文档库 最新最全的文档下载
当前位置:文档库 › 各种化学电源

各种化学电源

各种化学电源
各种化学电源

各种化学电源1、干电池(一般是Zn---Mn电池)

(1)锌-锰干电池内的主要反应

(2)锌-锰碱性干电池内的主要反应

负极电极方程式:Zn- 2e- + 2OH- = Zn(OH)

2 (或ZnO+H

2

O)(氧化反应)

正极电极方程式:2MnO

2 + 2e- + 2H

2

O = 2 MnOOH +2OH-(还原反应)

总电极方程式:Zn + 2MnO2 + 2H2O = 2 MnOOH + Zn(OH)2 2、铅蓄电池

负极电极方程式:Pb - 2e- + SO

42- = PbSO

4

(氧化反应)

放电正极电极方程式:PbO

2 + 2e- + SO

4

2- + 4H+ = PbSO

4

+ 2H

2

O(还原反应)

总电极方程式:Pb + PbO

2 + 2H

2

SO

4

= 2PbSO

4

+ 2H

2

O

阴极电极方程式:PbSO

4+ 2e- = Pb + SO

4

2-(还原反应)

充电阳极电极方程式:PbSO

4 + 2H

2

O - 2e- = PbO

2

+ SO

4

2- + 4H+(氧化反应)

总电极方程式:2PbSO

4 + 2H

2

O = Pb + PbO

2

+ 2H

2

SO

4

3、锂电池

锂作负极,其它导体作正极

优点;质量轻,电压高,工作效率高,贮存寿命长

4、新型燃料电池(电解质为KOH溶液):

①氢——氧电池

负极电极方程式:2H

2 - 4e- + 4OH- = 4H

2

O ( H

2

从负极通入)

正极电极方程式:O

2 + 2H

2

O + 4e- = 4OH- ( O

2

从正极通入)

总电极方程式:2H

2 + O

2

= 2H

2

O

②甲烷——氧电池

负极电极方程式:CH

4 - 8 e- + 10OH- = CO

3

2- + 7 H

2

O ( CH

4

从负极通入)

正极电极方程式:2O

2 + 4H

2

O + 8e- = 8OH- ( O

2

从正极通入)

总电极方程式: CH

4 + 2O

2

+ 2KOH = K

2

CO

3

+ 3H

2

O

③甲醇——氧电池

负极电极方程式:2CH

3OH - 12 e- + 16OH- = 2CO

3

2- + 12 H

2

O

正极电极方程式:3O

2 + 6H

2

O + 12e- = 12OH- ( O

2

从正极通入)

总电极方程式:2CH

3OH + 3O

2

+ 4KOH = 2K

2

CO

3

+ 6H

2

O

④乙醇——氧电池

负极电极方程式:C

2H

5

OH - 12 e- + 16OH- = 2CO

3

2- + 11H

2

O

正极电极方程式:3O

2 + 6H

2

O + 12e- = 12OH- ( O

2

从正极通入)

总电极方程式: C

2H

5

OH + 3O

2

+ 4KOH =2K

2

CO

3

+ 5H

2

O

⑤乙烷——氧电池

负极电极方程式:2C

2H

6

- 28 e- + 36OH- =4 CO

3

2- + 24 H

2

O ( C

2

H

6

从负极通入)

正极电极方程式:7O

2 + 14H

2

O + 28e- = 28OH- ( O

2

从正极通入)

总电极方程式:2C

2H

6

+ 7O

2

+ 8KOH =4K

2

CO

3

+ 10H

2

O

⑥丙烷——氧电池

负极电极方程式: C

3H

8

- 20 e- + 26OH- = 3CO

3

2- + 17 H

2

O ( C

3

H

8

从负极通入)

正极电极方程式:5O

2 + 10H

2

O + 20e- = 20OH- ( O

2

从正极通入)

总电极方程式:C

3H

8

+ 5O

2

+ 6KOH = 3K

2

CO

3

+ 7H

2

O

5、新型燃料电池(电解质为H

2SO

4

溶液):

①氢——氧电池

负极电极方程式:2H

2 - 4e- = 4H+ ( H

2

从负极通入)

正极电极方程式:O

2 + 4H+ + 4e- = 2H

2

O ( O

2

从正极通入)

总电极方程式:2H

2 + O

2

= 2H

2

O

②甲烷——氧电池

负极电极方程式:CH

4 - 8 e- + 2H

2

O = CO

2

+ 8H+ ( CH

4

从负极通入)

正极电极方程式:2O

2 + 8H+ + 8e- = 4H

2

O ( O

2

从正极通入)

总电极方程式: CH

4 + 2O

2

= CO

2

+ 2H

2

O

③甲醇——氧电池

负极电极方程式:2CH

3OH - 12 e- + 2H

2

O = 2CO

2

+ 12H+

正极电极方程式:3O

2 + 12H+ + 12e- = 6H

2

O ( O

2

从正极通入)

总电极方程式:2CH

3OH + 3O

2

= 2CO

2

+ 4H

2

O

④乙醇——氧电池

负极电极方程式:C

2H

5

OH - 12 e- + 3H

2

O = 2CO

2

+ 12H+

正极电极方程式:3O

2 + 12H+ + 12e- = 6H

2

O ( O

2

从正极通入)

总电极方程式: C

2H

5

OH + 3O

2

= CO

2

+ 3H

2

O

⑤乙烷——氧电池

负极电极方程式:2C

2H

6

- 28 e- + 8H

2

O = 4CO

2

+ 28H+ ( C

2

H

6

从负极通入)

正极电极方程式:7O

2 + 28H+ + 28e- = 14H

2

O ( O

2

从正极通入)

总电极方程式:2C

2H

6

+ 7O

2

= 4CO

2

+ 6H

2

O

⑥丙烷——氧电池

负极电极方程式: C

3H

8

- 20 e- + 6H

2

O = 3CO

2

+ 20H+ ( C

3

H

8

从负极通入)

正极电极方程式:5O

2 + 20 H+ + 20 e- = 10H

2

O ( O

2

从正极通入)

总电极方程式:C

3H

8

+ 5O

2

= 3CO

2

+ 4H

2

O

6、新型燃料电池(电解质为熔融金属氧化物):

①氢——氧电池

负极电极方程式:2H

2 - 4e- + 2O2- = 2H

2

O ( H

2

从负极通入)

正极电极方程式:O

2 + 4e- = 2O2- ( O

2

从正极通入)

总电极方程式:2H

2 + O

2

= 2H

2

O

②甲烷——氧电池

负极电极方程式:CH

4 - 8 e- + 4O2- = CO

2

+ 2H

2

O ( CH

4

从负极通入)

正极电极方程式:2O

2 + 8e- = 4O2- ( O

2

从正极通入)

总电极方程式: CH

4 + 2O

2

= CO

2

+ 2H

2

O

③甲醇——氧电池

负极电极方程式:2CH

3OH - 12 e- + 6O2- = 2CO

2

+ 4H

2

O

正极电极方程式:3O

2 + 12e- = 6O2- ( O

2

从正极通入)

总电极方程式:2CH

3OH + 3O

2

= 2CO

2

+ 4H

2

O

④乙醇——氧电池

负极电极方程式:C

2H

5

OH - 12 e- + 6O2- = 2CO

2

+ 3H

2

O

正极电极方程式:3O

2 + 12e- = 6O2- ( O

2

从正极通入)

总电极方程式: C

2H

5

OH + 3O

2

= CO

2

+ 3H

2

O

⑤乙烷——氧电池

负极电极方程式:2C

2H

6

- 28 e- + 14O2- = 4CO

2

+ 6H

2

O ( C

2

H

6

从负极通入)

