文档库 最新最全的文档下载
当前位置:文档库 › AE CS3 层的分类

AE CS3 层的分类

AE CS3  层的分类
AE CS3  层的分类

AE CS3 层的分类

AE中的层分为8种,每一种层都有其独特的作用,其中有些可以制作字体,有些可以创建灯光等。新建层的时候可以选择不同类型的层,在Timeline窗口中单击右键选择需要创建的层即可。下面我们就来介绍每种层级的作用。

1.Text层

该层是一个文本层,用于创建字体特效,如图8-32所示。设置字体动画所用的层,展开其属性面板会看到层的基本属性和Text的特有属性,Text右侧的Animate可以设置其特有的文本动画效果。后面我们会详细的讲解。

图8-32字体效果图8-33 字体属性面板

输入字体效果以后会弹出其属性面板,在这里可以设置字体的基本参数,例如字体、大小、间距、颜色等,如图8-33所示。

2.Solid层

Solid层是具有固态颜色的层,也是我们平时用到最多的,制作各种各样的特效都需要用到它,在实际操作中我们经常要给Solid添加素材、从Effect中添加特效或者使用蒙版来制作更多的效果,如图8-34所示。

图8-34 在Solid层上添加效果

创建Solid层的时候可以在Name栏中定义它的名字,Size栏中定义其尺寸。可以Width 和Height中定义它的宽高比等。在Color中可以定义其颜色,如果想让Solid层和Comp一样大小的话,可以单击Make Comp Size按钮,如图8-35所示。

储层识别方法

储层识别方法 研究区储层物性可以反映在地球物理测井参数上,对于研究区的储层识别可以充分应该常规测井并结合测井新技术。储层的划分主要是依据自然电位曲线结合自然伽马曲线,并通过中子、密度、声波、电阻率曲线等特征判别储层好坏,若结合地质特征、钻井、录井显示、试油资料以及岩心分析等,更能综合准确分析储层的好坏。储层的测井划分标准: (1)好储层 岩性较纯,泥质含量较低。在井眼正常的情况下,常规测井自然电位负异常,并异常幅度大,一般大于20mV,自然伽马一般集中在40-70API;电成像图上呈棕黄色显示,排除暗色泥质条带和高亮度致密岩性。 孔隙度较大:常规测井上声波时差大于230μs/m;且随泥质含量增大而有所增大;井眼正常处,补偿密度值一般小于2.5g/cm3;核磁测井孔隙度较大,T2分布谱大多分布在T2截止值的右边,T2分布谱越靠右分布越好。 渗透性较好:常规测井上,储层井径正常或略有缩径,深浅双侧向(深中感应)电阻率有或无差异;在排除泥质影响情况下,斯通利波能量有衰减。 (2)中等储层 岩性较纯,泥质含量较低:井眼正常的情况下,常规测井自然电位负异常幅度中等-大,一般在10-20mV,自然伽马一般集中在60-95API; 孔隙度较大:常规测井上声波时差大于220μs/m;且随泥质含量增大而有所增大;井眼正常处,补偿密度值一般小于2.6g/cm3;核磁测井孔隙度较大,T2分布谱大多分布在T2截止值的中-右边,孔隙以中孔为主。 渗透性较好:常规测井上,储层井径正常或略有缩径,深浅双侧向(深中感应)电阻率有或无差异;在排除泥质影响情况下,斯通利波能量有衰减。 (3)差储层识别方法 岩性较纯,泥质含量较低:井眼正常的情况下,常规测井自然电位负异常幅度中等-大,一般在小于10mV,自然伽马一般集中在70-95API; 孔隙度较小:常规测井上声波时差小于220μs/m;且随泥质含量增大而有所增大;井眼正常处,补偿密度值一般大于2.6g/cm3;核磁测井孔隙度较大,T2分布谱大多分布在T2截止值的中-左边,孔隙以小孔为主。

