文档库 最新最全的文档下载
当前位置:文档库 › 广东省惠州市2012届高三模拟考试数学 (理科)及答案

广东省惠州市2012届高三模拟考试数学 (理科)及答案

广东省惠州市2012届高三模拟考试数学 (理科)及答

本试卷共4页,21小题,满分150分。考试用时120分钟。 注意事项:

1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。不按以上要求作答的答案无效。 参考公式:锥体的体积公式1

3

V Sh =

,其中S 是锥体的底面积,h 为锥体的高. 一、选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项符合题目要求.

1.集合{4,5,3}M m =-,{9,3}N =-,若M

N ≠?,则实数m 的值为( )

A .3或1-

B .3

C .3或3-

D .1- 2.设,a b 为实数,若复数121i

i a bi

+=++,则( ) A .1,3a b ==

B .3,1a b ==

C .13,22a b =

= D .31,22

a b == 3.“0a >”是“2

0a a +≥”的( )条件

A .充分非必要

B .必要非充分

C .充要

D .非充分非必要

4.公差不为零的等差数列{}n a 的前n 项和为n S ,若4a 是37a a 与的等比中项,832S =, 则10S 等于( )

A .18

B .24

C .60

D .90

5.将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么互不相同的安排方法的种数为 ( ) A .10 B .20 C .30 D .40

6.函数()sin()(0,0,||)2

f x A x A πωφωφ=+>><的部分图象

如图示,则将()y f x =的图象向右平移6

π

个单位后,得到的

图象解析式为 ( )

A .y =sin 2x

B .y =cos 2x

C .y =2sin(2)3x π+

D .y =sin(2)6

x π- y

1 6

π

1112

π

x

O

7.已知双曲线12

2

2

=-y x 的焦点为21,F F ,点M 在双曲线上,且120MF MF ?=,则点M 到x 轴的距离为( ) A .3 B .

3

3

2 C .34 D .35

8.定义函数D x x f y ∈=),(,若存在常数C ,对任意的D x ∈1,存在唯一的D x ∈2,使得

C x f x f =+2

)

()(21,则称函数)(x f 在D 上的均值为C .已知

]100,10[,lg )(∈=x x x f ,则函数]100,10[lg )(∈=x x x f 在上的均值为( )

A .

10

7 B .

4

3 C . 23

D .10

二、填空题(本大题共7小题,分为必做题和选做题两部分.每小题5分,满分30分) (一)必做题:第9至13题为必做题,每道试题考生都必须作答. 9.某校对全校男女学生共1600名进行健康调查,选用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了10人,则该校的女生人数应是 人.

10.右图是某算法的程序框图,则程序运行后输出的结果是 .

11.12

32,2()log (1) 2.

x e x f x x x -?

,则((2))f f 的值为 . 12.由曲线2y x =,3

y x =围成的封闭图形面积为 . 13.已知5

2

315x x ??

-

??

?

的展开式中的常数项为T ,()f x 是以T 为周期的 偶函数,且当[0,1]x ∈时,()f x x =,若在区间[1,3]-内,函数()()g x f x kx k =--有4个零点,则实数k 的取值范围是 .

(二)选做题:第14、15题为选做题,考生只能选做其中一题,两题全答的,只计前一题的得分。

14.(坐标系与参数方程选做题)曲线4cos 23sin x y θ

θ

=???=??(θ为参数)上一点P 到点()2,0A -、

()2,0B 距离之和为 .

开始

0,1s n == ()s s n n =+? 1n n =+

3?n >

输出s

结束

是 否

15.(几何证明选讲选做题)如图,已知直角三角形ABC 中,

90ACB ∠=,4BC =,3AC =,以AC 为直径作圆

O 交AB 于D ,则CD =_______________.

三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)

设向量cos sin m x x =(,),(0,)x π∈,(1,3)n =.

(1)若||5m n -=,求x 的值; (2)设()()f x m n n =+?,求函数()f x 的值域.

17.(本小题满分12分)

一个盒子装有六张卡片,上面分别写着如下六个定义域为R 的函数:1()f x x =,

22()f x x =,33()f x x =,4()sin f x x =,5()cos f x x =,6()2f x =.

(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇

函数的概率;

(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数

的卡片则停止抽取,否则继续进行,求抽取次数ξ的分布列和数学期望.

18.(本小题满分14分)

已知四棱锥P -ABCD 的三视图如下图所示,E 是侧棱PC 上的动点. (1)求四棱锥P -ABCD 的体积;

(2)是否不论点E 在何位置,都有BD ⊥AE ?证明你的结论; (3)若点E 为PC 的中点,求二面角D -AE -B 的大小.

19.(本小题满分14分)

A

B

C

D

O

第15题图

已知数列}{n a 满足:1211,,2

a a ==

且2[3(1)]22[(1)1]0,n n n n a a ++--+--=*n N ∈.

(1)求3a ,4a ,5a ,6a 的值及数列}{n a 的通项公式; (2)设n n n a a b 212?=-,求数列}{n b 的前n 项和n S . 20.(本小题满分14分)

已知椭圆:C 22221(0)x y a b a b +=>>的离心率为6

3

,椭圆短轴的一个端点与两个焦

点构成的三角形的面积为

52

3

. (1)求椭圆C 的方程;

(2)已知动直线(1)y k x =+与椭圆C 相交于A 、B 两点.

①若线段AB 中点的横坐标为1

2

-,求斜率k 的值; ②已知点7

(,0)3

M -

,求证:MA MB ?为定值. 21.(本小题满分14分)

已知函数1ln (),(1)x

f x x x

+=

≥ (1)试判断函数)(x f 的单调性,并说明理由; (2)若()1

k

f x x ≥

+恒成立,求实数k 的取值范围; (3)求证: 2

2

[(1)!](1),()n n n e n N -*+>+∈.

惠州市2012届高三模拟考试

数学(理科)参考答案与评分标准

一.选择题:共8小题,每小题5分,满分40分

题号 1 2 3 4 5 6 7 8 答案

A

D

A

C

B

D

B

C

1.【解析】由M N ≠?可知39m -=-或33m -=,故选A .

2.【解析】1231

122

i a bi i i ++=

=++,因此31,22a b ==.故选D .

3.【解析】因为200a a a +≥?≥或1a ≤-,所以“0a >”能推出“2

0a a +≥”,

但“2

0a a +≥”不能推出“0a >”,故选A .

