文档库 最新最全的文档下载
当前位置:文档库 › 聚氨酯生物吸收材料及其作为缓释药物载体的研究

聚氨酯生物吸收材料及其作为缓释药物载体的研究

聚氨酯生物吸收材料及其作为缓释药物载体的研究
聚氨酯生物吸收材料及其作为缓释药物载体的研究

功 能 高 分 子 学 报

Jou rnal of Functi onal Po lym ers V o l .9 N o.2Jun . 1996 

聚氨酯生物吸收材料及其

作为缓释药物载体的研究3

黄健 陈庆民 余学海33

(南京大学高分子科学与工程系,南京 210008)

3 收稿日期:1995201224

33通讯联系人

摘 要 合成了一系列新的紫外光固化生物吸收性聚氨酯水凝胶网络,测定了材料的含水率及水解性能,并以之为载体,研究了对异烟肼的药物缓释性能。结果表明,该水凝胶的含水率及降解速率与其结构有关,该水凝胶对异烟肼具有缓释作用,释放行为受扩散控制并符合H iguch i 方程,表观扩散系数与水凝胶的含水率有关。

关键词 生物吸收材料,聚氨酯,水凝胶,缓释药物

生物吸收性高分子(B i oab so rbab le Po lym er )以其独特的性能引起了科研部门和医学界人士越来越多的兴趣。经过数十年的研究与临床应用,一些脂肪族聚酯类生物降解材料比如聚乙交酯、聚丙交酯、聚己内酯、聚甲基丙烯酸羟乙酯等的均聚物或共聚物,已经证明是性能理想的8生物吸收材料[1-5]。它们的降解产物是人体在新陈代谢过程中本身固有的,其生物无毒性得到了证实[5]。聚氨酯材料作为生物吸收材料的主要问题是异氰酸酯的降解产物胺类具有生物毒性[6,7]。2,6-二异氰酸酯己酸乙脂(LD I )和1,4-二异氰酸酯丁烷(BD I )[5]的降解中间体是对人体无毒的小分子或人体新陈代谢的产物,LD I 及BD I 的出现使合成无毒性的聚氨酯生物吸收材料成为可能。1970年以后,氨基酸的聚合为合成生物材料开辟了新的领域[8]。选择人体新陈代谢的产物作为合成无毒性生物吸收材料的单体,成为合成安全的生物吸收材料的指导思想。选择交联网状结构能更自由地调整生物吸收性材料的力学性能或它们的降解速率[4]。高分子生物吸收性水凝胶有良好的生物相容性且无生物毒性,是理想的缓释药物载体[3,5]。高分子材料作为缓释药物载体,其缓释作用一般是通过药物在高分子材料中的扩散[9,10]或通过高分子链段的降解实现的[10,11]。

本文以PCL (聚己内酯) PDO (聚-2-羰基-1,4-二氧六环)、PCL PLA (聚丙交酯)等共聚低聚物二元醇或PCL 均聚物二元醇与L T I (赖氨酸三异氰酸酯)反应,以H E M A (甲基丙稀酸羟基乙酯)封端,并用H E M A 作稀释剂,采用紫外光固化合成了一系列新型生物吸收性聚氨酯水凝胶网络。测定了材料的含水率及水解性能,研究了该材料对抗结核药物异烟肼的缓释作用。

1 实验部分

1.1 原料PCL 、PDO 、PLA 的均聚或共聚物,E th icon 公司提供;赖氨酸三异氰酸酯(Β

-异氰酸?071?

乙基-2,6-二异氰酸赖氨酸酯,简称L T I ),日本To ray 工业公司产品,结构式为:

O CN CH 2CH 2CH 2CH 2CHCO CH 2CH 2N CO OCN O

异佛尔酮二异氰酸酯,简称IPD I (Isop ho rone diisocyanate ),A ldrich 公司产品,结构式为:H E M A ,A ldrich 公司试剂;异烟肼,中国药科大学提供,105℃真空干燥至恒重;NaOH ,分析纯,南京化学试剂厂;N aH 2PO 4,分析纯,上海试剂二厂。

1.2 聚氨酯网络的合成

聚酯多元醇在60℃下真空干燥过夜,在装有冷凝器、氮气保护装置、温度计、搅拌器的四口瓶中,加入1m o l 聚酯多元醇及2m o l L T I ,将混合物加热至65℃反应1h ,加入4m o l HE M A 及3滴催化剂二丁基二异月桂酸锡,65℃反应3h 。冷却至室温,加入计量的稀释剂HE M A 和0.6%的光敏剂(2,2’-二乙氧基苯乙酮和N -甲基二乙醇胺的1:1混合物),搅拌均匀,将预聚物倒入模具,真空脱气,紫外光照射固化,得到板状透明的产品。合成的产品列于表1。

Table 1 Co m position s of var ious PU

N o .

Componen t Compo siti on rati o H E M A con ten t (w t .%)1PCL 22000a 222PCL 2 PDO (50:50)b 216642IPD I 2H E M A 1:2:4503PCL PLA (60:40)222302L T I 2H E M A 1:2:4404PCL 220002L T I 2H E M A 1:2:4405PCL PDO (40:60)215802L T I 2H E M A 1:2:4506PCL PDO (60:40)215802L T I 2H E M A

1:2;440

Note :a .M n =2000for the sof t -seg men t ;

b .M ole ratio for PCL and PDO i n the co -sof t -seg men t 1.3 水凝胶的降解实验

将厚1-1.5mm 重0.2-0.3g 的片状样品浸入恒温37℃的磷酸缓冲液(pH =7.4)[12]中。定期更换缓冲液。过一定时间,取出样品,测试样品的吸水率和失重率。

1.4 含异烟肼水凝胶样品的制备

将直径约1.2c m 的聚氨酯水凝胶样品浸入40-70℃的异烟肼饱和溶液中,保持5h ,使异烟肼较均匀地分布在试样中。

1.5 药物缓释实验

药物释放实验是在一搅拌装置[13]中进行的。试样浸在50mL 的磷酸缓冲液(pH =7.4)中,在37℃及一定的搅拌速度下定时取样,然后换以新鲜的缓冲液。在异烟肼的最大吸收波长263.2nm 下测定其含量。异烟肼在105℃下避光真空干燥至恒重,制得标准样品,绘制工作曲线。

?

171?聚氨酯生物吸收材料及其作为缓释药物载体的研究

2 结果与讨论

2.1 药物释放的扩散理论

对于药物均匀分散在载体中的缓释体系,H iguch i [9,14]描述了理想扩散模型,并推导了药物释放方程

M t A =(2D C 0C s t )0.5 C 0>>C s

(1)M t A =[D (2C 0-C s )C s t ]0.5 C 0>C s (2)其中M t 为药物累积溶出量(m g ),A 为有效释放面积(c m 2),D 为表观扩散系数

(c m 2 s ),C 0为水凝胶中起始药物浓度(m g c m 3),C s 为药物在水凝胶中的溶解度(m g

c m 3)。方程(1)(2)适用于药物在载体中不完全溶解的情况,其中[14]:

C 0=

水凝胶中起始药含量起始药含量+水凝胶干重+水凝胶含水量×103(3)C s =水凝胶含水量×药物的溶解度起始药含量+水凝胶干重+水凝胶含水量×103

(4)

公式(3)(4)的推导中,把含药水凝胶的比重近似于溶剂水。

2.2 聚氨酯水凝胶的含水率与结构的关系

水凝胶含水率(W )的定义为:

W =水凝胶含水量水凝胶含水量+水凝胶重量×100%(5)

