文档库 最新最全的文档下载
当前位置:文档库 › 精确测量蓄电池内阻方法

精确测量蓄电池内阻方法

精确测量蓄电池内阻方法
精确测量蓄电池内阻方法

精确测量蓄电池内阻方法

通信等行业。如果电池失效或容量不足,就有可能造成重大事故,所以必须对蓄电池的运行参数进行全面的在线监测。蓄电池状态的重要标志之一就是它的内阻。无论是蓄电池即将失效、容量不足或是充放电不当,都能从它的内阻变化中体现出来。因此可以通过测量蓄电池内阻,对其工作状态进行评估。目前测量蓄电池内阻的常见方法有:

(1)密度法

密度法主要通过测量蓄电池电解液的密度来估算蓄电池的内阻,常用于开口式铅酸电池的内阻测量,不适合密封铅酸蓄电池的内阻测量。该方法的适用范围窄。(2)开路电压法

开路电压法是通过测量蓄电池的端电压来估计蓄电池内阻,精度很差,甚至得出错误结论。因为即使一个容量已经变得很小的蓄电池,再浮充状态下其端电压仍可能表现得很正常。

(3)直流放电法

直流放电法就是通过对电池进行瞬间大电流放电,测量电池上的瞬间电压降,通过欧姆定律计算出电池内阻。虽然这种方法在实践中也得到了广泛的应用,但是它也存在一些缺点。如用该方法对蓄电池内阻进行检测必须是在静态或是脱机状态下进行,无法实现在线测量。而且大电流放电会对蓄电池造成较大的损害,从而影响蓄电池的容量及寿命。

(4)交流注入法

交流法通过对蓄电池注入一个恒定的交流电流信号IS,测量出蓄电池两端的电压响应信号Vo,以及两者的相位差由阻抗公式来确定蓄电池的内阻R。该方法

不需对蓄电池进行放电,可以实现安全在线检测电池内阻,故不会对蓄电池的性能造成影响。但该方法需要测量交流电流信号Is,电压响应信号Vo,以及电压和电流之间的相位差,由此可见这种方法不但干扰因素多,而且增加了系统的复杂性,同时也影响了测量精度。为了解决上述各方法的缺陷,本文采用了四端子测量方式,将蓄电池两端上的电压响应信号通过交流差分电路与产生恒定交流源的正弦信号经过模拟乘法器相乘,再将模拟乘法器的输出电压信号通过滤波电路,使交流信号转变为直流信号,直流信号经直流放大器放大后进行模数转换,将转换后的值送入单片机进行简单处理。

(5)内阻测试仪

内阻测试仪是用于测量电池内部阻抗和电池酸化薄膜破损程度的仪器,以下简称仪器。它是对被测对象施加1KHz交流信号,通过测量其交流压降而获得其内阻。(它不同于万用表测量电阻的原理,它所测量的值是毫欧级,而多用表测量的值是欧姆级;且万用表只能测无电源对象的阻值,而内阻仪既可测无电源对象的阻值,也可测有电源对象的阻值,所以两者不得等同)利用内阻阻值的大小来判断电池的劣化状态,(一般来说)其阻值越小电池的性能越好。因此,采用测量内阻进行检测电池的方法是速度快且可靠性高的一种好方法。

蓄电池内阻电池检测

FXJ-3000A蓄电池巡检仪(内阻型)-----(直流系统专用) -- 在 线 甄 别 落 后 单 体 电 池 -- 蓄 电 池 内 阻 的 在 线 监 测 -- 全 系 列 参 数 测 量 与 管 理 -- 蓄 电 池 劣 化 腐

蚀 的 在 线 监 测 在线测量蓄电池组中各个单体电池的内阻,监测蓄电池组运行过程中各个单只电池劣化腐蚀的程度和趋势,动态测量各单体电池内阻及负载能力,快速判别各单体电池性能,可在线自动测量; 内嵌蓄电池失效分析数学模型,实现各单体蓄电池性能变化趋势和性能诊断;采用先进的蓄电池性能分析诊断方法和阀控式铅酸蓄电池性能分析方法,实现蓄电池组各单体电池的容量诊断和智能化管理; 在线实时监测蓄电池组各单体电压、组端电压、充放电电流和温度等; 实时报警功能,实现对电压、温度、内阻的超限报警; 在线实时监测蓄电池组的电压、充电/放电电流、单电池电压、蓄电池组运行的环境温度,完成对蓄电池组运行工况参数的实时在线监测,对蓄电池的开路、短路等情况,提前给出预警,以保证蓄电池组设备运行的安全性。 浮充状态下,实时监测蓄电池组以及各个单只电池的浮充电压,当出现过充情况,及时给出报警,防止因过充而影响蓄电池组的寿命。 放电过程中,实时监测蓄电池组以及各个单只电池的工作电压,当出现过放情况下,及时给出报警,防止因过放而影响蓄电池的寿命。 FXJ-3000A-1812-------------------------- 1组蓄电池组(18只,12V电池) FXJ-3000A-10402------------------------- 1组蓄电池组(104只,2V电池) FXJ-3000A-10802------------------------- 1组蓄电池组(108只,2V电池) 技术特点 ■在线甄别蓄电池组中落后单体 采用自主的专利技术—蓄电池内阻交流测量方法,在线测量蓄电池组中各个单体的内阻,分析蓄电池组的一致性,实现蓄电池组健康度的实时监测。 ■在线均衡维护提高蓄电池组的一致性 独有的在线均衡维护技术手段,降低蓄电池组离散性,提高蓄电池组各单体的一致性,延长蓄电池组的使用寿命。 ■智能化的性能诊断模式 内嵌蓄电池失效分析数学模型,实现各单体蓄电池性能变化趋势和性能诊断;采用先进的蓄电池性能分析诊断方法和阀控式铅酸蓄电池性能分析方法,实现蓄电池组各单体电池的容量诊断和智能化管理; ■判断蓄电池组的整体性能 ■在线实时监测蓄电池组的电压、充电/放电电流、单电池电压、蓄电池组运行的环境温度,完成对蓄电池组运行工况参数的实时在线监测 ■智能化的实时监测 蓄电池高度智能化的运行数模,系统根据实时监测的蓄电池各项参数,自动完成对每只蓄电池性能的现场诊断。 ■独立的模块化设计 采用自主的专利技术—蓄电池内阻交流测量方法,对充电系统和工作回路无任何干扰,完全独立于被监测设备而正常工作。在线测量蓄电池组中各个单体的内阻,分析蓄电池组的一致性,实现蓄电池组健康度的实时监测。 ■可靠的实时在线性 采用先进的蓄电池阻抗测量技术以及数字信号处理技术(DSP),无需将蓄电池脱离系统,即可实现高效率、高可靠性的在线监测。

