文档库 最新最全的文档下载
当前位置:文档库 › 门捷列夫与元素周期律

门捷列夫与元素周期律

门捷列夫与元素周期律
门捷列夫与元素周期律

门捷列夫与元素周期律

******

(华南师范大学化学与化学与环境学院广东广州510006)摘要:元素周期律揭示了隐藏在自然界神秘面纱后面的客观规律,它的确立为当时的化学家们提供了一份梳理、概括已有的无机化学知识的总纲,使化学的研究进入到一个系统化的阶段。本文主要阐述了门捷列夫发现元素周期率的过程和对门捷列夫发现元素周期律的一些感想。

关键词: 门捷列夫元素周期律元素周期表

0引言

元素周期表是我们从高中就已经开始接触过的。从第一号元素到第一百一十二号元素,从第一周期到第七周期,从第一主族到第七主族,第一副族到第七副族,还有0族和第八族的存在。我们对于元素周期表的存在和排列方式,似乎已经认为这是一件理所当然的事情了。然而,元素周期律的发现是经过许许多多伟人共同努力的,元素周期表的产生更是化学史上的一次重大飞跃。它不仅使已知元素的性质和有规律变化得到了解释,更重要的是让人们对未知元素有了预测的依据。元素周期表的作用如此重要,我们更有必要了解它的发现进程。元素周期律的发现过程也给我们带来了很多感想。

1元素周期律与门捷列夫

1.1元素周期律的发现过程

元素周期律的发现是许多科学家共同努力的结果。1789年,拉瓦锡出版的《化学大纲》中发表了人类历史上第一张《元素表》,在这张表中,他将当时已知的33种元素分四类。1829年,德贝莱纳在对当时已知的54种元素进行了系统的分析研究之后,提出了元素的三元素组规则。他发现了几组元素,每组都有三个化学性质相似的成员。并且,在每组中,居中的元素的原子量,近似于两端元素原子量的平均值。1850年,德国人培顿科弗宣布,性质相似的元素并不一定只有三个;性质相似的元素的原子量之差往往为8或8的倍数。1862年,法国化学家尚古多创建了《螺旋图》,他创造性地将当时的62种元素,按各元素原子量的大小为序,标志着绕着圆柱一升的螺旋线上。他意外地发现,化学性质相似的元素,都出现在同一条母线上。1863年,英国化学家欧德林发表了《原子量和元素符号表》,共列出49个元素,并留有9个空位。上述各位科学家以及他们所做的研究,在一定程度上只能说是一个前期的准备,但是这些准备工作是不可缺少的。究竟元素周期表是怎么进一步发展而成的,这时候我们的决定性人物——门捷列夫出现了。门捷列夫在元素周期的发现中可谓是中流砥柱,然而,科学探究的道路是不可能一帆风顺的,门捷列夫同样遇到了重重的困难阻隔。然而,最后门捷列夫叩开了成功的大门,发现了元素周期律。

1.2门捷列夫发现元素周期律

门捷列夫不分昼夜地研究着,探求元素的化学特性和它们的一般的原子特性,然后将每个元素记在一张小纸卡上。他企图在元素全

部的复杂的特性里,捕捉元素的共同性。他的研究,一次又一次地失败了。可他不屈服,不灰心,坚持干下去。

为了彻底解决这个问题,他又走出实验室,开始出外考察和整理收集资料。大量的实践活动,不仅增长了他认识自然的才干,而且对他发现元素周期律,奠定了雄厚的基础。

门捷列夫又返回实验室,继续研究他的纸卡。他把重新测定过的原子量的元素,按照原子量的大小依次排列起来。他发现性质相似的元素,它们的原子量并不相近;相反,有些性质不同的元素,它们的原子量反而相近。他紧紧抓住元素的原子量与性质之间的相互关系,不停地研究着。他的脑子因过度紧张,而经常昏眩。但是,他的心血并没有白费,在一八六九年二月十九日,元素周期律终于被发现了。他的周期律说明:简单物体的性质,以及元素化合物的形式和性质,都和元素原子量的大小有周期性的依赖关系。

2我的感想

2.1科学家具有天赋

我必须承认,每一位杰出的科学家都拥有常人未所能及的天赋,门捷列夫也不例外。对科学知识的敏感,还有超乎常人的观察能力和归纳总结能力,从几张小小的卡片里就可以发现伟大的元素周期律。这对于我们来说或许只是天方夜谭。可是,我们虽然不能像门捷列夫一样优秀,可是我们也能够通过自己的努力,学好本专业的知识,在浩瀚的知识海洋中,找到自己喜欢的,感兴趣的知识,学好它,在自己的领域里成为自己小小的科学家。

2.2发现元素周期律的必然性

门捷列夫对于元素周期律的发现是具有必然性的。门捷列夫发现元素周期律是站在许许多多前人的基础上的。就好像牛顿曾经说过的一句话,他是站在巨人的肩膀上的,门捷列夫也不例外。拉瓦锡、德贝莱、培顿科弗、尚古多、欧德林为门捷列夫发现元素周期表做了大量的前期工作,门捷列夫发现元素周期律似乎是冥冥之中就已经注定了。科学的脚步发展到门捷列夫这里的时候,元素神秘的面纱已经为门捷列夫敞开了大门,等着他去攫取胜利的果实。可以说,门捷列夫是幸运的,当然,他也是必定会取得成功的。我记得门捷列夫的一句格言:“什么是天才?终身努力,便成天才!” 仅仅冲着门捷列夫这种孜孜不倦的求学精神和永不放弃的奋斗勇气,元素周期律对于门捷列夫来说就应该是囊中取物。

2.3科学发现的幸运性

由门捷列夫过渡到所有的科学发现,我觉得科学发现是具有幸运性的。门捷列夫就是其中上帝眷顾的一个幸运儿之一。拉瓦锡、德贝莱、培顿科弗、尚古多、欧德林也可以算是伟大的科学家了,虽然他们没有发现元素周期律,但是他们在科学探究的过程中肯定也是投入了大量的心血。为什么那么多的科学家,偏偏是门捷列夫发现了元素周期律,我想这就是幸运吧。或许恰好是某个生活小细节,某件小事给了他突发的灵感,最后元素周期表就应运而生了。

2.4科学的普遍性

其实,小的时候老师上课讲科学史,当讲到伟大的科学人物的时

候,心中总是会有很强的钦佩之情,觉得他们离我们的生活遥不可及。长大后,上了大学,做了实验,才知道原来科学家也是在一步一步的探索中才发现科学的真理的。其实,科学家也是普通人。不同的只是他们比我们对科学知识更加敏感,他们比我们更加勤奋,更加努力,他们在最关键的时候幸运地得到了上帝的眷顾。科学,其实离我们很近。或许我们以后在向学生介绍科学家的时候可以将他们更加平凡化一点,给学生,也给自己多一点点的信心。

3结论

元素周期律在化学中的作用非常重要,元素周期律的发现过程是相当曲折的。门捷列夫通过艰辛的探索,终于叩开了成功的大门。门捷列夫发现元素周期律是具有必然性的,他具有科学家的天赋,他付出了比别人更多的努力。他是幸运的,发现了元素周期律。其实,科学的发现是有普遍性的,每位伟大的科学家同时也是一个平凡人,科学,就在我们身边。

4参考文献

[1]韩锋. 门捷列夫发现元素周期律的启示[J]. 河池学院学报,2009,29(5):114-120.