正极电极方程式:7O

2 + 28e- = 14O2- ( O

2

从正极通入)

总电极方程式:2C

2H

6

+ 7O

2

= 4CO

2

+ 6H

2

O

⑥丙烷——氧电池

负极电极方程式: C

3H

8

- 20 e- + 10O2- = 3CO

2

+ 4H

2

O ( C

3

H

8

从负极通入)

正极电极方程式:5O

2 + 20e- = 10O2- ( O

2

从正极通入)

总电极方程式:C

3H

8

+ 5O

2

= 3CO

2

+ 4H

2

O

7、新型燃料电池(电解质为熔融金碳酸盐):

①氢——氧电池

负极电极方程式:2H

2 - 4e- + 2CO

3

2- = 2CO

2

+ 2H

2

O ( H

2

从负极通入)

正极电极方程式:O

2 + 4e- + 2CO

2

= 2CO

3

2- ( O

2

从正极通入)

总电极方程式:2H

2 + O

2

= 2H

2

O

②甲烷——氧电池

负极电极方程式:CH

4 - 8 e- + 4CO

3

2- = 5CO

2

+ 2H

2

O ( CH

4

从负极通入)

正极电极方程式:2O

2 + 8e- + 4CO

2

= 4CO

3

2- ( O

2

从正极通入)

总电极方程式: CH

4 + 2O

2

= CO

2

+ 2H

2

O

③甲醇——氧电池

负极电极方程式:2CH

3OH - 12 e- + 6 CO

3

2-- = 8CO

2

+ 4H

2

O

正极电极方程式:3O

2 + 12e- + 6CO

2

= 6CO

3

2- ( O

2

从正极通入)

总电极方程式:2CH

3OH + 3O

2

= 2CO

2

+ 4H

2

O

④乙醇——氧电池

负极电极方程式:C

2H

5

OH - 12 e- + 6 CO

3

2- = 8CO

2

+ 3H

2

O

正极电极方程式:3O

2 + 12e- + 6CO

2

= 6CO

3

2- ( O

2

从正极通入)

总电极方程式: C

2H

5

OH + 3O

2

= CO

2

+ 3H

2

O

⑤乙烷——氧电池

负极电极方程式:2C

2H

6

- 28 e- + 14 CO

3

2- = 16CO

2

+ 6H

2

O ( C

2

H

6

从负极通入)

正极电极方程式:7O

2 + 28e- + 14CO

2

= 14CO

3

2- ( O

2

从正极通入)

总电极方程式:2C

2H

6

+ 7O

2

= 4CO

2

+ 6H

2

O

⑥丙烷——氧电池

负极电极方程式: C

3H

8

- 20 e- + 10 CO

3

2- = 13CO

2

+ 4H

2

O ( C

3

H

8

从负极通入)

正极电极方程式:5O

2 + 20e- + 10CO

2

= 10CO

3

2- ( O

2

从正极通入)

总电极方程式:C

3H

8

+ 5O

2

= 3CO

2

+ 4H

2

O

●铝——氧电池(电解质为盐溶液)

负极电极方程式:4Al - 12 e- + 12OH- = 4Al(OH)

3

正极电极方程式:3O

2 + 6H

2

O + 12e- = 12OH- ( O

2

从正极通入)

总电极方程式:4Al + 3O

2 + 6H

2

O = 4Al(OH)

3

8、特殊记忆电池

①以铜片、铝片为电极,用导线连接,浸入浓硝酸溶液中,试判断铜片、铝片各作什么极?写出电极反应及总的反应方程式。

负极电极方程式:(Cu):Cu-2e-=Cu2+

正极电极方程式:(Al):4H++2NO

3- +2e-= 2NO

2

↑+2H

2

O、

总电极方程式:Cu+4HNO

3(浓) = Cu(NO

3

)

2

+ 2NO

2

↑+2H

2

O

②以镁片、铝片为电极,用导线连接,浸入NaOH溶液中,试判断镁片、铝片各作什么极?写出电极反应及总的反应方程式。

负极电极方程式:(Al):2Al+8 OH-- 6e-=2AlO

2-+ 4H

2

O

正极电极方程式:(Mg):6H

2O+6e-= 6OH- +3H

2

总电极方程式:2Al+2NaOH+6H

2O = 2NaAlO

2

+3H

2

↑+4H

2

O

③以锌片、铝片为电极,用导线连接,浸入浓硫酸溶液中,试判断锌片、铝片各作什么极?写出电极反应及总的反应方程式。

负极(Zn):Zn - 2e-=Zn2+

正极(Al):4H+ + SO

42- + 2e-= SO

2

↑+ 2H

2

O

总的反应方程式:Zn+2H

2SO

4

(浓)==ZnSO

4

+SO

2

↑+2H

2

O

化学电源教案

化学电源 一、促进观念建构的教学分析 1.教材及课标相关内容分析 前一节已经学习了电池是利用氧化还原反应将化学能转化成电能的装置。本课时主要是让学生了解几种常见的化学电源在社会生产中的应用;通过碱性锌锰电池、蓄电池和燃料电池进一步理解原电池的概念和原理;了解化学电源的发展以及电池对环境造成的污染,增强环保意识。 2.学生分析: 前的第一课时学习了:原电池的概念、原理、组成原电池的条件。由于学生之前没有电化学的基础,理解原电池原理有一定的难度。 3.我的思考: 通过视频、学生讨论、交流等方式导出生活中同学们熟悉的各种电池的发展过程,增强学生的创新精神;然后依次的分析,各种化学电源的原理,电池的缺陷,既增强了学生的分析,综合,应变能力,同时又促进了对原电池原理的进一步理解。 二、体现观念建构的教学目标 1.知识与技能: 了解一次电池,二次电池,燃料电池的反应原理,性能及其应用;会判断电池的优劣。 2.过程与方法: 本设计以开放式教学为指导思想,辅助以视频、讨论、归纳等手段,让学生在不断解决问题的过程中,建构理论知识,增强实际分析、解决问题的能力和创新精神。 3.情感态度价值观: 认识化学电源在人类生产、生活中的重要地位;了解环境保护在生产生活中的重要作用。培养学生的自主学习能力,信息搜集处理能力及团队合作精神。 三、教学重、难点及处理策略 一次电池,二次电池,燃料电池的反应原理,性能及其应用是教学重点,化学电池的反应原理是教学难点。本节课主要通过学生参与收集有关一次电池、二次电池、燃料电池的材料,视频展示、课堂讨论交流以及联系前面所学知识,将各类电池的结构特点、反应原理、性能、以及适用范围进行归纳总结,让学生主动对化学电池的反应原理进行建构。 四、促进观念建构的教学整体思路与教学结构图 教师活动学生活动