为什么要对蓄电池进行内阻测试

为什么要对蓄电池进行内阻测试 蓄电池电压、电流、温度是蓄电池重要的运行参数,但是不能反映蓄电池内部状态。内阻作为目前国际公认的对蓄电池最有效的、测量最便捷的性能参数,能够反映蓄电池的劣化程度、容量状态等性能指标,而这些指标是电压、电流、温度等运行参数所无法反映的。 蓄电池的四种主要的失效模式:(失水、负极板硫化、正极板腐蚀和热失控的直接影响使蓄电池的容量下降,内阻升高)是造成蓄电池内阻升高的主要原因。 随着蓄电池的容量状态的下降,蓄电池的内阻会升高。容量越大的蓄电池其反映的内阻越小,同时随着蓄电池劣化程度的加大,蓄电池的内阻也会出现显著的增高。所以,蓄电池的内阻与其容量有着密切的关系:蓄电池内阻升高是蓄电池性能劣化的重要标志。 国际电信电源年会的研究成果显示,如果蓄电池的内阻超过正常值25%,该容量已降低到其标称容量的80%左右,如果蓄电池内阻超过正常值的50%,该蓄电池容量已降低到其标称容量的80%以下,需及时更换。 蓄电池在绝大部分现场是串联使用的,单体蓄电池的性能状态直接影响到蓄电池组的性能状态。同时,蓄电池组中的落后电池会加快与其串联的其他蓄电池的劣化速度。所以,对单体蓄电池的监测是保障蓄电池组的容量状态和使用寿命的必要条件。 通过对蓄电池组中的单体蓄电池进行内阻测试,能够准确地掌握蓄电池组中的每个单体蓄电池的性能状态。同时对于保证蓄电池供电稳定和延长蓄电池组的使用寿命具有重要意义。 蓄电池的容量状态会随着使用时间的增长而降低。根据国际电化学年会对25,000只通信用蓄电池的研究结果表明,蓄电池在使用2年后就会进入不稳定期。也就是说,蓄电池组在使用2年后就会出现容量状态大幅度下降的蓄电池单体。

电池内阻及简单的测试方法.

电池内阻及简单的测试方法 一、什么是电池内阻 以前到商店买电池,营业员都要先用小电珠试一下,如发光正常, 则说明电池是好的。现在电器的从业人员,判断电池新旧好坏的时候, 是先测一下开路电压, 再快速测一下短路电流。例如对于普通 5号电池, 短路电流大于 500mA , 则就是好的。以上二个例说明了作为一种能源的电池要求能够输出电流也就是能够输出功率,才能称得上性能良好。为了便于分析,我们引入电池内阻的概念,简约的说,电池内阻等于开路 电压除以短路电流。当然这仅仅是表明内阻的概念, 实际上是不可能用这个方法测试内阻。在直流条件下我们可以给出电池的直流等效电路, 见图一,以及公式 U=E-IR。此式说明电池内阻 R 越小,输出的电流时 电池电压降就越小,或者说该电池能够在大电流的条件下工作。

二、测试电池内阻的意义 1、工厂中出厂检验的项目之一 2、组装电池组时,需挑选内阻相近的电池单元组成一组。 3、因电池的容量 Ah 越大,内阻就越小,因此可以根据内阻大小粗略判断电池容量 . 4、电池老化和失效后突出的表现为内阻增大,因此测试电池内阻就可以快速判断出电池的老化程度。 5、电池组维护过程中,需要经常测试各电池单元的内阻,以便把内阻增大的单元挑出来, 换个好的。 三、电池内阻的直流测量方法 1、等效电路(见图一 2、测试标准 各种电池的测试标准不完全一样,下面以锂电池为例大体介绍一下测试步骤。 第一步:以 0.2C/h的恒定电流充电至规定电压 . ,例如设电池容量 C=6Ah,则 0.2C/h=0.2 6Ah/h=1.2A。 第二步:存放 1-4小时。 第三步:以 0.2C/h的恒定电流 I 1放电时,测出电池两端电压 U 1 。 第四步:以 1C/h的恒定电流 I 2放电时,测出电池两端电压 U 2 。 以上各步骤在 20°C ±5°C 的环境下完成。 电池的直流内阻 R dc =U1-U 2/I2-I 1 。

(整理)蓄电池的内阻的技术含义和测量

精品文档 精品文档 蓄电池的内阻的技术含义和测量 郑州移动通信分公司 胡贵山 内容提要:蓄电池的内阻是电池的一个重要指标,它的物理含义和电化学含义是什么?能 不能用蓄电池的电导内阻来判断电池的安全性?本文就蓄电池的动态内阻和静 态内阻的技术含义作了分析, 1.蓄电池内阻的构成 蓄电池的内阻是由以下几部分构成。 1.1极柱间的欧姆电阻。其中包括构件的电阻,电解液的电阻,隔板的电阻。以上的电阻是蓄电池的静态电阻,即在不放电的条件下,测得的欧姆电阻。 1.2蓄电池的极化电阻。蓄电池在放电的条件下,由于外电路放电的需要,导致内部电解液中离子的运动。离子的运动有趋极效应,即在电池的内部的正负极附近,有不同浓度的离子存在,形成浓差极化。如SO 42-离子,在正极附近的消耗量比负极大。电化学极化是化学电极在电化学反应时的特征,即在放电时电极电位会自动向减少位差的方向偏移。在两种极化作用下,导致正极电极电位下降,负极电极电位上升。总的结果,使电池的端电压下降,宏观上表现出电池内阻增大。 电池的内阻分为动态内阻和静态内阻两种,其表达的技术内容是大不相同的。 2. 蓄电池动态内阻的测量方法 池的空载电压在开关电压V 2。 r = 显然,其动态内阻r 比如1号电池点亮2.5V 的小灯泡时工作电流0.35A ,当灯不亮时,可测的电池的供电电压下降到0.8V 左右,这是由于电池内阻增大造成的。计算在这种工作状态下,电池空载电压1.3V ,内阻是1.44Ω。把这样的电池再用于晶体管收音机,由于工作电流减小到50mA ,电池的供电电压依然可在1.25V 左右,计算内阻相应为1Ω,晶体管收音机照样工作。 因此,当说到蓄电池的动态内阻是多少Ω时,必须同时说明其放电电流值,同时蓄电池

