文档库 最新最全的文档下载
当前位置:文档库 › 电压波动导致变频器低电压保护动作的分析

电压波动导致变频器低电压保护动作的分析

电压波动导致变频器低电压保护动作的分析
电压波动导致变频器低电压保护动作的分析

电压波动导致变频器低电压保护动作的分析

1、可以设置P0210参数,把电源电压设置低点。注意:大范围电压波动,设什么参数都不好使,而且还危险。

2、变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。

3、当线路电压降低到临界电压时,保护电器的动作,称为欠电压保护,其任务主要是防止设备因过载而烧毁。

一、目前所面临的问题随着电力[wiki]电子[/wiki]技术的发展,变频器已经逐步代替传统的调速控制装置而得到广泛应用,但由于变频器的某些特性,导致变频器在使用中产生了新的问题-变频器低压跳闸。主要体现在:

1,大型负载的起动

2,自然[wiki]环境[/wiki]的影响

3,干扰举个例子来说,

某电厂给粉机上所使用的变频器,因雷击造成电网波动,导致变频器低电压保护动作,从而引发的MFT动作,造成了非计划停机的严重事故。许多电厂和[wiki]化工[/wiki]厂都存在这种隐患,因为发生的次数和不确定性,未能引起电气人员的重视。

二、从变频器入手技术关键: 首先有必要介绍一下变频器,变频器是由整流器和逆变器两部分组成。变频器低电压其实指其中间直流回路低电压(即逆变器输入电压过低),而变频器都具有过压、失压和瞬间停电的保护功能。如果变频器的逆变器件为GTR时,一旦失压或停电,控制电路将停止向驱动电路输出信号,使驱动电路和GTR全部停止工作,电动机将处于自由制动状态。逆变器件为IGBT时,在失压或停电后,将允许变频器继续工作一个短时间td,若失压或停电时间to<td,变频器将平稳过度运行;若失压或停电时间to>td ,变频器自我保护停止运行。一般td都在15~25ms,只要电源“晃电”较为强烈,to都在几秒钟以上,变频器自我保护停止运行,使电动机停止运行。

DC-BANK

工业电动机变频器技术改造

-----确保电网瞬时低电压时变频器正常工作

一、目前存在的问题

随着电力电子技术的发展,变频器以其调速精确、使用简单、保护功能齐全等优点逐步代替传统的调速控制装置而得到广泛应用;但由于国内某些工厂的电网电压不稳定,导致变频器在使用中产生了新的问题—变频器低压跳闸。低电压通常都是短时的,对传统的控制系统影响较小,而对变频器则会产生低压跳闸导致电机停止,影响生产。

变频器低电压主要是指中间直流回路的低电压,一般能引起中间直流回路的低电压的原因来自两个方面:

(1)、来自电源输入侧的低电压

正常情况下的电源电压380V,允许误差为-5%~+10%,经三相桥式全波整流后中间直流的电压值为513V,个别情况下电源线电压较小的电压波动,也不会造成变频器的低电压跳闸。电源输入侧的低电压主要是由于电网电压的波动或主电力线切换;雷击使电源正弦波幅值受影响;电厂本身的变压器超载、负荷不平衡。

(2)、来自负载侧的低电压

大型设备启动和应用;

线路过载;

启动大型电动机等;

从电源输入侧和负载侧来解决此问题是不现实的,我们从变频器本身着手,

采用直流支撑技术(在变频器直流侧加不间断直流电源提高变频器的低电压跨越能力)来解决目前工厂面临的问题。采用此技术可确保:

(1)、厂用交流电源低电压时,变频器还能正常工作。

(2)、备自投切换过程中确保变频器正常工作。

二、技术关键:

变频器是由整流器和逆变器两部分组成。通过对变频器的研究,变频器低电压指其中间直流回路低电压(即逆变器输入电压过低)。一般的变频器都具有过压、失压和瞬间停电的保护功能。变频器的逆变器件为GTR时,一旦失压或停电,控制电路将停止向驱动电路输出信号,使驱动电路和GTR全部停止工作,电动机将处于自由制动状态。逆变器件为IGBT时,在失压或停电后,将允许变频器继续工作一个短时间td,若失压或停电时间to<td,变频器将平稳过度运行;若失压或停电时间to>td ,变频器自我保护停止运行。一般td都在15~25ms,只要电源“晃电”较为强烈,to都在几秒钟以上,变频器自我保护停止运行,使电动机停止运行。

从电压跌落到变频器恢复正常运行,时间至少几十秒钟,此过程中电机会停止运行,严重影响工厂的

正常运行,针对该问题我们采用直流支撑技术,通过整流装置、蓄电池组和各直流回路,对各变频器的直流母线供电,并通过PT传感器、开关量数据采集等输入PLC,编程控制各直流回路的开合、静态开关的导通等,当电网发生晃电甚至停电时,保障变频器连续、稳定、安全运行一定的时间,从而大幅度减少电网电压波动对变频器产生的影响,进而保障整个工厂电气设备安全度过晃电期。

1、直流支撑系统的原理

1)、单台电机工作原理图:

VVVF:变频器,由AC/DC整流器、DC/AC逆变器等组成

系统由电池组、充电器、静态开关、控制器等组成

SS:静态开关

M:电动机

针对工厂的实际情况,我们决定采用多台电机工作模式

2)、下图是多台电机的工作模式图

多台电机工作模式:

M1,M2,M3同时设计于同一控制系统中为低压电机群的工作模式;

检修模式:

以下为检修模式的示意图

VVVF1检修,VVVF2和VVVF3处于工作模式,直流由SS和直流熔断器等隔离。

2、本系统的工作模式

本系统有三种工作模式:

1)、正常工作模式:由电网通过具有双变换及软起动功能的VVVF驱动电动机,充电器对电池浮充电。

2)、断电工作模式:静态开关导通,电池通过VVVF驱动电动机;电网恢复,系统自动恢复正常工作。转换过程不断电。

3)、检修工作模式:每个回路相对独立,n台PLC分路独立管理n台VVVF,并对直流系统监控。

在工作现场通常都是电机群,我们只需设计一套系统就可以解决问题。

3、本系统的控制逻辑:

虚线框内为直流支撑系统

上图为直流支撑系统与变频器控制逻辑简图

逻辑控制说明

1.变频器启动;停止控制逻辑

根据变频器的原理,变频器在交流供电或直流供电正常情况下在接受到启动接点指令后,即可投入运行。在变频器正常运行后有一反映变频器运行状态的接点信号闭合。变频器运行调速指令由DCS 或PLC 送来的4-20mA 模拟信号实现。

2.直流支撑系统与变频器的逻辑配合

(1)直流支撑系统的组成

a. 直流电源

b. 回路保护开关

c. 回路静态开关

d. 回路直流接触器

e. 控制PLC

f. 母线电压监测继电器

(2)该系统的PLC 控制逻辑

a. 控制PLC 输入逻辑条件有:变频器运行状态接点信号,母线电压监测信号。同时可能还有现场的一些闭锁信号。

b. 控制PLC 输出逻辑条件有:变频器运行正常且一些闭锁信号未给出保护动作信号时,直流接触器合上,直流支撑系统处于热备用状态,否则直流接触器断开,直流支撑系统处于冷备用。变频器运行正常时,母线电压<350VAC(可调节)且闭锁信号未给出保护动作信号时,PLC向静态开关送出24VDC控制电压,静态开关导通;母线电压恢复时,PLC撤出静态开关闭锁指令。

c. 母线电压正常条件下直流支撑系统投入过程

变频器电源端送入正常电压,变频器受电,内部CPU 准备运行;控制设备,DCS 或PLC 或控制继电器送来启动运行指令。电机按模拟控制4-20mA 电流决定变频器拖动电机的运行转速;等到系统正常运行后变频器状态接点闭合。

直流支撑系统控制PLC 接受到变频器运行状态指令后,向直流接触器MF 发出合闸指令,如果该回路的空开QF 合闸,这时该回路在热备份状态。本次操作结束。

d. 变频器电源失电,PLC 及静态开关都测到变频器失电信息。

1)PLC 测到了母线电压<350VAC 信号而发出静态开关合闸指令。

2)静态开关测到变频器直流母线电压<460VAC 而快速导通。

变频器电力迅速由母线供电转入直流支撑系统供电。变频器保持连续不间断运行。

e. 变频器电源供电恢复时其直流环节的电压应立刻上升;母线电压恢复使得PLC 重新得到电压正常信号而撤出静态开关闭锁指令。当变频器直流母线电压>直流支撑系统母线电压,并且PLC撤出闭锁

