文档库 最新最全的文档下载
当前位置:文档库 › 高中函数、数列、不等式、直线与方程测试题

高中函数、数列、不等式、直线与方程测试题

高中函数、数列、不等式、直线与方程测试题
高中函数、数列、不等式、直线与方程测试题

函数、数列、不等式及直线和方程测试题

一、 选择题(10X5=50分)

1.下列集合中,表示方程组的解集的是( ) (A )

(B )

(C )

(D )

2.直线l 1:2x+(m+1)y+4=0与直线l 2:mx+3y-2=0平行,则 m 的值为( )

A 、2

B 、-3

C 、2或-3

D 、-2或-3

3 三个数60.70.70.76log 6,

,的大小关系为( ) A 60.70.70.7log 66<< B 60.70.70.76log 6<< C 0.760.7log 660.7<< D 60.70.7log 60.76<<

4.定义在R 上的偶函数)(x f ,满足)()1(x f x f -=+,且在区间]0,1[-上为递增,则( ) A .)2()2()3(f f f << B .)2()3()2(f f f <<

C .)2()2()3(f f f <<

D .)3()2()2(f f f <<

5.过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( )

A 4x+3y-13=0

B 4x-3y-19=0

C 3x-4y-16=0

D 3x+4y-8=0

6.与方程221(0)x x y e e x =-+≥的曲线关于直线y x =对称的曲线的方程为

A .ln(1y =+

B .ln(1y =

C .ln(1y =-+

D .ln(1y =-

7.若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足5524-+=n n B A n n ,则13

513

5b b a a ++的值为( ) (A )

97 (B )78 (C )2019 (D )8

7

8. 若(0,2)απ∈2

tan α

=的集合是 ( )

(A ){}0ααπ<< (B )3022ππααπα??

<<<

(C ){}2απαπ<< (D )32

2ππααππα??

<<<

9.若),(),的解集是(∞+-∞->++420c bx ax 2 ,则对于函数c bx ax x ++=2)(f 应有( )

A. )1(f )2(f )5(f -<<

B. )1(f )5(f )2(f -<<

C. )5(f )2(f )1(f <<-

D. )5(f )1(f )2(f <-<

10.已知(3)4,1()log ,1

a a x a x f x x x --?=?≥?<,

是(-∞,+∞)上的增函数,那么a 的取值范围是

A .(1,+∞)

B .(-∞,3)

C .3,35??

????

D .(1,3)

二填空题(5X5=25分) 11.若n 3log ,m 2log a a ==,则2

n 3m a

-= .

12.过点(1,2)且在两坐标轴上的截距相等的直线的方程 ____; 13.已知)(x f 是定义在R 上的偶函数,并且)

(1

)2(x f x f -=+,当32≤≤x 时,x x f =)(, 则 =)5.105(f .

14、c b a ,,成等差数列,则函数c bx ax y ++=2的图象与x 轴有________个交点。 15、已知21cos sin =

-αα,求1

tan tan αα

+= . 三解答题(前五个12分每题,最后一题15分) 16.(本小题满分12分)已知集合,

且,求实数

的取值范围。

17.已知三角形ABC 的顶点坐标为A (-1,5)、B (-2,-1)、C (4,3),M 是BC 边上的中点。(1)求AB 边所在的直线方程;(2)求中线AM 的长(3)求AB 边的高所在直线方程。

18. 已知函数)]4

2sin(21)[tan 1()(π

+

+-=x x x f ,求:

(1)函数)(x f 的定义域和值域; (2)写出函数)(x f 的单调递增区间。

19.已知函数()f x 是定义在(0,)+∞上的增函数,且满足()()(),f xy f x f y =+,

(1)求证:()()()x

f f x f y y

=-

(2)已知(3)1,f =()(1)2f a f a >-+,求a 的取值范围。

20、已知:xy y x y x y x y x ++=+≠>>22,,0,0且,求证:3

41<

+

22、已知数列{}n a 满足*111,21().n n a a a n N +==+∈ (I )求数列{}n a 的通项公式;

(II )若数列{}n b 满足121114.4...4(1)()n n b b b b n a n N ---*=+∈,证明:{}n b 是等差数列;