蓄电池内阻测试标准

蓄电池内阻测试标准 蓄电池的内阻是指蓄电池在工作时,电流流过蓄电池内部所受到的阻力,一般分为交流内阻和直流内阻,由于充电电池内阻很小,测直流内阻时由于电极容量极化,产生极化内阻,故无法测出其真实值,而测其交流内阻可免除极化内阻的影响,得出真实的内值。 蓄电池的容量主要是和极板上活性物质的利用率有关。而蓄电池极板上的活性物质是:二氧化铅、铅。 在蓄电池内部的化学反应过程中,其实质就是极板上的活性物质和稀硫酸电解液发生的电化学反应,产生电流。 在这个电化学反应过程中,经常伴随着一种学名叫“硫酸盐化的”负反应,也就是铅和硫酸生成了一种硫酸铅,这种硫酸铅是一种绝缘体,它的形成必将对电池的充放电产生极不好的影响,因为在负极板上形成的硫酸盐越多,电池的内阻越大,电池的可充放电性能越差,负极板上吸收不了正极产生的气体,久而久之电池失效。 而且影响铅酸蓄电池容量的因素有很多:放电率、温度、终止电压、极板几何尺寸、电解液浓度等。 电池的内阻:欧姆电阻和极化内阻 欧姆电阻:电极材料、电解液、隔膜的电阻。 极化内阻:正负极化学反应时引起的内阻 两者并不是直接影响的,而是通过影响其他方面来影响对方。也就是说,两者并没有直接的关系,而是通过影响对方的制约因素来影响对方。 例如:温度的变化可以影响到电池的电解液和电阻变化

1)电解液温度升高,扩散速度增加,电阻降低,电动势增加,因此电池容量及活性物质的利用率随温度增加而增加; 2)电解液温度降低大,黏度增大,离子运动受阻,扩散能力降低,电阻增大,电化学反应阻力增加,导致蓄电池容量下降。 蓄电池检测内阻已经成为比较流行判断电池好坏的方式. 群菱能源专注于蓄电池维护测试领域,针对蓄电池内阻测试测难题,推出BT-7100蓄电池内阻测试仪,BT-7100是快速准确测量电池运行状态参数的数字存储式多功能便携式测试仪器。该仪表通过在线测试,能显示并记录多组电池电压、内阻、连接条电阻等电池重要参数,精确有效地判别电池优良状况,并可与计算机及专用电池数据分析软件一起构成智能测试设备,进一步跟踪电池的衰变趋势,并提前报警,以利于运维技术及管理人员酌情处理。

测定电池的电动势和内阻实验的误差分析方法.doc

“测定电池的电动势和内阻”实验的四种误差分析方法(原创) (2011-06-21 08:46:05) 转载▼ 测定电池的电动势和内阻的实验是高考的热点内容,对实验数据的误差分析是本实验的难 点。对此实验的误差分析,本人总结了四种方法:解析法、待定系数法、等效法和图象法。 下面以几种实验方案中的一种为例来加以说明和比较。 如图是本实验的方案的其中一种: 根据闭合电路欧姆定律,有。移动滑动变阻器的滑片,可以得出几组I、U 的值。通过作图或解方程组就可以得出E、r。考虑到电压表内阻R V(电流表内阻对此实验方案没有影响),本实验存在系统误差。下面对此误差进行分析: 方法一:解析法 设滑动变阻器阻值为R1 时两表读数分别为U1、I1;阻值为R2 时两表读数为U2、I2。设R2>R1, 则U2>U1,I2

可解得电动势与内阻的实际值 比较上述两组数据,可得、r

怎样测试蓄电池内阻

怎样测试蓄电池内阻 蓄电池的容量与蓄电池内阻有极大的关系,内阻大小基本可以判断蓄电池的好坏!这里我们用派司德的BSB-616内阻测试仪,讲得是用于电力、通讯和UPS电源蓄电池检测的蓄电池测试。 蓄电池内阻测试设备的种类很多,他们的主要区别的测试蓄电池的种类不一样,测试的蓄电池的容量和端电压不一样,一般都使用交流注入法进行测试。 1贮备设备2检查蓄电池表面温度,检查蓄电池是最好先摸一摸蓄电池的温度,防止在测试时出现爆炸的事故,有条件的朋友可以使用红外测温仪和热像仪来检测温度3按蓄电池排序测试,发生内阻异常时,要同时检测连接电阻值,必要时紧固后重新测试 当充电系统纹波过大时,可暂时关闭逆变模块后,在进行测试4存储测试结果5分析测试结果6在不干胶标签上做好标记7打印测试报告并存档 注意事项 测试前的准备 1,给测试仪充满电,检查测试仪正常 2,准备一些必要的维护工具和防护工具,比如绝缘紧固的工具 3,查看被测试蓄电池的历史记录,可能很多单位没有这方面的记录,连蓄电池是什么时候安装投入使用的都不清楚,但你一定要做一些功课,把它搞清楚