指令后静态开关立即关闭。电机在这一过程中仍然保持不间断运行。在充电器作用下对放过电的电池组补充电。

f. 母线电压连续在85%(该值可以重新设定)上下波动。母线电压一旦<350VAC(>85%)直流支撑系统即自动投入,由蓄电池直接向变频器的直流母线供电。母线恢复正常值后PLC 延时2s 才撤出静态开关闭锁信号。

g. 根据用户工艺条件,在蓄电池供电数秒钟后PLC自行切断直流接触器,具体延时多长时间可在调试时确定。

3.系统安全性

1)直流支撑系统与变频器组成的电机不停电系统具有可靠的系统安全性。该供电系统与变频器是分布式结构,该供电系统应用后完全不影响原有变频器的使用方式及性能,在母线电压正常时该系统仅作为后备电源。这时候直流支撑系统的退出,投入不会对原变频器产生任何影响。

2)该系统与变频器之间有十分可靠的隔离保护设计,当一台变频器出现故障,不会影响其它变频器正常运行。

3)在检测维修时,每回路直流支撑系统均可单独与母线分离,以便于维修。

4)HMI上备有保护变频器母线电压晃电、失电、充电压实时纪录,

运行工程师可在事后在HMI 上查询纪录精度在秒。

2控制部分我们可以根据用户的要求采用RTU模块,来采集现场信号和控制我们的DC-BANK系统。同时RTU还有多种电动机的微机保护功能,可以实现对电动机的多重保护。

利用RTU来实现智能控制系统可以实现以下几个功能

1、进行线路的监测,实现遥控(分合、启停、正反转等)、遥测(电压、电流、功率、频率、功率因数等)、遥信(反映各种开关量状态)等功能。通过RS485和上位机软件一起构建SCADA系统。

2、进行三相电动机微机保护,实时监测电机运行状态(如启停、正反转、电流、电压、功率、功率因数、频率、温度等),对电机进行多种保护(过流、过压、过载、欠压、堵转、零序、负序等保护)。

3、GPS对时:接入GPS时钟信号,统一系统时钟,并向控制终端发送对时命令;可支持多种通讯规约、多种通讯通道。

4、具有SOE功能

采用RTU来实现控制系统,功能齐全、方案简洁,具有高可靠性、高集成度,分布式安装和控制,易扩展、开放性好。

4、性能特点

结构合理可靠

该系统直接向VVVF提供直流电源。和传统的UPS相比,减少了AC/DC、DC/AC 两次变换,硬件费用减少,可靠性提高。

常规UPS整流充电器与变频器处于串联状态,既要对电池充电,还须向逆变器提供额定直流功率,而此系统的充电器处于并联状态,平时只对电池浮充电,成本低,可靠性高。

直流支撑系统不影响原来设备的全部工作状态。

电动机享有VVVF的软启动、调速等功能,并具备短路、接地故障和过载等保护特性。

充电器具有稳压、限流功能。

直流支撑系统的相关参数可以记录、储存和显示。

采用方便检修维护的模块化结构,并联使用。系统各回路完全独立,检修某回路VVVF及其控制保护电路等,不影响其他回路工作。

系统相关部件采用IGBT逆变功率器件和微处理器控制。

静态开关采用在线跟踪和电压自动监控,保证主电源电压波动和失电时,系统瞬时切换到电池供电,变频器的输出频率没有变化。

三、设备及系统配置

1、实验条件

现有实验条件:

一路380V/60A 3P+N+PE电源.

被保护变频器的状态干节点信号

被保护变频器电源状态的PT取信号电源。

一些保护的闭锁信号

其他电气设备的工作状态信号(根据需要)

被保护变频器二次接线图。

有关的工程设计条件。包括被保护变频器盘内布置图。

2、直流支撑系统主要设备

1、蓄电池

1) 蓄电池采用免维护阀控式全密封铅酸电池。

2) 蓄电池的使用寿命为7~12年。

2、整流器

整流器的功率逆变管采用进口快速IGBT,其余元件采用进口工业等级器件,生产工艺严格完整,保证机器的可靠性和稳定性。输出电压和电流均可连续调节。具有强大的保护功能(输入过流、过压、欠压保护;输出短路,过流,过压保护;整机过热保护)。

3、静态开关

静态开关采用大功率器件组成直流电子开关。当电网供电正常时,开关处于关断状态,切断电池组与变频器的通路,防止电池组在浮充电或均充电时,因端电压高于交流进线经整流后输出的直流电压引起频繁放电;当交流电源低于变频器低压保护值时(以变频器的品牌而定),监控系统触发直流电子开关瞬间导通,可以做到变频器由交流供电和由电池组供电的瞬时转换。

静态开关工作条件

截止条件:变频器没有运行或变频器运行且母线电压正常。

导通条件:变频器运行且电网晃电或停电(备自投切换时)。

4、智能控制系统

根据需要用一台或多台可编程控制器和HMI(触摸屏)组成带有人机操作界面的监控系统,其功能为:充电模块输出电压设定,充电电流限值设定,本系统的起停操作,运行参数显示,变频器工作状态显示,故障报警存储以及按需要和上位机通讯实现四遥功能。

系统监控由系统控制器、切换控制器、电池检测器及分路检测器等主要部件组成,各部件均有单片机进行控制,监控系统是通过RS485进行数字化连接以完成系统的通信与控制。各部件主要功能如下:1) 系统控制器:实现人机交流、系统参数显示、系统指示、系统设置、历史事件的存储及远程通信等功能。

2) 切换控制器:负责系统各路电压及市电的监测以实现系统安全可靠快速的切换。

3) 电池检测器:负责电池自动化管理和及监测。

4) 分路检测器:负责输出各分路的负载状况(正常、开路、短路、未装等)的检测。

5、安全保护

此系统都是安装在配电柜内的。配电柜符合IP20要求,由能承受一定机械应力、电气应力及热应力材料构成。

3、直流支撑系统的主要配置

1、系统组成

1)、设备基本参数:

—蓄电池的输出功率根据现扬的设备功率决定。

—直流输出回路由现场被保护的变频器的数量决定。

—电池放电时间:根据现扬的工作要求。

2)、设备基本组成及柜体安排

整流器柜、直流控制柜、蓄电池柜。

柜体具体安排:

—ZL柜;冗余高频DC 530V/10A 2台充电器、含有HMI屏的系统测控。AC/DC 24V、DC/DC 24V 构成冗余的控制电源、系统变压器、

—CA柜有多条直流支撑回路,每一条支撑回路中,含有静态开关、直流接触器、直流熔断器、直流隔离模块,光电检测继电器、PLC公用等

每台变频器由一个静态开关来控制.。

各柜有自己独立的PLC系统,与HMI采用串行通讯的方法传递数据。

--柜体安排:根据现场现有的施工条件。

a、将系统的全部柜体集中定位在所有被保护变频器相对最中心的位置的那台机组的控制室中,支撑系统分别与每一个变频器连接。

b、根据现场提供的条件,合理安排柜体的位置。

3)、方案的最终确定实施时:

我们会提供:

设备就位的平面布置图。

设备基础安装图。

电气条件图、设备荷重图各一份,可用电子版发送。

2、系统指标:

1)、输入电压:380 + 10%VAC,3P+N+PE 频率:50HZ + 1%。

2)、结构要求

a 每组直流电源柜为落地安装式,防护等级:IP20

b 进出线方式:下进下出线或按现场要求。

c 电控柜尺寸:800×600×2200(W×D×H)前后开门

电池柜尺寸:1320×600×2200 (W×D×H)

d 整流器柜体顶部加装2个风扇,下侧设有带滤网的进风口。

e 每个柜均有铭牌,标明其功能。

3、功能要求

1)当变频器交流进线电源故障(失压或短时停电)时,变频器在该系统保护下,在设计时间内连续正常运转。

2)直流支撑系统在线工作,变频器供电电源由交流三相380V转至直流530V供电时无间断。

3)电池组的备用时间根据设计,不少于10分钟(暂定)。

4)在电池组放电过程中,若三相电源恢复正常,则变频器供电自动切换至三相380V交流电源。

5)进线电源停电超过一定时间,应自动分断直流接触器,变频器停止工作。(主要是防止设备出现

故障的保护动作信号)