高中数学数列测试题附答案与解析

第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为 41的等差数列,则 |m -n |等于( ). A .1 B .43 C .21 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若 35a a =95,则59S S =( ). A .1 B .-1 C .2 D .2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则 212b a a -的值是( ). A .21 B .-21 C .-21或21 D .4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ). A .38 B .20 C .10 D .9 二、填空题 11.设f (x )=221 +x ,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0)+… +f (5)+f (6)的值为 . 12.已知等比数列{a n }中,

数列与不等式测试题及答案

数列与不等式测试题 一、选择题:(本大题共12个小题,每小题5分;共60分,在每小题给出的四个选项中,只有 一项是符合题目要求的.) 1. 不等式1 x x > 成立的一个充分不必要条件是() A.x>0 B.x<0或x>1 C.x<0 D.0∈≥,则0n 等于( ) A. 1 B.2 C. 3 D. 4 5.已知数列{}n a 中,1a b =(b 为任意正整数),11 (1,2,3,)1 n n a n a +=-=+,能使n a b = 的n 的数值是( ) A. 14 B.15 C. 16 D. 17 6.在等比数列{}n a 中,7116,a a =4145a a +=,则20 10 a a 等于( ) A. 23 B.32 C. 23或32 D. -23或-32

7. 已知{}n a 为等差数列,若π=++951a a a ,则28cos()a a +的值为( ). A. 12 B. 1 2 - C. 2 D. 2-8.数列{}n a 的通项为1(21)(21)n a n n = -+,前n 项和为9 19 ,则项数n 为( ) A. 7 B.8 C. 9 D. 10 9. 在等差数列{}n a 中,若9418,240,30n n S S a -===,则n 的值为( ) A. 14 B. 15 C. 16 D. 17 10.已知n S 是等差数列{}n a 的前n 项和,100S >并且110S =,若n k S S ≤对n N *∈恒成立,则正 整数k 构成集合为 ( ) A .{5} B .{6} C .{5,6} D .{7} 11.一个各项均为正数的等比数列,其任何项都等于它后面两项的和,则其公比是( ) A. 212-12 12.若a 是12b +与12b -的等比中项,则 22ab a b +的最大值为() A. 12 B.4 C.5 D.2 第Ⅱ卷 二、填空题:(本大题共4个小题,每小题5分,共20分.) 13.公差不为0的等差数列{}n a 中,2 37 11220a a a -+=,数列{}n b 是等比数列,且77b a =,则68b b = .

高中数学数列练习题

数列经典解题思路 求通项公式 一、观察法 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,… (2) K ,1716 4,1093,542,211 (3) K ,52,2 1,32 ,1 解:(1)110-=n n a (2);122++=n n n a n (3);12 +=n a n 二、公式法 例1. 等差数列{}n a 是递减数列,且432a a a ??=48,432a a a ++=12,则数列的通项公式是 ( D ) (A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n 例2. 已知等比数列{}n a 的首项11=a , 公比10<

三角函数、数列、不等式练习题练习题1

三角函数、数列、不等式练习题 命题人:刁化清 一、选择题 1.对于任意的实数,,a b c ,下列命题正确的是 A .若22bc ac >,则b a > B .若0,≠>c b a ,则bc ac > C .若b a >,则 b a 11< D .若b a >,则22b c ac > 2. 设0 C .0()0f x < D .)(0x f 的符号不确定 7. 在等差数列{n a }中,若,8171593=+++a a a a 则=11a ( ) A. 1 B. -1 C. 2 D. -2 8.已知等差数列前n 项和为n S ,且,则13S 的值为 A .13 B .26 C .8 D .162 9.各项均为正数的等比数列{}n a 的前n 项和为S n ,若S 10=2,S 30=14,则S 40等于( ) A .80 B .30 C .26 D .16 10.在ABC ?中,角A B C 、、的对边长分别为a b c 、、,若2cos a c B =,则ABC ?的形状为 A .直角三角形 B .等腰三角形 C .等边三角形 D .等腰直角三角形 {}n a 351024a a a ++=

高中数学竞赛专题讲座---数列与和式不等式(1)