4.【解析】由2437a a a =得2111(3)(2)(6)a d a d a d +=++得1230a d +=,

再由8156

8322S a d =+

=得1278a d +=则12,3d a ==-, 所以10190

10602

S a d =+=.故选C 5.【解析】安排方法可分为3+2及2+3两类,则共有22

5220C A ?=种分法,故选B .

6.【解析】由图像知A=1,

311341264

T πππ

=-=,T π=?2ω=,由sin(2)16

π

φ?

+=,||2

π

φ<

3

2

π

π

φ+=

?6

π

φ=

?()sin(2)6

f x x π

=+,则图像向右

平移

6π个单位后得到的图像解析式为sin[2()]sin(2)666

y x x πππ

=-+=-,故选D . 7.【解析】设12,MF m MF n ==,由2

221212

||2

m n F F m n ?+==???-=?,得4m n ?=,

由121211||22F MF S m n F F d ?=?=?解得23

3

d =.故选B . 8.【解析】

C x x x f x f ==+2

)

lg(2)()(2121,从而对任意的]100,10[1∈x ,存在唯一的

]100,10[2∈x ,使得21,x x 为常数。充分利用题中给出的常数10,100.

令10001001021=?=x x ,当]100,10[1∈x 时,]100,10[1000

1

2∈=x x , 由此得.2

3

2)lg(21==

x x C 故选C . 二.填空题:共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只选做一

题.

9.760 10.27 11.2 12.

112. 13.10,4?? ???

. 14.8 15.

12

5

9.【解析】1600

,,1600,10,760200

x y x y x y y +=-=?

=男生女生则 . 10.【解析】答案:27.由框图的顺序,s =0,n =1,s =(s +n )n =(0+1)*1=1,n =n +1=2,依次循环

s=(1+2)*2=6,n =3,注意此刻3>3仍然是否,所以还要循环一次s =(6+3)*3=27,n =4, 此刻输出s =27.

11.【解析】11((2))(1)22f f f e -==?=.

12.【解析】结合图形可知所求封闭图形的面积为1

1

233400

111()()3412x x dx x x -=-=?.

13.【解析】按二项式公式展开得2T =,函数()()g x f x kx k =--有4个零点,

等价于函数1()y f x =与2(1)y k x =+,再利用数形结合可得10,4

k ??∈ ??

?

14.【解析】曲线4cos 23sin x y θ

θ

=???=??表示的椭圆标准方程为2211612x y +=,可知点()2,0A -、()2,0B 为椭圆的焦点,故28PA PB a +==.

15.【解析】ADC ∠为直径AC 所对的圆周角,则90ADC ∠=,在R

t A C B ?中,

CD AB ⊥,由等面积法有AB CD CA CB ?=?,故得125

CD =

. 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) 解:(1)

(cos 1,sin 3),m n x x -=--

由||5m n -=得2

2

cos 2cos 1sin 23sin 35x x x x -++-+= …………3分

整理得cos 3sin x x =- 显然cos 0x ≠ ∴3

tan 3

x =- …………4分 ∵(0,)x π∈,∴56x π

=

…………5分

(2)

(cos 1,sin 3),m n x x +=++

∴()()f x m n n =+?=(cos 1,sin 3)(1,3)x x ++cos 13sin 3x x =+++

=31

2(

sin cos )422

x x ++=2sin()46x π++…………8分

∵0x π<< ∴76

6

6

x π

π

π

<+

<

…………9分 ∴1sin()126x π-

<+≤12sin()26

x π

?-<+≤…………10分 ∴32sin()466

x π

<+

+≤,即函数()f x 的值域为(3,6].…………12分

17.(本小题满分12分)

解:(1)六个函数中是奇函数的有1()f x x =,33()f x x =,4()sin f x x =,

由这3个奇函数中的任意两个函数相加均可得一个新的奇函数.……………2分 记事件A 为“任取两张卡片,将卡片上的函数相加得到的函数是奇函数”,

由题意知23261

()5

C P A C == …………………4分

(2)ξ可取1,2,3,4 …………………………………………… 5分

13161(1)2C P C ξ===, 113311653

(2)10

C C P C C ξ==?=

1113321116543(3)20C C C P C C C ξ==??=

, 11113321111165431

(4)20

C C C C P C C C C ξ==???=………9分 故ξ的分布列为

……………10分

13317

123421020204

E ξ=?+?+?+?=

答:ξ的数学期望为7

4

……………………………12分

18.(本小题满分14分)

解:(1)由三视图可知,四棱锥P -ABCD 的底面是边长为1的正方形,

ξ

1 2 3 4

P

12 310 320 120

侧棱PC ⊥底面ABCD ,且PC =2. ………………………………………………1分 ∴11212333

P ABCD ABCD V S PC -=

=??=,即四棱锥P -ABCD 的体积为2

3.………3分 (2)不论点E 在何位置,都有BD ⊥AE. ………………………………………………4分 证明如下:连结AC ,∵ABCD 是正方形,∴BD ⊥AC. ………………………5分 ∵PC ⊥底面ABCD ,且BD ?平面ABCD ,∴BD ⊥PC. ………………………6分 又∵AC∩PC =C ,∴BD ⊥平面PAC. ………………………7分 ∵不论点E 在何位置,都有AE ?平面PAC.

∴不论点E 在何位置,都有BD ⊥AE. ………………………8分 (3)解法1:在平面DAE 内过点D 作DF ⊥AE 于F ,连结BF. ∵AD =AB =1,DE =BE =12+12=2,AE =AE =3, ∴Rt △ADE ≌Rt △ABE , 从而△ADF ≌△ABF ,∴BF ⊥AE.

∴∠DFB 为二面角D -AE -B 的平面角.……………………………………………10分 在Rt △ADE 中,DF =

AD·DE AE =1×23

=63, ∴BF =6

3.…………………………11分 又BD =2,在△DFB 中,由余弦定理得

cos ∠DFB =

2221

22

DF BF BD DF BF +-=-?,…………………………………………12分 ∴∠DFB =2π

3, ………………………………………………………13分

即二面角D -AE -B 的大小为

3.………………………………………………………14分

解法2:如图,以点C 为原点,CD ,CB ,CP 所在的直线分别为x ,y ,z 轴建立空间直角坐标系.则D(1,0,0),A(1,1,0),B(0,1,0),E(0,0,1),………………………………………9分 从而DA →=(0,1,0),DE →=(-1,0,1),BA →=(1,0,0),BE →

=(0,-1,1). 设平面ADE 和平面ABE 的法向量分别为

()1111,,n x y z =,()2222,,n x y z =

由1100n DA n DE ??=???=??111

00y x z =???