[2]雅.门捷列夫的元素周期律发现-其前提条件、历史脉络及其与同时代人的比较研究[J].科学学研究,2003,21(4):352-357.

[3]元素周期律的发现和门捷列夫的科学思想[J].曲阜师范大学学报,1991,17(3):100-104.

[4]汪朝阳,肖信. 2010.化学史人文教程.北京:科学出版社.

物质结构和元素周期律

物质结构和元素周期律 (时间:90分) 一、选择题 1.硼元素的平均相对原子质量为,则硼在自然界中的两种同位素 [ ] (A)1:1(B)10:11(C)81:19(D)19:81 2.原子序数为47的银元素有2种同位素,它们的摩尔分数几乎相等,已知银的相对原子质量是108,则银的这两种同位素的中子数分别是[ ] (A)110和106 (B)57和63 (C)53和66 (D)60和62 3.在同温、同压下,相同物质的量的氢气和氦气,具有相同的 [ ] (A)原子数 (B)质子数 (C)体积 (D)质量 4.关于同温、同压下等体积的N2O和CO2的叙述: [ ] ①质量相同②碳原子数和氮原子数相等 ③所含分子数相等④所含质子总数相等 (A)①②③ (B)②③④ (C)①②④ (D)①③④

5.阴离子X n-含中子N个,X的质量数为A,则W gX元素的气态氢化物中含质子的物质的量是[ ] 6.下列各组物质中都是由分子构成的化合物是 [ ] (A)CO2、NO2、SiO2(B)HCl、NH3、CH4 (C)NO、CO、CaO (D)O2、N2、Cl2 7.根据下列各组元素的原子序数,可组成化学式为AB2型化合物且为原子晶体的是[ ] (A)14和6 (B)14和8 (C)12和17 (D)6和8 8.下列微粒中,与OH-具有相同的质子数和相同的电子数的是 [ ] 9.元素A、B、C原子核内质子数之和为31,最外层电子数之和为17,这三种元素是[ ] (A)N、P、Cl (B)P、O、S (C)N、O、S (D)O、F、Cl 10.某元素原子核内质子数为m,中子数为n,则下列论断正确的是[ ] (A)不能由此确定该元素的相对原子质量 (B)这种元素的相对原子质量为m+n (C)若碳原子质量为W g,则此元素原子质量为(m+n)W g (D)该元素原子核内中子的总质量小于质子的总质量

元素周期表与元素周期律知识点归纳完美版

元素周期表与元素周期律知识点归纳 1、元素周期表共有横行,个周期。其中短周期为、、。所含元素种类为、、。长周期包括、、。所含元素种类为、、。 第七周期为不完全周期,如果排满的话有种元素。 2元素周期表有个纵行个族。包括个主族,个副族,一个族,一个第Ⅷ族(包括个纵行)按从左到右的顺序把16个族排列 。过度元素共包括个纵行(第纵行到第纵行)。包括哪些族。过渡元素全为元素。又称为。 3、写出七个主族和0族元素的名称和元素符号 ⅠA族 ⅡA族 ⅢA族 ⅣA族 ⅤA族 ⅥA族 ⅦA族 0族 4.同一周期第ⅡA族和第ⅢA族原子序数之间的关系 若元素位于第二、三周期,第ⅡA族的原子序数为a,则第ⅢA族的原子序数为 若元素位于第四、五周期,第ⅡA族的原子序数为a,则第ⅢA族的原子序数为 若元素位于第六周期,第ⅡA族的原子序数为a,则第ⅢA族的原子序数为 5、同一主族上下相邻两个周期原子序数之间的关系 若A在B的上一周期,设A的原子序数为a ⑴若A、B位于第ⅠA族或ⅡA族(过度元素的左边)则B的原子序数为。 ⑵若A、B位于第ⅢA族——ⅦA族(过度元素的右边)则B的原子序数为。 。 6、微粒半径大小判断的方法 。 。 。 7 与He原子电子层结构相同的简单离子。 与Ne原子电子层结构相同的简单离子。 与Ar原子电子层结构相同的简单离子。 阳离子与周期稀有气体原子的电子层结构相同。阴离子与周期稀有气体原子的电子层结构相同。 8、阴上阳下规律 9原子得电子能力强弱判断的方法 ⑴、原子得电子能力越强——单质的氧化性——元素的非金属性——阴离子的还原性——单

质与氢气化和的能力——生成的气态氢化物越——最高价氧化物对应水化物的酸性。 ⑵、另外可以通过单质间的置换反应判断得电子能力的强弱 如Cl2+Na2S=2NaCl+S得电子能力ClS 10、原子失电子能力强弱判断的方法 ⑴、原子失电子能力越强——单质的还原性——元素的金属性——阳离子的氧化性——单质与水或酸反应置换出氢的能力——最高价氧化物对应水化物的碱性。 ⑵、另外可以通过单质间的置换反应判断失电子能力的强弱 如Fe+CuSO4=FeSO4+Cu失电子能力FeCu 11、同一主族元素及其化合物性质的递变性: 同主族元素的原子,最外层电子数,决定同主族元素具有的化学性质。从上到下原子的核电荷数依次,原子的电子层数依次,原了半径逐渐;原子失电子能力逐渐,元素的金属性逐渐,单质的还原性逐渐,对应阳粒子的氧化性逐渐,单质与水或酸反应置换出氢气的能力逐渐,最高价氧化物对应水化物的碱性逐渐;原子得电子能力逐渐,元素的非金属性逐渐,单质的氧化性逐渐,对应阴离子的还原逐渐,单质与氢气化合的能力逐渐,最高价氧化物对应水化物的酸性逐渐。气态氢化物的稳定性逐渐。 12、同一周期元素及其化合物性质的递变性: 在同一周期中,各元素原子的核外电子层数,但从左到右核电荷数依次,最外层电子数依次,原子半径逐渐(稀有气体元素除外)。原子失电子能力逐渐,元素的金属性逐渐,单质的还原性逐渐,对应阳粒子的氧化性逐渐,单质与水或酸反应置换出氢气的能力逐渐,最高价氧化物对应水化物的碱性逐渐。 原子得电子能力逐渐,元素的非金属性逐渐,单质的氧化性逐渐,对应阴离子的还原逐渐,单质与氢气化合的能力逐渐,最高价氧化物对应水化物的酸性逐渐,气态氢化物的稳定性逐渐。 1.位、构、性的关系 根据原子结构、元素周期表的知识及相关条件可推算原子序数,判断元素在周期表中的位置等。 2.周期表中数字与性质的关系 (1)由原子序数确定元素位置的规律:只要记住稀有气体元素的原子序数就可以确定主族元素的位置。 He:2、Ne:10、Ar:18、Kr:36、Xe:54、Rn:86 ①若比相应的稀有气体元素的原子序数多1或2,则应处在下一周期的ⅠA或ⅡA,如88号元素,88-86=2,则应在第7周期第ⅡA。 ②若比相应的稀有气体元素的原子序数少1~5时,则应在第ⅦA~ⅢA,如84号元素在第6周

