

从式4还可以看出,在输入信号出现缺相的时候,只要有一相信号仍然存在,那么除了锁相环的输入控制电压波动会稍微增大外,其直流分量并未改变,因此仍然可以正常工作。

四.测试指标和结论

经过测试, 按照本电路实现的锁相环电路的指标如下:

1.锁定范围50Hz +-5Hz;

2.入锁时间1s(可以调节);

3.相位锁定静差<10us(输入三相5V,50Hz有效值电压);

4.相位抖动12us(测试条件同上);

5.谐波抑制能力:50%三次谐波,相位抖动幅度增加<10us。

本电路跟文献【6】中的相比,有显著的优点。本电路已经在研制的TCR型SVC设备中得到了实际应用,经过了一年以上时间的连续运行,实践证明是稳定可靠的。

五.参考文献

【1】远坂俊昭(日). 锁相环(PLL)电路设计与应用. 科学出版社,2007.4 【2】Roland E.Best著,李永明等译. 锁相环设计、仿真与应用. 清华大学出版社, 2007

【3】冯志华,刘强,刘永斌. 基于锁相环的变频器同步跟踪实验. 电工技术学报, Transactions of China Electrotechnical Society, 2006,11

【4】易青松. 基于锁相环的工频相位差测量仪的设计和实现. 孝感学院学报, Journal of Xiaogan University, 2005,03

【5】张雪平. 锁相技术在变频调速系统中的应用化工自动化及仪表, Control and Instruments In Chemical Industry, 2005,01

【6】詹跃东,史扬. 单相UPS电源的锁相同步电路设计. 电力电子技术, Power Electronics, 2001,04

【7】伏云发,凌永发. 利用移相锁相同步跟踪技术设计智能化网络三相UPS. 云南民族学院学报(自然科学版), Journal of Yunnan Institute of The Nationalites (Natral Sciences Edition), 2003,02

锁相环电路设计

锁相环的原理 2007-01-23 00:24 1.锁相环的基本组成 许多电子设备要正常工作,通常需要外部的 输入信号与部的振荡信号同步,利用锁相环 路就可以实现这个目的。 锁相环路是一种反馈控制电路,简称锁相环(PLL)。锁相环的特点是:利用外部输入的参考信号控制环路部振荡信号的频率和相位。 因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。 锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,锁相环组成的原理框图如图8-4-1所示。 锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成u D(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压u C(t),对振荡器输出信号的频率实施控制。 2.锁相环的工作原理 锁相环中的鉴相器通常由模拟乘法器组成,利用模拟乘法器组成的鉴相器电路如图8-4-2所示。鉴相器的工作原理是:设外界输入的信号电压和压控振荡器输出的信号电压分别为: (8-4-1) (8-4-2) 式中的ω0为压控振荡器在输入控制电压为零或为直流电压时的振荡角频率,称为电路的固有振荡角频率。则模拟乘法器的输出电压u D为: 用低通滤波器LF将上式中的和频分量滤掉,剩下的差频分量作为压控振荡器的输入控制电压u C (t)。即u C(t)为: (8-4-3) 式中的ωi为输入信号的瞬时振荡角频率,θi(t)和θO(t)分别为输入信号和输出信号的瞬时位相,根据相量的关系可得瞬时频率和瞬时位相的关系为:

《电工基础》练习及答案(8.正弦交流电路)

《电工技术基础与技能》复习题 8.正弦交流电路 一、是非题: 1.电阻元件上的电压、电流的初相一定都是零,所以它们是同相的。( ) 2.正弦交流电路,电容元件上电压最大时,电流也最大。( ) 3.在同一交流电压作用下,电感L 越大,电感中的电流就越小。( ) 4.端电压超前电流的交流电路一定是电感性电路。( ) 5.有人将一个额定电压为220V 、额定电流为6A 的交流电磁铁线圈误接在220V 的直流电源上,此时电磁铁仍将能正常工作。( ) 6.某同学做荧光灯电路实验时,测得灯管两端的电压为110V ,镇流器两端电压为190V ,两电压之和大于电源电压220V ,说明该同学测量数据错误。( ) 7.在RLC 串联电路中,C L R 、U 、U U 的数值都有可能大于端电压。( ) 8.额定电流100A 的发电机,只接了60A 的照明负载,还有40A 的电流就损失了。( ) 9.在RLC 串联电路中,感抗和容抗数值越大,电路中的电流也就越小。( ) 10.正弦交流电路中,无功功率就是无用功率。( ) 11.在纯电阻电路中,下列各式对的打√,错的打× ⑴R U I = ( ) ⑵R u i = ( ) ⑶R U I m m =( ) ⑷i u p = ( ) ⑸P=UI ( ) ⑹P=0 ( ) 12.在纯电感电路中,下列各式对的打√,错的打× ⑴L U I ω= ( ) ⑵L m m X U I = ( ) ⑶L X u i =( ) ⑷P=0 ( ) ⑸L U Q L ω2 = ( ) ⑹)sin(2u L t X U i ?ω+=( ) 13.在纯电容电路中,下列各式对的打√,错的打× ⑴C U I ω= ( ) ⑵C X U i = ( ) ⑶fC X C π2= ( ) ⑷UI Q C = ( ) ⑸C U Q C ω2 = ( ) ⑹)sin(2 u C t X U i ?ω+= ( ) 二、选择题: 1.正弦交流电通过电阻元件时,下列关系式正确的是( )。 A .t R U i R ωsin = B .R U i R = C .R U I R = D .)sin(?ω+=t R U i R 2.纯电感电路中,已知电流的初相角为-60°,则电压的初相角为( ) A .30° B .60° C .90° D .120° 3.加在容抗为100Ω的纯电容两端的电压V t u c )3 sin(100π ω-=,则通过它的电流应 是( )。 A .A t i c )3 sin(π ω+= B .A t i c )6sin(π ω+= C .A t i c )3sin(2πω+= D .A t i c )6 sin(2π ω+= 4.两纯电感串联,Ω=101L X ,Ω=152L X ,下列结论正确的是( )。 A .总电感为25H B .总感抗2 221L L L X X X += C .总感抗为25Ω D .总感抗随交流电频率增大而减小 5.某电感线圈,接入直流电,测出R=12Ω;接入工频交流电,测出阻抗为20Ω,则线圈的感抗为( ) A .32Ω B .20Ω C .16Ω D .8 Ω 6.已知RLC 串联电路端电压U=20V ,各元件两端电压V U R 12=,V U L 16=, )( =C U A .4V B .12V C .28V D .32V 7.如下图所示的电路,i u 和o u 的相位关系( ) A .i u 超前o u B .i u 和o u 同相 C .i u 滞后o u D .i u 和o u 反相 8.在RLC 串联电路中,端电压与电流的矢量图如上图所示,这个电路是( )