数列与和式不等式 数列与和式不等式的解题方法需要同学们深入了解,在解题过程中,往往要利用一些恒等式、变换法等方法对数列和式进行变形,并结合数列求和等相关知识,灵活运用各种技巧.尤其当涉及到整数命题的证明,有时候也可以考虑用归纳法进行证明,当然在证明过程中,解题方法并非千篇一律,而是灵活多变,根据具体题意可以寻找恰当的解法,二者之间的紧密结合,也在竞赛中作为考察学生的重要题型之一,下面通过例题简要介绍几种解题方法与技巧: 例1 已知i x R ∈(1,2,,,2)i n n =≥ ,满足 1 1 ||1,0n n i i i i x x ====∑∑.求证: 1 1122n i i x i n =≤-∑ 证:设 1 1 ,n n i i i i x x A B a b i ===+=+∑∑ ,其中,A a 为正项之和,,B b 为负项之和,由题意知, 0,1A B A B +=-=,得12A B =-= ,因为,A B a A B b n n ≤≤≤≤,所以A B B a b A n n +≤+≤+, 即111 11()2222n i i x n i n =--≤≤- ∑,也就是11122n i i x i n =≤-∑ 说明:本题通过设元,将数列拆分成正负两部分,然后运用不等式相关知识,很自然过渡到绝对值不 等式. 例2 设1112n a n =+ ++ ,*n N ∈,求证:对2n ≥,有2 322()23n n a a a a n >+++ . 证:22 2212 2211111111(1)(1)2(1)22121 1211 ()2.n n n n a a n n n n n a a n n n n n --=+++-+++=+?+++--=+-=?- 故22 321222111 2( )()2323n n a a a a a n n -=+++-+++ .所以 2 332222233221111112( )(1)2()(1)2323231223(1)1 2()2(). 2323n n n n n a a a a a a a n n n n n a a a a a a n n n =++++---->++++----??-=++++>+++ 说明:本题若通过n a 表达式来证明将非常复杂,可以考虑通过建立递推关系,使问题很容易得到解决. 例3 无穷正实数列{}n x 有以下性质:011,(0)i i x x x i +=≤≥ (1) 试证:对具有上述性质的任一数列,总能找到一个1n ≥,使下式成立22 201112 3.999n n x x x x x x -+++≥ (2) 寻找这样一个数列,使得下列不等式22 2011124n n x x x x x x -+++< 对任一n 成立. 证:(1)

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

2019高考数学二轮复习专题三数列与不等式第1讲等差数列与等比数列学案

第1讲 等差数列与等比数列 [考情考向分析] 1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.等差、等比数列的判定及综合应用也是高考考查的重点,注意基本量及定义的使用,考查分析问题、解决问题的综合能力. 热点一 等差数列、等比数列的运算 1.通项公式 等差数列:a n =a 1+(n -1)d ; 等比数列:a n =a 1·q n -1 . 2.求和公式 等差数列:S n = n (a 1+a n ) 2 =na 1+ n (n -1) 2 d ; 等比数列:S n =????? a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1),na 1(q =1). 3.性质 若m +n =p +q , 在等差数列中a m +a n =a p +a q ; 在等比数列中a m ·a n =a p ·a q . 例1 (1)(2018·全国Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5等于( ) A .-12 B .-10 C .10 D .12 答案 B 解析 设等差数列{a n }的公差为d ,由3S 3=S 2+S 4, 得3???? ??3a 1+3×(3-1)2×d =2a 1+2×(2-1)2×d +4a 1+4×(4-1)2×d ,将a 1=2代入上式,解得d =-3, 故a 5=a 1+(5-1)d =2+4×(-3)=-10.故选B. (2)(2018·杭州质检)设各项均为正数的等比数列{a n }中,若S 4=80,S 2=8,则公比q =________,a 5=________. 答案 3 162