6)具备系统自诊断及故障显示功能。

7)为延长蓄电池的使用寿命,充电系统具备“均充”与“浮充”功能,且能自动转换。均充电压应达到560V,浮充电压应达到530V(HMI可调)。在正常操作期间,电池应处于浮充状态。

8)电池组具备以下功能:

定时均充:即在每隔1-3个月(HMI可设定)自动均充一次。

欠压均充:即电池放电至欠压时,自动进行均充(交流正常时)

9)具备各种工作状态指示灯。

四、直流支撑系统的安装:

1、安装要求

1)、设备安装时要充分考虑安装位置,包括柜外、柜间接线。

2)、工厂要负责现场作业协调组织工作,并为工厂工程人员工作提供方便。

3)、对工厂提供的现场条件,在安装二周前进行实地考察协调并与工厂共同制定工程计划。

4)、工厂需提供所有的系统内柜间电缆。工厂承担被保护变频器的电缆。

2、系统的安装环境要求:

使用场所:户内

使用环境:无爆炸性气体及粉尘

环境温度:-10℃— +40℃;电池室5℃--30℃

相对湿度:90%未结露

海拔高度:1000米以下

3、安装标准及规范

GB17478-1998 低压直流电源设备的输出性能特性和安全要求

JB/T8948-1999 电控设备用低压直流电源

B4208-1993 外壳保护等级(IP代码)

GB4026-1992 设备接线端子和规定电线端鉴别标志以及、文字和数字系统一般应用原则

GB50150-91 电气装置安装工程电气设备交接试验

GB50168-92 电气装置安装工程电气电缆线路施工及验收

GB50172-92 电气装置安装工程蓄电池施工及验收规范

GB50254-92 电气装置安装工程低压电器施工及验收

GB50171-92 电气装置安装工程盘、柜及二次回路结线施工及验收规范

五、该项目实施的最终结果

在电机规定的负荷下做2次断电试验,间隔24小时,支持时间均应为3秒钟(暂定)。

在变频器工作正常的情况下,切断三相交流输入电源,系统自动切换成直流供电,保证受保护的变频器及电机不间断运行在工厂要求的时间内。其中,变频器显示的频率保持恒定,没有任何变化。然后送上三相交流电源,受保护的变频器及电机继续运行于交流电源工作状态,充电器给蓄电池充电,完成一次电源失电切换过程。触摸屏显示并记录停电及恢复供电的时刻。六、经济分析、效益预测及社会效益预测

直接经济效益

工厂发生一次变频器跳闸事件会造成很大的经济损失和危险。少则上百万,多则上亿,这样对工厂的正常运行产生很大的经济影响。采用直流支撑系统后彻底消除因供电故障引起的电机跳闸事故,保障电机安全稳定的运行,挽回了大量由于电网晃电造成的经济损失,更重要的是投资成本相对较低。社会效益

根据调查表明,在供电稳定性和可靠性要求非常高的企业(例如:石油化工,钢铁,化纤)中,关键设备中电动机(如泵类,搅拌机,风机),运行中常常由于电气控制系统发生故障而突然停机,引起连续生产中断、堵料、设备温度急剧升高、工作压力失控、有毒气体外泄、主设备损坏,甚至造成整个生产线非计划停车,直流支撑系统可以很好解决这些问题,保障电机连续、安全、稳定的运行,能为用户挽回巨大的经济损失。这一研究思想是全新的,成果具有明显的创新性和实用性,在国内外均处领先地位,并具有非常广阔的推广应用前景。

变频器故障及处理方法

1、如何区分重故障和轻故障? 轻故障时,系统发出报警信号,故障指示灯闪烁。重故障发生时,系统发出故障指示,故障指示灯常亮。同时发出指令去分断高压、合闸 禁止,并对故障信息、高压分断指令作记忆处理。重故障状态不消除, 故障指示、高压分断指令依然有效。 2、轻故障都有哪些? 轻故障包括:变压器超温报警、柜温超温报警、柜门打开、单元旁路,系统对轻故障不作记忆处理,仅有故障指示,故障消失后报警自动 消除。变频器运行中出现轻故障报警,系统不会停机。停机时出现轻故 障报警,变频器可以继续启动运行。 3、重故障具体都有哪些? 系统发生下列故障时,按照重故障处理,并在监视器左上角显示重故障类型:外部故障、变压器过热、柜温过热、单元故障、变频器过流、 高压失电、接口板故障、控制器不通讯、接口板不通讯、电机过载、参 数错误、主控板故障。单元故障包括:熔断器故障、单元过热、驱动故障、光纤故障、单元过压。外部故障必须先解除高压分断(柜门按钮或 外部接点)状态再系统复位,才能使系统恢复到正常状态;除外部故障 以外的重故障发生后,直接系统复位即可使系统恢复到正常状态,但在 再次上电前一定要找出故障原因。单元故障发生后,只有再次上高压电源方能检测到单元状态。若故障较难分析且无法确定能否二次上高压时,请向厂商咨询。注意:切忌在未查明故障原因前贸然二次上电,否则可 能严重损坏变频器! 4、变压器超温报警当变压器温控仪测量温度大于其设置的报警温度(默 认设置为100℃)时,温控仪超温报警触点闭合。 检查变压器柜顶风机或柜底风机是否工作正常(如果柜底风机工作不正常,可能出现三相温度相差较大);测温电阻是否正常(有无断线、线路插头接触不良,如果接触不良,温度值将偏高);过滤网是否堵塞(拿一张A4纸置于过滤网上,看是否能吸附,否则需要清洁过滤网);变频器是否长期工作于过载状态;环境温度是否过高(环境温度应低于45℃,否则需要加强通风);安装于变压器柜内正面底部的风机开关和接触器是否断开;变压器柜风机控制和保护电路是否正常。 5、柜温超温报警单元柜测温点的温度大于55℃时,系统会发出柜温超温轻故障报警。 检查单元柜柜顶风机是否工作正常,安装于二次室内的风机开关是否跳闸;过滤网是否堵塞(拿一张A4纸置于过滤网上,看是否能吸附,否则需要清洁过滤网);变频器是否长期工作于过载状态;环境温度是 否过高(环境温度应低于45℃,否则需要加强通风(墙上安装通风机或柜顶安装风道)或安装制冷设备);变压器柜风机控制和保护电路是否 正常。

2021年RH-6011落锤冲击试验机安全操作规程

2021年RH-6011落锤冲击试验机安全操作规程 The safety operation procedure is a very detailed operation description of the work content in the form of work flow, and each action is described in words. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0130

2021年RH-6011落锤冲击试验机安全操作 规程 1.根据试验要求,确定好锤体质量和冲击高度; 2.通过锤头、锤杆和砝码确定锤体质量 3.将锤杆从锤座下的滑套中穿上,并将选定的砝码套在锤杆上,拧紧螺母。 4.打开电源,进入工作状态。 5.按“慢升键”,将垂体升离底部,按“停止键”,以便于安装试样。 6.打开下部试验室门,将试样置于V型铁上。 7.观察左边光电开关指示灯状态:灭说明试样太高光线不能通过,亮说明试样低,光线可以通过,调节升降手轮,使试样的上母线和光电管的中心在同一水平面上。

8.确定高度零点:用“慢升”、“慢降”键,使锤头刚好和与试样接触,按高度显示表的零点“清零”。 9.关好防护网,设置试验所需高度,按“快升”键,锤体自动升至设定高度。 10.冲击:先按一下“预落锤”键,使此键上指示灯亮,再按下“落锤键”,垂体下落冲击试样。 11.当锤体冲击试样后,试样没破碎使锤体产生反弹时,光电信号控制抱锤机构迅速将反弹垂体夹住,达到防止二次冲击的目的。 12.关机:关闭电控箱电源开关和总电源。 XXX图文设计 本文档文字均可以自由修改