电化学基础知识点总结

电化学基础知识点总结 装置特点:化学能转化为电能。 ①、两个活泼性不同的电极; 形成条件:②、电解质溶液(一般与活泼性强的电极发生氧化还原反应); 原 ③、形成闭合回路(或在溶液中接触) 电 负极:用还原性较强的物质作负极,负极向外电路提供电子;发生氧化反应。 池 基本概念: 正极:用氧化性较强的物质正极,正极从外电路得到电子,发生还原反应。 原 电极反应方程式:电极反应、总反应。 理 氧化反应 负极 铜锌原电池 正极 还原反应 反应原理:Zn-2e -=Zn 2+ 2H ++2e -=2H 2↑ 电解质溶液 1.下列变化中,属于原电池反应的是( ) A .在空气中金属铝表面迅速氧化形成保护层 B .镀锌铁表面有划损时,也能阻止铁被氧化 C .红热的铁丝与水接触表面形成蓝黑色保护层 D .铁与稀H 2SO 4反应时,加入少量CuSO 4溶液时,可使反应加速 2.100 mL 浓度为2 mol/L 的盐酸跟过量的锌片反应,为加快反应速率,又不影响生成氢气的量,可采用的方法是( ) A .加入适量的6 mol/L 的盐酸 B .加入数滴氯化铜溶液 C .加入适量的蒸馏水 D .加入适量的氯化钠溶液 3.称取三份锌粉,分别盛于甲、乙、丙三支试管中,按下列要求另加物质后,塞上塞子,定时测定生成氢气的体积。甲加入50 mL pH =3的盐酸,乙加入50 mL pH =3的醋酸,丙加入50 mL pH =3的醋酸及少量胆矾粉末。若反应终了,生成氢气的体积一样多,且没有剩余的锌。请用“>”“=”或“<”回答下列各题。 失e -,沿导线传递,有电流产生 溶解 不断 移 向 阳离 子

化学电源知识点归纳总结

二次电池:电池放电后,可以用充电方法使活性物质恢复到放点钱状态,从而能够再次放电的一类电池,充放电过程可以反复进行; 储备电池:在储存期间,电解质和电极活性物质分离或电解质处于惰性状态,使用前注入电解质或通过其他方式使电池激活,电池立即开始工作。 燃料电池:电池中的电极材料是惰性的,是活性物质进行电化学反应的场所,而政府及活性物质分别储存在电池体外,当活性物质连续不断的注入电池时,电池就能不断的输出电能; 1.3 化学电源的基本工作原理 化学电源是化学能直接转换成电能的装置。 两个必要条件:氧化还原反应、电子经过外线路 成流反应:电池工作是,电极上发生的产生电能的电化学反应 活性物质:电极上能够参加电化学反应、释放电能的物质 (1)电极:电池的核心 活性物质:电极中参加成流反应、产生电能的物质 导电骨架:传导电子,使电流分布均匀;支撑活性物质 活性物质:电化学活性高、组成电池电动势高(正极活性物质电势尽可能正、负 极负)、质量比容量大和体积比容量大(电化当量,密度)、在电解液中 化学稳定性好、电子导电性好、资源丰富、环境友好。正极常用 金属氧化物、氯化物、氟化物、硫化物(MnO2、PbO2、O2、AgO 、 NiOOH )。负极一般为电位较低的金属(Zn Pb H2 Li Cd ) 集流体/导电骨架:导电性好、机械强度高、加工性好、化学稳定性和电化学稳 定性好、成本资源环保。Pb 、Ni 、钢、Al 、Cu 、Ag (2)电解质:正负极间传递电荷,溶液导电;参加电极反应 电解质要求:电导率高,溶液欧姆压降小;对固体电解质,离子导电性好, 电子绝缘;化学性质稳定,不与活性物质发生反应;电化学 稳定窗口范围宽;沸点高、冰点低,使用温度范围宽;无毒 无污染、成本低 电解质分类:按形态:液态(水溶液、非水溶液)、固态、胶态电解质 (3)隔离物:隔膜、隔板(防止电池正负极接触,内部短路,同时吸蓄电解液) 要求:孔径、孔隙率、孔隙的均匀分布;电解质粒子运动阻力小;电子的 良好绝缘体;良好的机械强度和抗弯曲能力(抗拉、阻止电极上脱 落的活性物质微粒;阻止枝晶的生长穿透);化学稳定性好(耐电 化学电源知识点归纳总结

化学电源 优秀教案

化学电源 一、考点、热点回顾 1.了解电池的一般分类, 2.了解常见的化学电源的种类及其原理,知道它们在生产生活和国防中的应用 3.掌握几种典型化学电池的电极反应 重点:掌握几种典型电池的用途和特点。 难点:掌握几种典型化学电池的电极反应。 二、典型例题 【知识网络】 常见化学电源的原理及电极反应式的书写 1.一次电池(以碱性锌锰电池为例) 总反应为Zn+2MnO2+2H2O===2MnOOH+Zn(OH)2。 负极:Zn+2OH--2e-===Zn(OH)2; 正极:2MnO2+2H2O+2e-===2MnOOH+2OH-。 2.二次电池 (1)铅蓄电池是最常见的二次电池,总反应为 Pb(s)+PbO2(s)+2H2SO4(aq)放电 2PbSO4(s)+2H2O(l) 充电

(2)二次电池充电时的电极连接 3.燃料电池 氢氧燃料电池是目前最成熟的燃料电池,可分为酸性和碱性两种。 O2发生正极反应。 ②书写电极反应时,注意介质的参与反应。 【知识要点】 几种常见的电池(化学电源) 1、一次电池(干电池)放电之后不能充电,内部的氧化还原反应是不可逆的。碱性锌锰电池构成:负极是锌,正极是MnO2,电解质是KOH 负极:Zn+2OH--2e-=Zn(OH)2;正极:2MnO2+2H2O+2e-=2MnOOH+2OH-总反应式:Zn+2MnO2+2H2O=2MnOOH+Zn(OH)2 2、二次电池 ①铅蓄电池 放电电极反应: 负极:Pb(s)+SO42-(aq)-2e-=PbSO4(s);

正极:PbO2(s)+4H+(aq)+SO42-(aq)+2e-=PbSO4(s)+2H2O(l) 总反应式:Pb(s)+PbO2(s)+2H2SO4(aq)=2PbSO4(s)+2H2O(l) 充电电极反应: 阳极:PbSO4(s)+2H2O(l)-2e-=PbO2(s)+4H+(aq)+SO42-(aq); 阴极:PbSO4(s)+2e-=Pb(s)+SO42-(aq) 总反应:2PbSO4(s)+2H2O(l)=Pb(s)+PbO2(s)+2H2SO4(aq) (aq) 2PbSO4(s) +2H2O(l) 总反应方程式:Pb (s)+ PbO2(s) +2H2SO4 ②镍一镉碱性蓄电池 负极:Cd+2OH--2e-=Cd(OH)2; 正极:2NiO(OH)+2H2O+2e-=2Ni(OH)2+2OH- 总反应式:Cd +2NiO(OH)+2H2 O2Ni(OH)2+ Cd(OH)2 3、燃料电池