水凝胶含水率列于表2。比较样品1、4或5、6,随着稀释剂H E M A 的增加,水凝胶的交联密度降低,含水率上升。在稀释剂含量一定的情况下,样品1与样品2、5比较,样品4与样品3、6比较,说明含纯PCL 软段的水凝胶有较大的吸水率。

Table 2 W a ter con ten t i n hydrogel

Samp le

W ater (%)at 37℃W ater (%)at 60℃1

19.5019.242

13.7013.653

11.3411.464

17.2017.015

14.1614.13612.0711.94

2.3 水凝胶的降解

将水凝胶网络在37℃,pH =7.4的缓冲溶液中连续降解100天,样品的重量逐渐减小而含水率逐渐上升,说明样品的交联密度下降,发生了降解,并有小分子物溶出。样品的失重率及含水率随时间的变化(见图1、2),两图有相似的变化规律。降解过程可分为初期微弱变化,中期的平稳变化及后期的持续降解阶段,平稳期约在10-40天。降解过程中,首先发生

?271?黄健 陈庆民 余学海

的是样品中小分子(引发剂、单体等)的溶出,交联网络的断开(这时有可能引起样品增重),其次才是交联网络的深度降解,这几种现象表现在降解曲线的三个阶段中。由于IPD I 只有两官能度,水凝胶的交联度较低,再加上软段有较高比例的PDO ,使样品2降解最显著,100天降解失重率为8.6%,含水率增加66%。比较样品2、5、6与样品1、4,可以看出含PDO 的样品有较大的降解速度。样品6比样品5的稀释剂含量低,

PDO 的比例大于样品5,所以前者的降解加速趋势较大。样品1,4的软段是M

{n =2000的PCL ,易结晶,导致样品1,4的持续降解阶段较迟出现。可以看出,样品持续降解阶段的降解速度接近线性

F ig .1 

Changes i n we ight

loss of the hydrogel

sam ples F ig .2 Changes i n wa ter absorption of the hydrogel sam ples

2.4 PU 水凝胶对异烟肼的缓释作用

异烟肼是易溶于水的白色结晶粉末。缓释过程中电磁搅拌速度开至最大挡,以降低扩散界面层效应[14](D iffu si on boundary layer effect )的影响。定时更换新鲜的缓冲液,保证释放介质(缓冲液)中药物的含量低于释放温度下药物溶解度的10%[13],使释放过程更接近于理想扩散释放。由于载体的厚度<2mm ,载体侧面的释药量可以忽略[14]。异烟肼的缓释曲线如图3。经过120h 的释放,载体中大于95%异烟肼被释放出来。释放速度随载体的含药量和含水率的增加而增加。

?

371?聚氨酯生物吸收材料及其作为缓释药物载体的研究

F ig .3 Relea se curves of ison i az idu m

i n d ifferen t carr iers

图4为M t A 对t 0.5的关系曲线,在释放的前中期,释放量与t 0.5的关系为线性关系,符

合H iguch i 扩散方程[方程(2)],说明该释放过程为扩散过程。利用方程(2)计算了水凝胶载体的表观扩散系数D ,列于表3。D 值随水凝胶含水量的增加而增加。该水凝胶载体D 值相

当或略小于以聚氨酯泡沫作载体的异烟肼控释数据(D =6.8~7.9×10-7c m 2 sec )[15]。将

L og D 对L og W 作图(如图5),它们的关系近似线性

[14,16],D 是W 的函数。模拟方程为:D =1.07×10-5W 1.79

由方程(4),C s 是药物的溶解度C d 及水凝胶含水量W 的函数[14],由方程(2)知,释放速度是C 0、C d 和W 的函数。

该聚氨酯生物吸收材料发生显著降解的时间远大于异烟肼稳定释放所需的时间。若载体发生降解的时间与缓释载体稳定释放所需的时间相当,则释放过程不简单是扩散过程,而是扩散与载体降解共同作用的结果[10,11]。

Table 3 D rug relea se da te

Carrier num bers

C s (m g g )C 0(m g g )

D ×107(c m 2 s )1

19.46136.85.712

13.81133.13.753

11.55111.62.315

15.0188.33.08612.44111.02.18

?471?黄健 陈庆民 余学海

F ig .4 Rela

tion between M t and t 0.5F ig .5 Rela tion between log W and log D

参 考 文 献

1.D .K .Gilding ,A .M .R eed ,Po lym er ,1979,20:1459

2.S .H .H yon et al .,P rep .Japan -Ch ina B ilat .Symp .on Po lym .Sci .&T echn .,Beijing ,1981:369

3.R .J .L inhardt ,Po lym .M ater .Sci .Eng .,1992,66:95

4.R .F .Sto rey et al .,Po lym .P rep .,1992,2:448

5.K .L eong ,Po lym .M ater .Sci .Eng .,1992,66:85

6.S .Gogo lew sk i et al .,M ak romo l .Chem .R ap id .Comm un .,1993,4:213

7.P .B ru in et al ,M ak romo l .Chem .R ap id .Comm un .,1988,9:589

8.S .I .E rtel et al .,Po lym .M ater .Sci .Eng .,1992,66:224

9.S .W .K i m et al

.,Po lym eric D rug D elivery System s ,D rug D esign ,Edited by E .J .A rien s ,N ew Yo rk ,1980,10:204

10.S .W .K i m et al

.,Po lym eric D rug D elivery System s ,D rug D esign ,Edited by E .J .A rien s ,N ew Yo rk ,1980,10:22011.C .G .P itt ,J .Pharm .Sci .,1970,68(12):1534

12.中华人民共和国药典,人民卫生出版社,北京,1990,附录173

13M asaru Yo sh ida et al .,Po lym er ,1978,19:1375

14.Shun taro Ho saka et al .,J .A pp l .Po lym .Sci .,1979,23:2089

15.E .O .Batyrbeko r et al .,B ritish Po lym er Jou rnal ,1990,23:273

16.M .Yo sh ida et al .,Po lym er ,1978,19:1379

?

571?聚氨酯生物吸收材料及其作为缓释药物载体的研究

The Syn thesis of B ioabsorbable Polyurethane and

its Study a s a D rug D el ivery System Carr ier

H uang J ia Chen Q ingm in Yu Xuehai

(D ep artm en t of Po lym er Science and Engneering ,

N an jing U n iversity ,N an jing 210008)Abstract

A series of b i oab so rbab le po lyu rethane netw o rk hydrogels w ere systhesized .T he con tro lled release p roperties of the hydrogel as a carrier fo r ison ia -zidum had been investigated .R esu lts indicated that the

w ater con ten t and degradati on k inetics depended on the structu re of the gel

.T he con tro lled release p roper 2ty can be ach ieved fo r ison iazidum .T he release behavi o r w as con tro lled by diffu ssi on and fo llow ed the

H iguch i Equati on .T he apparen t diffu ssi on coeffien t w ae related to the w ater con ten t of the hydrogel

.Keywords :B i oab so rbab le m aterial ,Po lyu rethane ,H ydrogel and drug delivery system .?671?黄健 陈庆民 余学海