电压保护装置

电压保护装置采用面板式安装,高雅、亮丽的外观,为低压电控装置提升档次。 相序保护器、过欠压保护器等)主要用于交流50/60Hz, 400V)、440V(460V)、660V等电压级别的各种故障检测,对三相输入电源的电压过高、电压过低、断相、错相(逆相序)、三相电压不平衡等提供继电保

复位方式:相序、缺相故障手动复位;不平衡、过欠压故障自动复位,也可按复位键手动复位。断 电后故障锁存功能。 JL-410电压保护装置功能选型 电压保护装置按功能的组合分以下四个系列,每个系列都有不同电压等级的产品。 ●表示具有该功能 ○表示不具有该功能 电压保护装置不同电压等级的产品选型 产品选型举例 1. 如用户需要全部保护功能(过电压保护、欠电压保护、缺相保护、三相电压不平衡保护、相序保护), 使用于380V 电压,那所选择的电压保护装置产品型号,应该为JL-410。 2. 如用户只需要相序保护,缺相保护两种功能,使用于煤矿660V 的电压,那所选的电压保护装置产品 型号应该为JL-411-60。 JL-410电压保护装置功能描述: 1、过压保护:当电网电压大于设定值时启动该项保护功能,动作门限值设定范围OFF-390-490V ,动作 方式为定时限,动作时间设置范围0.1-25s 。保护动作后电网电压恢复到小于设定值10V 以上时,保护器 自动复位,也可按复位键手动复位。用户可选择是否启用该项保护功能。 2、欠压保护:当电网电压小于设定值时启动该项保护功能,动作门限值设定范围300-370V-OFF ,动作 方式为定时限,动作时间设置范围0.1-25s 。保护动作后电网电压恢复到大于设定值10V 以上时,保护器 自动复位,也可按复位键手动复位。用户可选择是否启用该项保护功能。 3、三相电压不平衡保护:当电网电压三相不平衡度大于设定值时启动该项保护功能,不平衡度动作门 限值设定范围OFF-5-30%,动作方式为定时限,动作时间设置范围1-25s 。当电网电压三相不平衡度恢复 到小于设定门限值2%以上时,保护器自动复位,也可按复位键手动复位。用户可选择是否启用该项保护 功能。 三相电压不平衡度计算公式: A ——电压不平衡度 max U ——三相线电压中最大线电压值 % 100max min max ?-=U U U A

变频器过电压故障原因分析及对策

变频器过电压故障原因分析及对策 变频器过电压故障保护是变频器中间直流电压达到危险程度后采取的保护措施,这是变频器设计上的一大缺陷,在变频器实际运行中引起此故障的原因较多,可以采取的措施也较多,在处理此类故障时要分析清 楚故障原因,有针对性的采取相应的措施去处理。 2 变频器过电压的危害 变频器过电压主要是指其中间直流回路过电压,中间直流回路过电压主要危害在于: (1) 引起电动机磁路饱和。对于电动机来说,电压主过高必然使电机铁芯磁通增加,可能导致磁路饱和, 励磁电流过大,从面引起电机温升过高; (2) 损害电动机绝缘。中间直流回路电压升高后,变频器输出电压的脉冲幅度过大,对电机绝缘寿命有很 大的影响; (3) 对中间直流回路滤波电容器寿命有直接影响,严重时会引起电容器爆裂。因而变频器厂家一般将中间 直流回路过电压值限定在DC800V左右,一旦其电压超过限定值,变频器将按限定要求跳闸保护。 3 产生变频器过电压的原因 3.1 过电压的原因 一般能引起中间直流回路过电压的原因主要来自以下两个方面: (1) 来自电源输入侧的过电压 常情况下的电源电压为380V,允许误差为-5%~+10%,经三相桥式全波整流后中间直流的峰值为591 V,个别情况下电源线电压达到450V,其峰值电压也只有636V,并不算很高,一般电源电压不会使变频器因过电压跳闸。电源输入侧的过电压主要是指电源侧的冲击过电压,如雷电引起的过电压、补偿电容在合闸或断开时形成的过电压等,主要特点是电压变化率dv/dt和幅值都很大。 (2) 来自负载侧的过电压 主要是指由于某种原因使电动机处于再生发电状态时,即电机处于实际转速比变频频率决定的同步转速高的状态,负载的传动系统中所储存的机械能经电动机转换成电能,通过逆变器的6个续流二极管回馈到变频器的中间直流回路中。此时的逆变器处于整流状态,如果变频器中没采取消耗这些能量的措施,这些能量将会导致中间直流回路的电容器的电压上升。达到限值即行跳闸。 3.2 从变频器负载侧可能引起过电压的情况及主要原因 从变频器负载侧可能引起过电压的情况及主要原因如下: (1) 变频器减速时间参数设定相对较小及未使用变频器减速过电压自处理功能。 当变频器拖动大惯性负载时,其减速时间设定的比较小,在减速过程中,变频器输出频率下降的速度比较快,而负载惯性比较大,靠本身阻力减速比较慢,使负载拖动电动机的转速比变频器输出的频率所对应的转速还要高,电动机处于发电状态,而变频器没有能量处理单元或其作用有限,因而导致变频器中间直流回路电压升高,超出保护值,就会出现过电压跳闸故障。 大多数变频器为了避免跳闸,专门设置了减速过电压的自处理功能,如果在减速过程中,直流电压超过了设定的电压上限值,变频器的输出频率将不再下降,暂缓减速,待直流电压下降到设定值以下后再继续减速。如果减速时间设定不合适,又没有利用减速过电压的自处理功能,就可能出现此类故障。 (2) 工艺要求在限定时间内减速至规定频率或停止运行 工艺流程限定了负载的减速时间,合理设定相关参数也不能减缓这一故障,系统也没有采取处理多余能量 的措施,必然会引发过压跳闸故障。 (3) 当电动机所传动的位能负载下放时,电动机将处于再生发电制动状态 位能负载下降过快,过多回馈能量超过中间直流回路及其能量处理单元的承受能力,过电压故障也会发生。 (4) 变频器负载突降 变频器负载突降会使负载的转速明显上升,使负载电机进入再生发电状态,从负载侧向变频器中间直流回路回馈能量,短时间内能量的集中回馈,可能会中间直流回路及其能量处理单元的承受能力引发过电压故

变频器调整必须知道的几个参数解读

变频器调整必须知道的几个参数(转载) 2010-01-13 13:28:56| 分类:默认分类| 标签:|字号大中小订阅 变频器调整必须知道的几个参数 变频器功能参数很多,一般都有数十甚至上百个参数供用户选择。实际应用中,没必要对每一参数都进行设置和调试,多数只要采用出厂设定值即可。但有些参数由于和实际使用情况有很大关系,且有的还相互关联,因此要根据实际进 行设定和调试。 因各类型变频器功能有差异,而相同功能参数的名称也不一致,为叙述方便,本文以富士变频器基本参数名称为例。由于基本参数是各类型变频器几乎 都有的,完全可以做到触类旁通。 一加减速时间 加速时间就是输出频率从0上升到最大频率所需时间,减速时间是指从最大频率下降到0所需时间。通常用频率设定信号上升、下降来确定加减速时间。在电动机加速时须限制频率设定的上升率以防止过电流,减速时则限制下降 率以防止过电压。 加速时间设定要求:将加速电流限制在变频器过电流容量以下,不使过流失速而引起变频器跳闸;减速时间设定要点是:防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时间,通过起、停电动机观察有无过电流、过电压报警;然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出最佳加减速时间。 二转矩提升 又叫转矩补偿,是为补偿因电动机定子绕组电阻所引起的低速时转矩降低,而把低频率范围f/V增大的方法。设定为自动时,可使加速时的电压自动提升以补偿起动转矩,使电动机加速顺利进行。如采用手动补偿时,根据负载特性,尤其是负载的起动特性,通过试验可选出较佳曲线。对于变转矩负载,如选择不当会出现低速时的输出电压过高,而浪费电能的现象,甚至还会出现电动机带负载起动时电流大,而转速上不去的现象。 三电子热过载保护