门捷列夫与元素周期表的小故事

门捷列夫与元素周期表不得不说的故事宇宙万物是由什么组成的?古希腊人以为是水、土、火、气四种元素,古代中国则相信金、木、水、火、土五种元素之说。到了近代,人们才渐渐明白:元素多种多样,决不止于四五种。18世纪,科学家已探知的元素有30多种,如金、银、铁、氧、磷、硫等,到19世纪,已发现的元素已达54种。 人们自然会问,没有发现的元素还有多少种?元素之间是孤零零地存在,还是彼此间有着某种联系呢? 门捷列夫发现元素周期律,揭开了这个奥秘。 原来,元素不是一群乌合之众,而是像一支训练有素的军队,按照严格的命令井然有序地排列着,怎么排列的呢?门捷列夫发现:元素的原子量相等或相近的,性质相似相近;而且,元素的性质和它们的原子量呈周期性的变化。 门捷列夫激动不已。他把当时已发现的60多种元素按其原子量和性质排列成一张表,结果发现,从任何一种元素算起,每数到8个就和第一个元素的性质相近,他把这个规律称为“八音律”。 门捷列夫是怎样发现元素周期律的呢? 1834年2月7日,伊万诺维奇·门捷列夫诞生于西伯利亚的托波尔斯克,父亲是中学校长。16岁时,进入圣彼得堡师范学院自然科学教育系学习。毕业后,门捷列夫去德国深造,集中精力研究物理化学。1861年回国,任圣彼得堡大学教授。 在编写无机化学讲义时,门捷列夫发现这门学科的俄语教材都已陈旧,外文教科书也无法适应新的教学要求,因而迫切需要有一本新的、能够反映当代化学发展水平的无机化学教科书。 这种想法激励着年轻的门捷列夫。当门捷列夫编写有关化学元素及其化合物性质的

章节时,他遇到了难题。按照什么次序排列它们的位置呢?当时化学界发现的化学元索已达63种。为了寻找元素的科学分类方法,他不得不研究有关元素之间的内在联系。研究某一学科的历史,是把握该学科发展进程的最好方法。门捷列夫深刻地了解这一点,他迈进了圣彼得堡大学的图书馆,在数不尽的卷帙中逐一整理以往人们研究化学元素分类的原始资料…… 门捷列夫抓住了化学家研究元素分类的历史脉络,夜以继日地分析思考,简直着了迷。夜深人静,圣彼得堡大学主楼左侧的的门捷列夫的居室仍然亮着灯光,仆人为了安全起见,推开了门捷列夫书房的门。 “安东!”门捷列夫站起来对仆人说:“到实验室去找几张厚纸,把筐也一起拿来。” 安东是门捷列夫教授家的忠实仆人。他走出房门,莫名其妙地耸耸肩膀,很快就拿来一卷厚纸。“帮我把它剪开。” 门捷列夫一边吩咐仆人,一边动手在厚纸上画出格子。 “所有的卡片都要像这个格于一样大小。开始剪吧,我要在上面写字。” 门捷列大不知疲倦地工作着。他在每一张卡片上都写上了元素名称、原于量、化合物的化学式和主要性质。筐里逐渐装满了卡片。门捷列夫把它们分成几类,然后摆放在一个宽大的实验台上。接下来的日子,门捷列夫把元素卡片进行系统地整理。门捷列夫的家人看到一向珍惜时间的教授突然热衷于“纸牌”感到奇怪。门捷列夫旁若无人,每天手拿元素卡片像玩纸牌那样,收起、摆开,再收起、再摆开,皱着眉头地玩“牌”…… 冬去春来。门捷列夫没有在杂乱无章的元素卡片中找到内在的规律。有一天,他又坐到桌前摆弄起“纸牌”来了,摆着,摆着,门捷列夫像触电似的站了起来,在他面前出现了完全没有料到的现象,每一行元素的性质都是按照原子量的增大而从上到下地逐渐变化着。门捷列夫激动得双手不断颤抖着。“这就是说,元素的性质与它们的原子量呈周期性

高考化学物质结构和元素周期律

高考化学冲刺的核心知识和解题策略 第二讲高考冲刺:物质结构 和元素周期律 1、原子序数为8 2、88、112的属于何族何周期? 2、在元素周期表中,哪纵元素最多,哪纵化合物种类最多? 3、在元素周期表中,前三周期空着的有多少个元素? 4、在元素周期表中,第三主族是哪一纵?三副族呢? 5、在元素周期表中,镧系有多少个元素? 6、在元素周期表中,周期差是多少, 同周期的第二主族和第三主族相差是多少? 核外电子排布规律: 1.核外电子是分层排布的,各电子层最多容纳的电子数目为2n 2 。 2.核外电子排布符合能量最低原理,能量越低的电子离核越近。 3.最外层电子数目不超过8个(K 层为最外层时,不超过2个),次 外层电子数目不超过18个,倒数第三层电子数目不超过32个。 上述几条规律相互制约,应综合考虑。 原子序数为82、88、112的如何排布? ⅡA 族某元素的原子序数为n ,则与之同周期的ⅢA 族的元素的原 若上一周期某元素的原子序数为n ,则与之同主族的下一周期的元素的 原子序数可能为n+2、n+8、n+18、n+32。 元素金属性、非金属性强弱的比较: 1.金属性强弱的比较依据: (1)根据周期表中的位置; (2)根据金属活动性顺序表(盐溶液之间的置换关系、阳离子在水 溶液中电解时放电的一般顺序); (3)根据单质与水或非氧化性酸反应置换出氢气的难易程度; (4)根据最高价氧化物对应水化物的碱性强弱; (5)根据构成原电池时的正负极。 2.非金属性强弱的比较依据: (1)根据周期表中的位置; (2)根据置换关系判断(阴离子在水溶液中电解时放电的一般顺序); (3)根据与金属反应的产物比较; (4)根据与H 2化合的难易程度及气态氢化物的稳定性、还原性; (5)根据最高价氧化物对应水化物的酸性强弱。 微粒半径大小的比较: 1. 同周期,从左向右,随核电荷数的递增,原子半径越来越小,到惰 性气体原子半径突然增大。 2.同主族,从上向下,随电子层数递增,原子半径、离子半径越来越大。 3.同种元素的不同微粒,核外电子数越多,半径越大,即:阳离子 半径<原子半径、阴离子半径>原子半径。 4.核外电子层结构相同的不同微粒,核电荷数(即质子数)越多, 对电子的吸引力越强,微粒半径越小。 电子层结构相同的微粒: ①常见的2电子微粒:分子有:H 2、He ;阴离子有: H -;阳离子有:Li +。 ②常见的10电子微粒:分子有:Ne 、CH 4、NH 3、 H 2O 、HF ;阳离子有:Na +、Mg 2+、Al 3+、NH 4+、 H 3O +;阴离子有:F -、O 2-、N 3-、OH - 、NH 2-。 ③常见的18电子微粒:分子有:Ar 、SiH 4、PH 3、

