文档库 最新最全的文档下载
当前位置:文档库 › 求判断矩阵权重以及最大特征值 MATLAB程序

求判断矩阵权重以及最大特征值 MATLAB程序

求判断矩阵权重以及最大特征值 MATLAB程序
求判断矩阵权重以及最大特征值 MATLAB程序

求权重程序

A = [1,1/3,3,1;3,1,7,3;1/3,1/7,1,1/5;1,1/3,5,1];

% 求得x为特征向量矩阵,y为特征值矩阵

[x,y] = eig(A);

% 找到y中对应最大的特征值所在列m [maxy, m] = find(y==max(max(y)));

% w即为矩阵A的权重!

w = x(:,m)/sum(x(:,m))

结果:

w =

0.1881

0.5347

0.0597

0.2175

求最大特征值

b=[1,1/3,3,1;3,1,7,3;1/3,1/7,1,1/5;1,1/3,5,1]

[v,d]=eig(b)

r=abs(sum(d));

n=find(r==max(r));

max_d_b=d(n,n)%最大特征根

max_v_b=v(:,n)%最大特征根所对应的特征向量

结果:

b =

1.0000 0.3333 3.0000 1.0000

3.0000 1.0000 7.0000 3.0000

0.3333 0.1429 1.0000 0.2000

1.0000 0.3333 5.0000 1.0000

v =

0.3083 -0.4859 -0.1383 - 0.0804i -0.1383 + 0.0804i

0.8765 0.8503 -0.8693 -0.8693

0.0979 0.0000 0.0514 + 0.1126i 0.0514 - 0.1126i

0.3565 0.2024 0.3162 - 0.3216i 0.3162 + 0.3216i

d =

4.0571 0 0 0

0 -0.0000 0 0

0 0 -0.0285 + 0.4804i 0

0 0 0 -0.0285 - 0.4804i

max_d_b = 4.0571最大特征根

max_v_b =最大特征根所对应的特征向量

0.3083

0.8765

0.0979

0.3565

判断矩阵的最大特征值

项目六 矩阵的特征值与特征向量 实验1 求矩阵的特征值与特征向量 实验目的 学习利用Mathematica(4.0以上版本)命令求方阵的特征值和特征向量;能利用软件计算方 阵的特征值和特征向量及求二次型的标准形. 求方阵的特征值与特征向量. 例1.1 (教材 例1.1) 求矩阵.031121201??? ?? ??--=A 的特征值与特值向量. (1) 求矩阵A 的特征值. 输入 A={{-1,0,2},{1,2,-1},{1,3,0}} MatrixForm[A] Eigenvalues[A] 则输出A 的特征值 {-1,1,1} (2) 求矩阵A 的特征向量. 输入 A={{-1,0,2},{1,2,-1},{1,3,0}} MatrixForm[A] Eigenvectors[A] 则输出 {{-3,1,0},{1,0,1},{0,0,0}} 即A 的特征向量为.101,013??? ? ? ??????? ??- (3) 利用命令Eigensystem 同时矩阵A 的所有特征值与特征向量. 输入 A={{-1,0,2},{1,2,-1},{1,3,0}} MatrixForm[A] Eigensystem[A] 则输出矩阵A 的特征值及其对应的特征向量.

例1.2 求矩阵??? ?? ??=654543432A 的特征值与特征向量. 输入 A=T able[i+j,{i,3},{j,3}] MatrixForm[A] (1) 计算矩阵A 的全部(准确解)特征值, 输入 Eigenvalues[A] 则输出 {0, 426-,426+} (2) 计算矩阵A 的全部(数值解)特征值, 输入 Eigenvalues[N[A]] 则输出 {12.4807, -0.480741, -1.34831610-?} (3) 计算矩阵A 的全部(准确解)特征向量, 输入 Eigenvectors[A]//MatrixForm 则输出 1 2 1172422344220342234421172 42234 42 20342234 42 1 (4) 计算矩阵A 的全部(数值解)特征向量, 输入 Eigenvectors[N[A]]//MatrixForm 则输出 0.4303620.5665420.7027220.805060.111190.5826790.4082480.816497 0.408248 (5) 同时计算矩阵A 的全部(准确解)特征值和特征向量, 输入 OutputForm[Eigensystem[A]] 则输出所求结果 (6) 计算同时矩阵A 的零空间, 输入