冲击性能作业指导书

塑料埋地排水管冲击性能试验作业指导书 一 编制目的: 为确保操作熟练、规范和检测数据的准确可靠、有效。 二 检测环境: 试样应在(0±1)℃的水浴或空气浴中进行状态调节(见表4),状态调节后应在空气中取出10s内或水浴中取出20s内完成试验。如果超过此时间间隔,应将试样立即放回预处理装置,最少进行5min调节处理。仲裁试验时应使用水浴。 三 检测原理: 以规定质量和尺寸的落锺从规定高度冲击试验样品规定的部位,即可测出该批(或连续挤出生产)产品的真实冲击率。 此试验方法可以通过改变落锺的质量和/或改变高度来满足不同产品的技术要求。 TIR最大允许值为10%。 四 取样要求: 1、长度为(200±10)mm,试样切割面应与管材的轴线垂直,切割端应清洁、无损伤。 2、外径大于40的试样应沿其长度方向画出等距离标线,并顺序编号。 3、试样数量可根据标准中规定及操作步骤确定。 五 仪器设备: 冲击试验装置 六 检测依据: 《热塑性塑料管材耐外冲击性能试验方法 时针旋转法》GB/T 14152-2001 七 试验步骤: 1、外径小于或等于40 mm的试样,每个试样只承受一次冲击。外径大于40 mm的试样进行冲击试验时,首先使落锤冲击在1号标线上,若试样未破坏,则按样品制备中状态调节的规定对样品进行调节处理后再对

2号标线进行冲击,直至试样破坏或全部标线都冲击一次。 注:当波纹管或加筋管的波纹间距或筋间距超过管材外径的0.25倍时,要保证被冲击点为波纹或筋顶部。 2、逐个对试样进行冲击,直至取得判定结果。 3、观察试样,经冲击后产生裂纹、裂缝或试样破碎判为试样破坏,根据试样破坏数按表6判定TIR值。 八 数据处理与结果判定: 若试样冲击破坏数在表6的A区,则判定该批的TIR值小于或等于10%。若试样冲击破坏数在表6的C区,则判定该批的TIR值大于或等于10%。若试样冲击破坏数在表6的B区,则应进一步取样试验,直至根据全部冲击试样的累计结果能够作出判定。

变频器过压故障分析及处理

变频器是现代电力拖动系统的核心设备,可实现电机的各种调速功能与控制要求,在日常工作中,为保障系统安全稳定运作,变频器会不断监视各项运行指标确保设备正常,包括电压,电流,温度,频率等各项数据;现针对变频器电压检测方面的过压类故障进行简单分析。 变频器过压,通常是指直流母线电压超过一定范围,影响到变频器本身元器件的安全工作,而采取的一种停机保护机制;正常情况下,变频器的直流电压为三相全波整流滤波后的平均值,以380V计算,直流母线电压Ud=380 x 1.414=537V,而在发生过压时,直流母线端的主电容则会充电储能,母线电压不断升高,当电压上升至主电容额定电压800V 左右时,变频器就会进行过压保护停机,否则将影响变频器性能甚至导致其损坏;对于变频器来说,常见的过压因素有两类:电源因素和负载因素。 一、输入交流电源电压过高,超过规定的正常范围,比如电网电压升高或者线路出现问题,或者一些工厂的变压器出现问题,以及使用的柴油发电机输出电压过高等,都会导致过压产生;此时,最好断开电源,检查处理,待输入电压正常之后再启动运行变频器。 二、变频器负载反发电导致,这种情况常见于一些大惯量负载,主要是电机的同步转速高于变频器输出的实际转速,电机处于发电状态,将电能反馈回变频器,导致直流母线电压超过安全范围产生过压故障;这种情况可从以下几个方面进行处理: 1、可适当延长减速时间,大惯量负载的过压主要是因为减速时间设定较短,在实际减速过程中,负载的惯性会带着电机旋转,导致电机的同步转速高于变频器的输出转速,此时电机会反发电到变频器,形成过压;延长减速时间的目的,是让变频器的输出转速下降率变慢,使电机的同步转速低于变频器的输出转速;防止电机反发电。 2、使用过压失速抑制功能,因过压是变频器频率下降率太快导致,过压抑制时会检测直流母线电压,若电压升高到一定值,变频器减缓频率下降率,使输出转速高于电机同步转速,防止电机发电。 3、采取能耗制动,启用能耗制动功能,将电机反馈到直流母线段多余的电量通过能耗元件(制动电阻)消耗掉,使直流母线电压在安全范围。 4、其他方面,加装能量回馈单元将多余电量反馈回电网,或者采取共直流母线的方式,将2台或者多台变频器的直流母线电压并联,多余的能量通过并联母线被处在电动状态的电机吸收,以此保持发电状态设备的母线电压稳定。 变频器对于电压的反应是比较敏感的,因为会涉及到设备的安全运行。同时变频技术的发展将会出现更多更有效的故障处理办法,使变频器的运行更加稳定可靠。

安川变频器的调试与参数设置表齐全.docx

.... 第一部分变频器的操作方法 一、操作面板各部的名称: 图 1操作面板布置 二、操作键的功能: 1.LOCAL/REMOTE :用数字操作器运行(COCAL)和用控制回路端子运行(REMOTE )切换时按下,由参数( o2-01 )可设定这个键的有效 / 无效。 2.MENU :菜单键,按此键可进入参数设置。 3.ESC:按一下 ESC键,则回到前一个状态。 4.JOG:操作器运行时的点动运行键。 5.FWD/REV :操作器运行时,运转方向切换键。 6.RESET:设定参数数值时,选择操作位;故障发生时,作为故障复位键。

.... 7.增加键:选择方式、组、功能、参数的名称、设定值(增加)时按下此键。 8.减少键:选择方式、组、功能、参数的名称、设定值(减少)时按下此键。 9.DATA/ENTER:各模式、功能、参数、设定值确认时按下此键。 10 . RUN :操作器运行时,按下此键起动变频器。 11 .STOP:操作器运行时,按下此键停止变频器;控制回路端子 运行时,由参数( o2-01 )可以设定这个键的有效 / 无效。 三、方式的切换 按(MENU )键,表示驱动方式,然后按、键切换方式。读取、设定各方式中参数时,按(DATA/ENTER)键。从参数的读取、设定状态返回前一状态时,按(ESC)键。具体操作如下图:

.... 图 2方式的切换 四、操作举例 把加速时间从10.0Sec 变更为20.0Sec ,请按以下顺序设定参数: 五、在驱动方式下的操作 在驱动方式下,可监视频率指令、输出频率、输出电流、输出电压、输入输出状态等及显示异常内容、异常记录等。常用监视参数:

冷热冲击试验箱安全操作规程

仅供参考[整理] 安全管理文书 冷热冲击试验箱安全操作规程 日期:__________________ 单位:__________________ 第1 页共4 页

冷热冲击试验箱安全操作规程 1、试样放置:(试料体积占有试验箱容积空间比例应〈1/3)样品间有一定间隙。 2、开机检查:电源线及接地线确认。外接水冷系统连接是否正常,水源是否干净。 3、开启电源:(请勿湿手),试验箱后侧面的总电源合上,打开面板上的电源按钮,控制器进入操作画面,点左上角返回到功能选择画面。 4、试验设置: 设置高温预温温度高温冲击温度高温冲击时间待机打开 设置低温预温温度低温冲击温度低温冲击时间待机打开 选择循环次数冲击选择(高温/低温)温度偏差计时(详情参考说明书) 5、试验过程中: A、运行中不得频繁打开箱门,使用时门要关好、关严,否则温度外泄。 B、避免于三分钟内关闭再开启冷冻机组以免影响压缩机之功能。 6、试验结束: A、运行停止后把试验箱电源断开,以防有漏电。 B、打开试验箱的箱门,取试验样品时人不要对着门口,避免被烫伤、冻伤。 7、注意事项: A、每次试验前、后都应清洁试验箱的试验区,尽力使试验区在任何时候都保持清洁。 B、本设备必须在室内温度小于+28度使用,注意室内通风良好。 第 2 页共 4 页

C、在安装使用前本设备注意电源相序及本设备功率、接地保护。 D、本设备不得用于易燃易爆进行测试。 E、冷冻机组之散热器(冷凝器)应定期保养,保持清洁(保养事项参考说明书)。 F、试验箱左、右、后三面距离墙面60cm。 第 3 页共 4 页