4,准备一些不干胶的标签,有条件的在标签上打上型号、内阻值、测试日期、标号 5,带上一个温度计记录下测试时的环境温度,有测温计的,要带上 6,准备一个记录本,记录下测试时一些意外情况和心得测试的频率 实际上蓄电池变坏的周期是以周为单位的,换句话说蓄电池的性能的突变是在14天内完成的,从这个特点来讲,我们应该每周做一次内阻检测,但对电力和通讯行业,这种强度是不能实现的,我建议至少要每个季度测试一次,美国的维护规范也是这样要求的,最低的也要一年检测一次,对重要的系统,不容许发生任何断电的单位,我还是建议使用在线检测系统。 有的工程师同我辩论说,我们局这么多年没有执行规程,也没有出什么大事故,我告诉他,不是蓄电池一旦没有电,一定会发生火烧联营的大事故,或者烧主变,但这种状况持续下去一定会发生大事故。这是个逻辑问题,我不在这都讨论。 测试是容易出现的问题几个理论误区 1,关于标准值问题 蓄电池没有和容量对应的标准的内阻值,我们测试时比较变化的基准是初始值,很多业内老大花了很多时间来求证标准内阻值是毫无意义的,美国在1996年以后已不再讨论这个问题。 2,关于测试结果不准确问题 测试不准确是只把好的蓄电池判成坏的蓄电池,把坏的蓄电池判成好的蓄电池,发生这种情况的原因如下:

蓄电池的内阻的技术含义和测量

蓄电池的内阻的技术含义和测量 郑州移动通信分公司胡贵山 内容提要:蓄电池的内阻是电池的一个重要指标,它的物理含义和电化学含义是什么?能不能用蓄电池的电导内阻来判断电池的安全性?本文就蓄电池的动态内阻和静 态内阻的技术含义作了分析, 1.蓄电池内阻的构成 蓄电池的内阻是由以下几部分构成。 1.1极柱间的欧姆电阻。其中包括构件的电阻,电解液的电阻,隔板的电阻。以上的电阻是蓄电池的静态电阻,即在不放电的条件下,测得的欧姆电阻。 1.2蓄电池的极化电阻。蓄电池在放电的条件下,由于外电路放电的需要,导致内部电解液中离子的运动。离子的运动有趋极效应,即在电池的内部的正负极附近,有不同浓度的离子存在,形成浓差极化。如SO42-离子,在正极附近的消耗量比负极大。电化学极化是化学电极在电化学反应时的特征,即在放电时电极电位会自动向减少位差的方向偏移。在两种极化作用下,导致正极电极电位下降,负极电极电位上升。总的结果,使电池的端电压下降,宏观上表现出电池内阻增大。 2. 池的空载电压在开关 电压V2。 r= 显然, 其动态内阻r 比如1号电池点亮2.5V的小灯泡时工作电流0.35A,当灯不亮时,可测的电池的供电电压下降到0.8V左右,这是由于电池内阻增大造成的。计算在这种工作状态下,电池空载电压1.3V,内阻是1.44Ω。把这样的电池再用于晶体管收音机,由于工作电流减小到50mA,电池的供电电压依然可在1.25V左右,计算内阻相应为1Ω,晶体管收音机照样工作。 因此,当说到蓄电池的动态内阻是多少Ω时,必须同时说明其放电电流值,同时蓄电池的动态内阻值,与蓄电池的保有容量直接相关。用适当的检测电流,检测电池的负载电压,本质就是测量电池的动态内阻,通过对负载电压的测量,可快速测量出电池的保有容量。 蓄电池的报废都是因为动态内阻增大造成的。蓄电池的动态内阻值直接决定蓄电池能否安全使用,测定其动态内阻值是否超限是检测蓄电池安全状态的最可靠的手段。

电池内阻的测量

电池内阻的测量 秦辉 (河北北方学院理学院,河北张家口 075000 )摘要:介绍一种新的电池内阻测量方法—双电阻测量法,对该测量法选取电阻需满足的 条件进行了推导。研制了一种基于该方法的电池内阻测量装置,本文详述其硬件组成和工作 原理,给出了电路组成框图和程序流程图。该装置采用单片机智能控制,自动化程度高,测 量快速准确,硬件结构简单,抗干扰性强,具有较高的稳定性和可靠性。 关键词:电池内阻;测量方法;硬件设计;软件设计 中图分类号:TM933 文献标识码:A Measuring Internal Resistance of the Battery QIN Hui (Institute of Sciences,Hebei North University Zhangjiakou 075000,China) Abstract:A new method to measure internal resistance of the battery—double resistances measurment method was introduced in this paper . Required conditions of chosing resistances in the method were worked out . A new kind of measuring device based on the method was developed . Hardwares and working principles of the device were described in detail , the frame diagram of circuit costitution and procedure diagram were given too . Controlled by SCM , the device can work automatically, quickly and accurately.The device has simple constitution,high anti-interference performance,and good stability and reliability . Key Words:I nternal resistance of the battery;measurement method;software design;hardware design. 电池的容量与电池的内阻存在密切的关系。一般而言,电池的容量越大,内阻就越小,可见电池内阻的大小是衡量电池性能好坏的重要指标,准确测量电池内阻具有重要意义。目前,测量电池内阻的方法主要有加载降压法、短路电流法、不平衡电桥法、交流电流法、双 量程测量法、电位差计法等。这些方法各有利弊,普遍的问题是测量步骤较繁琐,有些测量 方法存在着不可忽视的测量误差,甚至某些测量方法(因电池放电时间过长等)对电池的寿 命有一定影响。本文介绍一种测量电池内阻的新方法—双电阻测量法,该方法较好地克服了 上述缺点。作者设计并研制了一种基于该方法的电池内阻测量装置,这种装置可以快速、准 确地测量电池的内阻。 1. 电池内阻的计算方法 图1是由一节电池(内阻为r,电动势为E)与一只负载电阻R构成的电路。根据欧姆 定律得:E/(r+R)=U/R ∴ r=(E/U-1)R ① 2. 电阻R的取值对测量误差的影响 设电阻R的变化量为ΔR,电阻R两端电压的变化量为ΔU,利用公式①计算电池内阻r 的绝对误差为Δr,则公式①可变为: r+Δr=[E/(U+ΔU)-1]×(R+ΔR) ② 内阻R的相对误差为: Δr/r=[E/(U+ΔU)-1]×(R+ΔR)/r-1 ③ 将①式代入③式得: Δr/r=[E/(U+ΔU)-1]×(R+ΔR)/[(E/U-1)R]-1