权重的确定方法汇总

一、指标权重的确定 1.综述 目前关于属性权重的确定方法很多,根据计算权重时原始数据的来源不同,可以将这些方法分为三类:主观赋权法、客观赋权法、组合赋权法。 主观赋权法是根据决策者(专家)主观上对各属性的重视程度来确定属性权重的方法,其原始数据由专家根据经验主观判断而得到。常用的主观赋权法有专家调查法(Delphi法)、层次分析法(AHP )[106-108]、二项系数法、环比评分法、最小平方法等。本文选用的是利用人的经验知识的有序二元比较量化法。 主观赋权法是人们研究较早、较为成熟的方法,主观赋权法的优点是专家可以根据实际的决策问题和专家自身的知识经验合理地确定各属性权重的排序,不至于出现属性权重与属性实际重要程度相悖的情况。但决策或评价结果具有较强的主观随意性,客观性较差,同时增加了对决策分析者的负担,应用中有很大局限性。 鉴于主观赋权法的各种不足之处,人们又提出了客观赋权法,其原始数据由各属性在决策方案中的实际数据形成,其基本思想是:属性权重应当是各属性在属性集中的变异程度和对其它属性的影响程度的度量,赋权的原始信息应当直接来源于客观环境,处理信息的过程应当是深入探讨各属性间的相互联系及影响,再根据各属性的联系程度或各属性所提供的信息量大小来决定属性权重。如果某属性对所有决策方案而言均无差异(即各决策方案的该属性值相同),则该属性对方案的鉴别及排序不起作用,其权重应为0;若某属性对所有决策方案的属性值有较大差异,这样的属性对方案的鉴别及排序将起重要作用,应给予较大权重.总之,各属性权重的大小应根据该属性下各方案属性值差异的大小来确定,差异越大,则该属性的权重越大,反之则越小。 常用的客观赋权法[109-110]有:主成份分析法、熵值法[111-112]、离差及均方差法、多目标规划法等。其中熵值法用得较多,这种赋权法所使用的数据是决策矩阵,所确定的属性权重反映了属性值的离散程度。

幂法_反幂法求解矩阵最大最小特征值和对应的特征向量

数值计算解矩阵的按模最大最小特征值及对应的特征向量 一.幂法 1. 幂法简介: 当矩阵A 满足一定条件时,在工程中可用幂法计算其主特征值(按模最大)及其特征向量。矩阵A 需要满足的条件为: (1) 的特征值为A i n λλλλ,0||...||||21 ≥≥≥> (2) 存在n 个线性无关的特征向量,设为n x x x ,...,,21 1.1计算过程: i n i i i u x x αα,1 ) 0()0(∑==,有对任意向量不全为0,则有 1 11111221 12111 1 1 11 1 011)()(...u u a u a u λu λαu αA x A Ax x k n n k n k k n i i k i i n i i i k )(k (k))(k αλλλλλα++++=+=+++≈? ? ????+++======∑∑Λ 可见,当||1 2 λλ越小时,收敛越快;且当k 充分大时,有1)1111)11111λαλαλ=??? ???==+++(k )(k k (k k )(k x x u x u x ,对应的特征向量即是)(k x 1+。 2 算法实现 . ,, 3,,1 , ).5() 5(,,,,||).4();max(,).3() (max(;0,1).2(,).1()() () (停机否则输出失败信息转置若转否则输出若计算最大迭代次数,误差限,初始向量输入矩阵βλβεβλβλε←+←<<-←←= ←←k k N k y x Ay x x abs x y k N x A k k k 3 matlab 程序代码

function[t,y]=lpowerA,x0,eps,N) % t 为所求特征值,y是对应特征向量 k=1; z=0; % z 相当于λ y=x0./max(abs(x0)); % 规范化初始向量 x=A*y; % 迭代格式 b=max(x); % b 相当于β if abs(z-b)eps && k

第6章 求解线性代数方程组和计算矩阵特征值的迭代法

数值计算与MATLAB 1

《数值计算与MATLAB 》 第6章求解线性代数方程组和计算矩阵特征值的迭代法§1 求解线性代数方程组的迭代法 §2 方阵特征值和特征向量的计算 §3 矩阵一些特征参数的MATLAB计算

《数值计算与MATLAB 》 6.1 求解线性代数方程组的迭代法 1、迭代法的基本原理 如果线性方程组Ax=b的系数矩阵A非奇异,则方程组有唯一解。把这种方程中的方阵A分解成两个矩阵之差:A=C-D 若方阵C是非奇异的,把A它代入方程Ax=b中,得出 (C-D)x=b,两边左乘C-1,并令 M=C-1D,g= C-1b,移项可将方程Ax=b变换成: x=Mx+g 据此便可构造出迭代公式: x k+1 =Mx k+g, M=C-1D称为迭代矩阵。

《数值计算与MATLAB 》2. 雅可比(Jacobi)迭代法 如果方程组Ax=b的系数矩阵A非奇异,a ii ≠0,若可以把A 分解成: A=D-L-U=D+(-L)+(-U), D=diag(a11,a22,…,a nn); -L是严格下三角阵; -U是严格上三角矩阵; x= D-1((L+U)x +b)=D-1(L+U)x+ D-1b x k+1=D-1((L+U)x k+b)= D-1(L+U)x k + D-1b M M=D-1(L+U)称为雅可比迭代矩阵