-2019历年高考元素周期表及周期律的题目教学内容

学习资料 仅供学习与参考近4年高考元素周期表与周期律 (2019.1)科学家合成出了一种新化合物(如图所示),其中W、X、Y、Z为同一短周期元素,Z核外最外层电子数是X核外电子数的一半。下列叙述正确的是 ( ) A、WZ的水溶液呈碱性 B、元素非金属性的顺序为X>Y>Z C、Y的最高价氧化物的水化物是中强酸 D、该新化合物中Y不满足8电子稳定结构 (2019.2)今年是门捷列夫发现元素周期律150周年。下表是元素周期表的一部分,W、X、Y、Z为短周期主族元素,W与X的最高化合价之和为8。下列说法错误的是() A.原子半径:Wc>b>a B.4种元素中b的金属性最强 C.c的氧化物的水化物是强碱 D.d单质的氧化性比a单质的氧化性强 (2017.3)短周期元素W、X、Y和Z在周期表中的相对位置如表所示,这四种元素原子的最外层电子数之和为21。下列关系正确的是( ) A.氢化物沸点:WW C化合物熔点:Y2X3

2020 第1部分 专题5 物质结构与元素周期律.pdf

1.熟记并正确书写常见元素的名称、符号、离子符号。 2.熟悉常见元素的化合价,能根据化合价正确书写化学式(分子式),或根据化学式判断元素的化合价。 3.掌握原子结构示意图、电子式等表示方法。 4.了解相对原子质量、相对分子质量的定义,并能进行相关计算。 5.了解元素、核素和同位素的含义。 6.了解原子的构成。了解原子序数、核电荷数、质子数、中子数、核外电子数以及它们之间的相互关系。 7.了解原子核外电子排布规律。 8.掌握元素周期律的实质。了解元素周期表(长式)的结构(周期、族)及其应用。 9.以第三周期为例,掌握同一周期内元素性质的递变规律与原子结构的关系。10.以ⅠA和ⅦA族为例,掌握同一主族内元素性质递变规律与原子结构的关系。11.了解金属、非金属元素在周期表中的位置及其性质递变规律。12.了解化学键的定义。了解离子键、共价键的形成。 1.(2019·全国卷Ⅰ)科学家合成出了一种新化合物(如图所示),其中W、X、Y、Z为同一短周期元素,Z核外最外层电子数是X核外电子数的一半,下列叙述正确的是() A.WZ的水溶液呈碱性 B.元素非金属性的顺序为X>Y>Z C.Y的最高价氧化物的水化物是中强酸 D.该新化合物中Y不满足8电子稳定结构

C[W、X、Y、Z为同一短周期元素,可能同处于第二或第三周期,观察新化合物的结构示意图可知,X为四价,X可能为C或Si。若X为C,则Z核外最外层电子数为C原子核外电子数的一半,即为3,对应B元素,不符合成键要求,不符合题意,故X为Si,W能形成+1价阳离子,可推出W为Na元素,Z核外最外层电子数为Si原子核外电子数的一半,即为7,可推出Z为Cl 元素。Y能与2个Si原子形成共价键,另外得到1个电子达到8电子稳定结构,说明Y原子最外层有5个电子,进一步推出Y为P元素,即W、X、Y、Z分别为Na、Si、P、Cl元素。A项,WZ为NaCl,其水溶液呈中性,错误;B项,元素非金属性:Cl>P>Si,错误;D项,P原子最外层有5个电子,与2个Si原子形成共价键,另外得到1个电子,在该化合物中P元素满足8电子稳定结构,错误。] 2.(2019·全国卷Ⅱ)今年是门捷列夫发现元素周期律 150周年。下表是元素周期表的一部分,W、X、Y、Z 为短周期主族元素,W与X的最高化合价之和为8。下 列说法错误的是() A.原子半径:W<X B.常温常压下,Y单质为固态 C.气态氢化物热稳定性:Z<W D.X的最高价氧化物的水化物是强碱 D[由题意,W、X、Y、Z为短周期主族元素,W与X的最高化合价之和为8,可推出W、X、Y、Z分别为N、Al、Si、P。A项,根据电子层数越多,原子半径越大,可得原子半径:WPH3,正确;D项,X的最高价氧化物的水化物Al(OH)3是两性氢