聚氨酯介绍

介绍 1、硬质聚氨酯导热系数低,热工性能好。当硬质聚氨酯密度为35~40kg/m3时,导热系数仅为0.018~0.024w/(m.k),约相当于EPS的一半,是目前所有保温材料中导热系数最低的。 2、硬质聚氨酯具有防潮、防水性能。硬质聚氨酯的闭孔率在90%以上,属于憎水性材料,不会因吸潮增大导热系数,墙面也不会渗水。 3、硬质聚氨酯防火,阻燃,耐高温。聚氨酯在添加阻燃剂后,是一种难燃的自熄性材料,它的软化点可达到250摄氏度以上,仅在较高温度时才会出现分解:另外,聚氨酯在燃烧时会在其泡沫表面形成积碳,这层积碳有助隔离下面的泡沫。能有效地防止火焰蔓延。而且,聚氨酯在高温下也不产生有害气体。 4、由于聚氨酯板材具有优良的隔热性能,在达到同样保温要求下,可使减少建筑物外围护结构厚度,从而增加室内使用面积。 5、抗变形能力强,不易开裂,饰面稳定、安全。 6、聚氨酯材料孔隙率结构稳定,基本上是闭孔结构,不仅保温性能优良,而且抗冻融、吸声性也好。硬泡聚氨酯保温构造的平均寿命,在正常使用与维修的条件下,能达到30年以上。能够做到在结构的寿命期正常使用条件下,在干燥、潮湿或电化腐蚀,以及由于昆虫、真菌或藻类生长或者由于啮齿动物的破坏等外因影响,都不会受到破坏。 7、综合性价比高。虽然硬质聚氨酯泡沫材的单价比其它传统保温材料的单价高,但增加的费用将会由供暖和制冷费用的大幅度减少而抵消。 产品用途 本公司生产的硬质聚氨酯保温大板材可广泛用于彩钢夹芯板、中央空调、建筑墙体材料、冷库、冷藏室、保温箱、化工罐体等领域。 特点 ●规格品种多,容重范围:(40—60kg/m3);长度范围:(0.5米—4米);宽度范围:(0.5米—1.2米);厚度范围:(20毫米—200毫米)。 ●切割精度高,厚度误差±0.5mm,从而保证了制成品表面的平整度。 ●泡沫细密,泡孔均匀。 ●容重轻,可以减少制成品的自重量,比传统的产品低30—60%。 ●抗压强度大,可以承受在制造成品过程中的巨大压力。 ●方便质量的检验,由于在切割过程中去掉了四周的表皮,板材的质量一目了然,保证了制成品的保温效果。厚度可按用户要求生产加工。 规格 硬质聚氨酯泡沫泡块(本公司提供不同密度的泡块,用来加工制作各种型材) 品种聚氨酯泡沫泡块(单位mm) 规格4000×1200×1000 2000×1200×1000 硬质聚氨酯泡沫大板材 品种聚氨酯大板材 密度40-60kg/m 规格长度:4000-500mm

药物缓释载体材料在医药领域中的研究及应用

中国组织工程研究与临床康复 第15卷 第25期 2011–06–18出版 Journal of Clinical Rehabilitative Tissue Engineering Research June 18, 2011 Vol.15, No.25 ISSN 1673-8225 CN 21-1539/R CODEN: ZLKHAH 4699www.CRTER .org Second Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning Province, China Jin Li-xia, Charge pharmacist, Second Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning Province, China 84890850@https://www.wendangku.net/doc/f02702422.html, Received: 2011-03-09 Accepted: 2011-04-06 辽宁医学院附属第 二医院,辽宁省锦州市 121000 金丽霞,女,1972年生,汉族,辽宁省锦州市人,2004年吉林大学毕业,主管药师,主要从事临床药学方面的研究。 84890850@ https://www.wendangku.net/doc/f02702422.html, 中图分类号:R318 文献标识码:B 文章编号:1673-8225 (2011)25-04699-04 收稿日期:2011-03-09 修回日期:2011-04-06 (20110402013/W ?W) 药物缓释载体材料在医药领域中的研究及应用 金丽霞 Drug delivery materials in the field of medicine and its application Jin Li-xia Abstract BACKGROUND: Drug delivery is the physical or chemical method of combining small molecule drug with polymer carrier to release small molecule drug at the appropriate concentration through diffusion and permeation approaches to achieve a therapeutic effect in the body. OBJECTIVE : To study the characteristics and application of drug delivery materials in the field of medicine. METHODS: A computer based search of CNKI and PubMed databases was conducted to retrieve relevant articles published between 1993-01 and 2010-11 using the keywords of “drug delivery, carrier material, biodegradable, chitosan, polylactic acid, sodium alginate” in Chinese and English. Articles about polymer biomaterials and drug delivery carriers were searched. Repetitive articles or Meta analysis were excluded. Finally, 31 papers were included in result analysis. RESULTS AND CONCLUSION: Chitosan and polylactic acid are commonly seen in the drug delivery system, which combines small molecule drug with polymer carrier by physical or chemical methods for sustained release at the appropriate concentrations to achieve a therapeutic effect. They have more significant advantages than single biomaterials, and possess a better biocompatibility and biodegradability. At present, a lot of research is still in experimental stage, and there are some problems to be solved, such as the immature preparation approach, difficulty to control dosage, and high cost. Jin LX.Drug delivery materials in the field of medicine and its application. Zhongguo Zuzhi Gongcheng Yanjiu yu Linchuang Kangfu. 2011;15(25):4699-4702. [https://www.wendangku.net/doc/f02702422.html, https://www.wendangku.net/doc/f02702422.html,] 摘要 背景:药物缓释就是将小分子药物与高分子载体以物理或化学方法结合,在体内通过扩散、渗透等控制方式,将小分子药物以适当的浓度持续地释放出来,从而达到充分发挥药物功效的目的。 目的:总结药物缓释载体材料特征及其在医药领域中的应用。 方法:以“药物缓释、载体材料、生物降解、壳聚糖、聚乳酸、海藻酸钠”为中文关键词,以“Drug delivery ,carrier material ,biodegradable ,chitosan ,polylactic acid , sodium alginate ”为英文关键词,采用计算机检索中国期刊全文数据库、PubMed 数据库(1993-01/2010-11)相关文章。纳入高分子生物材料-药物缓释载体等相关的文章,排除重复研究或Meta 分析类文章,共入选31篇文章进入结果分析。 结果与结论:壳聚糖和聚乳酸是当前在药物缓释体系中应用较多的材料,它是将小分子药物与高分子载体以物理或化学方法结合, 以适当的浓度持续地释放出来,从而达到充分发挥药物功效的目的,较单一生物材料具有显著优越性,具有更好的生物相容性和生物可降解性。目前很多研究仍处于实验阶段,还有一些问题有待于解决,如制剂质量方法不成熟,剂量较难控制,成本较高等。 关键词:药物缓释;载体材料;生物降解;壳聚糖;聚乳酸;海藻酸钠 doi:10.3969/j.issn.1673-8225.2011.25.034 金丽霞.药物缓释载体材料在医药领域中的研究及应用[J].中国组织工程研究与临床康复,2011,15(25):4699-4702. [https://www.wendangku.net/doc/f02702422.html, https://www.wendangku.net/doc/f02702422.html,] 0 引言 药物缓释就是将小分子药物与高分子载体 以物理或化学方法结合,在体内通过扩散、渗透等控制方式,将小分子药物以适当的浓度持续地释放出来,从而达到充分发挥药物功效的目的。作为药物缓释载体的材料, 是药物缓释体系的重要组成部分,是调节药物释放速度的重要物质,也是影响药效的主要因素。需要具有生物相容性和生物可降解性,也就是能在体内降解为小分子化合物,从而被机体代谢、吸 收或排泄,对人体无毒副作用,并且降解过程发生的时机要合适[1] 。其主要优点:能够减少给药次数,增加药物治疗稳定性,延长药物作用时 间。有利于提高药物疗效、降低毒副作用,可减轻患者多次用药的痛苦,对于提高临床用药水平来说具有重大意义。 1 资料和方法 1.1 资料的纳入与排除标准 纳入标准:①药物缓释载体材料在医药领域 中的应用,合成高分子生物材料及天然高分子 万方数据