储层微观特征及分类评价

4.储层微观特征及分类评价 4.1孔隙类型 本次孔隙分类采用以孔隙产状为主,并考虑溶蚀作用,结合本区实际,将孔隙分类如下: 1. 粒间孔隙 粒间孔隙是指位于碎屑颗粒之间的孔隙。它可以是原生粒间孔隙或残余原生粒间孔隙,即原生粒间孔隙在遭受机械压实作用、胶结作用等一系列成岩作用破坏后而保留下来的那一部分孔隙。多呈三角形,无溶蚀标志。另一方面它也可以是粒间溶蚀孔隙,即原生粒间孔隙经溶蚀作用强烈改造而成,或者是颗粒间由于强烈溶蚀作用的结果。粒间空隙一般个体较大,连通性较好。粒间孔隙是本区主要的孔隙类型。 2. 粒内(晶内)孔隙 这类孔隙主要是砂岩中的长石、岩屑等非稳定组分的深部溶蚀形成的,在研究区深层砂岩中普遍存在。长石等非稳定组分的溶蚀空隙可以进一步分为粒内溶孔和晶溶孔。晶内溶孔是指长石颗粒内的溶孔,而粒内溶孔是指岩屑等碎屑内部的易溶组分在深部酸性流体作用下形成。常常沿长石的解理缝、双晶纹和岩屑内矿物之间的接触部位等薄弱带进行溶蚀并逐渐扩展,因而常见沿解理缝和双晶结合面溶蚀形成的栅状溶孔。长石、岩屑等非稳定组分的溶蚀孔的发育常常使彼此孤立的、或很少有喉管项链的次生加大晶间孔的连通性大为改进,而且,这类孔隙的孔径相对较大,从而优化了深部储层的储集性能。 3. 填隙物孔隙 填隙物孔隙包括杂基内孔隙、自生矿物晶间孔和晶内溶孔。 杂基内孔隙多发育与杂基含量较高的(>10%)砂岩中,孔隙数量多,个体细小,连通性差。自生矿物晶间孔隙发育在深埋条件下自生矿物,如石英、方解石、沸石、碳酸岩小晶体以及石盐晶体之间,个体小,数量多随埋深有增加之趋势。但由于常生长于粒间孔隙中,连通性较好,又由于其晶体小,比表面积大,孔隙结构复杂,影响流体渗流。因此在埋深3500米以下,孔隙度降低较慢,而渗透率降低很快。这类晶间孔隙在徐东-唐庄地区相对发育。另外,杜桥白地区深层还可见到丰富的碳酸盐晶内溶孔和石盐晶内溶孔。 4. 裂隙 裂缝在黄河南地区较不发育,在桥24井沙三段3547.5米砂岩中见一构造裂缝,此外多见泥质粉砂岩或细砂岩中泥质细条带收缩缝。一般绕裂缝在构造活动强烈部位发育,对储层物性改善很有作用。 4.2孔隙结构特征 1.孔隙结构分析 岩石的储集空间不是由单一的孔隙类型组成,而是由多种孔隙类型构成的变化多样的复杂的孔喉系统。