锁相环电路

手机射频部分的关键电路----锁相环电路 锁相坏电路是一种用来消除频率误差为目的反馈控制电路,目前市场销售的手机基本上都是采用这种电路来控制射频电路中的压控振荡器。使其输出准确稳定的振荡频率。如锁相坏(PLL)电路出现故障将导致本振的频率输出不准确,则导致手机无信号。 目前通信终端设备中对频率的稳定采用的是频率合成CSYN技术。频率合成的基本方法有三种:第一种直接频率合成;第二种锁相频率合成(PLL);第三种直接数字频率合成(DDS)。由于锁相频率合成技术在电路设计方面(简单),成本方面控制灵敏度方面,频谱纯净度方面等。都要胜于直接频率合成,与直接数字频率合成。所以被移动通信终端设备广范采用。它在手机电路中的作用是控制压控振荡器输出的频率,相位与基准信号的频率,相位保持同步。 锁相坏电路的构成与工作原理: 1、构成:它是由鉴相器(PD)低通滤波器(LPF) 压控振荡器(VCO)三部分组成。 鉴相器:它是一个相位比较器。基准频率信号和压控振荡器输出的取样频率在其内部 进行相位比较,输出误差电压。 低通滤波器:是将鉴相器输出的锁相电压进行滤波,滤除电流中的干扰和高频成分。得到一个纯净的直流控制电压。 压控振荡器:产生手机所要的某一高频频率。 (注:SYNEN、SYNCLK、SYNDATA来自CPU控制分频器,对本振信号进行N次分频)。 当VCO产生手机所须的某一高频频率。一路去混频管,另一路反馈给锁相环,中的分频器进行N次分频。在这里为什么要进行N次分频呢?首先要说明一下基准频率与VCO振荡取样频率在鉴相要满足3个条件。 ①频率相同。②幅度相同。③相位不同。为了满足鉴相条件,所以在电路中设置了分 频器。VCO振荡频率取样信号送入分频器完成N次分频后,得到一个与基准频率相位不同,但频率

锁相环应用电路仿真

高频电子线路实训报告锁相环路仿真设计 专业 学生姓名 学号 2015 年 6 月24日

锁相环应用电路仿真 锁相环是一种自动相位控制系统,广泛应用于通信、雷达、导航以及各种测量仪器中。锁相环及其应用电路是“通信电子电路”课程教学中的重点容,但比较抽象,还涉及到新的概念和复杂的数学分析。因此无论是教师授课还是学生理解都比较困难。为此,我们将基于Multisim的锁相环应用仿真电路引入课堂教学和课后实验。实践证明,这些仿真电路可以帮助学生对相关容的理解,并为进行系统设计工作打下良好的基础。锁相环的应用电路很多,这里介绍锁相环调频、鉴频及锁相接收机的Multisim仿真电路。 1.锁相环的仿真模型 首先在Multisim软件中构造锁相环的仿真模型(图1)。基本的锁相环由鉴相器(PD)、环路滤波器(I P)和压控振荡器(VCO)三个部分组成。图中,鉴相器由模拟乘法器A 实现,压控振荡器为V3,环路滤波器由R1、C1构成。环路滤波器的输出通过R2、R3串联分压后加到 压控振荡器的输入端,直流电源V2用来调整压控振荡器的中心频率。仿真模型中,增加R2、R3及的目的就是为了便于调整压控振荡器的中心频率。 图1 锁相环的仿真模型 2.锁相接收机的仿真电路 直接调频电路的振荡器中心频率稳定度较低,而采用晶体振荡器的调频电路,其调频围又太窄。采用锁相环的调频器可以解决这个矛盾。其结构原理如图2所示。