-+=?,取()11,0,1n = 由220

0n BA n BE ??=???=??22200

x y z =???

-+=?,取()20,1,1n =--…………11分

设二面角D -AE -B 的平面角为θ,则1212

11

cos 222

n n n n θ?-=

=

=-??,…………13分

∴θ=

2π3,即二面角D -AE -B 的大小为2π

3

.…………14分 注:若取()20,1,1n =算出3

π

θ=可酌情给分。

19.(本小题满分14分) 解:(1)经计算33=a ,414=

a ,55=a ,8

1

6=a . …………………………3分 当n 为奇数时,22+=+n n a a ,即数列}{n a 的奇数项成等差数列,

122)1(112-=?-+=∴-n n a a n ; …………………………5分

当n 为偶数,n n a a 21

2=

+,即数列}{n a 的偶数项成等比数列, n n n a a )2

1

()2

1

(1

22=?=∴-. …………………………7分 因此,数列}{n a 的通项公式为2

()1()

()2

n n n n a n ??

=???为奇数为偶数. …………………8分

(2) n

n n b )2

1()12(?-=, ………………………9分

n n n n n S )2

1

()12()21()32()21(5)21(3211132?-+?-++?+?+?

=∴- ① 2341

1111111()3()5()(23)()(21)()222222

n n n S n n +=?+?+?++-?+-? ②…………10分

①、②两式相减, 得

132)2

1

()12(])21()21()21[(2211 21+?--++++?=n n n n S 11)21()12(2

11]

)21(1[2121+-?----?+=n n n 1)21()32(23+?+-=n n . (12)

n

n n S )2

1()32(3?+-=∴. ………………………………14分

20.(本小题满分14分)

解:(1)因为22221(0)x y a b a b +=>>满足222a b c =+, 63

c a = ……2分

152223

b c ??=

,解得22

55,3a b ==,则椭圆方程为221553

x y += ……4分 (2)①将(1)y k x =+代入

22

155

3

x y +=中得2222(13)6350k x k x k +++-= ……6分 4

2

2

2

364(31)(35)48200k k k k ?=-+-=+>,2

122

631

k x x k +=-+ ……7分 因为AB 中点的横坐标为12-,所以2261312k k -=-+,解得3

3

k =± …………9分

②由(1)知2122631k x x k +=-+,212235

31

k x x k -=+

所以112212127777

(,)(,)()()3333

MA MB x y x y x x y y ?=++=+++ ……………11分

2121277()()(1)(1)33x x k x x =+++++2221212749

(1)()()39

k x x k x x k =++++++ (12)

222

2222357649(1)()()313319k k k k k k k -=+++-++++422

2316549319

k k k k ---=+++49= …14分

21.(本小题满分14分) 解:(1)2

ln ()x f x x

'=- 1≥x 0ln ≥∴x 0)('

≤∴x f 故()f x 在递减 …

3分 (2)

………5分

再令x

x h x x x h 11)(ln )('

-=-=则 0)(1'

≥≥x h x 则

在上递增。

,从而

上也单调递增

………8分

(3)方法1: 由(2)知:恒成立,即

令 则

(10)

,, (12)

叠加得:

22

211

1

ln 123(1)2(

)

1223

(1)

112(1)2212

n n n

n n n n n n n ??????+>-+++

?

???+=--

>-+>-++

2222)1(321->+????∴n e n n

(14)

方法2:用数学归纳法证明(略)。

2018年高三数学模拟试题理科

黑池中学2018级高三数学期末模拟试题理科(四) 一、选择题:本大题共12小题,每小题5分,共60分. 1.已知集合{}2,101,, -=A ,{} 2≥=x x B ,则A B =I A .{}2,1,1- B.{ }2,1 C.{}2,1- D. {}2 2.复数1z i =-,则z 对应的点所在的象限为 A .第一象限 B.第二象限 C.第三象限 D.第四象限 3 .下列函数中,是偶函数且在区间(0,+∞)上单调递减的函数是 A .2x y = B .y x = C .y x = D .2 1y x =-+ 4.函数 y=cos 2(x + π4 )-sin 2(x + π4 )的最小正周期为 A. 2π B. π C. π2 D. π 4 5. 以下说法错误的是 ( ) A .命题“若x 2 -3x+2=0,则x=1”的逆否命题为“若x≠1,则x 2 -3x+2≠0” B .“x=2”是“x 2 -3x+2=0”的充分不必要条件 C .若命题p:存在x 0∈R,使得2 0x -x 0+1<0,则﹁p:对任意x∈R,都有x 2 -x+1≥0 D .若p 且q 为假命题,则p,q 均为假命题 6.在等差数列{}n a 中, 1516a a +=,则5S = A .80 B .40 C .31 D .-31 7.如图为某几何体的三视图,则该几何体的体积为 A .π16+ B .π416+ C .π8+ D .π48+ 8.二项式6 21()x x +的展开式中,常数项为 A .64 B .30 C . 15 D .1 9.函数3 ()ln f x x x =-的零点所在的区间是 A .(1,2) B .(2,)e C . (,3)e D .(3,)+∞ 10.执行右边的程序框图,若0.9p =,则输出的n 为 A. 6 B. 5 C. 4 D. 3 开始 10n S ==, S p

高考模拟复习试卷试题模拟卷3月高三模拟考试理科数学试题卷

高考模拟复习试卷试题模拟卷3月高三模拟考试理科数学试题卷 时量 120分钟总分 150分 考生注意: 1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对条形码上的准考证号、姓名、考试科目与考生本人准考证号、姓名是否一致。 2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。答卷用黑色墨水签字笔在答题卡上书写作答,在试题卷上作答的答案无效。 3.考试结束,监考员将试题卷、答题卡一并收回。 一:选择题:(本大题共12个小题,每小题5分,满分60分.在每个小题给出的四个选项中,只有一项是符合题目要求的) 1.已知复数i z -= 11 ,则z z -对应的点所在的象限为 A .第一象限B .第二象限C .第三象限D .第四象限 2.已知33 cos 25 π???-= ???,且2π?<,则tan ?为 A .43-B .43C .34-D .3 4 3.下列命题中,真命题是 A .0R x ?∈,0 0x e ≤B .R x ?∈,22x x > C .0a b +=的充要条件是 1a b =-D .1a >,1b >是1ab >的充分条件 4.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 为正态分布N(-1,1)的密度曲线)的点的个数的估计值为 A .1193 B .1359 C .2718 D .3413 5.若圆C:222430x y x y ++-+=关于直线260ax by ++=对称,则由点(,)a b 向圆所作 的切线长的最小值是 A .2B .3C .4D .6