储层

储层:凡是能够储集和渗滤流体的地层的岩石构成的地层叫储层。 储层地质学:是一门从地质学角度对油气储层的主要特征进行描述、评价及预测的综合性学科。 研究内容:储层层位、成因类型、岩石学特征、沉积环境、构造作用、物性、孔隙结构特征、含油性、储集岩性几何特征储集体分布规律、对有利储层分布区的预测。有效孔隙度:指那些互相连通的,且在一定压差下(大于常压)允许流体在其中流动的孔隙总体积与岩石总体积的比值。 绝对渗透率:如果岩石孔隙中只有一种流体存在,而且这种流体不与岩石起任何物理、化学反应,在这种条件下所测得的渗透率为岩石的绝对渗透率。 剩余油饱和度:地层岩石孔隙中剩余油的体积与孔隙体积的比值 残余油饱和度:地层岩石孔隙中残余油的体积与孔隙体积的比值 储层发育的控制因素:沉积作用、成岩作用、构造作用低渗透储层的基本地质特征:孔隙度和渗透率低、毛细管压力高、束缚水饱和度高 低渗透储层的成因:沉积作用、成岩作用 论述碎屑岩储层对比的方法和步骤: 1、依据 2、对比单元划分 3、划分的步骤 1、依据:①岩性特征:指岩石的颜色、成分、结构、构造、地层变化、规律及特殊标志层等。在地层的岩性、厚度横向变化不大的较小区域,依据单一岩性标准层法,特殊标志层进行对比;在地层横向变化较大情况下依据岩性组合②沉积旋回:地壳的升降运动不均衡,表现在升降的规模大小不同。在总体上升或下降的背景上存在次一级规模的升降运动,地层剖面上,旋回表现出次一旋回对比分级控制③地球物理特征:主要取决于岩性特征及所含流体性质,电测曲线可清楚反映岩性及岩性组合特征,有自己的特征对比标志可用于储层对比;测井曲线给出了全井的连续记录,且深度比较准确,常用的对比曲线:视电阻率曲线、自然电位曲线、感应测井曲线 2、对比单元划分:储层层组划分与沉积旋回相对应,由大到小划分为四级:含油层系、油层、砂层组和单油层。储层单元级次越小,储层特性取性越高,垂向连通性较好 3、划分的步骤:沉积相的研究方法主要包括岩心沉积相标志研究、单井剖面相分析、连续剖面相对比和平面相分析四种方法 岩心沉积相标志的研究方法是以岩石学研究为基础,可分为三类:岩性标志,古生物标志和地球化学标;单井剖面分析是根据所研究地层的露头和岩化剖面,以单井为对象,利用相模式与分析剖面的垂向层序进行对比分析,确是沉积相类型,最后绘出单井剖面相分析图;连井剖面相对比分析主要表示同一时期不同井之间沉积相的变化,平面相分析是综合应用剖面相分析结果进行区域岩相古地理研究的方法。 碳酸盐岩与碎屑岩储层相比,具有哪些特征? ①岩石为生物、化学、机械综合成因,其中化学成因起主导作用。岩石化学成分、矿物成分比较简单,但结构构造复杂,岩石性质活泼,脆性大②以海相沉积为主,沉积微相控制储层发育③成岩作用和成岩后生作用严格控制储集空间发育和储集类型形成。 扇三角洲储层特征? ①碎屑流沉积。由于沉积物和水混合在一起的一种高 密度、高粘度流体,由于物质的密度很大,沿着物质聚集体内的剪切面而运动。②片汜沉积。是一种从冲积扇河流末端漫出河床而形成的宽阔浅水中沉积下来的产物,沉积物为呈板片状的砂、粉砂和砾石质。 。③河道沉积。指暂时切入冲积扇内的河道充填沉积物。④筛积物。当洪水携带的沉积物缺少细粒物质时,便形成由砾石组成的沉积体。 碎屑岩才沉积作用:垂向加积、前积、侧向加积、漫积、筛积、选积、填积、浊积 喉道:在扩大孔隙容积中所起作用不大,但在沟通孔隙形成通道中起着关键作用的相对狭窄部分,称为喉道。孔隙结构:岩石所具有的孔隙和喉道的几何形状、大小、分布、相互连通情况以及孔隙与喉道间的配置关系。 碎屑岩的喉道类型:孔隙缩小型喉道、缩颈型喉道、片状喉道、弯片状喉道、官束状喉道 孔隙类型:原生孔隙、次生孔隙、混合孔隙 排驱压力:非润湿相开始进入岩样所需要的最低压力,它是泵开始进入岩样最大连通孔喉而形成连续流所需的启动压力,也称阀压。 成岩作用:指碎屑沉积物在沉积之后到变质之前所发生的各种物理、化学及生物的变化。 同生成岩作用:沉积物沉积后尚未完全脱离上覆水体时发生的变化与作用的时期。 表成岩作用:指处于某一成岩阶段弱固结或固结的碎屑岩,因构造抬升而暴露或接近地表,受到大气淡水的溶蚀,发生变化与作用的阶段。 成岩作用的基本要素:岩石、流体、温度、压力 孔隙水的流动方式和动力:压实驱动流、重力驱动流、滞流 碎屑岩主要的成岩作用有哪些?分别对孔隙有什么影响? 根据成岩作用对储层孔隙演化的影响,可将碎屑岩的残岩作用分为两大类:一是降低储层孔渗性的成岩作用,主要有机械压实作用和胶结作用,其次压溶作用和重结晶作用;其中机械压实作用是沉积物在上覆重力及静水压力作用下,发生水分排出,碎屑颗粒紧密排列而使孔隙体积缩小,孔隙度降低,渗透性变差的成岩作用;胶结作用是指孔隙溶液中过饱和成分发生沉淀,将松散的