《数值计算与MATLAB 》 ? ? ? ? ? ? ? ? ? ? ? ? = 6 7- 4 1 2 1- 2 6- 3- 1 1 5- 1 2 A ? ? ? ? ? ? ? ? ? ? ? ? = 6 1- 3- 2 D ? ? ? ? ? ? ? ? ? ? ? ? = 7 4- 1- 2- 1- L ? ? ? ? ? ? ? ? ? ? ? ? = 2- 6 1- 5 1- U M=D-1(L+U)= ? ? ? ? ? ? ? ? ? ? ? ? 7/6 2/3 - 1/6 - 2 2 2- 1/3 1/2 - 5/2 1/2 -

层次分析法判断矩阵求权值以及一致性检验程序

function [w,CR]=mycom(A,m,RI) [x,lumda]=eig(A); r=abs(sum(lumda)); n=find(r==max(r)); max_lumda_A=lumda(n,n); max_x_A=x(:,n); w=A/sum(A); CR=(max_lumda_A-m)/(m-1)/RI; end 本matlab程序用于层次分析法中计算判断矩阵给出的权值已经进行一致性检验。 其中A为判断矩阵,不同的标度和评定A将不同。 m为A的维数 RI为判断矩阵的平均随机一致性指标:根据m的不同值不同。 当CR<0.1时符合一致性检验,判断矩阵构造合理。 下面是层次分析法的简介,以及判断矩阵构造方法。

一.层次分析法的含义 层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯·塞蒂(T.L.Saaty)正式提出。它是一种定性和定量相结合的、系统化、层次化的分析方法。由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。 二.层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。 (1)层次分析法的原理 层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。这里所谓“优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。其用法是构造判断矩阵,求出其最大特征值。及其所对应的特征向量W,归一化后,即为某一层次指标对于上一层次某相关指标的相对重要性权值。 (2)层次分析法的步骤 a)建立系统的递阶层次结构; b)构造两两比较判断矩阵;(正互反矩阵) c)针对某一个标准,计算各备选元素的权重; d)计算当前一层元素关于总目标的排序权重。 e)进行一致性检验。 小结:层次分析法的思路与步骤如图

判断矩阵的最大特征值

项目六 矩阵的特征值与特征向量 实验1 求矩阵的特征值与特征向量 实验目的 学习利用Mathematica(4.0以上版本)命令求方阵的特征值和特征向量;能利用软件计算方 阵的特征值和特征向量及求二次型的标准形. 求方阵的特征值与特征向量. 例1.1 (教材 例1.1) 求矩阵.031121201???? ? ??--=A 的特征值与特值向量. (1) 求矩阵A 的特征值. 输入 A={{-1,0,2},{1,2,-1},{1,3,0}} MatrixForm[A] Eigenvalues[A] 则输出A 的特征值 {-1,1,1} (2) 求矩阵A 的特征向量. 输入 A={{-1,0,2},{1,2,-1},{1,3,0}} MatrixForm[A] Eigenvectors[A] 则输出 {{-3,1,0},{1,0,1},{0,0,0}} 即A 的特征向量为.101,013???? ? ??????? ??- (3) 利用命令Eigensystem 同时矩阵A 的所有特征值与特征向量. 输入 A={{-1,0,2},{1,2,-1},{1,3,0}} MatrixForm[A] Eigensystem[A] 则输出矩阵A 的特征值及其对应的特征向量. 例1.2 求矩阵???? ? ??=654543432A 的特征值与特征向量. 输入 A=Table[i+j,{i,3},{j,3}] MatrixForm[A] (1) 计算矩阵A 的全部(准确解)特征值, 输入

Eigenvalues[A] 则输出 {0, 426-,426+} (2) 计算矩阵A 的全部(数值解)特征值, 输入 Eigenvalues[N[A]] 则输出 {12.4807, -0.480741, -1.34831610-?} (3) 计算矩阵A 的全部(准确解)特征向量, 输入 Eigenvectors[A]//MatrixForm 则输出 (4) 计算矩阵A 的全部(数值解)特征向量, 输入 Eigenvectors[N[A]]//MatrixForm 则输出 (5) 同时计算矩阵A 的全部(准确解)特征值和特征向量, 输入 OutputForm[Eigensystem[A]] 则输出所求结果 (6) 计算同时矩阵A 的零空间, 输入 NullSpace[A] 则输出 {{1,-2,1}} (7) 调入程序包<

matlab求矩阵特征值特征向量 乘幂法

摘 要 根据现代控制理论课程的特点, 提出并利用MATLAB 设计了现代控制理论课程的实验, 给出了设计的每个实验的主要内容及使用到的MATLAB 函数, 并对其中的一个实验作了详细说明。通过这些实验, 将有助于学生理解理论知识, 学习利用MATLAB 解决现代控制理论问题。 关键词:现代控制理论、MATLAB 、仿真。 1设计目的、内容及要求 1.1设计目的 本课程设计以自动控制理论、现代控制理论、MATLAB 及应用等知识为基础,求连续系统对应的离散化的系统,并用计算系数阵按模最大的特征根法判别离散系统的稳定性,目的是使学生在现有的控制理论的基础上,学会用MATLAB 语言编写控制系统设计与分析的程序,通过上机实习加深对课堂所学知识的理解,掌握一种能方便地对系统进行离散化的实现和分析系统的稳定性的设计的工具。 1.2设计内容及要求 1 在理论上对连续系统离散化推导出算法和计算公式 2 画出计算机实现算法的框图 3 编写程序并调试和运行 4 以下面的系统为例,进行计算 ??????????----=041020122A ,?? ?? ? ?????=100B ,[]111-=c 5 分析运算结果