2020-2021高考理科数学模拟试题

高三上期第二次周练 数学(理科) 第Ⅰ卷(选择题,共60分) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.设集合{}=0123A ,,,, {}=21B x x a a A =-∈,,则=( )A B ? A. {}12, B. {}13, C. {}01 , D. {}13-, 2.已知i 是虚数单位,复数z 满足()12i z i +=,则z 的虚部是( ) A. i - B. i C. 1- D. 1 3.在等比数列{}n a 中, 13521a a a ++=, 24642a a a ++=, 则数列{}n a 的前9项的和9S =( ) A. 255 B. 256 C. 511 D. 512 4.如图所示的阴影部分是由x 轴,直线1x =以及曲线1x y e =-围成, 现向矩形区域OABC 内随机投掷一点,则该点落在阴影区域的概率是( ) A. 1e B. 21 e e -- C. 11e - D. 11e - 5.在 52)(y x x ++ 的展开式中,含 2 5y x 的项的系数是( ) A. 10 B. 20 C. 30 D. 60 6.已知一个简单几何体的三视图如右图所示,则该几何体的 体积为 ( ) A. 36π+ B. 66π+ C. 312π+ D. 12 7.已知函数 ())2log(x a x f -= 在 )1,(-∞上单调递减,则a 的取值范围是( ) A. 11<<

2019届高三联合模拟考试理科数学试题

东北师大附中 重庆一中 2019届高三联合模拟考试 吉大附中 长春十一高中 理科数学试题 吉林一中 松原实验高中 本试卷共23题,共150分,共6页。时间120分钟。 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。 2.选择题必须用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合 题目要求的。 1.已知集合{|3}A x x =∈Z ≤,{|ln 1}B x x =<,集合A 与B 关系的韦恩图如图所示,则阴影部分所表示的集合为 A .{|0}x x e << B .{123},, C .{012},, D .{12}, 2.i 为虚数单位,复数1 i 2 += z 在复平面内对应的点的坐标为 A .)11(,- B .)11(, C .)11(-, D .)11(--, 3.等比数列{}n a 各项均为正数,若11a =,2128n n n a a a +++=,则{}n a 的前6项和为 A .1365 B .63 C . 32 63 D . 1024 1365 4.如图,点A 为单位圆上一点,3π =∠xOA ,点A 沿单位圆逆时针方向旋转角α到点)5 4 53(,-B , 则=αcos A .10 334- B .10 334+- C . 10334- D .103 34+- 5.已知双曲线22 22:1(00)x y C a b a b -=>>,的右焦点到渐近线的距离等于 实轴长,则此双曲线的离心率为 A B C D .2 6.已知1536a =,433b =,25 9c =,则 A .c a b << B .c b a << C .b c a << D .b a c << 7.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人, 他在所著的《数书九章》中提出的多项式求值的秦九韶算法, 至今仍是比较先进的算法.如右图所示的程序框图给出了利用 秦九韶算法求某多项式值的一个实例.若输入n ,x 的值分别 为5,2,则输出v 的值为 A .64 B .68 C .72 D .133 8.如图所示是某三棱锥的三视图,其中网格纸中每个小正方形的边 长为1,则该三棱锥的外接球的体积为 A .4π B .16 3π C .16π D . 323 π 9.为了丰富教职工的文化生活,某学校从高一年级、高二年级、高三年级、行政部门各挑选出4位教师组成合唱团,现要从这16人中选出3人领唱,要求这3人不能都是同一个部门的,且在行政部门至少选1人,则不同的选取方法的种数为 A .336 B .340 C .352 D .472 10.在正方体1111ABCD A B C D -中,点E 是棱11B C 的中点,点F 是线段1CD 上的一个动点.有以下 三个命题: ①异面直线1AC 与1B F 所成的角是定值; ②三棱锥1B A EF -的体积是定值; ③直线1A F 与平面11B CD 所成的角是定值. 其中真命题的个数是 A .3 B .2 C .1 D .

2019年高考数学模拟试题含答案

F D C B A 2019年高考数学模拟试题(理科) 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。 3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。 4.考试结束后,将本试卷和答题卡一并收回。 一.选择题:本大题共12个小题,每小题5分,共60分。在每小题给出的四个选项中只有一项是符合题目要求的 1.已知集合}032{2>--=x x x A ,}4,3,2{=B ,则B A C R ?)(= A .}3,2{ B .}4,3,2{ C .}2{ D .φ 2.已知i 是虚数单位,i z += 31 ,则z z ?= A .5 B .10 C . 10 1 D . 5 1 3.执行如图所示的程序框图,若输入的点为(1,1)P ,则输出的n 值为 A .3 B .4 C .5 D .6 (第3题) (第4题) 4.如图,ABCD 是边长为8的正方形,若1 3 DE EC =,且F 为BC 的中点,则EA EF ?=

A .10 B .12 C .16 D .20 5.若实数y x ,满足?? ???≥≤-≤+012y x y y x ,则y x z 82?=的最大值是 A .4 B .8 C .16 D .32 6.一个棱锥的三视图如右图,则该棱锥的表面积为 A .3228516++ B .32532+ C .32216+ D .32216516++ 7. 5张卡片上分别写有0,1,2,3,4,若从这5张卡片中随机取出2张,则取出的2张卡片上的数字之和大于5的概率是 A . 101 B .51 C .103 D .5 4 8.设n S 是数列}{n a 的前n 项和,且11-=a ,11++?=n n n S S a ,则5a = A . 301 B .031- C .021 D .20 1 - 9. 函数()1ln 1x f x x -=+的大致图像为 10. 底面为矩形的四棱锥ABCD P -的体积为8,若⊥PA 平面ABCD ,且3=PA ,则四棱锥 ABCD P -的外接球体积最小值是