原油物性、碎屑岩储层分类简表

气藏采收率大致范围表单位:f 注:来源于《天然气储量规范》 气藏采收率大致范围表单位:f 注:来源于加拿大学者G.J狄索尔斯(Desorcy)归纳的世界不同类型气藏的采收率

1. 石油 (1) 按产能大小划分单井工业油流高产—特低产标准 千米井深的稳定日产量[t/(km.d)] 高产中产低产特低产 >15 >5-15 1-5 <1 (2)按地质储量丰度划分作为油田评价的标准: 地质储量丰度(1x104t/km2) 高丰度中丰度低丰度特低丰度 >300 >100-300 50-100 <50 (3)按油田地质储量大小划分等级标准: 石油地质储量(1x108t) 特大油田大型油田中型油田小型油田 >10 >1-10 0.1-1 <0.1 (4)按油气藏埋藏深度划分标准: 油气藏埋藏深度(m) 浅层油气世故(田) 中深层深层超深层<2000 2000-3000 >3200-4000 4000 此外,还有几种特殊石油储层的划分标准: 稠油储量指地下粘度大于50mPa·S的石油储量。 高凝油储量指原油凝固点在40℃以上的石油储量。

低经济储量指达到工业油流标准,但在目前技术条件下,开发难度大,经济效益低的石油储量。又有称为边界经济储量。 超深层储量指井深大于4 000m,开采工艺要求高的石油储量。 2.天然气 (1)按千米井深的单井稳定天然气产量划分标准: 千米井深稳定产量[104m3/(km·d)]高产中产低产 >10 3-10 <3 (2)天然气田储量丰度划分标准: 天然气储量丰度(108 m3/km2) 高丰度中丰度低丰度 >10 2-10 <2 (3)天然气田总储量划分大小标准: 田天然气田总储量(108m3) 大气田中气田小气田 >300 50-300 <50 (4)按气藏埋藏深度划分标准: 天然气藏埋深(m) 浅层气藏(田) 中深层深层超深层

原油物性、碎屑岩储层分类简表

原油物性分类简表 碎屑岩储层分类表(石油天然气储量计算规范,DZ/T 0217-2005 ) f

1.石油 (1)按产能大小划分单井工业油流高产—特低产标准千米井深的稳定日产量[t/(km.d)] 高产中产低产特低产 >15 >5-15 1-5 <1 (2)按地质储量丰度划分作为油田评价的标准: 地质储量丰度(1x104t/km2) 高丰度中丰度低丰度特低丰度 >300 >100-300 50-100 <50 (3)按油田地质储量大小划分等级标准: 石油地质储量(1x108t) 特大油田大型油田中型油田小型油田 >10 >1-10 0.1-1 <0.1 (4)按油气藏埋藏深度划分标准: 油气藏埋藏深度(m) 浅层油气世故(田) 中深层深层超深层 <2000 2000-3000 >3200-4000 4000 此外,还有几种特殊石油储层的划分标准: 稠油储量指地下粘度大于50mPa ? S的石油储量。 高凝油储量指原油凝固点在40C以上的石油储量