门捷列夫的化学元素周期表与卡片分析法

中国职工科技报/2007年/4月/20日/第004版 科普家园 门捷列夫的化学元素周期表与卡片分析法 王振宇 卡片时于研究文学艺术和社会科学很重要,对于研究自然科学特别是发明创造也同样重要。运用卡片分析法取得重大成果的最著名的事例。就是俄国化学家门捷列夫发现化学元素周期率。1869年,为了研究已发现的60多种元素之间的关系,研究元素的质量和化学性质的关系,门捷列夫将搜集来的各种元素的名称写在纸上,并记下它们的原子量和基本性质,把相似的元素和相近的原子量排列在一起:他又从最小的原子量开始选取元素,并把它们按原子量的顺序排列,经过分析研究,终于发现了元素的性质存在着周期性,从而发现了化学元素周期律,并根据周期率编制了第一张化学元素周期表。 从以上事例可以看出,卡片分析法的基础是要有卡片。卡片大小自便,扑克牌大小也可,稍大也可,能在上面记录信息即可。卡片上面都记录什么呢?以下方面可供参考:突然涌现的想法:由谈话、读书、观察等产生的设想或注意到的问题;图书、杂志、人名、地址、电话号码;被记述或证实的信息;从智力激励法等创造性开发会议中产生的新设想:有关行动计划。的基本设想:使数据系统化的各种形式:发现数据存在的场所、收集的来源以及技法;数据的种类:意想不到的偶然事件;从大脑中一闪即过的有创意的新设想,等等。 卡片分析法是一种发挥综合思维作用的方法,通过将所得到的记录有有关信息或设想的卡片。进行分析,进行整理排列,以寻找各部分之间的有机联系,从整体上把握事物,最后形成比较系统的新设想。该法作为分析整理资料获得启发的有效途径,可用于解决问题的各个阶段中。在分析中要把对象的各个部分、各个方面和种种因素联系起来考虑。综合不是主观地、任意地把对象的各部分捏合在一起,也不是各个部分的机械相加,不是各种因素的简单堆砌,而是按照对象各部分间的有机联系,从总体上把握事物的一种方法。它不是抽象地、从外部现象的联结上来认识事物,而是抓住事物的本质,即抓住事物在总体上相互联结而又矛盾的特殊性,研究这一矛盾怎样制约着事物丰富多彩的属性,怎样在事物的运动中展现出整体的特征。 卡片分析法具有以下一些特点:首先,这是一种在比较分类的基础上,由综合进行创新的方法比较和分类是运用此法时要做的基本工作,然而,真正有创意的工作在于时各类资料的综合:其次,运用这种方法时,不只是对卡片的理性分析和综合,还需要综合地发挥运用者的各种心理因素,如感受、感情、直观、意志等,因为对卡片的分析整理直接受到这些圆素的影响:第三,此法借助于卡片分析事理发现其内在联系,具有直观、方便、灵活的特点。既可单人应用,也可集体进行,应用范围广,几乎适用于各领域的创造性活动。 卡片分析法在各种研究和发明创造过程中,有着特殊的作用。将待处理的信息卡片化,具有克服人脑思维限度的功能,从而成为整理分析资料获得启发的有效方法。人的思维能力虽然是无限的,但一个人在思维中同时操作的思维元素数是很有限的,实验证明,一般人当同时思维操作的信息元素超过10个时,要在脑内同时操作加工这些信息显得很困难。而通过卡片,把各种信息或设想转移到脑外,变成能稳定地呈现在眼前的外存信息,这样既可把在头脑中借助记忆进行的思维操作转为脑外自理卡片,来减轻思维负担,又可使注意力集中,从而提高了思维效率。 (四十五) 第1页共1页

物质结构与元素周期律

《物质结构与元素周期律》易错知识点总结 2011-12-02 10:48:08来源: 作者: 【大中小】浏览:155次评论:0条 【内容讲解】 第一部分物质结构 一.原子组成 1、并不是所有的原子都含有中子,11H原子核内就只有一个质子而没有中子。 2、只有呈电中性的原子核电荷数才等于核外电子数;核电荷数和核外电子数相等的微粒一定是同类微粒(原子、阳离子或阴离子)。 二.概念辨析 1、同位素研究的对象是原子,同系物研究的对象是有机物,同分异构体研究的对象是化合物。 2、同种元素的不同核素化学性质基本相同,物理性质不同。 3、原子量是相对原子质量的简称,而元素周期表中的原子量是元素的原子量,是一个加权平均值。 三.核外电子排布规律 1、注意原子结构示意图和电子式的区别: 原子结构示意图:描述原子核电荷数(质子数)和核外电子排布情况的示意图; 电子式:在元素符号周围用●或X来表示微粒(原子、分子、离子)中原子的最外层电子的式子。 2、特别要注意用电子式表示离子化合物和共价化合物形成过程的区别。 四.微粒半径大小的比较 1、阳离子半径<原子半径、阴离子半径>原子半径。 2、核外电子层结构相同的原子和单原子离子(例如2e-、10e-、18e-微粒)在元素周期表中的位置规律,原子半径和离子半径顺序。 五.化学键 1、离子键和共价键的形成过程;极性键和非极性键的区别。 2、熔融状态下能导电的化合物一定是离子化合物;溶解在水中不能电离的化合物通常是共价化合物,但溶解在水中能电离的化合物可能是共价化合物也可能是离子化合物。 3、离子化合物中一定含有离子键,有离子键的化合物一定是离子化合物;共价化合物中一定含有共价键,含有共价键的化合物不一定是共价化合物;极性键和离子键都只有存在于化合物中,非极性键可以存在于单质、离子化合物或共价化合物中。 六.分子间作用力、氢键 1、分子间作用力的强度远远小于化学键,由分子构成的物质,其熔点、沸点、溶解度等物理性质主要由分子间作用力大小决定。 2、含有氢键的物质沸点升高;氢键的强弱介于分子间作用力和化学键之间。 【错例解析】 1.下列指定微粒的个数比为2:1的是 A.Be2+离子中的质子和电子 B.21H原子中的中子和质子 C.NaHCO3晶体中的阳离子和阴离子 D.BaO2(过氧化钡)固体中的阴离子和阳离子 [注] 答案是A,特别要注意C和D选项中离子化合物是由什么离子构成的。补充:NaHSO4是由Na+和HSO4—构成的,但是溶于水电离成Na+、H+和SO42—。 2.下列各项中表达正确的是 A.F-的结构示意图:B.CO2的分子模型示意图: C.NaCl的电子式:D.N2的结构式::N≡N: [注] 答案是A,特别要注意B选项:CO2分子是直线型的,还有D选项:把结构式和电子式混淆了。 3.某元素构成的双原子分子有三种,其相对分子质量分别为158、160、162。在天然单质中,此三种单质