高中数学《数列》测试题

11会计5班《数列》数学测试卷2012.4 一、选择题(2'1836'?=) 1.观察数列1,8,27,x ,125,216,… 则x 的值为( ) A .36 B .81 C .64 D .121 2.已知数列12a =,12n n a a +=+,则4a 的值为( ) A .12 B .6 C .10 D .8 3.数列1,3,7,15,… 的通项公式n a 等于( ) A .1 2 n - B .21n - C .2n D .21n + 4.等差数列{n a }中,16a =,418a =,则公差d 为( ) A .4 B .2 C .—3 D .3 5.128是数列2,4,8,16,… 的第( )项 A .8 B .5 C .7 D .6 6.等差数列{n a }中,12a =,327S =,则3a 的值为( ) A .16 B .20 C .11 D .7 7.在等差数列中,第100项是48,公差是 1 3 ,首项是( ) A .5 B .10 C .15 D .20 8.在等差数列{n a }中,1234525a a a a a ++++=,则3a 为( ) A .3 B .4 C .5 D .6 9.已知数列0,0,0,0,… 则它是( ) A .等差数列非等比数列 B .等比数列非等差数列 C .等差数列又等比数列 D .非等差数列也非等比数列 10.在等比数列{n a }中,4520a a ?=,则27a a ?为( ) A .10 B .15 C .20 D .25 班级 姓名 学号 11.等比数列1,2,4,… 的第5项到第11项的和等于( ) A .2030 B .2033 C .2032 D .2031 12.等差数列中,第1项是 —8,第20项是106,则第20项是( ) A .980 B .720 C .360 D .590 13.在等比数列中,12a =,3q =,则4S =( ) A .18 B .80 C .—18 D .—80 14.三个正数成等差数列,其和为9,它们依次加上1,3,13后成为等比数列,则这三个数为( ) A .6,3,0 B .1,3,5 C .5,3,1 D .0,3,6 15.在等比数列中,第5项是 —1,第8项是 — 1 8 ,第13项是( ) A .13 B .1256- C .78- D .1128 - 16.若a ,b , c 成等比数列,则函数2 ()f x ax bx c =++的图像与x 轴的交点个数为( ) A .2 B .0 C .1 D .不确定 17.某农场计划第一年产量为80万斤,以后每年比前一年多种20%,第五年产量约为( ) A .199万斤 B .595万斤 C .144万斤 D .166万斤 18.把若干个苹果放到8个箱子中,每个箱子不能不装,要使每个箱子中所装的苹果个数互不相同,至少需要苹果( ) A .35个 B .36个 C .37个 D .38个 二、填空题(3'824'?=) 19.数列1,32- ,54,78-,916 ,… 的通项公式是 20.数列2,7,14,23,( ),47,… 并写出数列的通项公式

数列与不等式专题练习[1]

数列与不等式专题练习 一、选择题 1.等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项的和9S 等于( ) A .66 B .99 C .144 D .297 2.等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为( ) A .81 B .120 C .168 D .192 3.12+与12-,两数的等比中项是( ) A .1 B .1- C .1± D .2 1 4.已知一等比数列的前三项依次为33,22,++x x x ,那么2113 -是此数列的第( )项 A .2 B .4 C .6 D .8 5.在公比为整数的等比数列{}n a 中,如果,12,183241=+=+a a a a 那么该数列的前8项之和为( ) A .513 B .512 C .510 D .8 225 6.已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a =( ) A .4- B .6- C .8- D .10- 7.设n S 是等差数列{}n a 的前n 项和,若==5 935,95S S a a 则( ) A .1 B .1- C .2 D . 21 8.若)32lg(),12lg(,2lg +-x x 成等差数列,则x 的值等于( ) A .1 B .0或32 C .32 D .5log 2 9.已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是( ) A .15(0,)2+ B .15(,1]2- C .15[1,)2+ D .)2 51,251(++- 10.在ABC ?中,tan A 是以4-为第三项, 4为第七项的等差数列的公差,tan B 是以 13为第三项, 9为第六项的等比数列的公比,则这个三角形是( ) A .钝角三角形 B .锐角三角形 C .等腰直角三角形 D .以上都不对 11.在等差数列{}n a 中,设n a a a S +++=...211,n n n a a a S 2212...+++=++,n n n a a a S 322123...+++=++,则,,,321S S S 关系为( ) A .等差数列 B .等比数列 C .等差数列或等比数列 D .都不对 12.等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132310log log ...log a a a +++=( ) A .12 B .10 C .31log 5+ D .32log 5+