聚氨酯概况综述

聚氨酯概况 一、聚氨酯定义 聚氨酯:凡是在大分子主链中含有氨基甲酸酯基的聚合物称为聚氨基甲酸酯,简称聚氨酯。 分类:聚酯型聚氨酯; 聚醚型聚氨酯。 聚酯型聚氨酯:以异氰酸酯和端羟基聚酯为原料制备的聚酯称为聚酯型聚氨酯。 聚醚型聚氨酯:以异氰酸酯和端羟基聚醚为原料制备的聚氨酯。 二、聚氨酯生产常用原料简介 己二酸(AA) 1、物理性质: 白色晶体或结晶粉末,略有酸味,微溶于水、环己烷,溶于丙酮、乙醇、乙醚。不溶于苯、石油醚。熔点152℃,沸点330.5℃(760mmHg),比重1.360(20/4℃),闪点196℃。 2、用途: AA主要用于生产尼龙(纤维和树脂),约占总生量的70%以上,聚氨酯行业中AA 的用量只约 20%,余下的用于增塑剂、造纸、药物等方面生产。 在PU行业中,AA用于生产PU革用树脂、鞋底原液、弹性体、胶粘剂和油漆等方面。 二苯基甲烷-4,4’-二异氰酸酯(MDI) 1、物理性质: 白色到微黄色结晶体(或粉末)。溶于丙酮、苯、甲苯、氯苯、硝基苯、煤油、乙酸乙酯等,比重1.197(70℃),凝固点38-39℃,沸点190℃(5mmHg)。 2、用途: MDI只用于聚氨酯行业中,其应用范围是:弹性体、纤维、革用树脂、鞋底原液、胶粘剂和油漆等方面。 多亚甲基多苯基多异氰酸酯(PAPI) 1、物理性质: 棕色粘稠液体,溶于丙酮、苯、甲苯、氯苯、硝基苯、煤油、乙酸乙酯等,比重1.23(25℃)。 2、用途: 在PU行业中,PAPI主要用于生产硬泡,此外还可用于胶粘剂、铺装材料等。

甲苯二异氰酸酯(TDI) 1、物理性质 无色至淡黄色液体,有强烈刺激性气味。可溶于醚、丙酮、苯、四氯化碳、氯等。与水、醇及胺等反应,比重 1.2244(20/4℃),熔点19.5-21.5℃,沸点251℃(760mmHg)。 2、用途: TDI的主要用途是生产PU泡沫,约占TDI总量的80%以上。此外还用于胶粘剂、弹性体、油漆、固化剂等方面。 N,N-二甲基甲酰胺(DMF) 1、物理性质: 无色透明液体,有氨气味,溶于水、乙醇、乙醚、氯仿等大多数有机溶剂,微溶于苯。溶解能力强,被称为万能有机溶剂。比重0.9445g/cm3(25/4℃),熔点-61℃,沸点153℃,折射率为1.4269。 2、用途: DMF主要用于革用树脂的合成和PU皮革生产加工方面,约占总量的90%以上,余下的用于医药和分析方面。 1,4—丁二醇(BDO) 1、物理性质: 无色粘稠油状液体,味苦,有吸湿性,无气味。可溶于水、甲醇、乙醇和丙酮,微溶于乙醚,不易挥发。比重为1.016g/cm3(20/4℃),凝固点为20.9℃,沸点为228℃,折射率为1.4446(25℃)。 2、用途: 用于制造聚酯多元醇、不饱和树脂、药物、染料、化妆品及油漆等。 多元醇 一):聚酯多元醇 1、分类: 聚酯多元醇的种类繁多,根据其结构来分可分为三大类:聚酯多元醇类(主要是己二酸系列),聚ε—己内酯类,聚碳酸酯类。 聚酯多元醇是由二元酸与二元醇或三元醇经酯化、缩聚成一定分子量的端羟基高聚物。 聚ε—己内酯类是ε—己内酯在催化剂(有机钛类、辛酸亚锡)存在下,由起始剂(二醇或二胺)开环聚合成线性的端羟基或端胺基高聚物。 聚碳酸酯类是1,6—己二醇与二苯基碳酸酯经酯交换、缩聚而成的聚碳酸己二醇酯二醇。 2

B1级聚氨酯保温板简介

B1级聚氨酯保温板简介 概述 聚氨酯保温板是由组合聚醚和聚合MDI(多苯基多亚甲基多异氰酸酯)进行发泡反应而制得,经GB8624-2012标准检验判定阻燃等级为B1级的硬质聚氨酯泡沫塑料有机保温材料。主要用于建筑物围护节能和大型冷库、冷链保温领域。同时,也可用于工业厂房、船舶、车辆、军工、水利建设等领域的防火保温隔热。 现行国家标准GB 8624-2012《建筑材料及制品燃烧性能分级》将建筑材料按阻燃能力高低依次划分为A级(不燃材料)、B1级(难燃材料)、B2级(可燃材料)、B3级(易燃材料)。根据不同的应用场合,建筑材料选用时应满足国家、地方法律法规要求的最低阻燃等级要求。 聚氨酯保温板由于其有机材料的特性,在现行的技术条件下,最高只能达到阻燃等级B1级的判定。且B1级聚氨酯保温板的研发和制造在技术上有瓶颈和难处,目前国内只有少数几家大的生产企业能够做到。大部分中小企业所生产的聚氨酯保温板只能达到B2级甚至是B3级。 2研发途径 提高聚氨酯材料的阻燃性能通常有以下三种方法:1、添加阻燃剂,主要有磷系、卤素系类的阻燃剂;2、提高配方中异氰酸根指数,即增加黑料(MDI)的用量;3、通过分子结构改性技术,增加材料阻燃性能。 外加阻燃剂容易造成聚氨酯泡沫塑料燃烧时产烟量和毒性增大,且随着时间的推移,阻燃剂容易迁移失效。而聚合MDI的成分单一,黏度较大,可调整的余地很小。因此聚氨酯泡沫塑料性能的改进主要是通过调节聚氨酯硬泡组合聚醚的组分来实现,聚氨酯硬泡组合聚醚性能将直接影响聚氨酯硬泡生产的工艺性能和最终产品的物理性能与使用特性,泡沫导热系数、密度、强度、硬度、阻燃性能等均可以随聚氨酯硬泡组合聚醚原料配方的不同而改变。 3技术特点