元素周期律和元素周期表的重要意义

元素周期律和元素周期表的重要意义 元素周期律和周期表,揭示了元素之间的内在联系,反映了元素性质与它的原子结构的关系,在哲学、自然科学、生产实践各方面都有重要意义。 (1)在哲学方面,元素周期律揭示了元素原子核电荷数递增引起元素性质发生周期性变化的事实,有力地论证了事物变化的量变引起质变的规律性。元素周期表是周期律的具体表现形式,它把元素纳入一个系统内,反映了元素间的内在联系,打破了曾经认为元素是互相孤立的形而上学观点。通过元素周期律和周期表的学习,可以加深对物质世界对立统一规律的认识。 (2)在自然科学方面,周期表为发展物质结构理论提供了客观依据。原子的电子层结构与元素周期表有密切关系,周期表为发展过渡元素结构、镧系和锕系结构理论、甚至为指导新元素的合成、预测新元素的结构和性质都提供了线索。元素周期律和周期表在自然科学的许多部门,首先是化学、物理学、生物学、地球化学等方面,都是重要的工具。 (3)在生产上的某些应用 由于在周期表中位置靠近的元素性质相似,这就启发人们在周期表中一定的区域内寻找新的物质。 ①农药多数是含Cl、P、S、N、As等元素的化合物。 ②半导体材料都是周期表里金属与非金属接界处的元素,如Ge、Si、Ga、Se等。 ③催化剂的选择:人们在长期的生产实践中,已发现过渡元素对许多化学反应有良好的催化性能。进一步研究发现,这些元素的催化性能跟它们原子的d轨道没有充满有密切关系。于是,人们努力在过渡元素(包括稀土元素)中寻找各种优良催化剂。例如,目前人们已能用铁、镍熔剂作催化剂,使石墨在高温和高压下转化为金刚石;石油化工方面,如石油的催化裂化、重整等反应,广泛采用过渡元素作催化剂,特别是近年来发现少量稀土元素能大大改善催化剂的性能。 ④耐高温、耐腐蚀的特种合金材料的制取:在周期表里从ⅢB到ⅥB的过渡元素,如钛、钽、钼、钨、铬,具有耐高温、耐腐蚀等特点。它们是制作特种合金的优良材料,是制造火箭、导弹、宇宙飞船、飞机、坦克等的不可缺少的金属。 ⑤矿物的寻找:地球上化学元素的分布跟它们在元素周期表里的位置有密切的联系。科学实验发现如下规律:相对原子质量较小的元素在地壳中含量较多,相对原子质量较大的元素在地壳中含量较少;偶数原子序的元素较多,奇数原子序的元素较少。处于地球表面的元素多数呈现高价,处于岩石深处的元素多数呈现低价;碱金属一般是强烈的亲石元素,主要富集于岩石圈的最上部;熔点、离子半径、电负性大小相近的元素往往共生在一起,同处于一种矿石中。在岩浆演化过程中,电负性小的、离子半径较小的、熔点较高的元素和化合物往往首先析出,进入晶格,分布在地壳的外表面。 有的科学家把周期表中性质相似的元素分为十个区域,并认为同一区域的元素往往是伴生矿,这对探矿具有指导意义。

物质结构元素周期律知识点总结

物质结构 元素周期律 中子N (不带电荷) 同位素 (核素) 原子核 → 质量数(A=N+Z ) 近似相对原子质量 质子Z (带正电荷) → 核电荷数 元素 → 元素符号 原子结构 : 最外层电子数决定主族元素的 决定原子呈电中性 电子数(Z 个): 化学性质及最高正价和族序数 体积小,运动速率高(近光速),无固定轨道 核外电子 运动特征 电子云(比喻) 小黑点的意义、小黑点密度的意义。 排布规律 → 电子层数 周期序数及原子半径 表示方法 → 原子(离子)的电子式、原子结构示意图 随着原子序数(核电荷数)的递增:元素的性质呈现周期性变化: ① 、 原子最外层电子数呈周期性变化 元素周期律 ②、原子半径呈周期性变化 ③、元素主要化合价呈周期性变化 ④、元素的金属性与非金属性呈周期性变化 ①、按原子序数递增的顺序从左到右排列; 元素周期律和 排列原则 ②、将电子层数相同的元素排成一个横行; 元素周期表 ③、把最外层电子数相同的元素(个别除外)排成一个纵行。 ①、短周期(一、二、三周期) 周期(7个横行) ②、长周期(四、五、六周期) 周期表结构 ③、不完全周期(第七周期) ①、主族(ⅠA ~ⅦA 共7个) 元素周期表 族(18个纵行) ②、副族(ⅠB ~ⅦB 共7个) ③、Ⅷ族(8、9、10纵行) ④、零族(稀有气体) 同周期同主族元素性质的递变规律 ①、核电荷数,电子层结构,最外层电子数 ②、原子半径 性质递变 ③、主要化合价 ④、金属性与非金属性 ⑤、气态氢化物的稳定性 ⑥、最高价氧化物的水化物酸碱性 电子层数: 相同条件下,电子层越多,半径越大。 判断的依据 核电荷数 相同条件下,核电荷数越多,半径越小。 最外层电子数 相同条件下,最外层电子数越多,半径越大。 微粒半径的比较 1、同周期元素的原子半径随核电荷数的增大而减小(稀有气体除外)如:Na>Mg>Al>Si>P>S>Cl. 2、同主族元素的原子半径随核电荷数的增大而增大。如:Li Na + >Mg 2+ >Al 3+ 5、同一元素不同价态的微粒半径,价态越高离子半径越小。如Fe>Fe 2+ >Fe 3+ 决定 编排依据 具 体 表 现 形式 X) (A Z 七 主 七 副零和八 三长三短一不全

阅读材料:门捷列夫与元素周期表

门捷列夫与元素周期表 在化学教科书中,都附有一张“元素周期表”。这张表揭示了物质世界的秘密,把一些看来似乎互不相关的元素统一起来,组成了一个完整的自然体系。它的发明,是近代化学史上的一个创举,对于促进化学的发展,起了巨大的作用。看到这张表,人们便会想到它的最早发明者——门捷列夫。 门捷列夫生平简介 德米特里·伊万诺维奇·门捷列夫生于一八三四年二月七日俄国西伯利亚的托波尔斯克市。这个时代,正是欧洲资本主义迅速发展时期。生产的飞速发展,不断地对科学技术提出新的要求。化学也同其它科学一样,取得了惊人的进展。门捷列夫正是在这样一个时代,诞生到人间。门捷列夫从小就热爱劳动,热爱学习。他认为只有劳动,才能使人们得到快乐、美满的生活;只有学习,才能使人变得聪明。 门捷列夫在学校读书的时候,一位很有名的化学教师,经常给他们讲课。热情地向他们介绍当时由英国科学家道尔顿始创的新原子论。由于道尔顿新原于学说的问世,促进了化学的发展速度,一个一个的新元素被发现了。化学这一门科学正激动着人们的心。这位教师的讲授,使门捷列夫的思想更加开阔了,决心为化学这门科学献出一生。 门捷列夫在大学学习期间,表现出了坚韧、忘我的超人精神。疾病折磨着门捷列夫,由于丧失了无数血液,他一天一天的消瘦和苍白了。可是,在他贫血的手里总是握着一本化学教科书。那里面当时有很多没有弄明白的问题,缠绕着他