高中数学归纳法大全数列不等式精华版

§数学归纳法 1.数学归纳法的概念及基本步骤 数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法.它的基本步骤是: (1)验证:n=n0 时,命题成立; (2)在假设当n=k(k≥n0)时命题成立的前提下,推出当n=k+1时,命题成立. 根据(1)(2)可以断定命题对一切正整数n都成立. 2.归纳推理与数学归纳法的关系 数学上,在归纳出结论后,还需给出严格证明.在学习和使用数学归纳法时, 需要特别注意: (1)用数学归纳法证明的对象是与正整数n有关的命题; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 1.用数学归纳法证明命题的第一步时,是验证使命题成立的最小正整数n,注意n不一定是1. 2.当证明从k到k+1时,所证明的式子不一定只增加一项;其次,在证明命题对n=k+1成立时,必须运用命题对n=k成立的归纳假设.步骤二中,在 由k到k+1的递推过程中,突出两个“凑”:一“凑”假设,二“凑”结论.关键是明确n=k+1时证明的目标,充分考虑由n=k到n=k+1时命题 形式之间的区别与联系,若实在凑不出结论,特别是不等式的证明,还可以应用比较法、分析法、综合法、放缩法等来证明当n=k+1时命题也成立,这也是证题的常用方法. 3.用数学归纳法证命题的两个步骤相辅相成,缺一不可.尽管部分与正整数 有关的命题用其他方法也可以解决,但题目若要求用数学归纳法证明,则必须 依题目的要求严格按照数学归纳法的步骤进行,否则不正确. 4.要注意“观察——归纳——猜想——证明”的思维模式,和由特殊到一般的数学思想的应用,加强合情推理与演绎推理相结合的数学应用能力.

5.数学归纳法与归纳推理不同.(1)归纳推理是根据一类事物中部分事物具有某种属性,推断该类事物中每一个都有这种属性.结果不一定正确,需要进行严格的证明.(2)数学归纳法是一种证明数学命题的方法,结果一定正确. 6.在学习和使用数学归纳法时,需要特别注意: (1)用数学归纳法证明的对象是与正整数n 有关的命题,要求这个命题对所有的正整数n 都成立; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步各司其职,缺一不可.特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性.如果没有第一步,而仅有第二步成立,命题也可能是假命题. 证明:12+122+123+…+12 n -1+12n =1-1 2n (其中n ∈N +). [证明] (1)当n =1时,左边=12,右边=1-12=1 2,等式成立. (2)假设当n =k (k ≥1)时,等式成立,即 12+122+123+…+12k -1+12k =1-12k , 那么当n =k +1时, 左边=12+122+123+…+12k -1+12k +1 2k +1 =1-12k +12k +1=1-2-12k +1=1-1 2k +1=右边. 这就是说,当n =k +1时,等式也成立. 根据(1)和(2),可知等式对任何n ∈N +都成立. 用数学归纳法证明:1-12+13-14+…+12n -1- 1 2n

高中数学数列测试题(免费下载)

数学高中必修5习题 第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为 41的等差数列,则 |m -n |等于( ). A .1 B .43 C .21 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若 35a a =95,则59S S =( ). A .1 B .-1 C .2 D .2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则 212b a a 的值是( ). A .21 B .-21 C .-21或21 D .4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ). A .38 B .20 C .10 D .9

专题3.3 数列与函数、不等式相结合问题(解析版)

一.方法综述 数列与函数、不等式相结合是数列高考中的热点问题,难度较大,求数列与函数、不等式相结合问题时会渗透多种数学思想.因此求解过程往往方法多、灵活性大、技巧性强,但万变不离其宗,只要熟练掌握各个类型的特点即可.在考试中时常会考查一些压轴小题,如数列中的恒成立问题、数列中的最值问题、数列性质的综合问题、数列与函数的综合问题、数列与其他知识综合问题中都有所涉及,本讲就这类问题进行分析. 二.解题策略 类型一数列中的恒成立问题 【例1】【安徽省毛坦厂中学2019届高三校区4月联考】已知等差数列满足,,数列满足,记数列的前项和为,若对于任意的,,不等式恒成立,则实数的取值范围为() A.B. C.D. 【答案】A 【解析】 由题意得,则,等差数列的公差, . 由, 得, 则不等式恒成立等价于恒成立, 而, 问题等价于对任意的,恒成立. 设,, 则,即,