低经济储量指达到工业油流标准,但在目前技术条件下,开发难度大, 经济效益低的石油储量。又有称为边界经济储量。 超深层储量指井深大于4 000m,开采工艺要求高的石油储量。 2.天然气 (1)按千米井深的单井稳定天然气产量划分标准: 千米井深稳定产量]104m3/(km ? d)] 高产中产低产 >10 3-10 <3 (2)天然气田储量丰度划分标准: 天然气储量丰度(108 m3/km2) 高丰度中丰度低丰度 >10 2-10 <2 (3)天然气田总储量划分大小标准: 田天然气田总储量(108m3) 大气田中气田小气田 >300 50-300 <50 (4)按气藏埋藏深度划分标准: 天然气藏埋深(m) 浅层气藏(田) 中深层深层超深层

储层精细划分

油田进入开发后期,进一步提高采收率、挖掘剩余油潜力的难度越来越大,必须 进行精细的地层划分、对比工作。建立在地震地层学、层序地层学基础之上的高分辨 率层序地层学1995 年引入我国油气勘探领域后,其地层划分与对比方法在油田开发 中得以应用并取得了很好的效果;20 世纪60 年代,我国的石油地质工作者依据陆相 盆地多级次震荡运动学说和湖平面变化原理,在大庆油田会战中创造出了适用于湖相 沉积储层精细描述的“旋回对比、分级控制、组为基础”的小层对比技术,80 年代 中期,在小层沉积相研究的基础上,又将这一方法进一步发展为“旋回对比、分级控 制、不同相带区别对待”的相控旋回等时对比技术[56-58],使之更加适用于湖盆中的河 流-三角洲沉积,这项技术以其精细性和实用性,成为我国陆相油田精细油藏描述的 技术基础,得到了广泛应用。高分辨率层序地层对比与大庆油田的相控旋回等时对比 技术,一种理论性强,一种实用性强,均属于地层学中的精细地层划分、对比技术, 有许多相似之处,也各有其优缺点。本章首先简要介绍了高分辨率层序地层学的基本 原理和大庆油田的相控旋回等时对比技术,然后对这两种方法的作了比较,最后综合 应用两种方法,对商河油田南部沙二段地层进行了划分与对比,建立了研究区沙二段 的精细等时地层格架。 3.1 高分辨率层序地层学基本原理 层序地层学作为地层划分与对比的方法广泛应用于油气勘探的各个阶段。层序地 层学已发展成三个不同的学派,即Exxon 沉积层序、Galloway 成因层序及Cross 高分辨率层序地层学,它们已成为层序研究的三种基本方法。其共性是都与事件地层学相 关联,并且都是基于岩石地层旋回性以及相对地层格架的测定。主要差别在于旋回之 间界面的确定。Galloway 成因地层学使用了最大海(湖)泛面,Exxon 沉积层序使用 了不整合面,而Cross 的高分辨率测序地层则采用地层基准面原理。Cross 的高分辨 率层序地层与Galloway 成因地层和Exxon 沉积层序之间的差别在于前者采用二分时 间单元(地层基准面旋回),而后者采用的是三分时间单元。这三种方法各有其优缺 点,只要弄清楚用的是哪一种方法,或是在同一研究中使用几种方法都是可以的[59] 。由美国科罗拉多区矿业学院Cross 教授提出的高分辨率层序地层学理论,是近年 来新掘起的层序地层学新学派[33]。该理论经邓宏文、徐怀大等传入我国后,在我国 第三章地层的精细划分与对比 24 陆相盆地储层预测研究中发挥着重要的作用[22,60],极大地提高了陆相盆地的储层预 测精度。高分辨率层序地层学是在现代层序地层学的基础上发展起来的,它所依据的 仍然是层序地层学的基本原理。它与盆地或区域规模的层序分析不同在于,它以露头、 岩心、测井和高分辨率地震反射剖面资料为基础,运用精细层序划分和对比技术,建 立油田乃至油藏级储层的成因地层对比骨架。这里所谓的“高分辨率”是指“对不同 级次地层基准面旋回进行划分和等时对比的高精度时间分辨率,也即高分辨率的时间 -地层单元既可应用于油气田勘探阶段长时间尺度的层序单元划分和等时对比,也适 合开发阶段短时间尺度的砂层组、砂层和单砂体层序单元划分和等时对比”[24]。 以郑荣才、邓宏文两位教授为代表的高分辨率层序地层专家将高分辨层序地层的 理论运用于我国含油气盆地储层预测的实践中,极大地丰富和发展了高分辨率层序地 层学理论。高分辨层序地层应用于陆相盆地层序分析中的关键技术之一是识别和划分 不同成因的界面与不同级次的基准面旋回[20-26]。郑荣才教授根据他在辽河、胜利、长庆、大庆及滇黔桂等油田的实践,将不同构造性质的湖盆在盆地构造-沉积演化序列 中的控制因素进行分类,根据界面成因特征提出了“巨旋回,超长周期旋回、长周期 旋回、中期旋回、短期旋回、超短期旋回”的划分方案,建立了各级次旋回的划分标