6 幂法迭代精度为ep=0.001,离散系统展开项数为20 7 程序应具有一定的通用性,对不同参数能有兼容性。 2算法选择及推导 2.1连续系统离散化算法 书P67离散化意义 已知被控对象的状态方程为: ()()()()()()t t u t y t t u t =+=+ x Ax B Cx D 对方程求解,得: 0()()0()()()o t t t t t t e t e u d τττ --=+?A A x x B 设0t kT =,(1)t k T =+,代入上式,得: H 公式 若省略T 则为{ ? +-++Φ=+T k kT d kT Bu T k kt x T T k x )1()(])1[()()(])1([(τ τφ不改变与离散后时刻,即得连续离散化方程则:相当于)+=(上限相当于下限设令D C kT Du kT Cx kT y kT t kT u T H kT x T G T k x Bdt t Bdt e T H t T k T t kT d dt T k t Bd e T H e T T G T T AT T k kT T k A AT )()()()()()()(])1([(: )()(0 ,1,,)1()()()(0 )1(])1[(+==+=+Φ=====-=-+=?==Φ=???+-+τττττ τ

求判断矩阵权重以及最大特征值 MATLAB程序

求权重程序 A=[1,1/3,3,1;3,1,7,3;1/3,1/7,1,1/5;1,1/3,5,1]; %求得x为特征向量矩阵,y为特征值矩阵[x,y]=eig(A); %找到y中对应最大的特征值所在列m [maxy,m]=find(y==max(max(y))); %w即为矩阵A的权重! w=x(:,m)/sum(x(:,m)) 结果: w= 0.1881 0.5347 0.0597 0.2175 求最大特征值 b=[1,1/3,3,1;3,1,7,3;1/3,1/7,1,1/5;1,1/3,5,1] [v,d]=eig(b) r=abs(sum(d)); n=find(r==max(r)); max_d_b=d(n,n)%最大特征根 max_v_b=v(:,n)%最大特征根所对应的特征向量 结果: b= 1.00000.3333 3.0000 1.0000

3.0000 1.00007.0000 3.0000 0.33330.1429 1.00000.2000 1.00000.3333 5.0000 1.0000 v= 0.3083-0.4859-0.1383-0.0804i-0.1383+0.0804i 0.87650.8503-0.8693-0.8693 0.09790.00000.0514+0.1126i0.0514-0.1126i 0.35650.20240.3162-0.3216i0.3162+0.3216i d= 4.0571000 0-0.000000 00-0.0285+0.4804i0 000-0.0285-0.4804i max_d_b=4.0571最大特征根 max_v_b=最大特征根所对应的特征向量 0.3083 0.8765 0.0979 0.3565

matlab实验十四__特征值和特征向量

实验十四特征值和特征向量 【实验目的】 1.了解特征值和特征向量的基本概念。 2.了解奇异值分解的基本概念。 3.学习、掌握MATLAB软件有关命令。 【实验内容】 计算特征值和特征向量 【实验准备】 1.特征值和特征向量的基本概念 A是n n?矩阵,如果λ满足Ax xλ =,则称λ是矩阵A的特征值,x 是矩阵A的特征向量。如果A是实对称矩阵,则特征值为实数,否则,特制值为复数。 2.矩阵的奇异值分解 3.矩阵特征值、奇异值分解的MATLAB命令 MATLAB中主要用eig求矩阵的特征值和特征向量,用svd求矩阵的奇异值分解。 eig(A)计算矩阵A的特征值 [X,D]=eig(A) D的对角线元素是特征值,X是矩阵,它的列是相应的特征向量。 s=svd(A)假设矩阵A的行数大于列数,则s是矩阵A的n个奇异值构成的向量。 [U,S,D]=svd(A)U,S,D为矩阵A的奇异值分解三对组。

【实验重点】 1.特征值与特征向量的计算 2.矩阵的奇异值分解 【实验难点】 1.矩阵的奇异值分解 【实验方法与步骤】 练习1求矩阵 31 13 A - ?? =?? -?? 的特征值和特征向量。 相应的MATLAB代码和计算结果为 A=[3-1;-1 3] A= 3 -1 -1 3 eig(A) %A的特征值 ans= 4 2 [X,D]=eig(A) %D的对角线元素是特征值,X是矩阵X= -0.7071 -0.7071 0.7071 -0.7071 D= 4 0