高考常见的化学电源

高中常见的原电池电极反应式的书写 一次电池 2、铁碳电池:(负极—Fe、正极—C、电解液H2CO3 弱酸性) 负极: Fe–2e-==Fe2+ 正极: 2H++2e-==H2↑ 离子方程式 Fe+2H+==H2↑+Fe2+ 3、铁碳电池:(负极—Fe、正极—C、电解液中性或碱性) 负极: 2Fe–4e-==2Fe2+ 正极: O2+2H2O+4e-==4 OH 化学方程式 2Fe+O2+2H2O==2Fe(OH)2 4Fe(OH)2+O2+2H2O==4Fe(OH)3 2Fe(OH)3==Fe2O3 +3 H2O (铁锈的生成过程) 5、普通锌锰干电池:(负极—Zn、正极—C 、电解液NH4Cl、MnO2的糊状物) 负极:Zn–2e-==Zn2+ 正极:2MnO2+2H++2e-==Mn2O3+H2O 化学方程式 Zn+2NH4Cl+2MnO2=ZnCl2+Mn2O3+2NH3↑ 6、碱性锌锰干电池:(负极—Zn、正极—C、电解液KOH 、MnO2的糊状物) 负极: Zn + 2OH– 2e-== Zn(OH)2 正极: 2MnO2 + 2H2O + 2e-==2MnOOH +2 OH- 化学方程式 Zn +2MnO2 +2H2O == Zn(OH)2 + MnOOH 7、银锌电池:(负极—Zn、正极--Ag2O、电解液NaOH ) 负极:Zn+2OH––2e-== Zn(OH)2 正极:Ag2O + H2O + 2e-== 2Ag + 2 OH- 化学方程式 Zn + Ag2O + H2O == Zn(OH)2 + 2Ag 8、铝–空气–海水(负极--铝、正极--石墨、铂网等能导电的惰性材料、电解液--海水) 负极:4Al-12e-==4Al3+ 正极:3O2+6H2O+12e-==12OH- 总反应式为: 4Al+3O2+6H2O===4Al(OH)3(铂网增大与氧气的接触面) 9、镁---铝电池(负极--Al、正极--Mg 电解液KOH) 负极(Al): 2Al + 8 OH–- 6e- = 2AlO2–+4H2O 正极(Mg): 6H2O + 6e- = 3H2↑+6OH– 化学方程式: 2Al + 2OH– + 2H2O = 2AlO2–+ 3H2 10、锂电池一型:(负极--金属锂、正极--石墨、电解液LiAlCl4 -SOCl2) 负极:8Li -8e-=8 Li + 正极:3SOCl2+8e-=SO32-+2S+6Cl- 化学方程式 8Li+ 3SOCl2 === Li2SO3 + 6LiCl + 2S

最新化学能转化为电能教学设计

必修2《化学能转化为电能》教学设计案例 厦门集美中学化学组韩冬 一.教材分析与教学思路 1.教材分析 案例章节:《普通高中标准实验教科书(苏教版)》必修2专题二第三单元化学能转化为电能(第一课时) 内容分析:本单元知识内容在必修1中,讲到了很多的电解的生活实例但还没有形成具体的知识概念。教材利用活动与探究铜锌原电池的装置,总结出原电池的原理。通过实验现象的分析出两极的反应方程式,通过上面知识的构建总结出原电池的原理,提出原电池的概念。最后设计了交流与讨论钢铁的吸氧腐蚀来巩固学生对原电池的理解。 2. 教学思路与设计 本节课属于电化学的内容,学生第一次接触到电化学理论会接受起到会比较困难。根据课标要求:要学生能举例说明化学能与电能的转化关系及其应用,并能用生活中的材料制作简易电池。要求从知识角度上不高,在化学选修中还会继续学习。所以在设计这节课的主要以提升学生学习兴趣为主不拓展太多内容。根据前苏联教育家维果茨基提出的“最近发展区”理论,在提出原电池理论前应结合学生已有的生活体验和对电的感性知识给学生搭建一个平台。 在课的引入时,我用“借实验用品”的方式来完成第一个环节也就是借用学生在生活中接触很多的不同面值的硬币和面巾纸来完成。通过用灵敏电流表来测试硬币原电池的电流,来激发学生的学习兴趣和热情和提高参与度,同时也为学生提出问题如何解释电流产生的原因。为下一个环节提供了铺垫,为了更好的解释电流产生的原因给学生提供铜锌原电池的材料让学生按照发给学案内容完成书上的实验内容,并记录现象。做完实验交流结果,引出原电池的概念原理和氧化还原反应之间的关系及书写铜锌原电池的电极反应。通过投影生活中常见的案例练习来巩固原电池的概念理解通过习题讲述原电池的应用。实验探究分析课前硬币发电实验中如何利用电流表确定正负极,及哪种材料更为活泼,让学生知道化学就在身边和在生活中的应用。最后讨论交流钢铁的腐蚀完成吸氧腐蚀的内容,这部分以了解为主不拓展太多。 二. 三维目标

化学专题复习:电化学基础(完整版)

化学专题复习:电化学基础(完整版)

————————————————————————————————作者:————————————————————————————————日期:

I F Z I I I F Z 高考化学专题复习:电化学基础 要点一 原电池、电解池、电镀池的比较 原电池 电解池 电镀池 定 义 将化学能转变成电能的装置 将电能转变成化学能的装置 应用电解原理在某些金属表面镀上一层其它金属的装置。一种特殊的电解池 装 置 举 例 形 成 条 件 ①活动性不同的两电极(连接) ②电解质溶液(电极插入其中 并与电极自发反应) ③形成闭合回路 ①两电极接直流电源 ②两电极插人电解质溶液 ③形成闭合回路 ①镀层金属接电源正极,待镀金属接电源负极 ②电镀液必须含有镀层金属的离子 电 极 名 称 负极:较活泼金属; 正极:较不活泼金属(或能导电的非金属等) 阳极:电源正极相连的电极 阴极:电源负极相连的电极 阳极:镀层金属; 阴极:镀件 电 子 流 向 负极正极 电源负极 阴极 电源正极 阳极 电源负极阴极 电源正极 阳极 电 极 反 应 负极(氧化反应):金属原子失电子; 正极(还原反应):溶液中的阳离子得电子 阳极(氧化反应):溶液中的阴离子失电子,或金属电极本身失电子; 阴极(还原反应):溶液中的阳离子得电子 阳极(氧化反应):金属电极失电子; 阴极(还原反应):电镀液中阳离子得电子 离 子流向 阳离子:负极→正极(溶液中) 阴离子:负极←正极(溶液中) 阳离子→阴极(溶液中) 阴离子→阳极(溶液中) 阳离子→阴极(溶液中) 阴离子→阳极(溶液中) 练习1、把锌片和铁片放在盛有稀食盐水和酚酞试液 混合溶液的玻璃皿中(如图所示),经一段时间后, 观察到溶液变红的区域是( ) A 、I 和III 附近 B 、I 和IV 附近 C 、II 和III 附近 D 、II 和IV 附近

化学电源知识点 (1)

化学电源 一、化学电池: 化学电池,是一种能将化学能直接转变成电能的装置,它通过化学反应,消耗某种化学物质,输出电能。它包括一次电池、二次电池和燃料电池等几大类。 判断一种电池的优劣或是否符合某种需要,主要看这种电池单位质量或单位体积所能输出电能的多少(比能量,单位是(W·h)/kg, (W·h)/L),或者输出功率的大小(比功率,W/kg, W/L)以及电池的可储存时间的长短。除特殊情况外,质量轻、体积小而输出点能多、功率大、可储存时间长的电池,更适合使用者的需要。化学电池的主要部分是电解质溶液,和浸在溶液中的正极和负极,使用时将两极用导线接通,就有电流产生,因而获得电能。化学电池放电到一定程度,电能减弱,有的经充电复原又可使用,这样的电池叫蓄电池,如铅蓄电池、银锌电池等;有的不能充电复原,称为原电池,如干电池、燃料电池等。 二、不同种类的电池: (一)一次电池 一次电池的活性物质(发生氧化还原反应的物质)消耗到一定程度,就不能使用了。一次电池中电解质溶液制成胶状,不流动,也叫干电池。常用的有普通的锌锰干电池、碱性锌锰电池、锌汞电池、镁锰干电池等。 常见的一次电池: (1)普通锌锰干电池 锌锰干电池是最常见的化学电源,分酸性碱性两种。干电池的外壳(锌)是负极,中间的碳棒是正极,在碳棒的周围是细密的石墨和去极化剂MnO2的混合物,在混合物周围再装入以NH4Cl溶液浸润ZnCl2,NH4Cl和淀粉或其他填充物(制成糊状物)。为了避免水的蒸发,干电池用蜡封好。干电池在使用时的电极反应为 负极:Zn —2e—=Zn2+ 正极:2NH4+ + 2e—+ 2MnO2= 2NH3+Mn2O3+ H2O 总反应:Zn + 2MnO2+ 2NH4+= Mn2O3+ 2NH3+ Zn2++H2O (2)碱性锌锰干电池 负极:Zn +2OH——2e—=Zn(OH)2 正极:2MnO2+2H2O +2e—=2MnOOH +2OH— 总反应:Zn +2MnO2+2H2O=2MnOOH +Zn(OH)2 (3)银一锌电池 电子手表、液晶显示的计算器或一个小型的助听器等所需电流是微安或毫安级的,它们所用的电池体积很小,有“纽扣”电池之称。它们的电极材料是Ag2O和Zn,所以叫银一锌电池。电极反应和电池反应是: 负极:Zn+2OH-—2e—=Zn(OH)2 正极:Ag2O+H2O+2e—=2Ag+2OH-