的头脑,似乎在召呼他快去探索。他在用生命的代价,在科学的道路上攀登着。他说,我这样做“不是为了自己的光荣,而是为了俄国名字的光荣。”——过了一段时间以后,门捷列夫并没有死去,反而一天天好起来了。最后,才知道是医生诊断的错误,而他得的不过是气管出血症罢了。 由于门捷列夫学习刻苦和在学习期间进行了一些创造性的研究工作,一八五五年,他以优异成绩从学院毕业。毕业后,他先后到过辛菲罗波尔、敖德萨担任中学教师。这期间,他一边教书,一边在极其简陋的条件下进行研究,写出了《论比容》的论文。文中指出了根据比容进行化合物的自然分组的途径。一八五七年一月,他被批准为彼得堡大学化学教研室副教授,当时年仅二十三岁。 攀登科学高峰的路,是一条艰苦而又曲折的路。门捷列夫在这条路上,也是吃尽了苦头。当他担任化学副教授以后,负责讲授《化学基础》课。在理论化学里应该指出自然界到底有多少元素?元素之间有什么异同和存在什么内部联系?新的元素应该怎样去发现?这些问题,当时的化学界正处在探索阶段。近五十多年来,各国的化学家们,为了打开这秘密的大门,进行了顽强的努力。虽然有些化学家如德贝莱纳和纽兰兹在一定深度和不同角度客观地叙述了元素间的某些联系,但由于他们没有把所有元素作为整体来概括,所以没有找到元素的正确分类原则。年轻的学者门捷列夫也毫无畏惧地冲进了这个领域,开始了艰难的探索工作。 他不分昼夜地研究着,探求元素的化学特性和它们的一般的原子特性,然后将每个元素记在一张小纸卡上。他企图在元素全部的复杂的特性里,捕捉元素的共同性。但他的研究,一次又一次地失败了。可他不屈服,不灰心,坚持干下去。 为了彻底解决这个问题,他又走出实验室,开始出外考察和整理收集资料。一八五九年,他去德国海德尔堡进行科学深造。两年中,他集中精力研究了物理化学,使他探索元素间内在联系的基础更扎实了。一八六二年,他对巴库油田进行了考察,对液体进行了深入研究,重测了一些元素的原子量,使他对元素的特性有了深刻的了解。一八六七年,他借应邀参加在法国举行的世界工业展览俄罗斯陈列馆工作的机会,参观和考察了法国、德国、比利时的许多化工厂、实验室,大开眼界,丰富了知识。这些实践活动,不仅增长了他认识自然的才干,而且对他发现元素周期律,奠定了雄厚的基础。

物质结构与元素周期律专题复习教案

物质结构与元素周期律 一、原子的构成 1、原子: 2、两个关系式: (1)核电荷数=核内质子数=原子核外电子数=原子序数。 (2)质量数(A)=质子数(Z)+中子数(N)。 【例 1】某元素的一种核素X的原子质量数为A,含N个中子,它与1H原子组成H m X分子,在a g H m X分子中含质子的物质的量是() 二、核外电子排布 1、电子运动特点:①较小空间;②高速;③无确定轨道。 2、电子云:表示电子在核外单位体积内出现几率的大小,而非表示核外电子的多少。 3、电子层:根据电子能量高低及其运动区域不同,将核外空间分成个电子层。 表示:层数 1 2 3 4 5 6 7 符号K L M N O P Q n值越大,电子运动离核越远,电子能量越高。电子层实际上并不存在。 4、能量最低原理:电子一般总是尽先排布在能量最低的电子层里,然后排布在能量稍 高的电子层,即电子由内而外逐层排布。 5、排布规律:①各电子层最多容纳的电子数目是个。 ②最外层电子数不超过个。(K层为最外层时不超过2个) ③次外层电子数不超过个,倒数第三层电子数不超过32个。 6、表示方法: ①原子、离子结构示意图。 ②原子、离子的电子式。

三、电子式的书写 【例 2】下列化学用语中,书写错误的是( )

根据元素周期律,把相同的各种元素,按原子序数递增的顺序从左到右排成横行,再把不同横行中相同的元素,按电子层数递增的顺序由上而下排成纵行, 这样得到的表就叫做元素周期表。 1、编排依据 (1)按原子序数递增的顺序从左到右排列。 (2)将电子层数相同的元素排成一个横行,得到。 (3)把最外层电子数相同的元素排成一个纵行,得到。 2、结构 短周期:1、2、3 周期(7个横行)长周期:4、5、6 不完全周期:7 7个主族:ⅠA~ⅦA 族(18个纵行)7个副族:ⅠB~ⅦB 16个族第Ⅷ族 零族(稀有气体) 【例 3】甲、乙是周期表中同一主族的两种元素,若甲的原子序数为x,则乙的原子序数不可能是() A.x+2B.x+4 C.x+8 D.x+18 【例 4】若甲、乙分别是同一周期的ⅡA和ⅢA元素,原子序数分别为m和n,则下列关于m 和n的关系不正确的是 ( ) A.n=m+1 B.n=m+18 C.n=m+25 D.n=m+11 【例 5】下列叙述中正确的是() A.除零族元素外,短周期元素的最高化合价在数值上都等于该元素所属的族序数 B.除短周期外,其他周期均有18种元素 C.副族元素中没有非金属元素 D.碱金属元素是指第ⅠA族的所有元素

元素周期表及周期律试题答案及解析

高中化学组卷元素周期表及周期律练习题 答案及解析 一.选择题(共6小题) 1.地壳中含量最多的元素在周期表中的位置是() A.第二周期VIA族B.第二周期VA族 C.第三周期VIA族D.第三周期VA族 2.Q、W、X、Y、Z都是短周期元素.X、Y、Q在周期表中的位置关系如图.W、Z的最外层电子数相同,Z的核电荷数是W的2倍.则下列说法不正确的是() ⅠA ⅡA ⅢA ⅣA Q X Y A.非金属性:W>Z B.原子半径:X>Y>Z C.最高价氧化物对应水化物的碱性:X>Y D.氢化物稳定性:Q>W 3.下列叙述正确的有() A.第四周期元素中,锰原子价电子层中未成对电子数最多 B.第二周期主族元素的原子半径随核电荷数增大依次减小 C.卤素氢化物中,HCl的沸点最低的原因是其分子间的范德华力最小 D.价层电子对相斥理论中,π键电子对数不计入中心原子的价层电子对数 4.四种短周期主族元素W、X、Y、Z的原子序数依次增大,W、X的简单离子具有相同电子层结构,X的原子半径是短周期主族元素原子中最大的,W与Y同族,Z与X形成的离子化合物的水溶液呈中性.下列说法正确的是() A.简单离子半径:W<X<Z B.W与X形成的化合物溶于水后溶液呈碱性 C.气态氢化物的热稳定性:W<Y D.最高价氧化物的水化物的酸性:Y>Z 5.根据元素周期表和元素周期律分析下面的推断,其中错误的是() A.酸性由强到弱的顺序:HClO4>H2SO4>H3PO4 B.氢氧化钙比氢氧化镁碱性强 C.气态氢化物的稳定性X>Y,说明X的非金属性比Y强 D.最外层电子数X>Y,说明X的非金属性比Y强 6.已知Cl、S、P为三种原子序数相连的元素,则下列说法正确的是() A.气态氢化物的稳定性:HCl>H2S>PH3 B.非金属活泼性:S<Cl<P C.原子半径:Cl>S>P D.原子序数:S<P<Cl 二.填空题(共3小题)