0 2 练习2求矩阵 23 45 84 A ?? ?? =?? ?? ?? 的奇异值分解。 相应的MATLAB代码和计算结果为 A=[2 3;4 5;8 4] A= 2 3 4 5 8 4 s=svd(A) %s是矩阵A的2个奇异值构成的向量s= 11.2889 2.5612 [U,S,V]=svd(A) %给出简洁方式的奇异值分解结果U= 0.3011 0.4694 -0.8301 0.5491 0.6263 0.5534 0.7796 -0.6224 -0.0692 S= 11.2889 0 0 2.5612

第五章 矩阵的特征值与特征向量

第五章 矩阵的特征值与特征向量 5.1矩阵的特征值与特征向量 5.1.1矩阵的特征值与特征向量的概念 设A 是n 阶矩阵,若存在数λ及非零的n 维列向量α,使得:λαα=A (0≠α)成立,则称λ是矩阵A 的特征值,称非零向量α是矩阵A 属于特征值λ的特征向量. 5.1.2矩阵的特征值与特征向量的求法 把定义公式λαα=A 改写为()0=-αλA E ,即α是齐次方程组()0=-x A E λ的非零解.根据齐次方程组有非零解的充分条件可得:0=-A E λ. 所以可以通过0=-A E λ求出所有特征值,然后对每一个特征值i λ,分别求出齐 次方程组()0=-x A E i λ的一个基础解系,进而再求得通解. 【例5.1】求??? ? ? ?????------=324262423A 的特征值和特征向量. 解:根据()()0273 2 4 26 24 23 2 =+-=---= -λλλλλλA E ,可得71=λ,22-=λ. 当7=λ时,??? ? ? ?????? ??? ???????=-0000002124242124247A E , 所以()07=-x A E 的一个基础解系为:()T 0,2,11-=α,()T 1,0,12-=α,则相应的特征向量为2211ααk k +,其中21,k k 是任意常数且()()0,0,21≠k k . 当2-=λ时,???? ? ?????--? ??? ? ??????---=--00012014152428242 52A E ,所以()02=--x A E 的一个基础解系为()T 2,1,23=α,则相应的特征向量为33αk ,其中3k 是任意常数且

幂法求矩阵最大特征值

幂法求矩阵最大特征值 摘要 在物理、力学和工程技术中的很多问题在数学上都归结为求矩阵特征值的问题,而在某些工程、物理问题中,通常只需要求出矩阵的最大的特征值(即主特征值)和相应的特征向量,对于解这种特征值问题,运用幂法则可以有效的解决这个问题。 幂法是一种计算实矩阵A的最大特征值的一种迭代法,它最大的优点是方法简单。对于稀疏矩阵较合适,但有时收敛速度很慢。 用java来编写算法。这个程序主要分成了三个大部分:第一部分为将矩阵转化为线性方程组;第二部分为求特征向量的极大值;第三部分为求幂法函数块。其基本流程为幂法函数块通过调用将矩阵转化为线性方程组的方法,再经过一系列的验证和迭代得到结果。 关键词:幂法;矩阵最大特征值;j ava;迭代

POWER METHOD TO CALCULATE THE MAXIMUM EIGENV ALUE MATRIX ABSTRACT In physics, mechanics and engineering technology of a lot of problems in math boil down to matrix eigenvalue problem, and in some engineering, physical problems, usually only the largest eigenvalue of the matrix (i.e., the main characteristics of the value) and the corresponding eigenvectors, the eigenvalue problem for solution, using the power law can effectively solve the problem. Power method is A kind of computing the largest eigenvalue of real matrix A of an iterative method, its biggest advantage is simple.For sparse matrix is right, but sometimes very slow convergence speed. Using Java to write algorithms.This program is mainly divided into three most: the first part for matrix can be converted to linear equations;The second part is the eigenvector of the maximum;The third part is the exponentiation method of function block.Its basic process as a power law function block by calling the method of matrix can be converted to linear equations, then after a series of validation and iteration to get the results. Key words: Power method; Matrix eigenvalue; Java; The iteration

用MATLAB求矩阵特征值

用matlab求矩阵的特征值和特征向量 我要计算的矩阵: 1 3 5 1/3 1 3 1/5 1/3 1 [v,d]=eig(A); A为你的矩阵,V为特征向量矩阵,D为特征值矩阵,然后对D求最大值即可得最大特征根! [V,D] = EIG(X) produces a diagonal matrix D of eigenvalues and a full matrix V whose columns are the corresponding eigenvectors so that X*V = V*D. V是特征向量,D是特征值 实例: 矩阵: 1 2/3 7/3 7/3 3/2 1 3/2 3/2 3/7 2/3 1 3/2 3/7 2/3 2/3 1 >> format rat >> A=[1 2/3 7/3 7/3 3/2 1 3/2 3/2 3/7 2/3 1 3/2 3/7 2/3 2/3 1] A = 1 2/3 7/3 7/3 3/2 1 3/2 3/2 3/7 2/3 1 3/2 3/7 2/3 2/3 1 >> [V,D]=eig(A)