图2 锁相环调频电路的原理框图 实现锁相调频的条件是调制信号的频谱要处于低通滤波器通带之外,也就是说,锁相环路只对慢变化的频率偏移有响应,使压控振荡器的中心频率锁定在稳定度很高的晶振频率上。而随着输人调制信号的变化,振荡频率可以发生很大偏移。 图3 锁相环调频的仿真电路 根据图2建立的仿真电路如图3所示。图中,设置压控振荡器V1在控制电压为0时,输出频率为0;控制电压为5V时,输出频率为50kHz。这样,实际上就选定了压控振荡器的中心频率为25kHz,为此设定直流电压V3为2.5V。调制电压V4通过电阻Rs接到VCO的输人端,R实际上是作为调制信号源V4的阻,这样可以保证加到VCO输人端的电压是低通滤波器的输出电压和调制电压之和,从而满足了原理图的要求。本电路中,相加功能也可以通过一个加法器来完成,但电路要变得相对复杂一些。 VCO输出波形和输人调制电压的关系如图4所示。由图可见,输出信号频率随着输人信号的变化而变化,从而实现了调频功能。

基于单片机的工频电压(电流)表的设计

检测系统实习报告 题目:基于单片机的工频电压(电流)表的设计姓名: 院(系):专业: 指导教师:职称: 评阅人:职称: 年月

摘要 在实际中,有效值是应用最广泛的参数,电压表的读数除特殊情况外,几乎都是按正弦波有效值进行定度的。有效值获得广泛应用的原因,一方面是由于它直接反映出交流信号能量的大小,这对于研究功率、噪声、失真度、频谱纯度、能量转换等是十分重要的;另一方面,它具有十分简单的叠加性质,计算起来极为方便。 本文详细介绍了一个数字工频电压、电流表设计,以AT89S52单片机为控制核心,由电压、电流传感器模块,真有效值测量模块,信号调理模块,AD采集模块及控制、显示模块等构成。系统采用电压、电流互感器对输入信号进行降压处理,经AD736转换得到原信号的真有效值,由TLC549转换为数字量后送入单片机内进行简要的数据处理并将结果通过LCD实时显示,达到了较好的性能指标。 关键词:工频数字电压(电流)表真有效值AD736 TLC549 AT89S52

Abstract In practice, RMS is the most widely used parameters. Except in special circumstances,voltage meter readings almost all carried out by the RMS of sine wave . The reasons of RMS is widely available, on the one hand, because it directly reflects the size of the exchange of signal energy, which the study of power, noise, distortion, spectrum purity, energy conversion, such as it is very important; On the other hand, it has a very simple superposition of the nature of the calculation will be extremely convenient. The design of single-chip Atmel Corporation AT89S52 as control core, by the current sensor module, True RMS measurement modules, signal conditioning modules, AD acquisition and control module, display module. System uses a current sensor circuit for step-down of the input signal processing, has been converted by the original AD736 True RMS signal by the TLC549 convert into single-chip digital conducted after the brief and the results of data processing in real time through the LCD display, achieve a better performance. Keyword: Digital voltage(current) meter True RMS AD736 TLC549 AT89S52

完整版锁相环工作原理.doc

基本组成和锁相环电路 1、频率合成器电路 频率合成器组成: 频率合成器电路为本机收发电路的频率源,产生接收第一本机信号源和发射电路的发射 信号源,发射信号源主要由锁相环和VCO 电路直接产生。如图3-4 所示。 在现在的移动通信终端中,用于射频前端上下变频的本振源(LO ),在射频电路中起着非常 重要的作用。本振源通常是由锁相环电路(Phase-Locked Loop )来实现。 2.锁相环: 它广泛应用于广播通信、频率合成、自动控制及时钟同步等技术领域 3.锁相环基本原理: 锁相环包含三个主要的部分:⑴鉴相器(或相位比较器,记为PD 或 PC):是完成相位比较的单元, 用来比较输入信号和基准信号的之间的相位.它的输出电压正比于两个输入信号之相位差.⑵低通滤波器(LPF): 是个线性电路,其作用是滤除鉴相器输出电压中的高频分量,起平滑滤波的 作用 .通常由电阻、电容或电感等组成,有时也包含运算放大器。⑶压控振荡器(VCO ):振

荡频率受控制电压控制的振荡器,而振荡频率与控制电压之间成线性关系。在PLL 中,压控振荡器实际上是把控制电压转换为相位。 1、压控振荡器的输出经过采集并分频; 2、和基准信号同时输入鉴相器; 3、鉴相器通过比较上述两个信号的频率差,然后输出一个直流脉冲电压; 4、控制 VCO ,使它的频率改变; 5、这样经过一个很短的时间,VCO的输出就会稳定于某一期望值。 锁相环电路是一种相位负反馈系统。一个完整的锁相环电路是由晶振、鉴相器、R 分频器、N 分频器、压控振荡器(VCO )、低通滤波器(LFP)构成,并留有数据控制接口。 锁相环电路的工作原理是:在控制接口对R 分频器和N 分频器完成参数配置后。晶振产生 的参考频率( Fref)经 R 分频后输入到鉴相器,同时VCO 的输出频率( Fout)也经 N 分频后输入到鉴相器,鉴相器对这两个信号进行相位比较,将比较的相位差以电压或电流的方式 输出,并通过 LFP 滤波,加到 VCO 的调制端,从而控制 VCO 的输出频率,使鉴相器两输入端的 输入频率相等。 锁相环电路的计算公式见公式: Fout=(N/R)Fref 由公式可见,只要合理设置数值N 和 R,就可以通过锁相环电路产生所需要的高频信号。 4.锁相环芯片 锁相环的基准频率为13MHz ,通过内部固定数字频率分频器生成5KHz 或 6.25KHz 的参考频率。 VCO 振荡频率通过IC1 内部的可编程分频器分频后,与基准频率进行相位比较,产 生误差控制信号,去控制VCO,改变VCO的振荡频率,从而使VCO输出的频率满足要求。如图 3-5 所示。 N=F VCO /F R N:分频次数 F VCO: VCO 振荡频率