测电池的电动势和内阻的常用方法和误差分析

测电池的电动势和内阻的常用方法和误差分析 公主岭市第一中学魏景福2012.11.12 测电池的电动势和内阻的实验是高中物理电学部分的一个重点实验,也是高考的热点实验,笔者就此实验的常见方法(“伏安法”、“伏阻法”、“安阻法”)及误差分析的问题谈一谈个人的观点。 一、用“伏安法”测电池的电动势和内阻 用“伏安法”测电池的电动势和内阻就是用电流表和电压表测电池的电动势和内阻,是通过电流表和电压表测出外电路的电流和路端电压,然后利用闭合电路的欧姆定律求出电池的电动势和内阻。实验要求多测几组I.U数据,求出几组E.r 值,然后取他们的平均值。还可以用作图法处理,即利用电池的U」图象求出E.r 值。 用“伏安法”测电池的电动势和内阻分为电流表“内接”和电流表“外接” 两种接法。 实验误差有:1、偶然误差,主要来源于电压表和电流表的读数以及作U-I图象时描点不很准确;2、系统误差,主要来源于没有考虑电压表的分流和电流表的分压作用。 (一)、电流表内接(相对待测元件——电池) 1、电流表内接时测量原理:如图1所示,电压表.电流表分别测出两组路端 电压和总电流的值, 则U^E - 1订①,—二E -瓜②, ①-②解得"豐③' ③带入①解得E =虫亠业④,

2、系统误差分析:图1电路由于电流表分压使电压表读数(测量值)小于电源 的实际路端电压(真实值)。导致实验产生系统误差 (1)通过理论的推导分析误差: 设电流表的内阻为R A,电池的电动势和内电阻的真实值分别为E o和r。 则有Ui + h R = E - I r ⑤ U 2 I 2 R A - E o 1 I 2「0 ⑤—⑥得r o二4^—R A⑦ I 2 - h ⑦代入⑤得E o =山一宀2⑧ I 2 - h 比较⑦、⑧式和③、④可知r > r o , E = E o. 不难看出电流表内接时测得的内电阻偏大,测得的 电动势准确。但由于内电阻的相对误差太大,故一般不 用此接法。 (2)通过图像的比较分析误差: 由U二E - lr这一理论公式在坐标系里画出理论线 (如图2中的实线),其纵坐标上的截距和斜率的绝对值就是真实值E o和r o。用两只表的读数来表示横、纵坐标,由于电流表的分压使电压表的读数小于真实的路端电压,相差U = I R A , R A是 一定的,I越大U就越大,I越小2就越小。I = o时厶U = 0,所绘制的图线称为实验线(如图2中的虚线)。其纵轴上的截距和图线的斜率的绝对值就电动势和内阻的测量值E和r,由图2可见r > r。, E = E°.

蓄电池容量检测方法

传统的蓄电池容量检测方法是进行整组核对性放电,即把蓄电池组连接到负载箱,然后进行放电,一直放到截止电压(没电)为止,来验证蓄电池的容量,但是这种方法有很多隐患和缺点: a、 电时间长,风险大,电池组须脱离系统,蓄电池组所存储的化学能全部以热能形式消耗掉,既浪费了电能又费时费力,效率低。 b、 行核对性放电试验,必须具备一定条件,首先,尽可能在市电基本保障的条件下进行;其次 ,必须有备用电池组 。 c、 目前,核对放电只能测试整组电池容量,不能测试每一节单体电池容量,以容量最低的一节作为整组容量,而其他部分电池由于放电深度不够,其劣化或落后程度还不能完全充分暴露出来。 d、 损蓄电池的容量。由于蓄电池的内部化学反应不是完全可逆的。全深度循环放电的次数是有限的,所以,不适宜对铅酸蓄电池频繁进行深放电。但是间隔时间过长,两次核对之间的蓄电池的状态是不确定的。蓄电池的容量下降到80%以下后,蓄电池便进入急剧的衰退状况,衰退期很短,可能在一次核对放电后几个月就失效,而在剩下的时间内电池组已存在极大的事故隐患。 内阻测试的原理: 通过大量的试验得出:蓄电池的内阻值随蓄电池容量的降低而升高,也就是说,当蓄电池不断的老化,容量在不断的降低时,蓄电池的内阻会不断加大。通过这个试验结果,我们可以得出,通过对比整组蓄电池的内阻值或跟踪单体电池的内阻变化程度,可以找出整组中落后的电池,通过跟踪单体电池的内阻变化程度,可以了解蓄电池的老化程度,达到维护蓄电池的目的。 对于VRLA蓄电池来说,如果内部电阻比基准值(平均值)增加20%以上,蓄电池性能则会下降到一个级低的水平。这个值也是IEEE STD建议立即采取纠正措施(放电试验或更换)的标准。IBEX1000则根据这个建议基准将报警值设定为20%。 相应的,VRLA蓄电池容量下降到80%以下时,蓄电池的老化程度就像在图形中的△T一样,该时间是无法预测的,同时容量衰减的速度会越来越块,而内阻值的增加也会越来越快。因此我们建议,及时更换蓄电池,以提高贵公司蓄电池系统的可靠性。 至今为止,实际应用的判别蓄电池健康状态的方法只用IEEE推荐的标准,因此我们建议,当蓄电池的内阻值增加20%以上,应考虑对此单元电池采取纠正或更换措施. 现在蓄电池的使用已经非常普遍,对蓄电池进行准确快速地检测及维护也日益迫切。国内外大量实践证明,电压与容量无必然相关性,电压只是反映电池的表面参数。国际电工IEEE-1188-1996为蓄电池维护制订了“定期测试蓄电池内阻预测蓄电池寿命”的标准。中国信息产业部邮电产品质量检验中心也提出了蓄电池内阻的相关规范(见YD/T799-2002)。蓄电池内阻已被公认是判断蓄电池容量状况的决定性参数。 内阻与容量的相关性是:当电池的内阻大于初始值(基值)的25%时,电池将无