解得或. 故选:A. 【指点迷津】对于数列中的恒成立问题,仍要转化为求最值的问题求解,解答本题的关键是由等差数列通项公式可得,进而由递推关系可得 ,借助裂项相消法得到,又 ,问题等价于对任意 的 , 恒成立. 【举一反三】已知数列{}n a 的首项1a a =,其前n 项和为n S ,且满足()2 142,n n S S n n n N -++=≥∈,若 对任意1,n n n N a a ++∈<恒成立,则a 的取值范围是( ) A .()3,5 B .()4,6 C .[)3,5 D .[)4,6 【答案】A 类型二 数列中的最值问题 【例2】【浙江省湖州三校2019年高考模拟】已知数列满足 , ,则使 的正整数的最小值是( ) A .2018 B .2019 C .2020 D .2021

2017高考数列与不等式

2017高考数列与不等式 1.【2017课标1,文7】设x,y满足约束条件 33, 1, 0, x y x y y +≤ ? ? -≥ ? ?≥ ? 则z=x+y的最大值为 A.0 B.1 C.2 D.3 2.【2017课标II,文7】设,x y满足约束条件 2+330 2330 30 x y x y y -≤ ? ? -+≥ ? ?+≥ ? ,则2 z x y =+的最小值是 A.15 - B.9- C.1 D 9 3.【2017课标3,文5】设x,y满足约束条件 3260 x y x y +-≤ ? ? ≥ ? ?≥ ? ,则z x y =-的取值范围是() A.[–3,0] B.[–3,2] C.[0,2] D.[0,3] 4.【2017北京,文4】若,x y满足 3, 2, , x x y y x ≤ ? ? +≥ ? ?≤ ? 错误!未找到引用源。则2 x y +的最大值为 (A)1(B)3 (C)5 (D)9 5.【2017山东,文3】已知x,y满足约束条件 250 30 2 x y x y -+≤ ? ? +≥ ? ?≤ ? ,则z=x+2y的最大值是 A.-3 B.-1 C.1 D.3 6.【2017浙江,4】若x,y满足约束条件 30 20 x x y x y ≥ ? ? +-≥ ? ?-≤ ? ,则y x z2 + =的取值范围是 A.[0,6] B.[0,4] C.[6,)∞ +D.[4,)∞ + 7.【2017浙江,6】已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4 + S6>2S5”的A.充分不必要条件B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件

(word完整版)高中数学等差数列练习题

一、 过关练习: 1、在等差数列{}n a 中,2,365-==a a ,则1054a a a Λ++= 2、已知数列{}n a 中,() *+∈+==N n a a a n n 3 111,111,则50a = 3、在等差数列{}n a 中,,0,019181=+>a a a 则{}n a 的前n 项和n S 中最大的是 4、设数列{}n a 的通项为()*∈-=N n n a n 72,则1521a a a +++Λ= 二、 典例赏析: 例1、在等差数列{}n a 中,前n 项和记为n S ,已知50,302010==a a (1)求通项n a ;(2)若242=n S ,求n 例2、在等差数列 {}n a 中, (1)941,0S S a =>,求n S 取最大值时,n 的值; (2)1241,15S S a ==,求n S 的最大值。 例3、已知数列{}n a 满足()22,21 2 1≥-==-n a a a a a a n n ,其中a 是不为零的常数,令a a b n n -=1 (1) 求证:数列{}n b 是等差数列 (2)求数列{}n a 的通项公式 三、强化训练: 1、等差数列{}n a 中,40,19552==+S a a ,则1a = 2、等差数列{}n a 的前m 项和为30,前2m 项和为100,则前3m 项和为 3、等差数列{}n a 中,,4,84111073=-=-+a a a a a 记n n a a a S +++=Λ21,则13S 等于 4、已知等差数列{}n a 的前n 项和为n S ,且10,10010010==S S ,则110S = 。 5、在ABC ?中,已知A 、B 、C 成等差数列,求2tan 2tan 32tan 2tan C A C A ++的值 作业 A 组: 1、 在a 和b 两个数之间插入n 个数,使它们与a 、b 组成等差数列,则该数列的公差为 2、 已知方程 ()()02222=+-+-n x x m x x 的四个根组成一个首项为41的等差数列,则n m -等于 B 组: 3、 已知一元二次方程()()()02=-+-+-b a c x a c b x c b a 有两个相等的实根, 求证: c b a 1,1,1成等差数列 4、 已知数列 {}n a 的通项公式是254-=n a n ,求数列{}n a 的前n 项和