化学电源

化学电源 一、名词解释 1、自放电:电池开路时,在一定条件下,储存一段时间后,容量自行降低的性能。 2、不可逆硫酸盐化:是伏击活性物质在一定条件下生成坚硬而粗大的硫酸铅,它不同于铅在正常放电时生成的硫酸铅,几乎不溶解,所以在充电时很难或者不能转化为活性物质—海绵铅,是电池容量大大降低。 3、记忆效应:镉镍电池长期进行浅充放循环后再进行深放电时,表现出明显的容量损失和放电电压的下降,经数次全充放电循环后,电性能还可以得到恢复,这种现象称为记忆效应。 4、锌锰电池:锌锰电池是以锌为负极,二氧化锰为正极的电池系列。 5、燃料电池:燃料电池是等温地将燃料和氧化剂中的化学能直接转化为电能的一种电化学的发电装置。 6、锂电池:以锂作为负积的化学电源体系称为锂电池。 7、锂离子电池:是锂二次电池基础上发展起来的一种离子嵌入式电池。 8、一次电池:一次电池也称为原电池,是指放点后不能用充电方法是它恢复到放电以前的状态的一类电池。 9、二次电池:二次电池也称为蓄电池,电池放点后可用充电方法使活性物质恢复到放电以前的状态,从而能够再次放电,充放电过程能反复进行。 10、活性物质:活性物质是指电池放电时通过化学反应能产生电能的电极材料。 11、氢镍电池:MH-Ni电池以金属氢化物为负极,氢化镍电极为正极,氢氧化钾溶液为电解液。 12、工作电压:电池的工作电压又称负载电压,放电电压是指有电流流过外电路时电池两极之间的电势差。 13、开路电压:电池的开路电压是两极间所连接的外线路处于断路时两极间的电势差。 14、终止电压:指电池放电时,电压下降到电池不宜再继续放电的最低工作电压值。 15、镉镍电池:镉镍电池正极采用镍的氧化物,负极采用金属镉,电解质采用氢氧化钾溶液。 16、化学电源:将化学反应产生的能量直接转化为电能的装置称为化学电源。 17、激活电池:储备电池也称为激活电池,在储存期间电解质或电极活性物质分离或电解质处于惰性状态,使用前注入电解质或其他方式使电池激活,电池立即开始工作。 18、循环寿命:在一定的充放电制度下,电池容量降到某一规定值之前电池所能承受的循环次数称为蓄电池的循环寿命。 19、电化学电容器:电化学电容器作为一种新型的储能装置,存储电能的原理是利用电极表面的双电层或生成的二维或准二维法拉第反应。 20、碱锰电池:以锌为负极,以二氧化锰为正极以氢氧化钾为电解液的电池。 21、液流电池:指电池的正极和负极物质均为液态式的氧化还原电对的一类电池,正负极活性物质分别放在两个容器内,电池工作时,分别通过循环泵进入电堆内发生 22、铅酸蓄电池:铅酸蓄电池的正极活性物质是二氧化铅,负极活性物质是海绵状金属铅,电解液是稀硫酸水溶液。

化学电源》教学设计

《化学电源》教学设计 宝安区龙华中学邓丽瑛 一、教学设想 动手实践、自主探索与合作交流是新课程标准强调学生学习的重要方式。在教学过程中,为了更好的指导学生自主学习、合作学习、自主探索,在实践中获得知识,从而体现建构主义“以学生为中心”的教育思想,我将教材内容与研究性学习结合在一起,根据学生的年龄特征及认知规律,设计了“由实践到理论,理论指导实践”的教学思路。 二、教材分析 1.教材的地位和作用 《化学电源》选自普通高中课程标准实验教科书(山东科技版)《化学反应原理》(选修)第一章第三节。在学习了原电池的工作原理后,通过对化学电源的学习,可以使学生了解原电池的实际应用,加深学生对原电池原理的理解,使学生的认识上升。 2.教学目标 根据课程标准、教材内容的特点,结合学生的实际情况,确定如下教学目标。 (1)知识与技能 ①通过查阅资料,了解电池的发明发展史,认识电池的分类、构造、主要用途及对环境的危 害,培养获取、分析、加工、利用信息的技能。 ②了解三种常见化学电源的构造、工作原理及应用,并能设计一些简单的原电池装置。 ③通过实验探究巩固学生实验操作的基本理论与技能。 (2)过程与方法 ①通过查阅资料,使学生感悟求知过程,拓展所学的知识,培养学生收集处理信息,分析归纳的能力。 ②通过用Flash展示三类化学电源的工作原理、探究过程的体验与交流,培养学生实验设计的能力、发散式思维能力、创新能力、表达能力、与人沟通交流、合作的能力,锻炼学生的思维品质,

培养创新精神。 ③使学生体会由实践到理论、再由理论指导实践的科学方法。 (3)情感态度与价值观 ①通过资料的查找,激发学生探索化学科学奥秘的兴趣,使学生保持对科学的求知欲。 ②通过实验探究,让学生尝试获得成功的体验,培养他们的创新精神和一丝不苟的科 学态度,激发了学生对生活的热爱和憧憬 ③通过关注废旧电池的污染,渗透“绿色化学”意识教育,增强学生的环保意识,激 发学生的社会责任感。 3.教学重点、难点 重点:三种常见化学电源的基本构造及工作原理、设计化学电池的探究。 难点:三种常见化学电源的基本构造及工作原理。 三、教学方法 本节内容较为新颖,但课程标准对化学电源的要求较低,故主要运用了如下教学方法: 1.发现学习:美国教育家布鲁纳认为,学生学习的基本结构是通过学生的发现去构造的。因此,课前教师先提出关于化学电源的课题知识(见实验报告表1),学生自由选择一主题利用信息源进行收集资料,教师从 旁引导学生自己进行分析整合,帮助学生沿着知识框架不断攀升,使学生对化学电源的理解产生一个新的飞跃。 2.协作式教学法:本节课的教学过程始终贯穿着协作教学法,体现了皮亚杰建构主义理论,例如:课前收集资料、调查结果的汇报交流、实验探究过程等。 3.实验探究法:美国教育家杜威认为,知识绝对不是固定、永恒不变的,它是作为探究 过程的结果,同时也是作为另一个探究过程的起点。实验探究过程让学生获得知识,体验成功的喜悦,同时激发他们向更高目标发出挑战。 4.形象教学法:教学中运用实物、视频、生动的动画课件,强调重点、分散难点,将具 体感知和理论思维相结合,提高理论教学和实验教学的直观性、生动性和趣味性。 四、学习方法 “教是为了不教,学是为了会学” ,教学的落脚点就是为了让学生“会学”即让学生自