毛管压力曲线分类标准

1.根据毛管压力曲线形态对储层定性分类 (1)大孔粗喉型储层 特点:孔隙个体大,喉道粗,分选连通好,歪度偏大,孔隙度、渗透率均好。 (2)小孔粗喉型储层 特点:喉道粗,孔隙个体小,分选连通较好,孔隙度低--中,渗透率中等--低。 (3)大孔细喉型储层 特点:孔隙个体大,喉道偏细,孔隙度中等,渗透率偏低。 (4)小孔细喉型储层 特点:孔隙个体小,喉道偏细,细歪度,孔隙度低,渗透率低。 粗喉、中喉、细喉、微喉的分级: 级别主要流动喉道直径um 特粗喉>30um 粗喉20~30 中喉10~20 细喉1~10 微喉<1 美国岩心实验室(Core Laboratories)根据孔喉半径大小将孔喉分为三种类型: 1.大孔喉(Macropores)—孔喉半径大于1.5μm; 2粗微孔喉(Coarse micropores)—孔喉半径在0.5~1.5μm; 3.细微孔喉(Fine micropores)—孔喉半径小于0.5μm。 于是该实验室在压汞毛管压力资料分析时计算这三类孔喉在岩石中所连通的孔隙体积百分数, 即: 1.大孔喉(>1.5μm)的孔隙体积百分数; 2.粗微孔喉(0.5~1.5μm)的孔隙体积百分数; 3.细微孔喉(<0.5μm)的孔隙体积百分数。 根据 E.S.米赛尔和W.V.安琪哈尔特的研究,吸附水膜的厚度一般可达0.1μm(有时可以变厚)。这就意味着, 在自然条件下, 水膜可以把半径≤0.1μm的管道全部堵死, 使石油无法进入。马丁·雷克曼也曾明确宣称:应当把半径<0.1μm 的孔隙当成岩石固体部分看待, 祝总祺等建议扬弃了半径<0.1μm的孔隙之后, 其余的半径大于0.1μm的孔隙空间代表石油能够进入的孔隙空间, 并将这部分空间体积称为“有用孔隙体积”。笔者认为, 可将半径小于0.1μm的孔喉称作极细微孔喉, 可从压汞毛管压力曲线上计算出极细微孔喉连通的孔隙体积百分数, 把

中国国家标准《石油天然气资源储量分类》

附件3 中国国家标准《石油天然气资源/储量分类》 (GB/T 19492-2004)与《联合国化石 能源和矿产储量与资源分类 框架》(2009)对接文件 2018年1月