仅供参考[整理] 安全管理文书 整理范文,仅供参考! 日期:__________________ 单位:__________________ 第4 页共4 页

过电压保护(装置)及维护

过电压保护(装置)及维护 一、过电压的定义及分类 1、过电压:超过电力系统最高工作电压的电压,称为过电压。 2、过电压的分类 ①外部过电压(雷电过电压):由电力系统外部的雷电引起的 过电压。 ②内部过电压(操作过电压、谐振过电压):由电力系统内部 原因引起的过电压。 二、过电压保护措施的选用原则 一个世纪以来,始终是遵循着如下原则。 1、选用保护措施、避雷器保护性能、绝缘水平等,归根到底 是经济问题。 保护措施可靠性越高,避雷器保护性能越优,保护系统投资和避雷器售价越大,可以降低绝缘造价或减少运行故障损失得到回报。反之,保护措施可靠性越低,避雷器保护性能越差,保护系统投资和避雷器售价越小,绝缘造价或运行故障损失越大。 总之,选用过电压保护措施,力求达到最佳经济效益。 2、任何防雷技术措施应经实践检验原则 至今,在实验室里不能逼真模拟自然雷。理论计算和模拟试验 只能作某些定性分析。防雷保护技术措施主要依据长期的大量

的运行经验积累,不断地修正和改进。国际上常出现过以假设 为依据的形形色色的防雷保护装置,经实践检验被淘汰掉了。 三、过电压保护措施的发展概况 1、人为制造弱绝缘,最早采用的,也是最简单的是放电间隙。 迄今为止,人们还在应用放电间隙。仅是结构不断改进。放电 间隙存在的问题是不能自动熄灭工频续流电弧。 2、1870~1890年,主要是放电间隙和熔丝构成变电设备防雷 保护装置。 3、1896~1908年,制成羊角放电间隙。为了增强间隙熄弧能 力,在间隙上加装磁吹线圈。为了限制工频续流,间隙串联线 性电阻。随后发展多间隙,构成多间隙又串又并联线性电阻的 防雷保护装置。 4、1907~1920年,发明了氧化铝和氧化铅电阻器来替代多间 隙串并联线性电阻,这是阀式避雷器的原型。 5、1920~1930年,又将氧化铝和氧化铅避雷器加装外串羊角 放电间隙,或内串间隙。比较广泛地采用羊角放电间隙与消弧 线圈配合使用。 6、1930~1940年,发明了碳化硅非线性电阻片。使阀式避雷 器起了质的变化。 7、1940~1950年,碳化硅阀式避雷器迅速发展和普及。至今, 我国仍在采用这种普阀避雷器。即我国第一代阀式避雷器。

变频器过压故障分析及如何维修

变频器过压故障分析及如何维修 变频器过电压(OU)故障分析及如何维修 1、过电压的危害 变频器过电压主要是指其中间直流回路过电压,中间直流回路过电压主要危害在于: (1) 引起电动机磁路饱和。对于电动机来说,电压主过高必然使电机铁芯磁通增加,可能导致磁路饱和,励磁电流过大,从面引起电机温升过高; (2) 损害电动机绝缘。中间直流回路电压升高后,变频器输出电压的脉冲幅度过大,对电机绝缘寿命有很大的影响; (3) 对中间直流回路滤波电容器寿命有直接影响,严重时会引起电容器爆裂。因而变频器厂家一般将中间直流回路过电压值限定在DC800V左右,一旦其电压超过限定值,变频器将按限定要求跳闸保护。 2、过电压的原因 一般能引起中间直流回路过电压的原因主要来自以下两个方面: (1) 来自电源输入侧的过电压 正常情况下的电源电压为380V,允许误差为-5%~+10%,经三相桥式全波整流后中间直流的峰值为591V,一般电源电压不会使变频器因过电压跳闸。电源 输入侧的过电压主要是指电源侧的冲击过电压,如雷电引起的过电压、补偿电容在合闸或断开时形成的过电压等,主要特点是电压变化率dv/dt和幅值都很大。 (2) 制动或减速时间过短或制动电阻损坏。 当变频器拖动大惯性负载时,其减速时间设定的比较小,在减速过程中,变频器输出频率下降的速度比较快,而负载惯性比较大,靠本身阻力减速比较慢,使负载拖动电动机的转速比变频器输出的频率所对应的转速还要高,电动机处于发电状态,从负载侧向变频器中间直流回路回馈能量,短时间内能量的集中回馈,可能会中间直流回路及其能量处理单元的承受能力引发过电压故障。若变频器没有能量处理单元或其作用有限,因而导致变频器中间直流回路电压升高,超出保护值,就会出现过电压跳闸故障。 现场调试过程中有一组辊道电机的变频器出现速度反馈值大于速度设定值,经仔细观察发现: a) 在轧钢过程中不存在这种情况,当钢离开辊道后,才出现这种情况;

英威腾gd整理变频器调试说明

上海承泽机电有限公司上海河源电工设备有限公司 GD300-07变频器闭环矢量模式转矩控制调试 客户要求:闭环矢量模式速度限频、转矩控制 AI1速度AI2转矩互补型编码器5~30V(参考接线方式P173页) S1正转、S2反转、S3正转寸动S4反转寸动AO1频率RO1继电器输出故障 调试步骤: (1)变频器恢复出厂值 变频器上电后,设定参数P00.18=1 (2)编码器参数及方向设定 变频器和速度脉冲编码器之间的连线接好后,然后测试编码器。设置编码器线数P20.01=1024,设置P00.00=2,P00.10=20Hz,运行电机,此时电机旋转为20Hz,观察P18.00的测速值应接近20Hz,如果测速值为负,则表明编码器方向反向了,设置P20.02=1即可,如果测速值偏差较大,则表明P20.01设置错误。观察P18.02 Z脉冲计数值是否波动,如果波动,表明编码器有干扰或者P20.01设置错误,检查接线及屏蔽线是否良好接地。 (3)电机参数自学习 记录电机铭牌参数,然后设置参数P02.00~P02.05。设置P00.00=1,开环矢量运行模式,并设置参数P00.15=1(旋转参数自学习),同时给运行命令,电机会先静止然后再旋转到2/3的额定转速,自学习完成后,

自动停机,键盘显示-END-,并且将学习得到的参数保存在P2组电机参数P02.06~P02.10中。 注:进行上述动态自学习时需要把电机轴与机械负载脱开,而进行静态自学习则不需要脱开机械负载。 (4)试运行电机 设置P00.00=3,闭环矢量控制模式,同时设置运行指令通道及频率给定源。调整加减速时间及P3组速度环及电流环PI参数,使之在整个范围内运行平稳,监视及测量变频器输出电流、电压是否正常。 (以上运行给定都为面板按钮启动停止) (5)具体参数设定

富士变频器常见故障及判断

富士变频器常见故障及判断 一、富士变频器常见故障及判断 (1) OC报警 键盘面板LCD显示:加、减、恒速时过电流。 对于短时间大电流的OC报警,一般情况下是驱动板的电流检测回路出了问题,模块也可能已受到冲击(损坏),有可能复位后继续出现故障,产生的原因基本是以下几种情况:电机电缆过长、电缆选型临界造成的输出漏电流过大或输出电缆接头松动和电缆受损造成的负载电流升高时产生的电弧效应。 小容量( 7.5G 11以下)变频器的24V风扇电源短路时也会造成OC3报警,此时主板上的24V风扇电源会损坏,主板其它功能正常。若出现“1、OC 2”报警且不能复位或一上电就显示“ OC 3”报警,则可能是主板出了问题 ;若一按RUN键就显示“OC 3”报警,则是驱动板坏了。 (2) OLU报警 键盘面板LCD显示:变频器过负载。 当G/P9系列变频器出现此报警时可通过三种方法解决:首先修改一下“转矩提升”、“加减速时间”和“节能运行”的参数设置;其次用卡表测量变频器的输出是否真正过大;最后用示波器观察主板左上角检测点的输出来判断主板是否已经损坏。 (3) OU1报警 键盘面板LCD显示:加速时过电压。 当通用变频器出现“OU”报警时,首先应考虑电缆是否太长、绝缘是否老化,直流中间环节的电解电容是否损坏,同时针对大惯量负载可以考虑做一下电机的在线自整定。另外在启动时用万用表测量一下中间直流环节电压,若测量仪表显示电压与操作面板LCD显示电压不同,则主板的检测电路有故障,需更换主板。当直流母线电压高于780VDC时,变频器做OU报警;当低于350VDC时,变频器做欠压LU报警。 (4) LU报警 键盘面板LCD显示:欠电压。 如果设备经常“LU欠电压”报警,则可考虑将变频器的参数初始化(H03设成1后确认),然后提高变频器的载波频率(参数F26)。若E9设备LU欠电压报警且不能复位,则是(电源)驱动板出了问题。 (5) EF报警 键盘面板LCD显示:对地短路故障。 G/P9系列变频器出现此报警时可能是主板或霍尔元件出现了故障。 (6) Er1报警 键盘面板LCD显示:存贮器异常。 关于G/P9系列变频器“ER1不复位”故障的处理:去掉FWD—CD短路片,上电、一直按住RESET键下