基于Matlab的数字锁相环的仿真设计金佳琪

基于Matlab的数字锁相环的仿真设计 1115101021 金佳琪 摘要:锁相环是一个能够跟踪输入信号相位变化的闭环自动跟踪系统。它广泛应用于无线电的各个领域,并且,现在已成为通信、雷达、导航、电子仪器等设备中不可缺少的一部分。然而由于锁相环设计的复杂性,用SPICE对锁相环进行仿真,数据量大,仿真时间长,而且需进行多次仿真以提取设计参数,设计周期长。本文借助于Matlab中Simulink仿真软件的灵活性、直观性,在Simulink 中利用仿真模块搭建了全数字锁相环的仿真模型。利用仿真模块搭建了全数字锁相环的仿真模型,通过仿真达到了设计的目的,验证了此全数字锁相环能达到的各项功能要求。 关键词:锁相环,MATLAB,锁定,Simulink,频率合成 全数字锁相环 随着最近几年数字电路技术的发展,锁相环路在数字领域获得了越来越多的使用。与模拟锁相环相比,全数字锁相环不含无源器件、面积小、具有较强的抗噪声能力,锁定时间短,可以很方便地在各个工艺之间转换,重用性高,设计周期短。 方案介绍 全数字锁相环包括数字鉴相鉴频器(PDF)、数字滤波器(LPF)、数字振荡器(NCO)三部分,如下图12所示: 图1 全数字锁相环的仿真框图 由图12和图11的比较可以看出,全数字锁相环实际上是通过将模拟锁相环路替换成数字电路得到的。这意味着鉴相鉴频器(PDF)、环路低通滤波器(LPF)需要转换到离散系统。环路低通滤波器(LPF)可以通过一个希望的传输函数的拉普拉斯变换的z变换而得到。压控振荡器需要转换成数控振荡器(Numerically Controlled Oscilaator)。下面详细讨论鉴相鉴频器(PDF)、环路低通滤波器(LPF)以及数控振荡器(Numerically Controlled Oscilaator)模型的建立。 模型的建立 正和上述基于频率合成的模拟锁相环的仿真模型的建立相似,全数字锁相环仿真模型的建立也基于相同的算法: 锁相环闭环系统状态的变化依赖于PFD输出的相位误差。相位误差输出一次,锁相环状态改变一次;PFD不输出相位误差,锁相环里的所有信号均不改变状态。根据上

飞思卡尔锁相环

备战飞思卡尔智能车大赛.开始模块总结. 锁相环设置. 公式: PLLCLK=2*OSCCLK*(SYNR+1)/(REFDV+1), fbus=PLLCLK/2 void INIT_PLL(void) { CLKSEL &= 0x7f; //选用外部时钟.准备设置锁相环 PLLCTL &= 0x8F; //禁止锁相环 SYNR = 0xc9; //设置SYNR REFDV = 0x81; //设置REFDV PLLCTL |=0x70; //锁相环使能 asm NOP; asm NOP; //两个机器周期缓冲时间 while(!(CRGFLG&0x08)); //等待锁相环锁定 CLKSEL |= 0x80; //设置锁相环为时钟源 } 飞思卡尔XS128的PLL锁相环详细设置说明——关于如何提高总线工作频率PLL锁相环就相当于超频单片机超频的原因和PC机是个一道理。分频的主要原因是外设需要的工作频率往往远低于CPU/MEMORY这也和PC机南北桥的原理类似。总线频率设置过程 1、禁止总中断 2、寄存器CLKSEL(时钟选择寄存器)的第七位置0即CLKSEL_PLLSEL=0。选择时钟源为外部晶振OSCCLK(外接晶振频率)在PLL(锁相环)程序执行前内部总线频率为OSCCLK/2 3. PLLCTL_PLLON=1 打开PLL 4.设置SYNR时钟合成寄存器、REFDV时钟分频寄存器、POSTDIV三个寄存器的参数 5、_asm(nop) _asm(nop);加入两条空指令使锁相环稳定 6、while(!(CRGFLG_LOCK==1));//时钟校正同步 7、CLKSEL_PLLSEL=1; 下面详细说一下频率的计算一、时钟合成寄存器SYNR寄存器结构VCOFRQ[1:0]控制压控振动器VCO的增益默认值为00VCO的频率与VCOFRQ[1:0]对应表