高考数学模拟试题

高考数学模拟试题 (第一卷) 一、选择题:(每小题5分,满分60分) 1、已知集合A={x|x 2+2ax+1=0}的真子集只有一个,则a 值的集合是 A .(﹣1,1); B .(﹣∞,﹣1)∪[1,+∞]; C .{﹣1,1}; D .{0} 2、若函数y=f(x)的反函数y=f -1(x)满足f -1(3)=0,则函数y=f(x+1)的图象必过点: A .(0,3); B .(-1,3); C .(3,-1); D .(1,3) 3、已知复数z 1,z 2分别满足| z 1+i|=2,|z 2-3-3i|=3则| z 1-z 2|的最大值为: A .5; B .10; C .5+13; D .13 4、数列 ,4 3211,3211,211++++++ ……的前n 项和为: A .12+n n ; B .1+n n ; C .222++n n ; D .2+n n ; 5、极坐标方程ρsin θ=sin2θ表示的曲线是: A .圆; B .直线; C .两线直线 D .一条直线和一个圆。 6、已知一个复数的立方恰好等于它的共轭复数,则这样的复数共有: A .3个; B .4个; C .5个; D .6个。 7、如图,在正方体ABCD —A 1B 1C 1D 1中,E 、F 是异面直 线AC ,A 1D 的公垂线,则EF 和ED 1的关系是: A . 异面; B .平行; C .垂直; D .相交。 8、设(2-X)5=a 0+a 1x+a 2x+…+a 5x 5, 则a 1+a 3+a 5的值为: A .-120; B .-121; C .-122; D .-243。 9、要从一块斜边长为定值a 的直角三角形纸片剪出一块圆形纸片,圆形纸片的最大面积为: A .2 πa 2; B .24223a π-; C .2πa 2; D .2)223(a π- 10、过点(1,4)的直线在x,y 轴上的截距分别为a 和b(a,b ∈R +),则a+b 的最小值是: A .9; B .8; C .7; D .6; 11、三人互相传球,由甲开始发球并作为第一次传球。经过5次传球后,球仍回到甲手中,则不同的传球方式共有: A .6种; B .8种; C .10种; D .16种。 12、定义在R 上的偶函数f(x)满足f(x+2)=f(x -2),若f(x)在[﹣2,0]上递增,则 A .f(1)>f(5.5) ; B .f(1)

高三数学高考模拟题(一)

高三数学高考模拟题 (一) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高三数学高考模拟题(一) 一. 选择题(12小题,共60分,每题5分) 1. 已知集合{}{} M N x x x x Z P M N ==-<∈=?13302,,,,又|,那么集合 P 的子集共有( ) A. 3个 B. 7个 C. 8个 D. 16个 2. 函数y x =-的反函数的图象大致是( ) A B C D 3. 已知直线l 与平面αβγ、、,下面给出四个命题: ()//(),()()////12314若,,则若,若,,则若,,则l l l l l ααββαββγαγγγββ αβαβ⊥⊥⊥⊥⊥?⊥⊥? 其中正确命题是( ) A. (4) B. (1)(4) C. (2)(4) D. (2)(3) 4. 设cos ()31233 x x x =-∈-,且,,则ππ 等于( ) A B C D ....±±±± ππππ 18929518 5. 设a b c a b c =+=-=sin cos cos 1313221426 2 2 ,,,则、、之间的大小关系是( )

A b c a B c a b C a c b D c b a ....>>>>>>>> 6. ()15+x n 展开式的系数和为a x n n ,()572+展开式的系数和为 b a b a b n n n n n n ,则lim →∞-+234等于( ) A B C D ....- --12131 71 7.椭圆 x y M 22 4924 1+=上有一点,椭圆的两个焦点为F F MF MF MF F 121212、,若,则⊥?的面积是( ) A. 96 B. 48 C. 24 D. 12 8. 已知椭圆x y t 22 1221 1+-=()的一条准线的方程为y =8,则实数t 的值为( ) A. 7和-7 B. 4和12 C. 1和15 D. 0 9. 函数y x x x =+2sin (sin cos )的单调递减区间是( ) A k k k Z B k k k Z C k k k Z D k k k Z .[].[].[].[]28278 27821588 58 3878 ππππ ππππππ ππ ππππ-+∈++∈-+ ∈+ +∈,,,, 10. 如图在正方体ABCD -A B C D 1111中,M 是棱DD 1的中点,O 为底面ABCD 的中心,P 为棱A B 11上任意一点,则直线OP 与直线AM 所成的角( ) A. 是π4 B. 是π 3 C. 是π 2 D. 与P 点位置有关 1 A 11. 在平面直角坐标系中,由六个点O(0,0)、A(1,2)、B(-1,-2)、C(2,4)、D(-2,-1)、E(2,1)可以确定不同的三角形共有( )

高三(下)模拟考试数学及答案(理科)

重庆市江北中学高级高三(下)模拟考试(4月月考) 数学试题(理科) 一、选择题:本大题共12小题,每小题5分,共计60分。在每小题列出的4个选项中,只 有一项符合题目要求。 1.i i i i ++-1) 21)(1(,复数为虚数单位等于 ( ) A .i --2 B .i +-2 C .i -2 D .i +2 2.已知向量在则),0,3(),1,2(-=-=方向上的投影为 ( ) A .5- B .5 C .—2 D .2 3.函数x x x x f 2cos cos sin 3)(+=的单调增区间为 ( ) A .Z k k k ∈+ - ],6 ,3[π ππ π B .Z k k k ∈+ - ],62,32[π ππ π C .Z k k k ∈+-],12 ,125[π πππ D .Z k k k ∈+-],12 ,1252[π πππ 4.已知)2,1(),1,2(-N M ,在下列方程的曲线上,存在点P 满足|MP|=|NP|的曲线方程是( ) A .013=+-y x B .0342 2 =+-+x y x C .12 22 =+y x D .12 22 =-y x 5.若两个平面βα与相交但不垂直,直线m 在平面βα则在平面内,内 ( ) A .一定存在与直线m 平行的直线 B .一定不存在与直线m 平行的直线 C .一定存在与直线m 垂直的直线 D .一定不存在与直线m 垂直的直线 6.已知)tan(,cos )sin(),2 (,53sin βααβαπβπ β+=+<<=则且= ( ) A .1 B .2 C .—2 D .25 8 7.已知圆x x g x x f y x y x C 2)(,log )()0,0(4:22 2 ==≥≥=+与函数的图象分别交于 2 22 12211),,(),,(x x y x B y x A +则等于 ( ) A .16 B .8 C .4 D .2