壳聚糖作为药物缓释控释载体的研究进展

生命科学 Chinese Bulletin of Life Sciences 第20卷 第4期2008年8月 Vol. 20, No. 4Aug., 2008 壳聚糖作为药物缓释控释载体的研究进展 高 娴, 马世坤* (天津医科大学基础医学院,天津 300070) 摘 要:壳聚糖因其具有良好的生物学特性而成为多种药物载体研究的热点。药物经过壳聚糖负载后, 不仅能够达到缓释控释的目的,还能够改变药物的给药方式,以此减少给药次数,降低药物不良反应,提高药物生物利用度。本文就壳聚糖和改性壳聚糖作为普通药物和生物大分子药物载体的研究进展作一综述。 关键词:壳聚糖;药物载体;药物缓释;药物控释中图分类号:R318.08 文献标识码:A Research progress of chitosan used as sustained and control drug carrier GAO Xian, MA Shi-kun* (Basic Medical College, Tianjin Medical University, Tianjin 300070, China) Abstract: As chitosan has very good properties, the research of chitosan used as sustained and control drug carrier becomes more and more popular. After loaded by chitosan, these drugs can improve their sustained and control release property, alter their drug-administration-pathway. In this way, they can prolong their drug-administration-interval, degrade their adverse reaction and promote their biological availability. This article introduces the research progress of chitosan and modified chitosan used as common drug and biological macromolecular drug carriers. Key words: chitosan; drug carrier; sustained drug release; control drug release 文章编号 :1004-0374(2008)04-0657-04 壳聚糖又称甲壳胺,化学名称为(1,4)-2-氨基-2-脱氧-β-D-葡萄糖,是甲壳素(大量存在于海洋节肢动物的甲壳中)经过强碱水解或酶解作用脱去乙酰基转化而成的,它和甲壳素的最主要区别就是脱乙酰基程度不同(目前,对于壳聚糖和甲壳素脱乙酰程度的界定范围尚存在争议:蒋挺大[1]认为,脱乙酰度大于55%的甲壳素就可以被称为壳聚糖,而马鹏鹏等[2]认为脱乙酰度大于70%的甲壳素才能被称为壳聚糖)。作为一种阳离子型高分子聚合物,壳聚糖可以通过化学交联、静电吸附等作用方式把药物包裹起来,在药物表面形成一层半透膜,药物释放的时候要克服大分子骨架的阻碍,使药物释放时间显著延长,从而达到缓释控释的目的。壳聚糖具有良好的生物相容性,进入人体后可被人体吸收,且不引发免疫排斥反应,其降解产物为寡聚糖和单 收稿日期:2008-02-20;修回日期:2008-03-25基金项目:天津市高等学校科技发展基金(2001YY07)*通讯作者:E-mail :mashk@tijmu. edu. cn 糖,终产物为CO 2和H 2O ,安全无毒。除了具有良好的成膜、絮凝、黏膜吸附等特性外,壳聚糖还具有降血压、降血糖、降血脂、抗菌、抗肿瘤、抗凝血、抗心律失常等作用[3]。另外,壳聚糖来源广泛,价格低廉,是一种理想的药物载体。现就壳聚糖作为药物载体在药物缓释控释方面的研究和应用情况作一综述。1 壳聚糖作为普通药物的载体 药物经过壳聚糖负载后缓释作用十分明显,现已经利用壳聚糖作为载体制备出法莫替丁、利福平、奈普生、甲硝唑、吲哚美辛、阿司匹林、地塞米松、三七总皂苷、卡托普利、布洛芬、低分

聚氨酯合成革简介

聚氨酯合成革 原材料聚氨酯皮膜除极富弹性,十分柔软,有出色的抗拉强度耐磨损性耐溶剂性和良好的透明。 分类: 干式合成革:将溶剂型聚氨酯树脂的溶液挥发得到多层薄膜加上底布而构成一种多层结构体。 湿式合成革:将水溶性溶剂(DMF)型聚氨酯树脂利用水中成膜法得到有良好的透气性,透湿性同时还具有连续多孔层的多孔结构体。 DMF:吸湿性强,在混合液中产生微小的凝胶物在涂敷时容易引起划纹现象,或出现颜色不均等。 无纺布:用于人造革。 底布纺织布:广泛用于鞋,提包袋子或衣料。在鞋用中.T/R多用 于合成革的强度面。 编制物:作为是尼龙特里科经编物多用于质量风格面。 一般较广泛的应用起绒布。(麂皮绒、粘胶布) 湿式合成革制造方法: 1.直接涂布法:经过前处理的底布或浸渍布上,涂敷湿式加工用聚氨酯树脂混合液,这是进行湿式成膜形成多孔层的方法并按要求进行再加工,此方法多用在各种湿式合成革制造上。 2.薄膜法:是一种特殊制造法,在聚氨酯薄膜上涂敷湿式加工用聚氨酯树脂混合液,通过湿式成膜法形成多孔层,随后贴合在抵不上再加工。 3.含涂加工法:在湿式加工用聚氨酯树脂混合液中浸渍底布,以所定间隙轧液后进行湿式成膜,形成多孔质,根据需要进行后加工。

湿式成膜助剂:在凝固浴的湿式成膜工艺中,DMF与水进行置换,从而获得表面平滑性,多孔层均匀性,丰满感出色的多孔层皮膜。 在湿式成膜工艺中,树脂面积约收缩10-20%,所以容易发生卷曲,为防止现象发生在工艺设计中,凝固槽的滚筒配置对底布增加均匀的张力。 事先掌握使用树脂的凝固时间,设定安全的加工速度,避免损失平滑性,产生表面波纹或凹凸现象。 在A点入水这同时进行凝固,而B点的混合液与滚筒面接触,如果此时混合层还没凝固,则树脂的多孔层表面与滚筒不吻合,而导致花纹歪斜,损劣表面。 混合液树脂浓度% 不受滚筒所需时间S 加工速度M/S 凝固长度(A-B)M 20 3 4/6 12/18 10 5 4/6 20/30 如果干燥温度高,会引起湿式多孔层热收缩造成卷曲,因此干燥温度为120℃以下,最好在80-120℃,这是获得良好湿式合成革的关键。 贝斯中DMF含量低于3%否则干燥时DMF会使湿式多孔层再次溶解,出现针孔。