基于Matlab的数字锁相环的仿真设计

基于Matlab的数字锁相环的仿真设计 摘要:锁相环是一个能够跟踪输入信号相位变化的闭环自动跟踪系统。它广泛应用于无线电的各个领域,并且,现在已成为通信、雷达、导航、电子仪器等设备中不可缺少的一部分。然而由于锁相环设计的复杂性,用SPICE对锁相环进行仿真,数据量大,仿真时间长,而且需进行多次仿真以提取设计参数,设计周期长。本文借助于Matlab中Simulink仿真软件的灵活性、直观性,在Simulink 中利用仿真模块搭建了全数字锁相环的仿真模型。先借助模拟锁相环直观形象、易于理解的特点,通过锁相环在频率合成方面的应用,先对模拟锁相环进行了仿真,对锁相环的工作原理进行了形象的说明。在模拟锁相环的基础上,重新利用仿真模块搭建了全数字锁相环的仿真模型,通过仿真达到了设计的目的,验证了此全数字锁相环完全能达到模拟锁相环的各项功能要求。 关键词:锁相环,压控振荡器,锁定,Simulink,频率合成,仿真模块 1引言 1932年法国的H.de Bellescize提出同步捡波的理论,首次公开发表了对锁相环路的描述。到1947年,锁相环路第一次应用于电视接收机的水平和垂直扫描的同步。到70年代,随着集成电路技术的发展,逐渐出现集成的环路部件、通用单片集成锁相环路以及多种专用集成锁相环路,锁相环路逐渐变成了一个成本低、使用简便的多功能组件,为锁相技术在更广泛的领域应用提供了条件。锁相环独特的优良性能使其得到了广泛的应用,其被普遍应用于调制解调、频率合成、电视机彩色副载波提取、FM立体声解码等。随着数字技术的发展,相应出现了各种数字锁相环,它们在数字信号传输的载波同步、位同步、相干解调等方面发挥了重要的作用。而Matlab强大的数据处理和图形显示功能以及简单易学的语言形式使Matlab在工程领域得到了非常广泛的应用,特别是在系统建模与仿真方面,Matlab已成为应用最广泛的动态系统仿真软件。利用MATLAB建模可以快速地对锁相环进行仿真进而缩短开发时间。 1.1选题背景与意义 Matlab是英文MATrix LABoratory(矩阵实验室)的缩写。1980年,时任美国新墨西哥大学计算机系主任的Cleve Moler教授在给学生讲授线性代数课程时,为使学生从繁重的数值计算中解放出来,用FORTRAN语言为学生编写了方便使用Linpack和Eispack的接口程序并命名为MATLAB,这便是MATLAB的雏形。经过几年的校际流

工频交流耐压试验

工频交流耐压试验工频交流(以下简称交流)耐压试验是考验被试品绝缘承受各种过电压能力最严格有效的方法,对保证设备安全运行具有重要意义。 交流耐压试验的电压、波形、频率和在被试品绝缘内部电压的分布,均符合实际运行情况,因此,能有效地发现绝缘缺陷。交流耐压试验应在被试品的绝缘电阻及吸收比测量、直流泄漏电流测量及介质损失角正切值tg δ测量均合格后进行。如在这些试验中已查明绝缘有缺陷,则应设法消除,并重新试验合格后才能进行交流耐压试验,以免造成不必要的损坏。 交流耐压试验对于固体有机绝缘来说,会使原来存在的绝缘弱点进一步发展(但又不致于在耐压时击穿),使绝缘强度逐渐衰减,形成绝缘内部劣化的积累效应,这是我们所不希望的。因此,必须正确地选择试验电压的标准和耐压时间。试验电压越高,发现绝缘缺陷的有效性越高,但被试品被击穿的可能性越大,积累效应也越严重。反之,试验电压低,又使设备在运行中击穿的可能性增加。实际上,国家根据各种设备的绝缘材质和可能遭受的过电压倍数,规定了相应的出厂试验电压标准。具有夹层绝缘的设备,在长期运行电压的作用下,绝缘具有累积效应,所以现行有关标准规定运行中设备的试验电压,比出厂试验电压有所降低,且按不同设备区别对待(主要由设备的经济性和安全性来决定)。但对纯瓷套管、充油套管及支持绝缘子则例外,因为它们几乎没有累积效应,故对运行中的设备就取出厂试验电压标准。 绝缘的击穿电压值与加压的持续时间有关,尤以有机绝缘特别明显,其击穿电压随加压时间的增加而逐渐下降。有关标准规定耐压时间为一分钟,一方面是为了便于观察被试品情况,使有弱点的绝缘来得及暴露(固体绝缘发生热击穿需要一定的时间);另一方面,又不致时间过长而引起不应有的绝缘击穿。 第一节试验方法 一、原理接线 交流耐压试验的接线,应按被试品的要求(电压、容量)和现有试验设备条件来决定。通常试验变压器是成套设备(包括控制及调压设备),对调压及控制回路加以简化如图一所示。 图1

PLL(锁相环)电路原理及设计 [收藏]

PLL(锁相环)电路原理及设计[收藏] PLL(锁相环)电路原理及设计 在通信机等所使用的振荡电路,其所要求的频率范围要广,且频率的稳定度要高。无论多好的LC振荡电路,其频率的稳定度,都无法与晶体振荡电路比较。但是,晶体振荡器除了可以使用数字电路分频以外,其频率几乎无法改变。如果采用PLL(锁相环)(相位锁栓回路,PhaseLockedLoop)技术,除了可以得到较广的振荡频率范围以外,其频率的稳定度也很高。此一技术常使用于收音机,电视机的调谐电路上,以及CD唱盘上的电路。 一PLL(锁相环)电路的基本构成 PLL(锁相环)电路的概要 图1所示的为PLL(锁相环)电路的基本方块图。此所使用的基准信号为稳定度很高的晶体振荡电路信号。 此一电路的中心为相位此较器。相位比较器可以将基准信号与VCO (Voltage Controlled Oscillator……电压控制振荡器)的相位比较。如果此两个信号之间有相位差存在时,便会产生相位误差信号输出。 (将VCO的振荡频率与基准频率比较,利用反馈电路的控制,使两者的频率为一致。) 利用此一误差信号,可以控制VCO的振荡频率,使VCO的相位与基准信号的相位(也即是频率)成为一致。 PLL(锁相环)可以使高频率振荡器的频率与基准频率的整数倍的频率相一致。由于,基准振荡器大多为使用晶体振荡器,因此,高频率振荡器的频率稳定度可以与晶体振荡器相比美。 只要是基准频率的整数倍,便可以得到各种频率的输出。 从图1的PLL(锁相环)基本构成中,可以知道其是由VCO,相位比较器,基准频率振荡器,回路滤波器所构成。在此,假设基准振荡器的频率为fr,VCO的频率为fo。 在此一电路中,假设frgt;fo时,也即是VC0的振荡频率fo比fr低时。此时的相位比较器的输出PD 会如图2所示,产生正脉波信号,使VCO的振荡器频率提高。相反地,如果frlt;fo时,会产生负脉波信号。