高考数学模拟试题及答案.pdf

六大注意 1 考生需自己粘贴答题卡的条形码 考生需在监考老师的指导下,自己贴本人的试卷条形码。粘贴前,注意核对一下条形码上的姓名、考生号、考场号和座位号是否有误,如果有误,立即举手报告。如果无误,请将条形码粘贴在答题卡的对应位置。万一粘贴不理想,也不要撕下来重贴。只要条形码信息无误,正确填写了本人的考生号、考场号及座位号,评卷分数不受影响。 2 拿到试卷后先检查有无缺张、漏印等 拿到试卷后先检查试卷有无缺张、漏印、破损或字迹不清等情况,尽管这种可能性非常小。如果有,及时举手报告;如无异常情况,请用签字笔在试卷的相应位置写上姓名、考生号、考场号、座位号。写好后,放下笔,等开考信号发出后再答题,如提前抢答,将按违纪处理。 3 注意保持答题卡的平整 填涂答题卡时,要注意保持答题卡的平整,不要折叠、弄脏或撕破,以免影响机器评阅。 若在考试时无意中污损答题卡确需换卡的,及时报告监考老师用备用卡解决,但耽误时间由本人负责。不管是哪种情况需启用新答题卡,新答题卡都不再粘贴条形码,但要在新答题卡上填涂姓名、考生号、考场号和座位号。 4 不能提前交卷离场 按照规定,在考试结束前,不允许考生交卷离场。如考生确因患病等原因无法坚持到考试结束,由监考老师报告主考,由主考根据情况按有关规定处理。 5 不要把文具带出考场 考试结束,停止答题,把试卷整理好。然后将答题卡放在最上面,接着是试卷、草稿纸。不得把答题卡、试卷、草稿纸带出考场,试卷全部收齐后才能离场。请把文具整理好,放在座次标签旁以便后面考试使用,不得把文具带走。 6 外语听力有试听环 外语考试14:40入场完毕,听力采用CD播放。14:50开始听力试听,试听结束时,会有“试听到此结束”的提示。听力部分考试结束时,将会有“听力部分到此结束”的提示。听力部分结束后,考生可以 开始做其他部分试题。 高考数学模拟试题 (一)

高三数学理科模拟试题及答案

一、选择题: 1. 10i 2-i = A. -2+4i B. -2-4i C. 2+4i D. 2-4i 解:原式10i(2+i) 24(2-i)(2+i) i = =-+.故选A. 2. 设集合{}1|3,| 04x A x x B x x -?? =>=

A. 10 10 B. 15 C. 310 10 D. 35 解:令1AB =则12AA =,连1A B 1C D ∥1A B ∴异面直线BE 与1CD 所成的角即1A B 与BE 所成的角。在1A BE ?中由余弦定理易得1310 cos A BE ∠=。故选C 6. 已知向量()2,1,10,||52a a b a b =?=+=,则||b = A. 5 B. 10 C.5 D. 25 解:222250||||2||520||a b a a b b b =+=++=++||5b ∴=。故选C 7. 设323log ,log 3,log 2a b c π===,则 A. a b c >> B. a c b >> C. b a c >> D. b c a >> 解:322log 2log 2log 3b c <<∴> 2233log 3log 2log 3log a b a b c π<=<∴>∴>> .故选A. 8. 若将函数()tan 04y x πωω??=+> ? ? ? 的图像向右平移6 π个单位长度后,与函数tan 6y x πω?? =+ ?? ? 的图像重合,则ω的最小值为 A .1 6 B. 14 C. 13 D. 12 解:6tan tan[(]ta )6446n y x y x x π ππππωωω??? ?=+?????? →=-=+ ? +? ????向右平移个单位 1 64 ()6 62k k k Z π π ωπωπ += ∴=+∈∴ - , 又min 1 02 ωω>∴=.故选D 9. 已知直线()()20y k x k =+>与抛物线 2:8C y x =相交于A B 、两点,F 为C 的焦点,

2020届高三数学模拟考试(理科)含答案

2020届高三数学模拟考试(理科)含答案 (满分150分,用时120分钟) 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目 要求的. 1.设集合{}0652 <--= x x x A ,{}02<-=x x B ,则=B A I ( ) A . {}23<<-x x B .{}22<<-x x C .{}26<<-x x D .{}21<<-x x 2.设i z i -=?+1)1(,则复数z 的模等于( ) A .2 B .2 C .1 D .3 3.已知α是第二象限的角,4 3 )tan(- =+απ,则=α2sin ( ) A .2512 B .2512- C .2524 D .25 24- 4.设5.0log 3=a ,3.0log 2.0=b ,3.02=c ,则c b a ,,的大小关系是( ) A .c b a << B .b c a << C .b a c << D .a b c << 5.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的 墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的3 2 , 并且球的表面积也是圆柱表面积的3 2 ”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积 为π24,则该圆柱的内切球体积为( ) A . π3 4 B .π16 C .π 316 D . π3 32 6.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市1月至8月的空气 质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是空气 质量合格,下面四种说法不.正确.. 的是( )

2020年高考数学模拟试题带答案

2020年高考模拟试题 理科数学 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的 1、若集合A={-1,1},B={0,2},则集合{z|z=x+y,x∈A,y∈B}中的元素的个数为 A.5 B.4 C.3 D.2 2、复数在复平面上对应的点位于 A第一象限B第二象限C第三象限D第四象限 3、小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点 到圆心的距离大于,则周末去看电影;若此点到圆心的距离小于,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为 A. 14 17B.13 16 C.15 16 D. 9 13 4、函数的部分图象 如图示,则将的图象向右平移个单位后,得到的图象解析式为 A. B. C. D. 5、已知,,,则 A. B. C. D. 6、函数的最小正周期是 A.π B. π 2C. π 4 D.2π 7、函数y=的图象大致是A.B.C.D. 8、已知数列为等比数列,是是它的前n项和,若,且与2的等差中 项为,则 A.35 B.33 C.31 D.29 9、某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一年级的乘坐方式共有 A.24种 B.18种 C.48种 D.36种 10如图,在矩形OABC中,点E、F分别在线段AB、BC 上,且满足,,若 (),则 A.2 3 B . 3 2 C. 1 2 D.3 4 11、如图,F1,F2分别是双曲线C:(a,b>0)的左右 焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交 于P,Q两点,线段PQ的垂直平分线与x轴交于点M,若 |MF2|=|F1F2|,则C的离心率是 A. B. C. D. 12、函数f(x)=2x|log0.5x|-1的零点个数为 A.1 B.2 C.3 D.4 二、填空题:本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上 13、设θ为第二象限角,若,则sin θ+cos θ=__________ 14、(a+x)4的展开式中x3的系数等于8,则实数a=_________ 15、已知曲线在点处的切线与曲线相切,则a= ln y x x =+()1,1() 221 y ax a x =+++