常见化学电源

化学学案10 第二章化学反应与能量 第二节化学能与电能(第二课时)姓名: 【学习目标】 1、了解干电池、充电电池、燃料电池的工作原理。 2、能正确书写三类电池的电极反应及电池反应。 二、发展中的化学电源 (1)干电池(普通锌锰电池) 负极(Zn): 正极(C):2NH+4+2e-===2NH3↑+H2↑ 总反应: 特点:a:一次性电池,不可逆。 b:用KOH代替NH4Cl能提高性能,延长寿命。 (2)充电电池 充电电池又称二次电池,放电时进行氧化还原反应,将能转化为能。 充电时可以逆向进行反应,将能转化为能。 ①铅蓄电池:最早使用的电池是铅蓄电池。 负极(Pb): 正极(PbO2): 总反应式:Pb+PbO2+2H2SO4===2PbSO4+2H2O。 ②镍铬电池:体积小,方便携带,使用寿命比铅蓄电池长。 负极:正极:电解质溶液: ③锂电池:质量小,污染小。 负极: (3)燃料电池 燃料电池与干电池和蓄电池的主要区别: 反应物质不是贮存在电池内部,而是用外加设备不断提供燃料。 所以,燃料电池的正负极均不参加反应,一般都是或。 电解质溶液可以是,也可以是。 ①氢氧燃料电池 酸性环境:负极: 正极: 总反应式: 碱性或中性环境:负极: 正极: 总反应式:

②甲烷燃料电池:以KOH 溶液为电解质溶液 负极: 正极: 总反应式: 【课后练习】 1.日常所用干电池的电极分别为碳棒(上面有铜帽)和锌皮,以糊状NH 4Cl 和ZnCl 2作电解质(其中加入MnO 2吸收H 2),电极反应式可简化为: Zn -2e -===Zn 2+,2NH +4+2e -===2NH 3↑+H 2↑(NH 3与Zn 2+能生成一种稳定的物质)。 根据上述判断,下列结论正确的是( ) A .Zn 为正极,碳为负极 B .Zn 为负极,碳为正极 C .工作时,电子由碳极经过外电路流向Zn 极 D .长时间连续使用时,内装糊状物可能流出腐蚀用电器 2.汽车的启动电源常用铅蓄电池。 其结构如下图所示,放电时的电池反应如下: PbO 2+Pb +2H 2SO 4===2PbSO 4+2H 2O 根据此反应判断下列叙述中正确的是( ) A .PbO 2是电池的负极 B .Pb 是负极 C .PbO 2得电子,被氧化 D .电池放电时,溶液酸性增强 3.燃料电池是目前电池研究的热点之一。现有某课外小组自制的氢氧燃料电池,如图所示, a 、 b 均为惰性电极。下列叙述不正确的是( ) A .a 极是负极,该电极上发生氧化反应 B .b 极反应是O 2+4OH --4e -===2H 2O C .总反应方程式为2H 2+O 2===2H 2O D .氢氧燃料电池是一种具有应用前景的绿色电源 4.下面是四个化学反应,你认为理论上不可用于设计原电池的化学反应是( ) A .2Al +2NaOH +2H 2O===2NaAlO 2+3H 2↑ B .2H 2+O 2=====点燃 2H 2O C .Mg 3N 2+6H 2O===3Mg(OH)2↓+2NH 3↑ D .CH 4+2O 2=====点燃CO 2+2H 2O 5.关于化学电源的叙述,错误的是( ) A .最早使用的化学电池是锌锰电池 B .在干电池中,碳棒只起导电作用,并不参加化学反应 C .镍镉电池不能随意丢弃的主要原因是镍、镉的资源有限,价格昂贵 D .燃料电池是一种高效、环保的新型化学电源 6.可用于电动汽车的铝-空气燃料电池,通常以NaCl 溶液或NaOH 溶液为电解质溶液,铝合金为负极,空气电极为正极。下列说法正确的是( ) A .以NaCl 溶液或NaOH 溶液为电解质溶液,正极反应都为O 2+2H 2O +4e -===4OH - B .以NaOH 溶液为电解质溶液时,负极反应为:Al +3OH --3e -===Al(OH)3↓ C .以NaOH 溶液为电解质溶液时,电池在工作过程中电解质溶液的pH 保持不变 D .电池工作时,电子通过外电路从正极流向负极

高中化学-第四章第二节 化学电源教学设计

第二节化学电源 一、教材分析 通过以前章节的学习,学生已经掌握了能量守恒定律、化学反应的限度、化学反应进行的方向和化学反应的自发性、以及原电池的原理等理论知识,为本节的学习做好了充分的理论知识准备。化学电池是依据原电池原理开发的具有很强的实用性,和广阔的应用范围的技术产品。本节的教学是理论知识在实践中的延伸和拓展,将抽象的理论和学生在日常生活中积累的感性体验联系起来,帮助学生进一步的深入认识化学电池。 现代科技的飞速发展也带动了电池工业的进步,各种新型的电池层出不穷。教材选取具有代表性的三大类电池,如生活中最常用的一次电池(碱性锌锰电池)、二次电池(铅蓄电池)、和在未来有着美好应用前景燃料电池。简介了电池的基本构造,工作原理,性能和适用范围。同时向学生渗透绿色环保的意识。 二、教学目标 1.知识目标: (1)知道日常生活中常用的化学电源和新型化学电池; (2)认识一次电池、二次电池、燃料电池等几类化学电池; (3) 会书写常用化学电池的电极反应式及总反应式。 2.能力目标: 培养学生观察、分析、整理、归纳总结、探究等能力。 3.情感、态度和价值观目标: 感悟研制新型电池的重要性以及化学电源可能会引起的环境问题,初步形成较为客观、正确的能源观,增强学生的环保意识。 三、教学重点难点 重点:化学电源的结构及电极反应的书写 难点:化学电源的结构及电极反应的书写 四、学情分析 在化学2中学生已学习了氧化还原反应的初步知识,前一节又已经学过原电池的基本内容,知道原电池的定义,形成条件,简单得电极反应等,所以在此基础上,进一步学习化学电源的知识。学生能通过对实验现象的观察、有关数据的分析和得出相关结论,具有一定的观察能力、实验能力和思维能力。 五、教学方法 1.实验探究与启发讨论法。 2.学案导学:见后面的学案。 3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习 六、课前准备 1.学生的学习准备:初步把握实验的原理和方法步骤。 2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。 七、课时安排:1课时 八、教学过程

原电池和化学电源专题复习 (2)

2018——2019学年高二化学期末复习原电池和化学电源专题复习 1银锌电池是一种常见化学电源,其反应原理:Zn+Ag2O+H2O===Zn(OH)2+2Ag,其工作 示意图如下。下列说法不正确的是() A.K+向正极移动 B.Ag2O 电极发生还原反应 C.Zn 电极的电极反应式:Zn-2e-+2OH-===Zn(OH)2 D.放电前后电解质溶液的碱性保持不变 答案 D 2.某电池以K2FeO4和Zn为电极材料,KOH溶液为电解质溶液。下列说法正确的是() A.Zn为电池的负极 B.正极反应式为:2FeO2-4+10H++6e-===Fe2O3+5H2O C.该电池放电过程中电解质溶液浓度不变 D.电池工作时OH-向正极迁移 答案 A 3.如图是某同学学习原电池后整理的学习笔记,错误的是() A.①电子流动方向 B.②电流方向 C.③电极反应 D.④溶液中离子移动方向 答案 B 4.某兴趣小组同学利用氧化还原反应:2KMnO4+10FeSO4+8H2SO4===2MnSO4+5Fe2(SO4) +K2SO4+8H2O设计如下原电池,盐桥中装有用饱和Na2SO4溶液浸泡过的琼脂。下列说法正3 确的是()