手机电子元器件基础知识

手机电子元器件基础知识 常用电子元器件的识别: 一、电阻 电阻在电路中用“R”加数字表示,如:R15表示编号为15的电阻。电阻在电路中的主要作用为分流、限流、分压、偏置、滤波(与电容器组合使用)和阻抗匹配等。 参数识别:电阻的单位为欧姆(Ω),倍率单位有:千欧(KΩ),兆欧(MΩ)等。换算方法是:1兆欧=1000千欧=1000000欧 电阻的参数标注方法有3种,即直标法、色标法和数标法。 1.数标法主要用于贴片等小体积的电路,如:472 表示47×102Ω(即4.7K);104则表示100K色环标注法使用最多,现举例如下: 四色环电阻和五色环电阻(精密电阻)电阻的色标位置和倍率关系如下表所示: 颜色有效数字倍率允许偏差(%) 银色 / 10-2 ±10 金色 / 10-1 ±5 黑色 0 100 / 棕色 1 101 ±1 红色 2 102 ±2 橙色 3 103 / 黄色 4 104 / 绿色 5 105 ±0.5 蓝色 6 106 ±0.2 紫色 7 107 ±0.1 灰色 8 108 / 白色 9 109 +5至-20 无色 / / ±20 二、电容 1、电容在电路中一般用“C”加数字表示(如C25表示编号为25的电容)。电容是由两片金属膜紧靠,中间用绝缘材料隔开而组成的元件。电容的特性主要是隔直流通交流。 电容容量的大小就是表示能贮存电能的大小,电容对交流信号的阻碍作用称为容抗,它与交流信号的频率和电容量有关。容抗XC=1/2πf c (f表示交流信号的频率,C表示电容容量)

电话机中常用电容的种类有电解电容、瓷片电容、贴片电容、独石电容、钽电容和涤纶电容等。 2、识别方法:电容的识别方法与电阻的识别方法基本相同,分直标法、色标法和数标法3种。电容的基本单位用法拉(F)表示,其它单位还有:毫法(mF)、微法(uF)、纳法(nF)、皮法(pF)。 其中:1法拉=103毫法=106微法=109纳法=1012皮法容量大的电容其容量值在电容上直接标明,如10 uF/16V 容量小的电容其容量值在电容上用字母表示或数字表示 字母表示法:1m=1000 uF 1P2=1.2PF 1n=1000PF 数字表示法:一般用三位数字表示容量大小,前两位表示有效数字,第三位数字是倍率。 如:102表示10×102PF=1000PF 224表示22×104PF=0.22 uF 3、电容容量误差表 符号FGJKLM 允许误差±1% ±2% ±5% ±10% ±15% ±20% 如:一瓷片电容为104J表示容量为0.1 uF、误差为±5%。 4、故障特点 在实际维修中,电容器的故障主要表现为: (1)引脚腐蚀致断的开路故障。 (2)脱焊和虚焊的开路故障。 (3)漏液后造成容量小或开路故障。 (4)漏电、严重漏电和击穿故障。 晶体二极管在电路中常用“D”加数字表示,如:D5表示编号为5的二极管。 1、作用:二极管的主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很小;而在反向电压作用下导通电阻极大或无穷大。正因为二极管具有上述特性,无绳电话机中常把它用在整流、隔离、稳压、极性保护、编码控制、调频调制和静噪等电路中。 电话机里使用的晶体二极管按作用可分为:整流二极管(如1N4004)、隔离二极管(如1N4148)、肖特基二极管(如BAT85)、发光二极管、稳压二极管等。

工频电压

工频电压 工频电压,是指国家规定的电力工业及用电设备的统一标准电压。 工频:指工业上用的交流电源的频率,单位赫兹(HZ) 我国单相电源工频电压,50赫兹,220V 。三相电源工频电压是50赫兹380V ,由于世界各地工业发展的不平衡及二战期间的殖民统制等原因的影响,工频电压在全世界没有统一的标准,各国各不相同地区性差异很大,以下是世界各地工频电压 亚洲 地区或国名工频电压 中国台湾Taiwan 110V/220V,60Hz 中国大陆China 220V,50Hz 380V, 50Hz, 3 Ph 中国香港Hong Kong 220V,50Hz 日本Japan 110V,关东50Hz,关西60Hz 韩国South Korea 100V,60Hz 新加坡Singapore 230V,50Hz 印度India 127V,50Hz 印尼Indonesia 220V,50Hz 泰国Thailand 220V,50Hz 马来西亚Malaysia 240V,50Hz 420V, 50Hz, 3 Ph 越南Vietnam 220V,50Hz 欧洲 地区或国名交流电压