2020届高三第一次模拟考试卷理科数学(一)附解析

2020届高三第一次模拟考试卷理科数学(一)附解析 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合,,( ) A . B . C . D . 2. ( ) A . B . C . D . 3.如图为某省年月快递业务量统计图,图是该省年月快递业务收入统计图,下列对统计图理解错误的是( ) A .年月的业务量,月最高,月最低,差值接近万件 B .年月的业务量同比增长率超过,在月最高 C .从两图来看年月中的同一个月快递业务量与收入的同比增长率并不完全一致 D .从月来看,该省在年快递业务收入同比增长率逐月增长 {}2|650A x x x =-+ ≤{|B x y ==A B =I [)1,+∞[]1,3(]3,5[]3,534i 34i 12i 12i +--=-+4-44i -4i 1201914~2201914 ~201914~322000201914~50%3201914~14~2019

4.已知两个单位向量,满足 的夹角为( ) A . B . C . D . 5.函数的部分图象大致为( ) A . B . C . D . 6.已知斐波那契数列的前七项为、、、、、、.大多数植物的花,其花瓣数按层从内往外都恰是斐波那契数,现有层次相同的“雅苏娜”玫瑰花朵,花瓣总数为,假设这种“雅苏娜”玫瑰花每层花瓣数由内向外构成斐波那契数列,则一朵该种玫瑰花最可能有( )层. A . B . C . D . 7.如图,正方体中,点,分别是,的中点,为正方形的中心,则( ) 12,e e 12|2|e e -=1 2,e e 2π33π4π3π4 1()cos 1 x x e f x x e +=?-1123581339956781111ABCD A B C D -E F AB 11A D O 1111A B C D

2020年高考数学模拟试卷

2020年普通高等学校招生全国统一考试模拟卷 理科数学 注意事项: 1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1.设集合A=若A B,则实数a,b 必满足 A. B. C. D. 2.设(1+i )x =1+yi ,其中x ,y 实数,则i =x y + A. 1 B. 2 C. 3 D. 2 3.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n = ( ) A .9 B .10 C .12 D .13 4.等差数列{}n a 的前m 项和为30,前m 2项和为100,则它的前m 3项和为( ) A. 130 B. 170 C. 210 D. 260 5.设,则( ) A. B. C. D. 6.在平行四边形ABCD 中,AC 与BD 交于O ,E 是线段OD 的中点, AE 的延长线与CD 交于点F ,若AC →=a ,BD →=b ,则AF →等于( ) A. 14a +12b B. 23a +13b C. 12a +14b D. 13a +2 3b 7.已知p:21 x x - <1,q:(x-a)(x-3)>0,若?p 是?q 的必要不充分条件,则实数a 的取值范围是( ) {}{}|||1,,|||2,.x x a x R B x x b x R -<∈=->∈?||3a b +≤||3a b +≥||3a b -≤||3a b -≥32 3log ,log 3,log 2a b c π===a b c >>a c b >>b a c >>

高三数学模拟试题及答案word版本

高三数学模拟试卷 选择题(每小题5分,共40分) 1.已知全集U ={1,2,3,4,5},集合M ={1,2,3},N ={3,4,5},则M ∩(eU N )=( ) A. {1,2} B.{4,5} C.{3} D.{1,2,3,4,5} 2. 复数z=i 2(1+i)的虚部为( ) A. 1 B. i C. -1 D. - i 3.正项数列{a n }成等比,a 1+a 2=3,a 3+a 4=12,则a 4+a 5的值是( ) A. -24 B. 21 C. 24 D. 48 4.一组合体三视图如右,正视图中正方形 边长为2,俯视图为正三角形及内切圆, 则该组合体体积为( ) A. 23 B. 43 π C. 23+ 43 π D. 5434327π+ 5.双曲线以一正方形两顶点为焦点,另两顶点在双曲线上,则其离心率为( ) A. 22 B. 2+1 C. 2 D. 1 6.在四边形ABCD 中,“AB u u u r =2DC u u u r ”是“四边形ABCD 为梯形”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 7.设P 在[0,5]上随机地取值,求方程x 2+px +1=0有实根的概率为( ) A. 0.2 B. 0.4 C. 0.5 D. 0.6 8.已知函数f (x )=A sin(ωx +φ)(x ∈R ,A >0,ω>0,|φ|<2 π ) 的图象(部分)如图所示,则f (x )的解析式是( ) A .f (x )=5sin( 6πx +6π) B.f (x )=5sin(6πx -6π) C.f (x )=5sin(3πx +6π) D.f (x )=5sin(3πx -6 π ) 二、填空题:(每小题5分,共30分) 9.直线y =kx +1与A (1,0),B (1,1)对应线段有公 共点,则k 的取值范围是_______. 10.记n x x )12(+ 的展开式中第m 项的系数为m b ,若432b b =,则n =__________. 11.设函数 3 1 ()12 x f x x -=--的四个零点分别为1234x x x x 、、、,则 1234()f x x x x =+++ ; 12、设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ 11.2 1 1 lim ______34 x x x x →-=+-. 14. 对任意实数x 、y ,定义运算x *y =ax +by +cxy ,其中 x -5 y O 5 2 5

高考理科数学模拟试卷(含答案)

高考理科数学模拟试卷(含答案) 本试卷分选择题和非选择题两部分. 第Ⅰ卷(选择题)1至2页,第Ⅱ卷 (非选择题)3至4页,共4页,满分150分,考试时间120分钟. 注意事项: 1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上. 2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号. 3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定位置上. 4.所有题目必须在答题卡上作答,在试题卷上答题无效. 5.考试结束后,只将答题卡交回. 第Ⅰ卷 (选择题,共60分) 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知集合2 {1,0,1,2,3,4},{|,}A B y y x x A =-==∈,则A B =I (A){0,1,2} (B){0,1,4} (C){1,0,1,2}- (D){1,0,1,4}- 2. 已知复数1 1i z = +,则||z = (A) 2 (B)1 (D)2 3. 设函数()f x 为奇函数,当0x >时,2 ()2,f x x =-则((1))f f = (A)1- (B)2- (C)1 (D)2 4. 已知单位向量12,e e 的夹角为 2π 3 ,则122e e -= (A)3 (B)7 5. 已知双曲线22 221(0,0)x y a b a b -=>>的渐近线方程为3y x =±,则双曲线的离心率是 (B) 3 (C)10 (D)10 9 6. 在等比数列{}n a 中,10,a >则“41a a <”是“53a a <”的