壳聚糖在药物缓释载体中的应用

壳聚糖在药物缓释载体中的应用 向 艳,杨 红 (华中科技大学同济医学院附属同济医院眼科,湖北武汉430030) 摘 要:壳聚糖是一种理化性质优良的多糖化合物。其组织相容性好,生物学活性多样,应用广泛。此文就壳聚糖在作为药物缓释载体的生物学特点,类型及研究应用方面作简要综述。 关键词:壳聚糖;药物缓释载体;综述 中图分类号:Q538;R977.6 文献标识码:A 文章编号:1005-1678(2005)01-0062-03 The application of chitosan as drug delivery carrier XIANG Yan,YANG Hong (Department o f O phthalmology ,Tongji Hos pital,Tongji Medical College,Huazhong University o f Science and Technolo gy ,Wuhan 430030,China) 收稿日期:2004-01-19;修回日期:2004-05-21 作者简介:向艳(1977-),女(土家族),湖北鹤峰人,硕士,主要从事角膜病眼底病的研究。 壳聚糖是甲壳素经脱乙酰基后通过(1,4)糖苷键连接构成的分子结构为(1,4)-2-氨基-2-脱氧-B -葡萄糖的多糖。壳聚糖良好的生物学特性使其在药物载体方面得到了广泛的研究,本文作简单综述。 1 壳聚糖作为缓释载体的可行性 (1)壳聚糖是天然多糖,无毒无刺激,组织相容性好,应用于体内安全;(2)具有良好的生物可降解性,能被溶菌酶等生物酶缓慢催化水解为低聚糖;(3)在酸性条件下(p H<5)可溶胀形成凝胶,药物缓慢释放 [1] ,具有亲水性但不溶于水,在 碱性介质中稳定,因此在体内的应用受到限制,将壳聚糖控制脱乙酰度降解成小分子量或经引入亲水基团制成的水溶性壳聚糖衍生物,其溶解度明显改善且刺激性减弱;壳聚糖与海藻酸钠1B 2混合还可制成pH 不依赖性载体;另外壳聚糖与甘油磷酸酯制成的温敏性凝胶在体温时呈凝固体,能控制药物释放;(4)带正电性和良好的生物黏附性使其在黏膜表面负电荷条件下黏附性增加,药物滞留时间延长[2];(5)壳聚糖分子内具有活性基团-NH 2,可与含双官能团的醛或酸酐药物化学偶联,使药物大量分布于偶联结构内,缓慢释放;(6)可塑性强,经不同的加工可制成膜,压成片,制成颗粒、微球或增粘剂等,可口服、外用和静脉用药。2 壳聚糖作为缓释载体的剂型2.1 缓释微球 微球是目前作为缓释剂研究的热点。制作方法以乳化交联法最为常用。其基本方法是将药物分散于壳聚糖醋酸溶液中,与含表面活性剂的甘油相混合处理后,再与戊二醛、甲醛等乳化交联便可制成。壳聚糖还可制成带有配基如抗 体或酶等的微球,可到达相应的抗原及酶受体处发挥作用。Ohya 等[3]制备的表面带有阴离子多糖6-O -羧甲基-N -乙酰-A -1,4-聚半乳糖胺(NAPGA)的氟尿嘧啶壳聚糖微球,可被细胞表面特殊的受体识别,此种微球对SK -HEP -1肝癌细胞有特殊的亲和力和抗癌作用。壳聚糖微球的优点是可靶向分布于肿瘤组织,能加强药物的穿透性和滞留性,提高药物的稳定性及生物利用度,降低全身血药浓度,减少副反应。2.2 缓释膜剂 Mi 等[4]制备的烧伤宁壳聚糖膜,在第1天大量释放,并以有效药物浓度持续释放,体外抗绿脓杆菌和金葡菌活性长达1周。膜剂现广泛的应用于术后防粘连、修复硬膜、促进创伤口愈合等[5]。2.3 缓释增黏剂 Felt 等[2]发现壳聚糖可以减慢药物排除率,提高角膜表面药物的滞留时间。黄虹等[6]分别将壳聚糖和玻璃酸钠加入环丙沙星滴眼剂中,可将药物浓度提高18倍,而不影响药物稳定性,使用者无不适。壳聚糖作为增黏剂价格便宜,还有抑菌、增强免疫功能的功效,有望代替玻璃酸钠成为增黏剂的首选,并成为抗青光眼药物及眼内药物长效制剂的缓释载体。2.4 缓释胶囊 李平等[10]将氧氟沙星加入蒸馏水,滴加冰醋酸,溶解后撒入壳聚糖,待其自然胶溶后将赤石脂细粉撒入,制得壳聚糖-赤石脂氧氟沙星胶囊。胶囊在酸性条件下溶胀,缓释作用佳。近来又发现壳聚糖胶囊可被结肠区微生物区系降解,而成为结肠靶向给药的热点。李国锋 [7] 将治疗溃疡性结肠 炎药物美沙拉嗪装于壳聚糖空白胶囊和明胶胶囊中,再以邻 苯二甲酸羟丙甲纤维素(HPMCP)包膜胶囊,在p H 1.2盐酸溶液中HPMCP 不溶解,明胶和壳聚糖胶囊都不释放药物;在pH 6.8磷酸缓冲液中HPMCP 和明胶胶囊均很快溶解,明胶胶囊 62 中国生化药物杂志Chinese Journal of Biochemical Pharmaceutics 2005年第26卷第1期

药用高分子材料——纳米药物载体技术

纳米药物载体技术 用纳米粒子作为药物载体可实现靶向输送、缓释给药的目的, 这是由于小粒子可以进入很多大粒子难以进入的人体器官组织, 如小于50nm 的粒子就能穿过肝脏皮或通过淋巴传送到脾和骨髓, 也可能到达肿瘤组织。另外纳米粒子能越过许多生物屏障到达病灶部位, 如透过血脑屏障( BBB) 把药物送到脑部, 通过口服给药可使药物在淋巴结中富集等。具有生物活性的大分子药物( 如多肽、蛋白类药物) 很难越过生物屏障, 用纳米粒子作为载体可克服这一困难, 并提高其在体输送过程中的稳定性。用纳米粒子实现基因非病毒转染, 是输送基因药物的有效途径。 药物既可以通过物理包埋也可以通过化学键合的方式结合到聚合物纳米粒子中。载有药物的聚合物纳米粒子通常以胶体分散体的形式通过口服、经皮、皮下及肌肉注射、动脉注射、静脉点滴和体腔黏膜吸附等给药方式进入人体。制备聚合物纳米粒子的方法主要有以下几种: ( 1) 单体聚合形成聚合物纳米粒子; ( 2) 聚合物后分散形成纳米粒子; ( 3) 结构规整的两亲性聚合物在水介质中自组装形成纳米粒子。 1 单体聚合制备的聚合物纳米粒子 聚氰基丙烯酸烷基酯( PACA) 在人体极易生物降解, 且对许多组织具有生物相容性。制备聚氰基丙烯酸烷基酯纳米粒子采用的是阴离子引发的乳液聚合方法, 通常以OH-为引发剂, 反应一般在酸性水介质中进行, 常用的乳化剂有葡聚糖、乙二醇与丙二醇的嵌段共聚物和聚山梨酸酯等, 具体制备过程见图1。当反应介质pH 值偏高时, OH-浓度大, 反应速度快, 形成的PACA 分子量低, 以此作为给药载体材料进入人体后, 降解速度太快, 不利于药物缓释。因此聚合反应介质的pH 值通常控制在1.0~ 3.5 围。

聚氨酯简介

聚氨酯简介 聚氨酯为大分子链中含有氨酯型重复结构单元的一类聚合物,全称为聚氨基甲酸酯,英文全称为 Polyurethane,简称 PU或 PUR。PU是由多异氰酸酯与聚醚型或聚醋型多元醇在一定比例下反应的产物, 最早于 1937年由德国公司合成。它不像 PE、PP 那样具有十分清楚的结构,而通常指含有特定基团的一类 聚合物。因两种合成单体的种类及组成不同,可分成线型的热塑性 PU和体型的热固性 PU两类。PU可分 成弹性体和泡沫塑料两大类,以前一直以泡沫塑料为主,目前弹性体的发展速度十分迅速,用途也越来越 厂。 聚氨酯的合成原料及方法 1、PU 合成用原料 (1)异氰酸酯 主要品种有:甲苯二异氰酸酯 (TDl),分 2,4 和 2,6 两种异构体,混合比例为 80/20(TDI-80)和 65/35(TDI-65)两种,可用于软质到硬质泡沫制品;二苯基甲烷二异氰酸酯 (MDl),用于半 硬和硬质泡沫制品;多亚甲基对苯基多异氰酸酯(PAPI),它含有三官能度,可用于热固型的硬质泡沫、混 炼及浇铸 PU制品。 (2)多元醇 一般不指直接用多元醇,而用末端含有羟基的低聚物,有聚醚多元醇和聚酯多元醇两种。 聚醚多元醇为多元醇、多元胺或其他含有活泼氢的有机化合物与氧化烯烃开环聚合而成,它具有粘度 低、弹性大等优点,常用于软质 PU中。 聚酯多元醇由有机多元酸与多元醇经缩聚反应而成,二元酸与二元醇合成的线型聚酯多元醇主要用于 软质 PU,二元酸与三元醇合成支型聚醋多元醇主要用于硬质 PU。聚酯多元醇的粘度大,不如聚醚型应用 广,常用于绝缘、耐油、耐热、尺寸稳定及力学性能高的 PU制品。 (3)添加剂 A、催化剂作用为加速聚合反应,有胺类和锡类两类;胺类如三乙烯二胺、N-烷基吗啡淋等,有机锡 类如二月桂酸二丁基锡;一般两者协同加入。 B、发泡剂用于发泡制品,具体有水、液态二氧化碳、氟氯烷烃、氢氯氟烃、氢氟烃、戊烷、及环戊 烷等。 C、泡沫稳定剂用于泡沫制品,可降低表面张力、控制泡孔大小及泡孔壁强度等,常用水溶性聚醚硅 氧烷。 D、交联剂及扩链剂常用甘油、三羟甲基丙烷及季戊四醇等。 2、PU合成方法 (1)预聚体法 也称二步法,首先由异氰酸酯与多元醇生成末端带有异氰酸酯的低分子预聚体,然后加 入其他添加剂,进一步反应成最终制品。此法常用于聚醚型泡沫塑料制品。 (2)半预聚体法 将异氰酸酯与部分多元醇反应生成末端带有异氰酸酯的低分子预聚体, 然后加入另一 部分多元醇及其他添加剂,进一步反应成最终制品。此法常用于硬质和半硬质泡沫塑料制品。 (3)一步法 将参加反应的所有单体和添加剂等一起加入,一次反应完成。因工艺简单、投资少而普遍 采用。 聚氨酯弹性体 PU弹性体是一种 PU的密实制品,其性能介于橡胶与塑料之间,具有高回弹性、吸震性、耐磨性、耐 油、耐撕裂、耐化学腐蚀及耐辐射等性能。由于其加工方法越来越简单,应用越来越广泛,已发展成为 PU 的主导制品。 PU 弹性体可分为混炼型、浇铸型和热塑型三种,其目前应用比例为混炼型 10%、浇铸型 65%、热塑 型 25%。