数列与不等式复习题

数列与不等式复习题(一) 1.数列 ,8,5,2,1-的一个通项公式为 ( ) A .43-=n a n B .43+-=n a n C .()43)1(--=n a n n D .()43) 1(1 --=-n a n n 2、在数列{}n a 中,122,211=-=+n n a a a ,则101a 的值为( ) A .49 B .50 C .51 D .52 3、已知等比数列{a n }的公比为2, 前4项的和是1, 则前8项的和为( ) A .15. B .17. C .19. D .21 4.不等式01 31 2>+-x x 的解集是 ( ) A .}21 31|{>-x x D .}3 1 |{->x x 5.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( ) A.5 B.4 C. 3 D. 2 6.数列 ,16 1 4 ,813,412,21 1前n 项的和为( ) A .2212n n n ++ B .122 12+++-n n n C .22 12n n n ++- D . 2 2121 n n n -+- + 7.f x ax ax ()=+-2 1在R 上满足f x ()<0,则a 的取值范围是( ) A .a ≤0 B .a <-4 C .-<<40a D .-<≤40a 8.在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于( ) (A)1 2 2n +- (B) 3n (C) 2n (D)31n - 9.已知在等比数列{}n a 中,各项均为正数,且,7,13211=++=a a a a 则数列{}n a 的通项公式是_________=n a . 10.若方程x x a a 2 2 220-+-=lg()有一个正根和一个负根,则实数a 的取值范围是 __________________.

高考数学数列不等式证明题放缩法十种方法技巧总结

1. 均值不等式法 例1 设.)1(3221+++?+?=n n S n Λ求证 .2 )1(2)1(2 +<<+n S n n n 例2 已知函数 bx a x f 211 )(?+= ,若5 4)1(= f ,且 )(x f 在[0,1]上的最小值为21,求证: .2 1 21)()2()1(1 -+ >++++n n n f f f Λ 例3 求证),1(22 1321 N n n n C C C C n n n n n n ∈>?>++++-Λ. 例4 已知222121n a a a +++=L ,222 121n x x x +++=L ,求证:n n x a x a x a +++Λ2 211≤1. 2.利用有用结论 例5 求证.12)1 21 1()511)(311)(11(+>-+++ +n n Λ 例6 已知函数 .2,,10,)1(321lg )(≥∈≤x x f x f 对任意*∈N n 且2≥n 恒成立。 例7 已知1 1211 1,(1).2 n n n a a a n n +==+ ++ )(I 用数学归纳法证明2(2)n a n ≥≥; )(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828e ≈L ) 例8 已知不等式 21111 [log ],,2232 n n N n n *+++>∈>L 。2[log ]n 表示不超过n 2log 的最大整数。设正数数列}{n a 满足:.2,),0(111≥+≤ >=--n a n na a b b a n n n 求证.3,] [log 222≥+