目录 I.前言 (1) II.级别和亚级的直接对应 (13) III.GB/T 19492-2004级别细分为多个UNFC-2009亚级 (17) IV.GB/T 19492-2004勘探开发阶段划分与UNFC-2009项目划分对应的说明 (24) V.GB/T 19492-2004未界定和无分类数量的说明 (26)

I.前言 1.对接文件是说明在《联合国化石能源和矿产储量与资源分类框 架》(2009)(以下简称“UNFC-2009”)与资源分类专家组(EGRC)认可作为并行体系的另一分类体系之间关系的文件。文件提供了相应的说明和指南,指导用户利用UNFC-2009数字代码对并行体系产生的估算值进行分类。利用UNFC-2009数字代码报告估算值时,应明确相关的对接文件。 2.本文件对中国国家标准《石油天然气资源/储量分类》(GB/T 19492-2004)(以下简称“GB/T 19492-2004”)和UNFC-2009有关储量和资源量类别和级别进行了对比。 3.GB/T 19492-2004是指中华人民共和国国家质量监督检验检疫 总局中国国家标准化管理委员会于2004年4月30日发布,于2004年10月1日实施的《石油天然气资源/储量分类》(GB/T 19492 -2004)。该分类为中国的石油、天然气(游离气、气顶气和原油溶解气)和凝析油资源/储量的计算、评审和统计设立了统一的指导原则(图1)。

3 储层精细划分与对比(2003-10-20)

3 储层精细划分与对比 黄珏油田构造复杂,特别是次一级小断层发育,地层超覆明显,储层非均质性严重,标志层发育不全或不明显,给储层的对比带来极大困难。 3.1 对比策略 陆相地层精确的年代地层对比一直是困难的,具有不确定性和较低的分辨率。对于不同规模的储层,运用高分辨率陆相地层对比需要不同的策略。 针对黄珏油田复杂的地质特征, 因此试图利用高分辨率层序地层学的 原理和方法来研究本区储层沉积过程 与形成机制,掌握纵向变化规律来预 测储层横向变化趋势,从而指导储层 精细划分与对比。本次研究正是从这 一思路出发(附图3-1),综合利用该油 田的新老地震资料、测井资料、岩心 资料和录井资料,从地震层序划分入 手,建立大规模地层旋回模式,在此 框架下,应用高分辨率层序地层学进 行等时地层划分与对比,建立该区的 等时地层对比格架,指导储层精细划 分与对比,并以短期旋回内砂体的叠 加样式为依据,实现井间追踪对比。 3.2 地震层序分析与划分 地震层序就是沉积层序在地震剖面上下的沉积响应,而沉积层序则是相对整合的、在成因上有相对联系的,以不整合面或与之可对比的整合面为界的地层单元。所以地震层序是由时代界面限制的年代地层单元,代表在单一地壳运动幕沉积下来的成因单元。因此地震层序最基本的划分原则是依据不整合面和地震反射终止关系(削截、顶超、上超、下超)。 3.2.1地震反射特征 黄珏地区地震反射最为明显的是T 23波组,其次为T 2 4、T 2 5波组,T 2 3 波组全区可连图3-1 黄珏油田戴南组对比策略