过电压保护

电力电子器件的保护 一 、过电压保护 电力电子装置中可能产生的过电压外分为外因过电压和内因过电压两类。外因过电压主要来自雷击和系统中的由分闸、合闸等开关操作引起的。电力电子装置中,电源变压器等储能元器件,会在开关操作瞬间产生很高的感应电压。 内因过电压主要来自电力电子装置内部器件的开关过程,包括: (1)换相过电压:由于晶闸管或者与全控器件反并联的续流二极管在换相结束不能立刻恢复阻断能力,因而有较大的反向电流过,使残存的载流子恢复,而当其恢复了阻断能力时,该反向电流急剧减小,会由线路电感在器件两端感应出过电压。 (2)关断过电压:全控型器件在较高频率下工作,当器件关断时,因正向电流的迅速降低而由线路电感在器件两端感应出的过电压。 电力电子电路常见的过电压有交流测过电压和直流测过电压。常用的过电压保护措施及配置位置如图1-1所示。 S F RV RCD T D C U M RC 1 RC 2 RC 3 RC 4 L B S DC 图9-10 过电压保护措施及装置位置 F ─避雷器 D ─变压器静电屏蔽层 C ─静电感应过程电压抑制电容 1RC ─阀测浪涌过电压抑制用RC 电路 2RC ─阀测浪涌过电压抑制用反向阻断式RC 电路 RV─压敏电阻过电压抑制器 3RC ─阀器件换相过电压抑制用RC 电路 4RC ─直流测RC 抑制电路 RCD─阀器件关断过电压抑制用RCD 电路

过电压保护所使用的元器件有阻容吸收电路、非线性电阻元件硒堆和压敏电阻等,其中RC 过电压抑制电路最为常见。由于电容两端电压不能突变,所以能有效抑制尖峰过电压。串联电阻能消耗部分产生过电压的能量,并抑制回路的振荡。 视变流装置和保护装置点不同,过电压保护电路可以有不同的连接方式。图9-11所示为RC 过电压抑制电路用于交流测过电压抑制的连接方式。 + -+ -a) b) 网侧 阀侧 直流侧 C a R a C a R a C dc R dc C dc R dc C a R a C a R a 图9-11 RC 过电压抑制电路联结方式 a)单相 b)三相 二、过电流保护 过电流分为过载和短路两种情况。过流保护常采用的有快速熔断器、直流快速断路器、过电流继电器保护措施,以晶闸管变流电路为例,其位置配置如图2-1所示。

变频器过压原因分析

变频器故障分析与处理 变频调速系统以其优越于直流传动的特点,在很多场合中都被作为首选的传动方案,现代变频调速基本都采用16位或32位单片机作为控制核心,从而实现全数字化控制,调速性能与直流调速基本相近,但使用变频器时,其维护工作要比直流复杂,一旦发生故障,企业的普通电气人员就很难处理,这里就变频器常见的故障分析一下故障产生的原因及处理方法。 一、参数设置类故障 常用变频器在使用中,是否能满足传动系统的要求,变频器的参数设置非常重要,如果参数设置不正确,会导致变频器不能正常工作。 1、参数设置 常用变频器,一般出厂时,厂家对每一个参数都有一个默认值,这些参数叫工厂值。在这些参数值的情况下,用户能以面板操作方式正常运行的,但以面板操作并不满足大多数传动系统的要求。所以,用户在正确使用变频器之前,要对变频器参数时从以下几个方面进行: (1)确认电机参数,变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。 (2)变频器采取的控制方式,即速度控制、转距控制、PID控制或其他方式。采取控制方式后,一般要根据控制精度,需要进行静态或动态辨识。 (3)设定变频器的启动方式,一般变频器在出厂时设定从面板启动,用户可以根据实际情况选择启动方式,可以用面板、外部端子、通讯方式等几种。 (4)给定信号的选择,一般变频器的频率给定也可以有多种方式,面板给定、外部给定、外部电压或电流给定、通讯方式给定,当然对于变频器的频率给定也可以是这几种方式的一种或几种方式之和。正确设置以上参数之后,变频器基本上能正常工作,如要获得更好的控制效果则只能根据实际情况修改相关参数。 2、参数设置类故障的处理 一旦发生了参数设置类故障后,变频器都不能正常运行,一般可根据说明书进行修改参数。如果以上不行,最好是能够把所有参数恢复出厂值,然后按上述步骤重新设置,对于每一个公司的变频器其参数恢复方式也不相同。 二、过压类故障 变频器的过电压集中表现在直流母线的支流电压上。正常情况下,变频器直流电为三相全波整流后的平均值。若以380V线电压计算,则平均直流电压Ud= 1.35 U线=513V。在过电压发生时,直流母线的储能电容将被充电,当电压上至760V左右时,变频器过电压保护动作。因此,变频器来说,都有一个正常的工作电压范围,当电压超过这个范围时很可能损坏变频器,常见的过电压有两类。 1、输入交流电源过压 这种情况是指输入电压超过正常范围,一般发生在节假日负载较轻,电压升高或降低而线路出现故障,此时最好断开电源,检查、处理。 2、发电类过电压 这种情况出现的概率较高,主要是电机的同步转速比实际转速还高,使电动机处于发电状态,而变频器又没有安装制动单元,有两起情况可以引起这一故障。 (1)当变频器拖动大惯性负载时,其减速时间设的比较小,在减速过程中,变频器输出的速度比较快,而负载靠本身阻力减速比较慢,使负载拖动电动机的转速比变频器输出的频率所对应的转速还要高,电动机处于发电状态,而变频器没有能量回馈单元,因而变频器支流直流回路电压升高,超出保护值,出现过压报警现象,而纸机中经常发生在干燥部分,处理这种故障可以增加再生制动单元,或者修改变频器参数,把变频器减速时间设的长一些。增加再生制动单元功能包括能量消耗型,并联直流母线吸收型、能量回馈型。能量消耗型在变频器直流回路中并联一个制动电阻,通过检测直流母线电压来控制功率管的通

安川变频器的调试及参数设置表齐全

第一部分变频器的操作方法 一、操作面板各部的名称: 图1 操作面板布置 二、操作键的功能: 1.LOCAL/REMOTE:用数字操作器运行(COCAL)和用控制回路端子运行(REMOTE)切换时按下,由参数(o2-01)可设定这个键的有效/无效。 2.MENU:菜单键,按此键可进入参数设置。 3.ESC:按一下ESC键,则回到前一个状态。 4.JOG:操作器运行时的点动运行键。 5.FWD/REV:操作器运行时,运转方向切换键。 6.RESET:设定参数数值时,选择操作位;故障发生时,作为故障复位键。 7.增加键:选择方式、组、功能、参数的名称、设定值(增加)时按下此键。 8.减少键:选择方式、组、功能、参数的名称、设定值(减少)时按下此键。 9.DATA/ENTER:各模式、功能、参数、设定值确认时按下此键。10.RUN:操作器运行时,按下此键起动变频器。 11.STOP:操作器运行时,按下此键停止变频器;控制回路端子运行时,由参数(o2-01)可以设定这个键的有效/无效。 三、方式的切换 按(MENU)键,表示驱动方式,然后按?、?键切换方式。读取、设定各方式中参数时,按(DATA/ENTER)键。从参数的读取、设定状态返回前一状态时,按(ESC)键。具体操作如下图: 图2 方式的切换 四、操作举例 把加速时间从10.0Sec变更为20.0Sec,请按以下顺序设定参数:五、在驱动方式下的操作