(word完整版)高中数学必修五数列测试题

必修五阶段测试二(第二章 数列) 时间:120分钟 满分:150分 一、选择题(本大题共12小题,每小题5分,共60分) 1.(2017·山西朔州期末)在等比数列{a n }中,公比q =-2,且a 3a 7=4a 4,则a 8等于( ) A .16 B .32 C .-16 D .-32 2.已知数列{a n }的通项公式a n =????? 3n +1(n 为奇数),2n -2(n 为偶数),则a 2·a 3等于( ) A .8 B .20 C .28 D .30 3.已知等差数列{a n }和等比数列{b n }满足a 3=b 3,2b 3-b 2b 4=0,则数列{a n }的前5项和S 5为( ) A .5 B .10 C .20 D .40 4.(2017·山西忻州一中期末)在数列{a n }中,a n =-2n 2+29n +3,则此数列最大项的值是( ) A .102 B.9658 C.9178 D .108 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ) A .81 B .120 C .168 D .192 6.等差数列{a n }中,a 10<0, a 11>0, 且a 11>|a 10|, S n 是前n 项的和,则( ) A .S 1, S 2, S 3, …, S 10都小于零,S 11,S 12,S 13,…都大于零 B .S 1,S 2,…,S 19都小于零,S 20,S 21,…都大于零 C .S 1,S 2,…,S 5都大于零,S 6,S 7,…都小于零 D .S 1,S 2,…,S 20都大于零,S 21,S 22,…都小于零 7.(2017·桐城八中月考)已知数列{a n }的前n 项和S n =an 2+bn (a ,b ∈R ),且S 25=100,则a 12+a 14等于( ) A .16 B .8 C .4 D .不确定 8.(2017·莆田六中期末)设{a n }(n ∈N *)是等差数列,S n 是其前n 项和,且S 5S 8,则下列结论错误的是( ) A .d <0 B .a 7=0 C .S 9>S 5 D .S 6和S 7均为S n 的最大值 9.设数列{a n }为等差数列,且a 2=-6,a 8=6,S n 是前n 项和,则( ) A .S 4<S 5 B .S 6<S 5 C .S 4=S 5 D .S 6=S 5 10.(2017·西安庆安中学月考)数列{a n }中,a 1=1,a 2=23,且1a n -1+1a n +1=2a n (n ∈N *,n ≥2),则a 6等于( )

数列与不等式知识点及练习

数列与不等式 一、看数列是不是等差数列有以下三种方法: ①),2(1为常数d n d a a n n ≥=--②211-++=n n n a a a (2≥n )③b kn a n +=(k n ,为常数). 二、看数列是不是等比数列有以下两种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n ②112 -+?=n n n a a a (2≥n ,011≠-+n n n a a a ) (2)在等差数列{n a }中,有关S n 的最值问题:(1)当1a >0,d<0时,满足?? ? ≤≥+0 01m m a a 的项数m 使得m s 取最大值. (2)当1a <0,d>0时,满足?? ?≥≤+0 1m m a a 的项数m 使得m s 取最小值.在解含绝 对值的数列最值问题时,注意转化思想的应用。 四.数列通项的常用方法: (1)利用观察法求数列的通项.(2)利用公式法求数列的通项:①;②{}n a 等差、等比数列{}n a 公式.(3)应用迭加(迭乘、迭代)法求数列的通项:①;②(4)造等差、等比数列求通项:;②;③;④.第一节通项公式常用方法题型1 利用公式法求通项 例1:1.已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 2.已知为数列{}n a 的前项和,求下列数列{}n a 的通项公式: ⑴ ; ⑵.总结:任何一个数列,它的前项和n S 与通项n a 都存在关系:???≥-==-)2() 1(11n S S n S a n n n 若1a 适合n a ,则把它们 统一起来,否则就用分段函数表示. 题型2 应用迭加(迭乘、迭代)法求通项 例2:⑴已知数列{}n a 中,,求数列{}n a 的通项公式; ⑵已知为数列{}n a 的前项和,,,求数列{}n a 的通项公式. 总结:⑴迭加法适用于求递推关系形如“”; 迭乘法适用于求递推关系形如““;⑵迭加法、迭乘法公式:① ② . 题型3 构造等比数列求通项 例3已知数列{}n a 中,,求数列{}n a 的通项公式. 总结:递推关系形如“” 适用于待定系数法或特征根法: ①令;② 在中令,;③由得,. 例4已知数列{}n a 中,,求数列{}n a 的通项公式. 总结:递推关系形如“”通过适当变形可转化为: “”或“求解. 数列求和的常用方法

相关文档
相关文档 最新文档