物质结构与元素周期律高考题,20道

物质结构与元素周期律高考题,20道 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

物质结构与元素周期律 1.【2016-浙江】短周期主族元素X、Y、Z、W的原子序数依次增大,X原子核外最外层电子数是其电子层数的2倍,X、Y的核电荷数之比为3:4。W?的最外层为8电子结构。金属单质Z在空气中燃烧生成的化合物可与水发生氧化还原反应。下列说法正确的是() A.X与Y能形成多种化合物,一般条件下都能与Z的最高价氧化物的水化物发生反应 B.原子半径大小:X<Y,Z>W C.化合物Z2Y和ZWY3都只存在离子键 D.Y、W的某些单质或两元素之间形成的某些化合物可作水的消毒剂 2.【2016-新课标III】四种短周期主族元素W、X、Y、Z的原子序数依次增大,W、X的简单离子具有相同电子层结构,X的原子半径是短周期主族元素原子中最大的,W与Y同族,Z与X形成的离子化合物的水溶液呈中性。下列说法正确的是() A.简单离子半径:W< XZ 3.【2016-新课标II】a、b、c、d为短周期元素,a的原子中只有1个电子,b2-和C+离子的电子层结构相同,d与b同族。下列叙述错误的是 () A.a与其他三种元素形成的二元化合物中其化合价均为+1 B.b与其他三种元素均可形成至少两种二元化合物 C.c的原子半径是这些元素中最大的 D.d和a形成的化合物的溶液呈弱酸性

4.【2016-新课标I】短周期元素W、X、Y、Z的原子序数依次增加。m、p、r 是由这些元素组成的二元化合物,n是元素Z的单质,通常为黄绿色气体,q的水溶液具有漂白性,0.01 mol·L–1r溶液的pH为2,s通常是难溶于水的混合物。上述物质的转化关系如图所示。下列说法正确的是 () A.原子半径的大小WX>Y C.Y的氢化物常温常压下为液态 D.X的最高价氧化物的水化物为强酸 5.【2016-江苏】短周期主族元素X、Y、Z、W原子序数依次增大,X原子的 最外层有6 个电子,Y是迄今发现的非金属性最强的元素,在周期表中Z位于IA族,W 与X属于同 一主族。下列说法正确的是() A.元素X、W的简单阴离子具有相同的电子层结构 B.由Y、Z两种元素组成的化合物是离子化合物 C.W的简单气态氢化物的热稳定性比Y的强 D.原子半径:r(X)<r(Y)<r(Z)<r(W) 6.【2015-浙江】

门捷列夫与元素周期表

门捷列夫与元素周期表 在十九世纪初期,人们已经发现了不少元素。在这些元素的状态和性质方面,有些极为相似,有些则完全不同,有些元素在某些性质方面很相似,但 在另一些方面却又差别很大。化学家们很自然地产生了一种寻求 元素相之间内在联系从而把元素作一科学分类的要求。科学家们 在这方面作了不少的工作,曾发表了部分元素间相互联系的论 述。 1829年德国段柏莱纳根据元素性质的相似性,提出“三素 组”的分类法,并指出每组中间元素的原子量大约等于两端的元 素原子量的平均值。但他当时只排了五个三素组,还有许多元素 没找到其间相互联系的规律。 1864年德国迈耶按元素的原子量顺序把元素分成六组,使化学性质相似的元素排在同一纵行里。但也没有指出原子量跟所有元素之间究竟有什么联系。 1865年英国纽兰兹把当时所知道的元素按原子量增加的顺序排列,发现每个元素它的位置前后的第七个元素有相似的性质。他称这个规律叫“八音律”。他的缺点在于机械地看待原子量,把一些元素(Mn、Fe等)放在不适当的位置上而把表排满,没有考虑发现新元素的可能性。 直到1868年,迈耶发表了著名的原子体积周期性图解。都末找出元素间最根本的内在联系,但却一步步地向真理逼近,为发现元素周期律开辟了道路。 与迈耶尔相似,以先行者提供的借鉴为基础,门捷列夫通过自己顽强的努力,于1869年2月编成了他的第一张元素周期表。1869年3月18日,俄国化学会举行学术报告会,门捷列夫因病未能出席,他委托他的同事、彼得堡大学化学教授门许特金代他宣读他的论文《元素性质和原子量的关系》。在论文中,他指出: (1)按照原子量大小排列起来的元素,在性质上呈现明显的周期性变化。 (2)化学性质相似的元素,或者是原子量相近(如Pt,Ir,Os),或者是依次递增相同的数量(如K,Rb,Cs)。 (3)各族元素的原子价(化合价)一致。 (4)分布在自然界的元素都具有数值不大的原子量值,具有这样的原子量值的一切元素都表现出特有的性质,因此可以称它们是典型的元素。 (5)原子量的大小决定元素的特征。 (6)应该预料到许多未知元素将被发现,例如排在铝和硅后面的、性质类似铝和硅的、原子量位于65~75之间的两种元素。 (7)当我们知道了某些元素的同类元素的原子量后,有时可借此修正该元素的原子量。 (8)一些类似的元素能根据其原子量的大小被发现出来。 正如门捷列夫所指出的,周期律的全部规律性都表述在这些原理中。其中最主要的是元素的物理和化学性质随着原子量的递增而做着周期性的变化。他的卓见没有立即被接受。他的老师、俄国化学家齐宁甚至训诫他是不务正业。在这种压力下,门捷列夫没有象纽兰兹那样伤心地放弃对新理论的研究,他不顾名家的指责和嘲笑,继续为周期律的揭示而奋斗。经过两年的努力,1871年他发表了关于周期律的新论文。文中他果断地修正了前一个元素周期表。例如在前一表中,性质类似的各族是横排,周期是竖排;而在新表中,族是竖排,周期是横排,这样各族元素化学性质的周期性变化就更为清晰。同时他象迈耶尔那样,将那些当时性质尚不够明确的元素集中在表格的右边,形成了各族元素的副族。在前表中为尚未发现的元素留下的4个空格,在新表中则变成了6个。 门捷列夫深信他所发现的周期律是正确的。他以周期律为依据,大胆指出某些元素的原子量是不准确的,应重新测定。例如当时公认金的原子量为169.2,按此,在周期表中,金应排在锇、铱、铂(当时认为它们的原子量分别是198.6,196.7,196.7)的前面。而门捷列夫根据金的性质认为金在周期表中应排在这些元素的后面,所以它们的原子量应重新测定。重新测定的结果是:锇为190.9,铱为193.1,铂为195.2,金为197.2。实验证明了门捷列夫的意见是对的。又例如,当时铀公认的原子量是116,是三价元素。门捷列夫则根据铀的氧化物与铬、钼、钨的氧化物性质相似,认为它们应属于一族,因此铀应为六

相关文档
相关文档 最新文档