电池内阻的测量办法

不同类型的电池内阻不同。相同类型的电池,由于内部化学特性的不一致,内阻也不一样。电池的内阻很小,我们一般用毫欧的单位来定义它。内阻是衡量电池性能的一个重要技术指标。正常情况下,内阻小的电池的大电流放电能力强,内阻大的电池放电能力弱。 在放电电路的原理图上来说,我们可以把电池和内阻拆开考虑,分为一个完全没有内阻的电源串接上一个阻值很小的电阻。此时如果外接的负载轻,那么分配在这个小电阻上的电压就小,反之如果外接很重的负载,那么分配在这个小电阻上的电压就比较大,就会有一部分功率被消耗在这个内阻上(可能转化为发热,或者是一些复杂的逆向电化学反应)。一个可充电电池出厂时的内阻是比较小的,但经过长期使用后,由于电池内部电解液的枯竭,以及电池内部化学物质活性的降低,这个内阻会逐渐增加,直到内阻大到电池内部的电量无法正常释放出来,此时电池也就“寿终正寝”了。绝大部分老化的电池都是因为内阻过大的原因而造成无使用价值,只好报废。因此我们更应该注重的是电池放出的容量而不是充入的容量。 一、内阻不是一个固定的数值 麻烦的一点是,电池处于不同的电量状态时,它的内阻值不一样;电池处于不同的使用寿命状态下,它的内阻值也不同。从技术的角度出发,我们一般把电池的电阻分为两种状态考虑:充电态内阻和放电态内阻。 1.充电态内阻指电池完全充满电时的所测量到的电池内阻。 2.放电态内阻指电池充分放电后(放电到标准的截止电压时)所测量到的电池内阻。 一般情况下放电态的内阻是不稳定的,测量的结果也比正常值高出许多,而充电态内阻相对比较稳定,测量这个数值具有实际的比较意义。因此在电池的测量过程中,我们都以充电态内阻做为测量的标准。 二、内阻无法用一般的方法进行精确测量 或许大家会说,高中物理课上有教用简单公式+电阻箱计算电池内阻的方法……但物理课本上教的用电阻箱推算的算法精度太低,只能用于理论的教学,在实际应用上根本无法采用。电池的内阻很小,我们一般用微欧或者毫欧的单位来定义它。在一般的测量场合,我们要求电池的内阻测量精度误差必须控制在正负5%以内。这么小的阻值和这么精确的要求必须用专用仪器来进行测量。 三、目前行业中应用的电池内阻测量方法 行业应用中,电池内阻的精确测量是通过专用设备来进行的。下面我来说说行业中应用的电池内阻测量方法。目前行业中应用的电池内阻测量方法主要有以下两种: 1.直流放电内阻测量法 根据物理公式R=U/I,测试设备让电池在短时间内(一般为2~3秒)强制通过一个很大的恒定直流电流(目前一般使用40A~80A的大电流),测量此时电池两端的电压,并按公式计算出当前的电池内阻。 这种测量方法的精确度较高,控制得当的话,测量精度误差可以控制在0.1%以内。 但此法有明显的不足之处:

蓄电池内阻标准

蓄电池内阻标准文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

蓄电池内阻测试标准内阻值为亳欧(mΩ)

蓄电池内阻测试仪 “智能蓄电池测试仪”又叫蓄电池内阻仪或蓄电池快速容量测试仪,是快速准确测量蓄电池健康状态和荷电状态以及连接电阻参数的便携式数字存储式测试仪器。该仪表通过在线测试,能显示并记录单节或多组电池的电压、内阻、容量等重要参数,精确有效地挑出落后电池,并可与计算机及专用电池数据管理软件产生测试报告,跟踪电池的衰变趋势,并提供维护建议。适用与通讯基站、变电站、UPS的蓄电池的维护检验。用于蓄电池验收、蓄电池配组和常规检验。 功能特点 ※适用于2、6、12V电池。※测试速度快,一组108节的蓄电池组测试只需要10分钟 ※体积小,重量轻,便携式手持操作。※使用交流注入法高精度在线测试,全自动量程转换,大容量数据存储。1、仪表在Ω~1Ω,~测量范围自动转换量程。2、可永久存储2500节电池参数(系统检测)。3、可循环存储108节电池参数(快捷检测)。 ※菜单操作简明易懂,中英文两种显示模式,可在线显示参数及电池状态。1、在单电池测试的同时,报告电池的状态(优、良、中、换、异常)2、完成一组电池测试后,自动形成本组测试结果的分析报告。※系统内置强大的标准内阻值数据库,含250种内阻参考值。※可以对电池按照站/组/节号进行参考值管理,一

次设定,重复测试。※增强的过压、过流保护功能,使仪表工作更安全可靠。※派司德专用测试夹头满足不同尺寸电池极柱的要求。※有效测试的声音提示使得测试更方便。※关键数据和操作有密码保护。※通过USB接口,将测试数据永久存储在PC 机上,实现电池的“病历”跟踪分析。1、自动分析判断电池的“劣化”状态。2、形成历史记录库,描述电池状态曲线。 3、同组电池对比分析。 4、所有电池分级管理(优良中差) ※电池数据管理软件可以查询生成打印各种图表如饼状图、柱形图、曲线图。 知识背景 A、为什么蓄电池(组)需要定期维护和检测过去,开口式蓄电池维护起来比较麻烦,因为蓄电池在使用的时候要分解电解液中的水,所以要定期检测电解液的比重,蓄电池的电压等参数,消耗的电解液,要定期加水来补充。而后又有密封式的蓄电池出现,主要以阀控式铅酸蓄电池(为主,由于不需加水,所以阀控式铅酸蓄电池从一开始便被称为免维护电池,而生产厂家又承诺该电池的使用寿命为10 ~ 20年(最少为8年),这样就给国内的技术和维护人员一种误解,似乎这种电池既耐用又完全不需要维护,许多用户从装上电池后就基本没有进行过维护和管理,因而在90年代初国内使用的VRLA电池出现了很多以前未遇到的新问题,例如,电池壳变形、电解液渗漏、容量不足、电池端电压不均匀等。这些现象不单在国内,就是在比我国早采用VRLA电池的国外也同样存在。在电池中由于电解