V = 1793/2855 504/3235 - 146/235i 504/3235 + 146/235i 1990/4773 670/1079 -3527/5220 -3527/5220 -509/959 4350/11989 1160/4499 + 287/3868i 1160/4499 - 287/3868i -350/647 838/2819 181/3874 + 1179/4852i 181/3874 - 1179/4852i 1238/2467 D = 810/197 0 0 0 0 -93/4229 + 455/674i 0 0 0 0 -93/4229 - 455/674i 0 0 0 0 -149/2201 ***************************************************************************************** 如何归一化求权重呢? >> a=[1 3 5;1/3 1 3; 1/5 1/3 1] a = 1.0000 3.0000 5.0000 0.3333 1.0000 3.0000 0.2000 0.3333 1.0000 >> [V,D]=eig(a) V = 0.9161 0.9161 0.9161 0.3715 -0.1857 + 0.3217i -0.1857 - 0.3217i 0.1506 -0.0753 - 0.1304i -0.0753 + 0.1304i D =

矩阵的特征值和特征向量

第五章矩阵的特征值和特征向量 来源:线性代数精品课程组作者:线性代数精品课程组 1.教学目的和要求: (1) 理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量. (2) 了解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对 角矩阵. (3) 了解实对称矩阵的特征值和特征向量的性质. 2.教学重点: (1) 会求矩阵的特征值与特征向量. (2) 会将矩阵化为相似对角矩阵. 3.教学难点:将矩阵化为相似对角矩阵. 4.教学内容: 本章将介绍矩阵的特征值、特征向量及相似矩阵等概念,在此基础上讨论矩阵的对角化问题. §1矩阵的特征值和特征向量 定义1设是一个阶方阵,是一个数,如果方程 (1) 存在非零解向量,则称为的一个特征值,相应的非零解向量称为属于特征值的特 征向量. (1)式也可写成, (2) 这是个未知数个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式 , (3) 即 上式是以为未知数的一元次方程,称为方阵的特征方程.其左端是的 次多项式,记作,称为方阵的特征多项式.

== = 显然,的特征值就是特征方程的解.特征方程在复数范围内恒有解,其个数为方程的次数(重根按重数计算),因此,阶矩阵有个特征值. 设阶矩阵的特征值为由多项式的根与系数之间的关系,不难证明 (ⅰ) (ⅱ) 若为的一个特征值,则一定是方程的根, 因此又称特征根,若为 方程的重根,则称为的重特征根.方程的每一个非 零解向量都是相应于的特征向量,于是我们可以得到求矩阵的全部特征值和特征向量的方法如下: 第一步:计算的特征多项式; 第二步:求出特征方程的全部根,即为的全部特征值; 第三步:对于的每一个特征值,求出齐次线性方程组: 的一个基础解系,则的属于特征值的全部特征向量是 (其中是不全为零的任意实数). 例1 求的特征值和特征向量. 解的特征多项式为 =

matlab矩阵运算和数组运算

matlab矩阵运算和数组运算 作者:佚名教程来源:网络点击数:1368 更新时间:2010-5-3 矩阵运算和数组运算是Matlab的数值运算中的两大类运算。矩阵运算是按矩阵运算法 则进行的运算;数组运算无论是何种运算操作都是对元素逐个进行。 矩阵运算和数组运算指令对照汇总 矩阵运算指令指令含义数组运算指令指令含义 A' 矩阵转置 A.+B 对应元素相加 A+B 矩阵相加 A.-B 对应元素相减 A-B 矩阵相减 A.*B 同维数组对应元素相乘 s+B 标量加矩阵 s.*A A的每个元素乘s s-B,B-s 标量矩阵相减 A./B A的元素被B的对应元素除 A*B 矩阵相乘 B.\A 同上 A/B A右除B s./B, B.\s s 分别被B的元素除 B\A A左除B A.^n A的每个元素自乘n 次 inv(A) 矩阵求逆 log(A) 对A的每个元素求对数 A^n 矩阵的n次幂 sqrt(A) 对A的每个元素求平方根 f(A) 求A的各个元素的函数值 例: a=[1 2 3; 4 5 6; 7 8 9];b=[1 2 3; 3 2 1;1 4 5]; c=[1 1 1;2 3 1;1 0 2]; d=a*c^2+b d = 32 31 36 82 79 82 128 129 134 3.4 矩阵函数和数组函数

3.4.1 基本数组函数 数组函数是对各个元素的函数设计的。 f(.)基本函数表 函数名称功能函数名称功能 sin 正弦 acosh 反双曲余弦 cos 余弦 atanh 反双曲正切 tan 正切 acoth 反双曲余切 cot 余切 asech 反双曲正割 sec 正割 acsch 反双曲余割 csc 余割 fix 朝零方向取整 asin 反正弦 ceil 朝正无穷大方向取整 acos 反余弦 floor 朝负无穷大方向取整 atan 反正切 round 四舍五入到整数 atan2 四象反正切 rem 除后取余数 acot 反余切 sign 符号函数 asec 反正割 abs 绝对值 acsc 反余割 angle 复数相角 sinh 双曲正弦 imag 复数虚部 cosh 双曲余弦 real 复数实部 tanh 双曲正切 conj 复数共轭 coth 双曲余切 log10 常用对数 sech 双曲正割 log 自然对数 csch 双曲余割 exp 指数 asinh 反双曲正弦 aqrt 平方根 f(.)特殊函数表 函数名称功能函数名称功能 bessel 第一、第二类Bessel函数 erf 误差函数