A.b电极上发生的反应:Fe2+-e-===Fe3+ B.a电极上发生氧化反应:MnO-4+8H++5e-===Mn2++4H2O C.外电路电子的流向是从a到b D.电池工作时,盐桥中的SO2-4移向甲烧杯 答案 A 5.一种光化学电池的结构如图,当光照在表面涂有氯化银的银片上时,AgCl(s)===Ag(s)+Cl(AgCl)[Cl(AgCl)表示生成的氯原子吸附在氯化银表面],接着Cl(AgCl)+e-―→Cl -(aq),若将光源移除,电池会立即恢复至初始状态。下列说法正确的是() A.光照时,电流由铂流向银 B.光照时,Pt 电极发生的反应为2Cl-+2e-===Cl2 C.光照时,Cl-向Ag电极移动 D.光照时,电池总反应:AgCl (s)+Cu+(aq)===Ag(s)+Cu2+(aq)+Cl-(aq) 6.一种锂铜可充电电池,工作原理如下图。在该电池中,非水系电解液和水系电解液被锂离子固体电解质陶瓷片(Li+交换膜)隔开。下列说法不正确的是() A.陶瓷片允许Li+通过,不允许水分子通过 B.放电时,N极为电池的正极 C.充电时,阳极反应为:Cu-2e-===Cu2+ D.充电时,接线柱A应与外接电源的正极相连

化学电源教学设计复习课程

化学电源教学设计 课标解读重点难点 1.了解电池的分类、特点及适用范围。 2.了解几类化学电池的构造、原理。 3.了解化学电源的广泛应用及废旧电池的危害。1.一次、二次、燃料电池的构造及工作原理。(重点) 2.原电池电极反应式的书写。(重难点) 化学电源 1.概念:是将化学能直接转化为电能的装置。化学电池的主要部分是电解质溶液和浸在溶液中的正极和负极,使用时将两极用导线接通,就有电流产生,因而获得电能。 2.类型①一次电池如普通锌锰电池——干电池 ②二次电池如铅蓄电池 ③燃料电池如氢氧燃料电池 常见的几种化学电池 1.一次电池(碱性锌锰电池) (1)构成:负极Zn,正极MnO2,电解质KOH。 (2)电极反应:负极:Zn+2OH--2e-===Zn(OH)2 正极:2MnO2+2H2O+2e-===2MnOOH+2OH- 总反应:Zn+2MnO2+2H2O===2MnOOH+Zn(OH)2 2.二次电池(蓄电池) (1)构成:负极Pb、正极PbO2,电解质H2SO4溶液 (2)工作原理 ①放电:负极:Pb(s)+SO2- 4(aq)-2e-===PbSO4(s) 正极:PbO2(s)+4H+(aq)+SO2- 4(aq)+2e-===PbSO4(s)+2H2O(l) 总反应:Pb(s)+PbO2(s)+2H2SO4(aq)===2PbSO4(s)+2H2O(l) ②充电时 铅蓄电池的充电反应是放电反应的逆过程。 阴极:PbSO4(s)+2e-===Pb(s)+SO2- 4(aq); 阳极:PbSO4(s)+2H2O(l)-2e-===PbO2(s)+4H+(aq)+SO2- 4(aq); 总反应:2PbSO4(s)+2H2O(l)===Pb(s)+PbO2(s)+2H2SO4(aq)。 上述充放电反应可写成一个可逆反应方程式:Pb(s)+PbO2(s)+2H2SO4(aq) 放电 充电2PbSO4(s)+2H2O(l)。 3.燃料电池 (1)工作原理 ①连续地将燃料(如氢气、烃、肼、甲醇、氨、煤气等液体或气体)和氧化剂的化学能直接转换成电能。

常见化学电源及电极反应式的书写

常见化学电源及电极反应式的书写 一、常见化学电源:(大体可分为三类) 1、燃料电池: (1)氢氧燃料电池:2H2+O2=2H2O 当电解质溶液呈酸性时; 负极:2H2-4e-=4H+正极:O2+4e-+4H+=2H2O 当电解质溶液呈碱性时;电解质溶液为KOH溶液, 负极:2H2-4e-+4OH-=4H2O 正极:O2+4e-+2H2O=4OH- (2)甲烷燃料电池:用金属铂作电极, 用KOH溶液作电解质溶液。 负极:CH4+ 10 OH--8e-==CO3 2- +7H2O 正极: 2O2+ 4H2O +8e- == 8OH- 总反应式为:CH4+ 2O2+2KOH==K2CO3+ 3H2O 用酸液作电解质溶液 负极:CH4 + 2H2O - 8e- = CO2 + 8H+ 正极:2O2 + 8H+ + 8e- = 4H2O 总反应:CH4 + 2O2 = CO2 + 2H2O (3)甲醇燃料电池:强碱作为电解质溶液 负极:2CH4O + 16OH--12e-==2CO3 2- +12H2O 正极: 3O2+ 6H2O +12e- == 12OH- 总反应式为:2CH4O + 3O2+4OH-==2CO3 2- + 6H2O (4)熔融盐燃料电池:该电池用Li2CO3和的Na2CO3熔融盐混合物作电解质,CO为阳极燃气,空气与CO2的混合气为阴极助燃气, 负极:2CO+2CO3 2- -4e-==4CO2正极:O2 + 2CO2+4e- ==2CO3 2- 总反应式为:2CO +O2==2CO2 (5)固体氧化物燃料电池:固体氧化锆—氧化钇为电解质, 这种固体电解质在高温下允许O 2-在其间通过。 负极:2H2+ 2O2--4e- = 2H2O 正极: O2+4e- = 2O 2- 总反应式为:2H2 + O2= 2H2O 2、蓄电池:

化学电源教学设计

“化学电源”教学设计 宿迁市马陵中学杜梅 一、学习目标 1.通过实验探究,认识化学能可以转化为电能;理解科学探究的意义、过程与方法。 2.了解常见的化学电源及其应用。认识研制新型电池的重要性,形成科学技术的发展观;感悟研制新型电池的重要性以及化学电源可能会引起的环境问题,形成较为客观、正确的能源观,提高开发高能清洁燃料的意识。 二、教学重点及难点 教学重点:原电池的概念、原理、组成及应用。 教学难点:从电子转移角度理解化学能向电能转化的本质、原电池的构成条件。 三、设计思路 本课从日常生活中常见的水果电池入手,提出疑问:这些电池是如何产生电流的?学生根据物理对电流的认识,提出假设:有电子的流动,因此可能在电池里发生了有电子转移的氧化还原反应。认识到可以利用自发进行的氧化还原反应中的电子转移设计原电池,将化学能转化为电能,为人类的生产、生活所用。在此基础上介绍一些常见的化学电源,以拓宽学生的知识面。 四、教学过程 【复习回顾】 1、什么是原电池? 2、原电池的工作原理是怎样的? 3、构成条件的原电池有哪些? 【过渡】原电池原理的应用: 1、研制分析化学电源; 2、促进某些氧化还原反应的进行,加快反应速率。 3、寻找钢铁防腐蚀的方法。 4、原电池的设计。 【思考】你能利用原电池反应原理,动手制作简易电池吗? 【实践活动】水果电池的制作 实验准备:水果(柠檬、番茄、桔子、葡萄或其它水果)、金属(铁丝、铜丝、锌片或铝片)、石墨电极、微安电流计、导线若干、小刀 鼓励学生利用各种自备的水果、金属片制作电池,用微安电流计或耳机测试是否能产生电流,比较电流的大小。 【交流展示】学生制作的各种水果电池 【思考】这些电池是如何产生电流的? 【学生讨论】有电子的流动,因此可能在电池里发生了有电子转移的氧化还原反应。 【引导】利用自发进行的氧化还原反应中的电子转移设计原电池,将化学能转化为电能,为人类的生产、生活所用。 【问题情景】播放神舟飞船上的燃料电池,呈现以下问题,激发学生的学习兴趣。 飞船上的燃料电池有什么样的作用?