锂电池内阻测量的方法及电路设计

文中测量锂电池内阻的方法是由激励信号电路产生正弦信号,正弦信号通过电容隔离与电池连接,即电池两端无直流信号,在电池两端分别接上电压测量电路和电流测量电路得到电压、电流信号,将得到的电信号通过AD 采样电路输入到FPGA 中,在FPGA 中通过同步积分法的滤波和取样积分法的取幅值过程,最后通过欧姆定律计算得到测量的内阻值,并通过DA 电路输出到示波器或LCD 上显示。 1 .信号激励电路 为产生锂电池内阻测量时所需的正弦波信号,设计了一个简易的交流电流源作为信号激励模块。该模块选用ICL8038 函数发生器产生正弦波信号,电路如图 4 所示,ICL8038 波形发生器是一个用最少的外部元件就能产生正弦波、方波、三角波、锯齿波和脉冲波形的高精度函数发生器。由于它具有电压范围宽、适应性强、精度高等特点而广泛用于模拟信号源或波形信号发生器的设计中,并且输出波形的频率和占空比可以由电流或电阻控制,范围可从0.001 Hz 到高于300 kHz。 2 .电压采集电路 锂电池的端电压测量电路采用INA117 高共模差分放大器组成的电路模块.INA117 是精密单位增益的 差分放大器,可代替隔离放大器,可以消除孤立的输入侧电源及其相关脉动、噪声和静态电流,测量电路通过芯片引脚2、3 采集电池正负极之间电压差值,如图5所示。https://www.wendangku.net/doc/f42757969.html,/article/show-2383.htm 3. 电流采集电路

电流测量电路与电压测量类似,如图6 所示,通过采用WHB06LSP5S2 电流传感器来将电流的测量转化为电压的测量,采用闭环系列霍尔传感器能将测量误差降到最低,并且电流、电压电路采用一样的INA117电路模块可以进一步降低误差。 本资料属于购线网所有,如需转载,请注明出处,更多资料查看,请前往购线网!

电池内阻基础知识

电池内阻基础知识-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

电池内阻基础知识 不同类型的电池内阻不同。相同类型的电池,由于内部化学特性的不一致,内阻也不一样。电池的内阻很小,我们一般用毫欧的单位来定义它。内阻是衡量电池性能的一个重要技术指标。正常情况下,内阻小的电池的大电流放电能力强,内阻大的电池放电能力弱。 在放电电路的原理图上来说,我们可以把电池和内阻拆开考虑,分为一个完全没有内阻的电源串接上一个阻值很小的电阻。此时如果外接的负载轻,那么分配在这个小电阻上的电压就小,反之如果外接很重的负载,那么分配在这个小电阻上的电压就比较大,就会有一部分功率被消耗在这个内阻上(可能转化为发热,或者是一些复杂的逆向电化学反应)。一个可充电电池出厂时的内阻是比较小的,但经过长期使用后,由于电池内部电解液的枯竭,以及电池内部化学物质活性的降低,这个内阻会逐渐增加,直到内阻大到电池内部的电量无法正常释放出来,此时电池也就“寿终正寝”了。绝大部分老化的电池都是因为内阻过大的原因而造成无使用价值,只好报废。因此我们更应该注重的是电池放出的容量而不是充入的容量。 一、内阻不是一个固定的数值 麻烦的一点是,电池处于不同的电量状态时,它的内阻值不一样;电池处于不同的使用寿命状态下,它的内阻值也不同。从技术的角度出发,我们一般把电池的电阻分为两种状态考虑:充电态内阻和放电态内阻。 1.充电态内阻指电池完全充满电时的所测量到的电池内阻。 2.放电态内阻指电池充分放电后(放电到标准的截止电压时)所测量到的电池内阻。 一般情况下放电态的内阻是不稳定的,测量的结果也比正常值高出许多,而充电态内阻相对比较稳定,测量这个数值具有实际的比较意义。因此在电池的测量过程中,我们都以充电态内阻做为测量的标准。 二、内阻无法用一般的方法进行精确测量

精确测量蓄电池内阻的方法研究

精确测量蓄电池内阻的方法研究 1.引言 蓄电池作为电源系统停电时的备用电源,已广泛的应用于工业生产、交通、通信等行业。如果电池失效或容量不足,就有可能造成重大事故,所以必须对蓄电池的运行参数进行全面的在线监测。蓄电池状态的重要标志之一就是它的内阻。无论是蓄电池即将失效、容量不足或是充放电不当,都能从它的内阻变化中体现出来。因此可以通过测量蓄电池内阻,对其工作状态进行评估。目前测量蓄电池内阻的常见方法有: (1)密度法 密度法主要通过测量蓄电池电解液的密度来估算蓄电池的内阻,常用于开口式铅酸电池的内阻测量,不适合密封铅酸蓄电池的内阻测量。该方法的适用范围窄。 (2)开路电压法 开路电压法是通过测量蓄电池的端电压来估计蓄电池内阻,精度很差,甚至得出错误结论。因为即使一个容量已经变得很小的蓄电池,再浮充状态下其端电压仍可能表现得很正常。(3)直流放电法 直流放电法就是通过对电池进行瞬间大电流放电,测量电池上的瞬间电压降,通过欧姆定律计算出电池内阻。虽然这种方法在实践中也得到了广泛的应用,但是它也存在一些缺点。如用该方法对蓄电池内阻进行检测必须是在静态或是脱机状态下进行,无法实现在线测量。而且大电流放电会对蓄电池造成较大的损害,从而影响蓄电池的容量及寿命。 (4)交流注入法 交流法通过对蓄电池注入一个恒定的交流电流信号IS,测量出蓄电池两端的电压响应信号V o,以及两者的相位差由阻抗公式 来确定蓄电池的内阻R。该方法不需对蓄电池进行放电,可以实现安全在线检测电池内阻,故不会对蓄电池的性能造成影响。但该方法需要测量交流电流信号Is,电压响应信号V o,以及电压和电流之间的相位差由此可见这种方法不但干扰因素多,而且增加了系统的复杂性,同时也影响了测量精度。