高考数学模拟复习试卷试题模拟卷128140

高考模拟复习试卷试题模拟卷 【考情解读】 1.理解复数的基本概念. 2.理解复数相等的充要条件. 3.了解复数的代数表示形式及其几何意义. 4.会进行复数代数形式的四则运算. 5.了解复数的代数形式的加、减运算的几何意义. 【重点知识梳理】 1.复数的有关概念 内容 意义 备注 复数的概念 形如a +bi(a ∈R ,b ∈R)的数叫复数,其中实部为a ,虚部为b 若b =0,则a +bi 为实数;若a =0且b≠0,则a +bi 为纯虚数 复数相等 a +bi =c +di ?a =c 且b =d 共轭复数 a +bi 与c +di 共轭?a =c 且 b =-d(a ,b , c , d ∈R) 复平面 建立平面直角坐标系来表示复 数的平面叫做复平面,x 轴叫实轴,y 轴叫虚轴 实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,各象限内的点都表示虚数 复数的模 设OZ → 对应的复数为z =a +bi , 则向量OZ → 的长度叫做复数z =a +bi 的模 |z|=|a +bi|=a2+b2 2.复数的几何意义 复数集C 和复平面内所有的点组成的集合是一一对应的,复数集C 与复平面内所有以原点O 为起点的向量组成的集合也是一一对应的,即 (1)复数z =a +bi 复平面内的点Z(a ,b)(a ,b ∈R). (2)复数z =a +bi(a ,b ∈R)平面向量OZ → . 3.复数的运算 (1)复数的加、减、乘、除运算法则 设z1=a +bi ,z2=c +di(a ,b ,c ,d ∈R),则

①加法:z1+z2=(a +bi)+(c +di)=(a +c)+(b +d)i ; ②减法:z1-z2=(a +bi)-(c +di)=(a -c)+(b -d)i ; ③乘法:z1·z2=(a +bi)·(c +di)=(ac -bd)+(ad +bc)i ; ④除法:z1z2=a +bi c +di =(a +bi )(c -di )(c +di )(c -di ) = ac +bd +(bc -ad )i c2+d2 (c +di≠0). (2)复数加法的运算定律 复数的加法满足交换律、结合律,即对任何z1,z2,z3∈C ,有z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3). (3)复数加、减法的几何意义 ①复数加法的几何意义:若复数z1,z2对应的向量OZ1→,OZ2→不共线,则复数z1+z2是以OZ1→,OZ2→ 为两邻边的平行四边形的对角线OZ → 所对应的复数. ②复数减法的几何意义:复数z1-z2是OZ1→-OZ2→=Z2Z1→ 所对应的复数. 【高频考点突破】 考点一 复数的概念 【例1】 (1)设i 是虚数单位.若复数a -10 3-i (a ∈R)是纯虚数,则a 的值为() A .-3 B .-1 C .1 D .3 (2)若3+bi 1-i =a +bi(a ,b ∈R),则a +b =________. 规律方法 处理有关复数的基本概念问题,关键是找准复数的实部和虚部,从定义出发,把复数问题转化成实数问题来处理. 【变式探究】 (1)复数z 满足(z -3)(2-i)=5(i 为虚数单位),则z 的共轭复数z - 为() A .2+i B .2-i C .5+i D .5-i (2)复数z =1 2+i (其中i 为虚数单位)的虚部为________. 考点二 复数的运算 【例2】 (1)(·安徽卷)设i 是虚数单位,z - 表示复数z 的共轭复数.若z =1+i ,则z i +i·z -=() A .-2 B .-2i C .2 D .2i

2021届高三数学第三次模拟考试试题

2021届高三数学第三次模拟 考试试题 一、选择题共8小题,在每小题列出的四个选项中,选出符合题目要求的一项。 1. 设集合}01|{},,2|{2<-=∈==x x B R x y y A x ,则=?B A ( ) A. (-1,1) B. (0,1) C. (-1,∞+) D. (0,∞+) 2. 已知平面向量a ,b 满足2||,3||==b a ,a 与b 的夹角为120°,若a mb a ⊥+)(,则实数m 的值为( ) A. 1 B. 2 3 C. 2 D. 3 3. 在ABC ?中,A=60°,AC=4,32=BC ,则ABC 的面积为( ) A. 34 B. 4 C. 32 D. 22 4. 秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法。如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为( ) A. 9 B. 18 ` C. 20 D. 35 5.若某多面体的三视图(单位:cm)如图所示,则此多面体的体积是( ) A. 378cm B. 323cm C. 356cm D. 31 2 cm 6.设a ,b∈R ,则“a>b”是“a|a|>b|b|”的( )

A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 7.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率是( ) A. 1 5 B. 2 5 C. 3 5 D. 4 5 8.如图,已知线段AB上有一动点D(D异于A,B),线段CD⊥AB,且满足CD2=λAD·BD (λ是大于0且不等于1的常数),则点C的运动轨迹为( ) A.圆的一部分 B.椭圆的一部分 C.双曲线的一部分 D.抛物线的一部分 二、填空题共6小题。 9.已知实数m,n满足 5 46 2 mi i n i + =+ - ,则在复平面内,复数z=m+ni所对应的点位于第_____________象限. 10.若变量x,y满足 2, 239, 0, x y x y x +≤ ? ? -≤ ? ?≥ ? 则22 x y +的最大值是____________. 11.已知圆C的参数方程为 cos, sin2 x y θ θ = ? ? =+ ? (θ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,直线的极坐标方程为ρsinθ+ρcosθ=1,则直线截圆C所得的弦长是______________. 12.设F1,F2是双曲线 22 22 :1(0,0) x y C a b a b -=>>的两个焦点,P是C上一点,若12 6 PF PF a +=,且△PF1F2的最小内角为30°,则C的离心率为______________.13.如图所示:正方形上连接着等腰直角三角形,等腰直角三角形腰上再连接正方形,…,如此继续下去得到一个树形图形,称为“勾股树”.若某勾股树含有1023个正方形,且其最大的正方形的边长为 2 2 ,则其最小正方形的边长为____________.

相关文档
相关文档 最新文档