矩阵在matlab中的基本命令

一、矩阵的表示 在MATLAB中创建矩阵有以下规则: a、矩阵元素必须在”[ ]”内; b、矩阵的同行元素之间用空格(或”,”)隔开; c、矩阵的行与行之间用”;”(或回车符)隔开; d、矩阵的元素可以是数值、变量、表达式或函数; e、矩阵的尺寸不必预先定义。 二,矩阵的创建: 1、直接输入法 最简单的建立矩阵的方法是从键盘直接输入矩阵的元素,输入的方法按照上面的规则。建立向量的时候可以利用冒号表达式,冒号表达式可以产生一个行向量,一般格式是:e1:e2:e3,其中e1为初始值,e2为步长,e3为终止值。还可以用linspace函数产生行向量,其调用格式为:linspace(a,b,n) ,其中a和b是生成向量的第一个和最后一个元素,n是元素总数。 2、利用MATLAB函数创建矩阵 基本矩阵函数如下: (1) ones()函数:产生全为1的矩阵,ones(n):产生n*n维的全1矩阵,ones(m,n):产生m*n 维的全1矩阵; (2) zeros()函数:产生全为0的矩阵;

(3) rand()函数:产生在(0,1)区间均匀分布的随机阵; (4) eye()函数:产生单位阵; (5) randn()函数:产生均值为0,方差为1的标准正态分布随机矩阵。 3、利用文件建立矩阵 当矩阵尺寸较大或为经常使用的数据矩阵,则可以将此矩阵保存为文件,在需要时直接将文件利用load命令调入工作环境中使用即可。同时可以利用命令reshape对调入的矩阵进行重排。reshape(A,m,n),它在矩阵总元素保持不变的前提下,将矩阵A重新排成m*n的二维矩阵。 二、矩阵的简单操作 1.获取矩阵元素 可以通过下标(行列索引)引用矩阵的元素,如Matrix(m,n)。 也可以采用矩阵元素的序号来引用矩阵元素。 矩阵元素的序号就是相应元素在内存中的排列顺序。 在MATLAB中,矩阵元素按列存储。 序号(Index)与下标(Subscript )是一一对应的,以m*n矩阵A为例,矩阵元素A(i,j)的序号为(j-1)*m+i。 其相互转换关系也可利用sub2ind和ind2sub函数求得。 2.矩阵拆分

判断矩阵的最大特征值复习过程

判断矩阵的最大特征 值

项目六 矩阵的特征值与特征向量 实验1求矩阵的特征值与特征向量 实验目的 学习利用Mathematica(4.0以上版本)命令求方阵的特征值和特征向量 能利用软件计算 方 阵的特征值和特征向量及求二次型的标准形 . 求方阵的特征值与特征向量. (1) 求矩阵A 的特征值.输入 A={{-1,0,2},{1,2,-1},{1,3,0}} MatrixForm[A] Eigenvalues[A] 则输岀A 的特征值 {-1,1,1} (2) 求矩阵A 的特征向量.输入 A={{-1,0,2},{1,2,-1},{1,3,0}} MatrixForm[A] Eigenvectors[A] {{-3,1,0},{1,0,1},{0,0,0}} 即A 的特征向量为 1,0. 0 1 ⑶利用命令Eigensystem 同时矩阵A 的所有特征值与特征向量.输入 A={{-1,0,2},{1,2,-1},{1,3,0}} MatrixForm[A] Eigensystem[A] 例1.1 (教材例1.1)求矩阵A 2 1 .的特征值与特值向量 则输出

则输岀矩阵A的特征值及其对应的特征向量

2 3 4 例1.2求矩阵A 3 4 5的特征值与特征向量 4 5 6 输入 A=Table[i+j,{i,3},{j,3}] MatrixForm[A] (1)计算矩阵A 的全部(准确解)特征值,输入 Eigenvalues[A] 则输出 {0, 6 ■. 42 , 6 ..42 } (2) 计算矩阵A 的全部(数值解)特征值,输入 Eigenvalues[N[A]] 则输出 {12.4807,-0.480741,-1.3483 10 16} (3) 计算矩阵A 的全部(准确解)特征向量,输入 Eigenvectors[A]//MatrixForm 则输出 2 1 20 3 42 -------- 1 23 4 42 20 3 42 ----- -- 1 23 4 42 (4) 计算矩阵A 的全部(数值解)特征向量,输入 Eigenvectors[N[A]]//MatrixForm 则输出 0.430362 0.566542 0.702722 0.80506 0.11119 0.582679 0.408248 0.816497 0.408248 (5) 同时计算矩阵A 的全部(准确解)特征值和特征向量,输入 OutputForm[Eigensystem[A]] 则输岀所求结果 (6) 计算同时矩阵A 的零空间,输入 NullSpace[A] 1 17 2 42 2 3 4 42 17 2 42 23 4 42