在驱动方式下,可监视频率指令、输出频率、输出电流、输出电压、输入输出状态等及显示异常内容、异常记录等。 常用监视参数: 图3 驱动方式下的操作方法 第二部分变频器的调整 一、确认电机旋转方向 把电梯的检修开关置于检修位置,按检修上行或检修下行按钮,电梯将以检修速度上行或下行,观察电梯的运行方向是否跟所要求的方向一致,速度是否正常。如有异常,按下表中的方法进行处理:

变频器常见故障及处理

变频器常见故障 (1) 变频器驱动电机抖动 在接修一台安川616PC5-5.5kW变频器时,客户送修時标明电机行抖动,此时第一反应是输出电压不平衡.在检查功率器件后发现无损坏,给变频器通电显示正常,运行变频器,测量三相输出电压确实不平衡,测试六路数出波形,发现W相下桥波形不正常,依次测量该路电阻,二极管,光耦。发现提供反压的一二极管击穿,更换后,重新上电运行,三相输出电压平衡,修复。 (2) 变频器频率上不去 在接修一台普传220V,单相,1.5kW变频器时,客户标明频率上不去,只能上到20Hz,此时第一想到的是有可能参数设置不当,依次检查参数,发现最高频率,上限频率都为60Hz,可见不是参数问题,又怀疑是频率给定方式不对,后改成面板给定频率,变频器最高可运行到60Hz,由此看来,问提出在模拟量输入电路上,检查此电路时,发现一贴片电容损坏,更换后,变频器正常。 (3) 变频器跳过流 在接修一台台安N2系列,400V,3.7kW变频器时,客户标明在起动时显示过电流。在检查模块确认完好后,给变频器通电,在不带电机的情况下,启动一瞬间显示OC2,首先想到的是电流检测电路损坏,依次更换检测电路,发现故障依然无法消除。于是扩大检测范围,检查驱动电路,在检查驱动波形时发现有一路波形不正常,检查其周边器件,发现一贴片电容有短路,更换后,变频器运行良好。 (4) 变频器整流桥二次损坏 在接修一台LG SV030IH-4变频器时,检查时发现整流桥损坏,无其它不良之处,更换后,带负载运行良好。不到一个月,客户再次拿来。检查时发现整流桥再次损坏,此时怀疑变频器某处绝缘不好,单独检查电容,正常。单独检查逆变模块,无不良症状,检查各个端子与地之间也未发现绝缘不良问题,再仔细检查,发现直流母线回路端子P-P1与N之间的塑料绝缘端子有炭化迹象,拆开端子查看,果然发现端子碳化已相当严重,从安全角度考虑,更换损坏端子,变频器恢复正常运行,正常运行已有半年多。 (5) 变频器小电容炸裂 在接修一台三肯SVF7.5kW变频器时,检测时发现逆变模块损坏,更换模块后,变频器正常运行。由于该台机器运行环境较差,机器内部灰尘堆积严重,且该台机器使用年限较长,决

(完整word版)落锤冲击试验.doc

文件编号: 作业指导书 落锤冲击试验 颁发日期 : 第一章落锤冲击试验 1适用范围 本指导书适用于管材的抽样检验和作为连续生产时抽样检验的依据。 2试验依据 GB /T14152 -2001热塑性塑料管材耐外冲击性能试验方法时针旋转法 (eqv ISO 3127:1994) 3试验原理 以规定质量和尺寸的落锤从规定高度冲击试验样品规定的部位, 即可测出该批产品的真实冲击率(整批产品进行试验时,其冲击破坏总数除以冲击总数即为真实冲击率TIR ,以百分数表示)。 TIR 最大允许值为10% 4试验设备 4.1 落锤冲击试验 落锤冲击试验机由试验台、备件箱、电器柜和控制仪表组成。 4.1.1 试验台由试件升降机构、落锤提升机构、防二次冲击机构、落 锤 导向装置等部分总成。 4.1.1.1 试件升降机构:用于安装不同规格的管材试件。 4.1.1.2 落锤提升机构由提升架和落锤冲击架两部分组成,落锤冲击架可以安装不同质量的落锤,同时使落锤沿导向导轨自由准确的落下,

作业指导书 落锤冲击试验 颁发日期 : 落锤的规则可以根据试件的外形尺寸进行更换。 4.1.1.3 防二次冲击机构使防止落锤冲击反弹后再次下落形成对试件 的再次冲击,以保证得到正确的实验结果。 4.1.1.4 落锤导向装置保证落锤在铅直方向自由落下。导向管选取用剩磁材料,以保证落锤下落时不受影响,导向管下部开活动门,以便安装落锤。 4.2 电器控制柜各按钮功能如下: 4.2.1 空气开关:控制系统总电源开合。 4.2.2 吸盘旋钮:用于控制吸盘有无吸力。 4.2.3 捕捉旋钮:用于控制捕捉机构在落锤第一次冲击试样后对落锤 进行捕捉。 4.2.4 落锤上升按钮:按动此按钮,吸盘吸附锤体上升至预期位置。4.2.5 落锤下降按钮:落锤冲击试样结束后,按动此按钮,使吸盘下 降至规定位置。 4.2.6 落锤停止按钮:吸盘在上升或下降过程中按动此按钮,吸盘可 随时停止。 4.2.7 设置:该设置为双向显示的智能数控仪,用于设置落锤的冲击 高度。 5试样的制备 5.1 试样的制备:试样应从一批或连续生产的管材中随机抽取切割而

消弧消谐及过电压保护装置

AL-XHZ系列消弧消谐及过电压保护装置 一、概述 传统消弧技术概述 长期以来,我国3~66KV的电网大多采用中性点不接地的运行方式。这种电网具有结构简单、投资小,供电可靠性高的优点。该电网发生稳定单相接地故障时,系统线电压不变,只是非故障相的对地电压升高到线电压,虽然该系统中的电气设备的绝缘均可承受长期线电压的强度可以带故障运行两小时。但是,如果系统发生的单向接地故障为间歇性弧光接地,则会在系统中产生高达3.5倍相电压峰值的过电压,如此高的过电压如果数小时作用于电网,会对电气设备的绝缘造成损伤,甚至会造成健全相对地绝缘击穿,进而发展成为相间短路事故。在间歇性弧光接地过程中,还会形成多频段振荡回路,不仅会产生高幅值的相对地过电压,而且还可能出现高幅值相间过电压,使相间绝缘闪络,造成相间短路事故。 随着我国对城市及农村电网的大规模技术改造,城市、农村的配电网必定向电缆化发展,系统对地电容电流在逐渐增大,弧光接地过电压问题也日益严重起来。运行经验证明,当这类电网发展到一定规模时,内部过电压,特别是电网发生单相间歇性孤光接地时产生的孤光接地过电压,及特殊条件下产生的铁磁谐振过电压已成为这类电网设备安全运行的一大威胁,其中以单相弧光接地过电压最为严重。为了解决上述问题,不少电网在电网中性点装设消弧线圈,当系统发生单相弧光接地时,利用消弧线圈产生的感性电流对故障点电容电流进行补偿,使流经故障电流减小,从而达到自然熄弧的目的。运行经验表明,虽然消弧线圈对抑制间歇性弧光接地过电压有一定作用,但在使用中也发现消弧线圈存在的一些问题。 1、由于电网运行方式的多样化及弧光接地点的随机性,消弧线圈要对电容电流进行有效补偿却有难度,且消弧线圈仅仅补偿了工频电容电流,而实际通过接地点的电流不仅有工频电容电流,而且包含大量的高频电流及阻性电流,严重时仅高频电流及阻性电流就可以维持电弧的持续燃烧。 2、当电网发生断线、非全向、同杆线路的电容耦合等非接地故障,使电网的不对称电压升高,可能导致消弧线圈的自动调节控制器误判电网发生接地而动作,这时将会在电网中产生很高的中性点位移电压,造成系统中一相或两相电压升高很多,以致损坏电网中的其它设备。 3、消弧线圈体积大,组件多,成本高,安装所占场地较大,运行维护复杂,而且随着电网的扩大,消弧线圈也要随之更换,不利于电网的远景规划。

相关文档