续追踪,T 24 、T 25 波组靠深凹部位反射连续性较好,靠构造高部位连续性较差。 垛一段早期的火山活动,形成分布广泛的顺层玄武岩,厚度2~10m 。电测曲线上,玄武岩表现为高阻、低电位、低时差特征。T 23波组在地震剖面上表现为强反射,非常醒目。由于吸收了大量的地震波高频成分,导致玄武岩层以下地层的地震波反射能量减弱,连续性变差。 由于“五高导”泥岩在本区发育不全,T 25波组连续性相对较差,由北往南高导段沉积厚度变薄,波组特征不明显。 戴南组内部地层组成比较均一,是导致戴南组地层内部反射结构不明显的一个 重要原因。录井资料统计研 究表明(图3-2),戴南组内部基本是粉细岩与棕色泥岩互层,含砂率较低。戴南组平均含砂率为9.3%,其中戴一段为6.8%,戴二段为11%。 3.2.2地震层序划分 ⑴ 长期基准面旋回地震响应 长期基准面旋回是构造基准面旋回次一级的旋回。构造基准面旋回相当于Exxon 层序地层学派的三级层序。由于三级层序内不存在明显的不整合面,我们把长期基准面旋回划分为相对易于追踪对比的水进界面为界(Exxon 层序地层学派的四级层序)。 长期基准面旋回(LSC)是以边界断层活动性差异、物源供给的转换及A/S 比值的变化为依据来划分,本区戴南组可划分三套长期基准面旋回(附图3-1)。 除了戴二段顶部有一套稳定砂层产生的强反射外,LSC1(相当于戴二段上部)地震反射总体较弱,呈现出断续弱反射特征。在南北向地震剖面上,除了油田西部的地震剖面,其余剖面上该套地层反射均向边界断层方向减弱,甚至出现低频无反射。 LSC1与LSC2之间的界面为低角度上超面(附图3-2)。 LSC2(戴南组中部相当于戴二段中下部)表现出现几个强反射同相轴呈连续平行叠置特征。LSC2的下部反射同相轴常常上超终止于戴一段地层的顶面,向湖盆中央反射强度减弱。而LSC2的上部反射同相轴则向湖盆边缘反射强度减弱。同时,LSC2的反 图3-2 黄珏油田戴南组各油组含砂率分布

井震结合的稀疏井区相控储层分类与综合评价——以珠江口盆地WC-A油田珠江组为例

Journal of Oil and Gas Technology 石油天然气学报, 2020, 42(2), 17-26 Published Online June 2020 in Hans. https://www.wendangku.net/doc/fe2606272.html,/journal/jogt https://https://www.wendangku.net/doc/fe2606272.html,/10.12677/jogt.2020.422012 Facies-Controlled Reservoirs Classification and Comprehensive Evaluation in Sparse Well Areas Combined with Well-Seismic —Taking the Pearl River Formation of the WC-A Oilfield in the Pearl River Mouth Basin as an Example Feng Wei1, Guoqing Xue1, Cong Xiong2, Chengsheng Zhao2 1Zhanjiang Branch of CNOOC (China) Co. Ltd., Zhanjiang Guangdong 2Wuhan Times GeoSmart Science and Technology Co. Ltd., Wuhan Hubei Received: Mar. 4th, 2020; accepted: Apr. 7th, 2020; published: Jun. 15th, 2020 Abstract Reservoir classification and comprehensive evaluation is an important research content in the middle and late stage of oil and gas field development, especially for offshore oil and gas fields, the well pattern is sparse and the risk of well location deployment is high. Through reservoir classifi-cation and comprehensive evaluation, the development risk can be effectively reduced, which has an important guiding significance for the realization of fine adjustment and potential tapping of oil and gas fields. This paper takes the ZJ1-4 oilgroup of the Neogene in the WC-A oilfield in the Pearl River Mouth Basin as an example, and establishes three major categories and five subcategories through the optimization of sensitive geological parameters and the classification of facies-controlled logging reservoirs. In addition, the reservoir prediction thinking using analytic hierarchy has carved out the lithological and physical properties of the reservoir, and comprehensively eva-luated the plane distribution of different types of reservoirs. Using this research result, multiple adjustment wells were subsequently implemented, and the initial average production capacity reached 20 m3/d, which has achieved good development results, and provides a new research idea for the classification and development of sparse well pattern oil and gas field reservoirs. Keywords Grey System Theory, Reservoir Classification Controlled with Facies Controlled, Reservoir Prediction, Reservoir Comprehensive Evaluation

相关文档