化学电源

第四章第二节化学电源 主备人:傅晓涛辅备人:高二化学备课组 Ⅰ教学目标 一、知识与技能 1、了解一次电池与二次电池的区别。 2、学会书写一次电池、二次电池的电极反应。 3、理解燃料电池的反应原理。 二、过程与方法 4、通过查阅资料等途径了解常见化学电源的种类及工作原理,认识化学能转化为电能在生产生活中的实际意义。掌握三类电池的基本构造、工作原理、性能和适用范围。 三、情感、态度与价值观 5、通过化学能与电能相互转化关系的学习,使学生从能量的角度比较深刻地了解化学科学对人类的贡献,体会能量守恒的意义。在探究三种电池的基础上,学会利用能源与创造新能源的思路和方法,提高环保意识和节能意识。 Ⅱ教学重点 一次电池、二次电池和燃料电池的反应原理及其应用。 Ⅲ教学难点 化学电池的反应原理。 Ⅳ教学方法 提问:什么是化学电池?(化学电池是将化学能转化为电能的装置。) 讲述:化学电源的分类:一次电池、二次电池和燃料电池等。一次电池的活性物质消耗到一定程度就不能再用了,如普通锌锰干电池、碱性锌锰干电池;二次电池又称充电电池或蓄电池,放电后再充电可以使活性物质再生,这类电池可多次重复使用。

(一)化学电源 板书:1、化学电源的分类:一次电池、二次电池和燃料电池等。 思考交流:电池与其他能源相比,其优点有那些? 讲述:能量转化率高、供能稳定、可以制成各种大小和形状、不同容量和电压的电池或电池组,使用方便,易于维护,并可在各种环境下工作。 板书:2、化学电源的优点: (1)能量转换效率高,供能稳定可靠。 (2)可以制成各种形状和大小、不同容量和电压的电池和电池组,使用方便。 (3)易维护,可在各种环境下工作。 投影:图4—2 电池及其用途 质疑:面对许多原电池,我们怎样判断其优劣或适合某种需要? 讲述:看单位质量或单位体积所输出电能的多少,或输出功率大小以及电池储存时间长短。除特殊情况外,质量轻、体积小而输出电能多,功率大储存时间长的电池,更适合电池使用者。 板书:3、原电池的优劣或适合某种需要判断标准: (1)比能量(2)比功率(3)电池的储存时间的长短 展示:几种一次电池:普通锌锰干电池、碱性锌锰干电池、银锌电池、锂电池等 第三环节:班内交流,确定难点 (二)一次电池 讲述:普通锌锰干电池的简称,在一般手电筒中使用锌锰干电池,是用锌皮制成的锌筒作负极兼做容器,中央插一根碳棒作正极,碳棒顶端加一铜帽。在石墨碳棒周围填满二氧化锰和炭黑的混合物,并用离子可以通过的长纤维纸包裹作隔膜,隔膜外是用氯化锌、氯化铵和淀粉等调成糊状作电解质溶液;电池顶端用蜡和火漆封口。在石墨周围填充ZnCl2、NH4Cl 和淀粉糊作电解质,还填有MnO2作去极化剂吸收正极放出的H2,防止产生极化现象,即作去极剂,淀粉糊的作用是提高阴、阳离子在两个电极的迁移速率。 板书:1、碱性锌锰干电池: 负极(锌筒):Zn+2OH—-2e—=Zn(OH)2; 正极(石墨):2MnO2+2H2O+2e-=2MnOOH+2OH- 电池总反应:Zn+2MnO2+2H2O= 2MnOOH+Zn(OH)2 讲述:正极生成的氨被电解质溶液吸收,生成的氢气被二氧化锰氧化成水。在使用中锌皮腐蚀,电压逐渐下降,不能重新充电复原,因而不宜长时间连续使用。这种电池的电量小,在放电过程中容易发生气涨或漏液。而今体积更小、性能更好的碱性锌—锰干电池将电解液由中性变为导电性能更好的碱性,负极也由锌片改为锌粉,反应面积成倍增加,使放电电流大幅度提高。 讲清:根据投影讲解结构。优点:比普通锌锰干电池好,比能量和储存时间有所提高,使用于大电流和连续放电,是民用电池更新换代产品。 指导学生阅读资料卡片——银锌电池。 讲述:银锌电池是一种高能电池,它质量轻、体积小,是人造卫星、宇宙火箭、空间电视转播站等的电源。常见的钮扣电池也是银锌电池,它用不锈钢制成一个由正极壳和负极盖组成的小圆盒,盒内靠正极盒一端充由Ag2O和少量石墨组成的正极活性材料,负极盖一端填充锌汞合金作负极活性材料,电解质溶液为KOH浓溶液,溶液两边用羧甲基纤维素作隔膜,将电极与电解质溶液隔开。一粒钮扣电池的电压达159V,安装在电子表里可使用两年之久。

化学电源

化学电源论文 0808030317 刘玉涛

燃料电池发展及应用 刘玉涛0808030317 摘要:介绍了燃料电池的性能特点,简述了日本、美国和中国燃料电池研究发展状况,展望了燃料电池在电站、微型电源及车辆、航天航空和海洋潜艇动力源等领域的应用前景。 关健词: 燃料电池、性能、应用前景 燃料电池是继火力发电、水力发电和核电之后的第四种发电方式,是电力能源领域的革命性成果,其显著特点是发电效率高,可长时间连续工作,无污染,无噪声,特别是质子交换膜燃料电池发电系统还具有工作温度低、无烟雾排放、伪装性能优良等特点,在军事方面有很好的应用前景。随着工业的发展和人类物质生活及精神文明的提高,能源的消耗也与日俱增。开发新能源须考虑到能源的高效使用和尽可能降低对环境的污染。燃料电池发电效率高,不产生C02等温室气体,是一种比较理想的清洁能源。目前,许多国家都在积极开发这一技术。 1燃料电池的特点 燃料电池(Fuel Cell )是一种将燃料和氧化剂中的化学能直接、连续地转变为电能的发电装置。由于大多数电池包括各种原电池、蓄电池和储备电池等,都只能用于短时间、小范围、低电压、小电流的局部供电,不可能发展成发电设备;而燃料电池却展现特殊的发展前景,其燃料和氧化剂分别储存在电极之外,使用时只要连续不断地将燃料和氧化剂分别供给燃料电极和氧化剂电极,它就可以不断工作,将化学能转变为电能。用作,将化学能转变为电能。用作燃料电池的燃料主要有氢、甲醇、联氨、甲醛、煤气、丙烷和碳氢化合物等,用作氧化剂的有氧、空气以及氯溴等卤族元素。 燃料电池由阳极、阴极、电解质和外部电路等组成。它的主要优点是:1)不受“卡诺循环”的限制,其能量转换效率高达60%一80%; 2)洁净,无污染,噪音低,隐蔽性强; 3)模块结构,适应不同功率要求,灵活机动; 4)比功率大,比能量高,对负载的适应性能好;5)可实现热、电、纯水联产。

相关文档
相关文档 最新文档