蓄电池内阻标准

内阻值为亳欧(m Q) 序号容量电压内阻值序号容量电压内阻值 1 0.8AH 12V 120.00 33 150AH 12V 4.00 2 1.3AH 12V 102.00 34 200AH 12V 3.00 3 2.2AH 12V 63.70 35 230AH 12V 2.00 4 3.3AH 12V 55.70 36 250AH 12V 1.00 5 4.0AH 12V 46.90 37 1.3AH 6V 55.00 6 5AH 12V 37.40 38 2.8AH 6V 40.00 7 6AH 12V 30.20 39 3.2AH 6V 28.50 8 7AH 12V 23.00 40 4AH 6V 24.00 9 8AH 12V 20.00 41 5AH 6V 18.30 10 9AH 12V 19.00 42 7AH 6V 14.00 11 10AH 12V 18.70 43 10AH 6V 12.00 12 12AH 12V 14.40 44 110AH 6V 4.30 13 14AH 12V 13.60 45 200AH 6V 1.70 14 15AH 12V 13.00 46 100AH 2V 1.00 15 17AH 12V 12.10 47 150AH 2V 0.83 16 18AH 12V 11.40 48 170AH 2V 0.76 17 20AH 12V 10.60 49 200AH 2V 0.70 18 24AH 12V 9.80 50 250AH 2V 0.68 19 25AH 12V 9.50 51 300AH 2V 0.65 20 26AH 12V 9.20 52 350AH 2V 0.60 21 28AH 12V 8.90 53 400AH 2V 0.50 22 31AH 12V 8.60 54 420AH 2V 0.48 23 33AH 12V 8.40 55 450AH 2V 0.45 24 38AH 12V 8.20 56 462AH 2V 0.43 25 40AH 12V 7.90 57 500AH 2V 0.40 26 60AH 12V 6.50 58 600AH 2V 0.32 27 65AH 12V 5.80 59 800AH 2V 0.24 28 75AH 12V 5.50 60 1000AH 2V 0.20 29 80AH 12V 5.30 61 1500AH 2V 0.16 30 85AH 12V 5.00 62 2000AH 2V 0.12 31 100AH 12V 4.50 63 3000AH 2V 0.11 32 120AH 12V 4.30 蓄电池内阻测试仪 智能蓄电池测试仪”又叫蓄电池内阻仪或蓄电池快速容量测试仪,是快速准确测量蓄电池健

蓄电池内阻测试

蓄电池内阻测试仪 一、概述 1、用途 蓄电池内阻测试仪采用最先进的交流放电测试方法,能够精确测量蓄电池两端电压和内阻,并以此来判断蓄电池电池容量和技术状态的优劣。客户可以根据自身情况选择蓄电池的内阻测试,电压测试,容量估算。作为新电池配组时内阻匹配的依据;在放电前后测试蓄电池内阻用于鉴别真实落后电池;键操作和液晶触摸两种操作方式;它既可以对蓄电池进行成组测量,也可以进行单节测量。 2、特点

(1)智能化、数字化,全中文操作菜单、准确测量、操作简单。 (2)重量不超过0.5Kg,手持式与腰跨式双重设计,单人操作,全程自动测量。 (3)满足各种电池内阻检测标准,必须收录齐全的蓄电池内阻参数数据库,并能根据不同电池自己定义蓄电池标准内阻。 (4)测试方法简单,不会影响蓄电池的工作状态,也不会产生安全隐患。 (5)仪表本身可大量存储测试数据,并能在仪表上进行结论性查询和分析,也可将蓄电池测试数据用U盘导出到计算机软件中生成图表和曲线进行分析。 (6)测试报表可以方便的导入Excel和Word文件,并以指定的格式打印成报告,方便管理,以减少工作量。 (7)四端多用途测试夹,集测试夹、探针等功能于一体,能够适应98%以上的电池连接安装方式和电池极柱形式。 3、功能

4、技术参数 二、操作指导 仪表开机/关机 仪表左侧有个电源开关,拨向上端即开机,拨向下端关机。开机主界面:

字母”U”表示仪表当前有正确插接U盘; 点击左上角的图标,可将仪表当前屏幕保存到U盘。 1、单节测量 点击单节测量,输入电压类型、电池类型、电池号参数后,单击触摸屏“开始测量”按钮即可进行测量。 2、成组测量

电池内阻测量

电池内阻及其测量方法 每个电池都有内阻。不同类型的电池内阻不同。相同类型的电池,由于内部化学特性的不一致,内阻也不一样。电池的内阻很小,我们一般用微欧或者毫欧的单位来定义它。 内阻是衡量电池性能的一个重要技术指标。正常情况下,内阻小的电池的大电流放电能力强,内阻大的电池放电能力弱。 取个简单的例子:一台老式的使用5号电池的数码相机(例如耗电量很大的CANON 210),使用5号碱性电池供电,可以连续拍几十张相片;但使用5号干电池供电,只能拍上几张就自动关机了,但干电池并不是完全没电;再换上5 号可充电镍氢电池,可以拍的相片更多。在实际测量后我们可以知道,镍氢电池的内阻<碱性电池的内阻<干电池的内阻。此例子说明在大电流放电的应用中,一定要选择内阻较小的电池。 在放电电路的原理图上来说,我们可以把电池和内阻拆开考虑,分为一个完全没有内阻的电池串接上一个阻值很小的电阻。此时如果外接的负载轻,那么分配在这个小电阻上的电压就小,反之如果外接很重的负载,那么分配在这个小电阻上的电压就比较大,就会有一部分功率被消耗在这个内阻上(可能转化为发热,或者是一些复杂的逆向电化学反应)。一个可充电电池出厂时的内阻是比较小的,但经过长期使用后,由于电池内部电解液的枯竭,以及电池内部化学物质活性的降低,这个内阻会逐渐增加,直到内阻大到电池内部的电量无法正常释放出来,此时电池也就“寿终正寝”了。绝大部分老化的电池都是因为内阻过大的原因而造成无使用价值,只好报废。 一、内阻不是一个固定的数值。 麻烦的一点是,电池处于不同的电量状态时,它的内阻值不一样;电池处于不同的使用寿命状态下,它的内阻值也不同。 从技术的角度出发,我们一般把电池的电阻分为两种状态考虑:充电态内阻和放电态内阻。 1、充电态内阻指电池完 全充满电时的所测量到的电池内阻。 2、放电态内阻指电池充分放电后(放电到标准的截止电压时)所测量到的电池内阻。

相关文档