医用高分子载体材料

医用高分子载体材料 Medical polymer carrier materials 摘要:药物高分子载体是随着药物学研究、生物材料科学和临床医学的发展而新兴的给药技术。高分子材料优良的生物相容性、生物可降解性、降解速率的可调节性以及良好的可加工性能,都为药物制剂的创新提供了便利和可能。高分子载体材料的合成,高分子材料和所载药物分子的结构关系,提高载药效率,以及药物载体材料的结构,在性能方面,不仅要考虑高分子材料的生物适应性,而且考虑它在体内的分布情况和生物降解性能、降解产物对机体的影响等问题都需要深入研究。本文结合国内有关医用高分子载体材料方面的研究论文, 阐述了医用高分子载体的概念、种类、作用机理、研究现状、应用以及发展前景。 关键词: 医用高分子载体高分子载体药物控制释放肿瘤给药系统应用 Abstract:The development of pharmacology, biomaterials and clinical medicine brings on a new administration method, namely medical polymer carriers. The excellent biocompatibility, bio-degradability, adjusted degradation velocity and processing property of polymer materials facilitate the pharmaceutical preparation. Many problems, such as biocompatibility of polymer materials, in vivo distribution, in vivo degradability, and effect of degradable products, all need further researches in the fields regarding the synthesis of polymer carriers, the correlation between polymer materials and carrying drug molecules, raising the efficiency of drug carrying, the structure and property of the drug carriers. Based on the relevant domestic medical polymer carrier material research papers, expounds the concept of medical polymer carrier, type, function mechanism and research status quo, application and development prospect. Keywords:medical polymer carrier polymer drug carrier control release tumor drug delivery system application 1. 引言 20世纪60年代化学家们提出将高分子材料应用于生物药物领域,制备高分子药物是改善药物最有效的方法之一。高分子载体药物可以通过剂型改变,控制药物释放速度,避免间歇给药使血药浓度呈波形变化,从而使释放到体内的药物浓度比较稳定,还可以通过释放体系使药物送达体内特定部位,而对身体其它部位不起作用。载体药物技术的关键是

热塑性聚氨酯材料概述

热塑性聚氨酯材料概况 1、热塑性聚氨酯的概述 热塑性聚氨酯(Thermoplastic Polyurethane,简称TPU),又称聚氨基甲酸酯橡胶,简称聚氨酯橡胶,它是一种可以热塑加工、又可以溶解于某些溶剂的特种合成橡胶线性聚合物,而MPU和CPU等热固性聚氨酯,它们的特点分子中的化学交联导致的三维空间网状结构,使其具备极大的刚性,不能塑化成型。但三种聚氨酯的性能—样,强度和模量都比较高,断裂伸长率和弹性也相对比较好;耐低温、耐磨耗、耐老化、耐撕裂、耐油等特性更是极为优异。TPU作为一类高分子合成材料,具有优良的综合性能。 TPU的耐磨、耐油性,对福射以及臭氧和氧等的抵抗能力以及在化学溶剂中的稳定性都非常好,并且这种材料在很大的拉伸强度下才能使之断裂,断裂时材料达到的伸长率也较大,此外,该材料所能承受的最大压力也非常可观,且弹性模量高。近年来随着TPU研究技术的发展,适用于众多领域的TPU制品被成功研发出来,TPU产品已经在大量领域占据着不可撼动的地位,但是TPU也同时具不容忽视的缺点,如抗滑能力低。并且在TPU的加工过程中,在较小的温度变动下,TPU熔体的粘度可以在很大的范围内发生变化,这使得它的加工过程只能在一小段特定的温度范围内进行,并且它的生产成本高,TPU进一步的推广应用就是由于这些因素而被限制了。 近几年,随着两相材料的发展提升到新的高度,国内外众多学者开始将目光转向了TPU与其他物质的共混制备出性能优异的两相复合材料上。将有机粘土等能够与TPU达到良好的相容效果的特殊填料加入其中,可以使其达到某些特殊性能得以提高的目的。 2、热塑性聚氨酯制备的原料 2.1 低聚合度多元醇

纳米药物载体系统解析

纳米药物载体系统 年级: 2012级 专业: 材料科学与工程 姓名: 俞 学号: 3**

摘要: 着科技的发展,纳米生物技术越来越受到关注,物技术是国际生物技术领域的前沿和热点问题,在医药卫生领域有着广泛的应用和明确的产业化前景,特别是纳米药物载体、纳米生物传感器和成像技术以及微型智能化医疗器械等,将在疾病的诊断、治疗和卫生保健方面发挥重要作用。本文着重介绍纳米药物载体系统。纳米药物载体的属性纳米药物载体种类纳米药物载体的制备方法及纳米生物技术的发展前景。 关键词:纳米生物技术纳米药物载体纳米粒子 纳米技术是一种新兴的科技,它的基本涵义是在纳米尺寸(10-9~10-7m)范围内认识和改造自然,通过直接操作和安排原子、分子创制新物质。由于物理空间的改变,物质的理化特性、生物学特性发生令人惊奇的变化,其在药学领域中的应用,已成为本世纪崭新的前沿科学[1] 纳米药物载体是指粒径大小在10~1000nm的一类新型载体,通常由天然或合成高分子材料制成。它是以纳米颗粒作为药物载体,将药物治疗分子包裹在纳米颗粒之中或吸附在其表面,通过靶向分子与细胞表面特异性受体结合,在细胞摄取作用下进入细胞内,实现安全有效的靶向药物输送和基因治疗。纳米 载体技术是纳米生物技术的重要发展方向之一[2] 一、纳米药物载体的性质 作为药物载体的纳米材料,是粒径大小介于10~1000nm的固态胶体颗粒,包括纳米粒子、纳米囊、纳米胶束和纳米乳剂等。 其中较常见的是纳米粒子,一般指由天然或合成的高分子材料制成的、粒度在纳米级的固态胶体颗粒。 纳米粒子表面的亲水性与亲脂性将影响纳米粒子与调理蛋白吸附结合力的大小,从而影响吞噬细胞对其吞噬的快慢。一般而言,纳米粒子的表面亲脂性越大,则其对调理蛋白的结合力越强,吞噬细胞对其吞噬的速度越快。所以要延长纳米粒子在体内的循环时间,需增加其表面的亲水性,这是对纳米粒子进行表面修饰时选择材料的一个必要条件[3] 二、纳米药物载体的属性 1 具有较高的载药量 2 具有较高的包封率