俄罗斯Russia 220V,50Hz 英国U.K. 240V,50Hz 法国France 127V/220V,50Hz 德国Germany 220V,50Hz 爱尔兰Ireland 220V,50Hz 意大利Italy 127V/220V,50Hz 瑞士Switzerland 220V,50Hz 荷兰Netherlands 220V,50Hz 丹麦Danmark 220V,50Hz 波兰Poland 220V,50Hz 美洲 地区或国名交流电压 美国America 110V 或220V,60Hz , 460V, 60Hz, 3Ph 加拿大Canada 120V 或240V,60Hz 巴西Brazil 127V 或220V,60Hz 哥伦比亚Colombia 110V 或220V,60Hz 不同国家由于历史、政治、经济等原因导致电压不相同。 (纠正下面的错误:根据物理定律,电压越高,电阻传输损耗越小,所以电流传输是通过高压传输的,比如我国高压传输电压有500KV,220kv等,不可能用220v或者110v进行长距离送电的。到了目的地才通过几级的变压器接入民用或者工业使用) ▲附录:

常用电子元件的功能

常用电子元件的功能 电子元件(1)<电阻> 电阻在电路中用“R”加数字表示,如:R1表示编号为1的电阻。电阻在电路中的主要作用为:分流、限流、分压、偏置等。#1、参数识别:电阻的单位为欧姆(Ω),倍率单位有:千欧(KΩ),兆欧(MΩ)等。换算方法是:1兆欧=1000千欧=1000000欧电阻的参数标注方法有3种,即直标法、色标法和数标法。a、数标法主要用于贴片等小体积的电路,如:472 表示47×100Ω(即4.7K);104则表示100K b、色环标注法使用最多,现举例如下:四色环电阻五色环电阻(精密电阻)#2、电阻的色标位置和倍率关系如下表所示:颜色有效数字倍率允许偏差(%)银色/ x0.01 ±10 金色/ x0.1 ±5 黑色0 +0 / 棕色 1 x10 ±1 红色 2 x100 ±2 橙色 3 x1000 / 黄色4 x10000 / 绿色5 x100000 ±0.5 蓝色6 x1000000 ±0.2 紫色7 x10000000 ±0.1 灰色8 x100000000 / 白色9 x1000000000 / 电子元件(2)<电容> #1、电容在电路中一般用“C”加数字表示(如C13表示编号为13的电容)。电容是由两片金属膜紧靠,中间用绝缘材料隔开而组成的元件。电容的特性主要是隔直流通交流。电容容量的大小就是表示能

贮存电能的大小,电容对交流信号的阻碍作用称为容抗,它与交流信号的频率和电容量有关。容抗XC=1/2πf c (f表示交流信号的频率,C表示电容容量)电话机中常用电容的种类有电解电容、瓷片电容、贴片电容、独石电容、钽电容和涤纶电容等。#2、识别方法:电容的识别方法与电阻的识别方法基本相同,分直标法、色标法和数标法3种。电容的基本单位用法拉(F)表示,其它单位还有:毫法(mF)、微法(uF)、纳法(nF)、皮法(pF)。其中:1法拉=103毫法=106微法=109纳法=1012皮法容量大的电容其容量值在电容上直接标明,如10 uF/16V 容量小的电容其容量值在电容上用字母表示或数字表示字母表示法:1m=1000 uF 1P2=1.2PF 1n=1000PF 数字表示法:一般用三位数字表示容量大小,前两位表示有效数字,第三位数字是倍率。如:102表示10×102PF=1000PF 224表示 22×104PF=0.22 uF #3、电容容量误差表符号F G J K L M 允许误差±1% ±2% ±5% ±10% ±15% ±20% 如:一瓷片电容为104J 表示容量为0. 1 uF、误差为±5%。 电子元件(3)<晶体二极管> 晶体二极管在电路中常用“D”加数字表示,如:D5表示编号为5的二极管。#1、作用:二极管的主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很小;而在反向电压作用下导通电阻极大或无穷大。正因为二极管具有上述特性,无绳电话机中常把它用在整流、隔离、稳压、极性保护、编码控制、调频调制和静噪等电路中。

基于MATLAB的数字锁相环的仿真设计讲解

本科生毕业设计(申请学士学位) 论文题目基于Matlab的 数字锁相环的仿真设计 作者姓名 专业名称电子信息工程 指导教师 2014年5月

学生:(签字)学号: 答辩日期:2014 年 5 月24 日指导教师:(签字)

目录 摘要 (1) Abstract (1) 1 绪论 (2) 1.1 本文研究背景 (2) 1.2 本文研究意义 (2) 1.3 锁相环和仿真方式 (2) 1.3.1 锁相环 (2) 1.3.2 仿真方式 (2) 1.4 本文研究内容 (3) 2 模拟锁相环Matlab仿真 (3) 2.1 模拟锁相环方案 (3) 2.1.1 模拟鉴相器 (3) 2.1.2 模拟低通滤波器 (6) 2.1.3 模拟压控振荡器 (7) 2.2 模拟锁相环仿真 (8) 2.3 本章小结 (9) 3 数字锁相环Matlab仿真 (10) 3.1 数字锁相环方案 (10) 3.1.1 数字鉴相器 (10) 3.1.2 数字滤波器 (12) 3.1.3 数字压控振荡器 (13) 3.2 数字锁相环仿真 (14) 3.3 本章小结 (15) 4 总结与展望 (15) 参考文献 (16) 致谢 (18)