MATLAB基本矩阵运算

Basic Matrix Operations 一、实验目的 1、掌握向量和矩阵的创建方法; 2、掌握向量和矩阵元素的索引方法; 3、掌握向量和矩阵的基本操作; 4、利用MATLAB编写程序进行矩阵运算。 二、基础知识 1、常见数学函数 函数名数学计算功能函数名数学计算功能 Abs(x) 实数的绝对值或复数的幅值floor(x) 对x朝-∞方向取整 Acos(x) 反余弦arcsin x gcd(m,n)求正整数m和n的最大公约数 acosh(x) 反双曲余弦arccosh x imag(x) 求复数x的虚部 angle(x) 在四象限内求复数 x 的相角lcm(m,n) 求正整数m和n的最小公倍数 asin(x) 反正弦arcsin x log(x) 自然对数(以e为底数) asinh(x) 反双曲正弦arcsinh x log10(x) 常用对数(以10为底数) atan(x) 反正切arctan x real(x) 求复数x的实部 atan2(x,y) 在四象限内求反正切Rem(m,n) 求正整数m和n的m/n之余数 atanh(x) 反双曲正切arctanh x round(x) 对x四舍五入到最接近的整数 ceil(x) 对x朝+∞方向取整sign(x) 符号函数:求出x的符号 conj(x) 求复数x的共轭复数sin(x) 正弦sin x cos(x) 余弦cos x sinh(x) 反双曲正弦sinh x cosh(x) 双曲余弦cosh x sqrt(x) 求实数x的平方根:x exp(x) 指数函数xe tan(x) 正切tan x fix(x) 对x朝原点方向取整tanh(x) 双曲正切tanh x 2、常量与变量 系统的变量命名规则:变量名区分字母大小写;变量名必须以字母打头,其后可以是任意字母,数字,或下划线的组合。此外,系统内部预先定义了几个有特殊意义和用途的变量,见下表: 特殊的变量、常量取值

雅克比法求矩阵特征值特征向量

C语言课程设计报告 课程名称:计算机综合课程设计 学院:土木工程学院 设计题目:矩阵特征值分解 级别: B 学生姓名: 学号: 同组学生:无 学号:无 指导教师: 2012年 9 月 5 日 C语言课程设计任务书 (以下要求需写入设计报告书) 学生选题说明: 以所发课程设计要求为准,请同学们仔细阅读; 本任务书提供的设计案例仅供选题参考;也可自选,但难易程度需难度相当; 鼓励结合本专业(土木工程、力学)知识进行选题,编制程序解决专业实际问题。

限2人选的题目可由1-2人完成(A级);限1人选的题目只能由1人单独完成(B级);设计总体要求: 采用模块化程序设计; 鼓励可视化编程; 源程序中应有足够的注释; 学生可自行增加新功能模块(视情况可另外加分); 必须上机调试通过; 注重算法运用,优化存储效率与运算效率; 需提交源程序(含有注释)及相关文件(数据或数据库文件); (cpp文件、txt或dat文件等) 提交设计报告书,具体要求见以下说明。 设计报告格式: 目录 1.课程设计任务书(功能简介、课程设计要求); 2.系统设计(包括总体结构、模块、功能等,辅以程序设计组成框图、流程图解释); 3.模块设计(主要模块功能、源代码、注释(如函数功能、入口及出口参数说明,函数调用关系描述等); 4.调试及测试:(调试方法,测试结果的分析与讨论,截屏、正确性分析); 5.设计总结:(编程中遇到的问题及解决方法); 6.心得体会及致谢; 参考文献

1.课程设计任务书 功能简介: a)输入一个对称正方矩阵A,从文本文件读入; b)对矩阵A进行特征值分解,将分解结果:即U矩阵、S矩阵输出至文本文件; c)将最小特征值及对应的特征向量输出至文本文件; d)验证其分解结果是否正确。 提示:A=USU T,具体算法可参考相关文献。 功能说明: 矩阵特征值分解被广泛运用于土木工程问题的数值计算中,如可用于计算结构自振频率与自振周期、结构特征屈曲问题等。 注:以三阶对称矩阵为例 2.系统设计 3.模块设计 #include #include #include int main() { FILE *fp; int tezheng(double *a,int n,double *s,double *u,double eps,int itmax); //函数调用声明 int i,j,p,itmax=1000; //itmax为最大循环次数 double eps=1e-7,s[3][3],u[3][3]; //eps为元素精度,s为对角矩阵S,u为矩阵U double a[9];//a为待分解矩阵A i=tezheng(a,3,s,u,eps,1000);

相关文档
相关文档 最新文档