聚氨酯介绍

聚氨酯介绍 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

介绍 1、硬质聚氨酯导热系数低,热工性能好。当硬质聚氨酯密度为35~40kg/m3时,导热系数仅为~(m.k),约相当于EPS的一半,是目前所有保温材料中导热系数最低的。 2、硬质聚氨酯具有防潮、防水性能。硬质聚氨酯的闭孔率在90%以上,属于憎水性材料,不会因吸潮增大导热系数,墙面也不会渗水。 3、硬质聚氨酯防火,阻燃,耐高温。聚氨酯在添加阻燃剂后,是一种难燃的自熄性材料,它的软化点可达到250摄氏度以上,仅在较高温度时才会出现分解:另外,聚氨酯在燃烧时会在其泡沫表面形成积碳,这层积碳有助隔离下面的泡沫。能有效地防止火焰蔓延。而且,聚氨酯在高温下也不产生有害气体。 4、由于具有优良的隔热性能,在达到同样保温要求下,可使减少建筑物外围护结构厚度,从而增加室内。 5、抗变形能力强,不易开裂,饰面稳定、安全。 6、聚氨酯材料孔隙率结构稳定,基本上是闭孔结构,不仅保温性能优良,而且抗冻融、吸声性也好。硬泡聚氨酯保温构造的平均寿命,在正常使用与维修的条件下,能达到30年以上。能够做到在结构的寿命期正常使用条件下,在干燥、潮湿或电化腐蚀,以及由于昆虫、真菌或藻类生长或者由于啮齿动物的破坏等外因影响,都不会受到破坏。 7、综合性价比高。虽然硬质聚氨酯泡沫材的单价比其它传统保温材料的单价高,但增加的费用将会由供暖和制冷费用的大幅度减少而抵消。 产品用途

本公司生产的硬质聚氨酯保温大板材可广泛用于彩钢夹芯板、中央空调、建筑墙体材料、冷库、冷藏室、保温箱、化工罐体等领域。 特点 ●规格品种多,容重范围:(40—60kg/m3);长度范围:(米—4米);宽度范围:(米—米);厚度范围:(20毫米—200毫米)。 ●切割精度高,厚度误差±,从而保证了表面的平整度。 ●泡沫细密,泡孔均匀。 ●容重轻,可以减少制成品的自重量,比传统的产品低30—60%。 ●抗压强度大,可以承受在制造成品过程中的巨大压力。 ●方便质量的检验,由于在切割过程中去掉了四周的表皮,板材的质量一目了然,保证了制成品的保温效果。厚度可按用户要求生产加工。 规格 硬质聚氨酯泡沫泡块(本公司提供不同密度的泡块,用来加工制作各种型材) 品种聚氨酯泡沫泡块(单位mm) 规格4000×1200×1000 2000×1200×1000 硬质聚氨酯泡沫大板材 品种聚氨酯大板材 密度40-60kg/m 规格长度:4000-500mm 宽度:1200-500mm 厚度:按客户要求定做 特殊规格可由泡沫块任意切割 性能指标

高靶向载体给药系统的的分类及其设计原理

高靶向载体给药系统的的分类及其设计原理 葛蔓,全东琴(军事医学科学院,毒物药物研究所,北京,100850) 摘要:目的:综述近年来靶向给药系统的分类及设计原理。方法:查阅了近几年文献,从不同方面阐述靶向制剂的发展。结论:靶向制剂主要是一种载体制剂,这种载体多采用超微粒物由于体内物理和生理作用能将这些微粒分散体系选择地聚集于肝、脾、淋巴等部位。TDDS 分类目前也有几种不同角度:按载体的形态和类型;按给药途径的不同;按靶向部位的不同;按靶向源动力不同;按靶向性机理不同等。随着靶向给药系统研究的深入,新的靶向给药途径、新的载药方法将会不断出现,遇到的问题会逐步解决. 关键词:靶向给药,分类,特性,设计原理 常规剂型的药物经静脉、口服或局部注射后,药物分布于全身,真正到达治疗靶区的药物量仅为给药量的小部分,而大部分药物在非靶区的分布不仅无治疗作用,还会带来毒副作用.因此,药物新剂型的开发已成为现代药剂学发展的一个方向,其中靶向给药系统(Targeted drug delivery system,TDDS)的研究已经成为药剂学研究热点。TDDS指一类能使药物浓集定位于病变组织、器官、细胞或细胞内的新型给药系统.药物通过局部或全身血液循环而浓集定位于靶组织、靶器官、靶细胞的给药系统。靶向制剂最初指狭义的抗癌制剂,随着研究的逐步深入,研究领域不断拓宽,从给药的途径、靶向的专一性及特效性方面均有突破性的进展,靶向制剂发展成指一切具有靶向性的制剂。靶向制剂具有疗效高、药物用量少.毒副作用小等优点.理想的TDDS应在靶器官或作用部位释药,同时全身摄取很少,这样,既可提高疗效,又可降低药物的毒副作用.TDDS要求药物能到达靶器官、靶细胞,甚至细胞内的结构,并要求有一定浓度的药物停留相当长的时间,以便发挥药效.成功的TDDS应具备3个要素:定位蓄积、控制释药、无毒可生物降解. 靶向制剂与普通制剂和缓控释制剂相比,具有以下特点:①靶向性:药物集中于靶区; ②减少用药剂量;③提高疗效;④减少药物的毒副作用。靶向给药系统按靶向机理可分为生物物理靶向制剂、生物化学靶向制剂、生物免疫靶向制剂及双重、多重靶向制剂;按制剂类型可分类微球、复合型乳剂及脂质体等;按靶区可分为肝靶向制剂、肺靶向制剂、淋巴靶向制剂、骨髓靶向制剂、结肠靶向制剂等,按给药途径可分为口服靶向制剂、注射给药靶向制剂、经皮给药靶向制剂及植入靶向制剂。 1、分类 新的工艺、设备、优秀的载体物质、辅料的诞生及应用,使靶向制剂得以迅速发展,传统的归类方式已无法清晰地分别这些新东西。TDDS分类目前也有几种不同角度:(1)按载体的形态和类型可分为微球剂、毫微球剂、脂质体、包合物、单克隆抗体偶联物等;(2)按给药途径的不同可分为口腔给药系统、直肠给药系统、结肠给药系统、鼻腔给药系统、皮肤给药系统及眼用给药系统等;(3)按靶向部位的不同可分为肝靶向制剂、肺靶向制剂等;(4)按靶向源动力可以分为主动靶向制剂(TDDS主动寻找靶区)、被动靶向制剂(TDDS被动地被选择摄取到靶区)、前体靶向药物。被动靶向制剂是目前研究较多也是最主要的一类靶向制剂。其中最引人注目的是脂质体(liposome)、毫微胶囊(nanocapules)、毫微粒(nanoparticles)、和微球制剂(miro-spheres)。(5)按靶向性机理可以分为生物物理靶向制剂、生物化学靶向制剂、生物免疫靶向制剂和双重、多重靶向制剂等几类。

相关文档