基于Matlab的数字锁相环的仿真设计 摘要:锁相环是一种能够自动跟踪信号相位并达到锁频目的的闭环负反馈系统。数字锁相环在无线电领域得到较广泛的应用和发展。而且已经成为雷达、通信、导航等各类电子信号产品不可替代的元器件之一。锁相环的窄带跟踪性能使其得到较广泛应用。因为锁相技术在实际应用中较为复杂,所以锁相环的设计通常采用仿真设计这种方式。本次设计采用Matlab这一软件进行辅助仿真设计,完全能达到设计预期的目标。Matlab中的Simulink仿真软件,具有很强的灵活性和直观性。本次设计所采用的方法是在simulink中搭建模拟锁相的模型,并对模拟锁相环的组成、结构、设计进行不断的分析和改进。然后根据模拟锁相环的原理进行改进,并搭建数字锁相环。 关键词:锁相环;自动跟踪;matlab;simulink Simulative design of digital phase-locked loop based on Matlab Abstract:PLL is the automatic tracking system of close loop atracking signal phase. It is widely used in various fields of radio. It has become an irreplaceable part of radar, communication, navigation and all kinds of electronicsignal device. PLL is able to be widely used. Because, it has unique narrow-band tracking performance. However, because of the complexity of phase lock technique, for the design of PLL have brought great difficulty. This design uses Matlab, the simulative software for design assistance, can completely meet the design expectations. Simulink simulative software on Matlab, has strong flexibility and intuitive. Methods used by this project is to build the analog phase locked in the Simulink model, and the composition, structure, design of analog phase-locked loop of continuous improvement and analysis. It improved according to the principle of analog PLL, build digital phase-locked loop in Simulink, and then reach the simulation design of digitalphase-locked loop based on Matlab the design objective . Key words: PLL, Automatic tracking, Matlab, simulink

10种常见元器件

一、电阻 电阻器(Resistor)在日常生活中一般直接称为电阻。是一个限流元件,将电阻接在电路中后,电阻器的阻值是固定的一般是两个引脚,它可限制通过它所连支路的电流大小。阻值不能改变的称为固定电阻器。阻值可变的称为电位器或可变电阻器。理想的电阻器是线性的,即通过电阻器的瞬时电流与外加瞬时电压成正比。用于分压的可变电阻器。在裸露的电阻体上,紧压着一至两个可移金属触点。触点位置确定电阻体任一端与触点间的阻值。 端电压与电流有确定函数关系,体现电能转化为其他形式能力的二端器件,用字母R 来表示,单位为欧姆Ω。实际器件如灯泡,电热丝,电阻器等均可表示为电阻器元件。 电阻元件的电阻值大小一般与温度,材料,长度,还有横截面积有关,衡量电阻受温度影响大小的物理量是温度系数,其定义为温度每升高1℃时电阻值发生变化的百分数。电阻的主要物理特征是变电能为热能,也可说它是一个耗能元件,电流经过它就产生内能。电阻在电路中通常起分压、分流的作用。对信号来说,交流与直流信号都可以通过电阻 电阻的型号命名方法: 国产电阻器的型号由四部分组成(不适用敏感电阻)第一部分:主称,用字母表示,表示产品的名字。如R表示电阻,W表示电位器。第二部分:材料,用字母表示,表示电阻体用什么材料组成,T-碳膜、H-合成碳膜、S-有机实心、N-无机实心、J-金属膜、Y-氮化膜、C-沉积膜、I-玻璃釉膜、X-线绕。第三部分:分类,一般用数字表示,个别类型用字母表示,表示产品属于什么类型。1-普通、2-普通、3-超高频、4-高阻、5-高温、6-精密、7-精密、8-高压、9-特殊、G-高功率、T-可调。第四部分:序号,用数字表示,表示同类产品中不同品种,以区分产品的外型尺寸和性能指标等例如:R T 1 1 型普通碳膜电阻a1} 国际电阻都是以R开头,前面2个字母表示电阻的系列名称。RC表示一般厚膜电阻,例如: RC0402JR-07100KL;RL表示低阻值电阻,如RL0603JR-070R12L;RT表示高精密厚膜电阻;RJ表示薄膜电阻;RV表示高压电阻。 系列名称(RC/RT/RJ/RV等)后面的4位数表示尺寸,如0100,0201,0402,0603,0805,1206,1210,1218,2010,2512等等。 尺寸后面的字母表示误差。W=±0.05%,B=±0.1%,C=±0.25%,D=±0.5%,F=±1%,G=±2%,J=±5%,K=±10%,M=±20%误差后面的字母表示封装形式,如R表示纸带,K表示塑料编带。 封装形式后面2位数表示封装尺寸,07表示7寸盘;10表示10寸盘;13表示13寸盘。封装后面的数值表示阻值,如0R表示0欧;1K=1000欧,1M=1000 000欧。最后的L表示无铅。 主要参数: 基本规定 1、标称阻值:标称在电阻器上的电阻值称为标称值。单位:Ω、kΩ、MΩ。标称值是根据国家制定的标准系列标注的,不是生产者任意标定的。不是所有阻值的电阻器都存在。 2、允许误差:电阻器的实际阻值对于标称值的最大允许偏差范围称为允许误差。误差代码:F 、G 、J、K… (常见的误差范围是:0.01%,0.05%,0.1%,0.5%,0.25%,1%,2%,5% 等)。 3、额定功率:指在规定的环境温度下,假设周围空气不流通,在长期连续工作而不损坏或基本不改变电阻器性能的情况下,电阻器上允许的消耗功率。常见的有1/16W 、1/8W 、

相关文档