文档库 最新最全的文档下载
当前位置:文档库 › 结构抗震性能设计

结构抗震性能设计

结构抗震性能设计
结构抗震性能设计

3.11 结构抗震性能设计

【说明】本节为新增内容。

3.11.1 结构抗震性能设计应分析结构方案的特殊性、选用适宜的结构抗震性能目标,并分析论证结构方

案可满足预期的抗震性能目标的要求。

结构抗震性能目标应综合考虑抗震设防类别、设防烈度、场地条件、结构的特殊性、建造费用、震后

损失和修复难易程度等各项因素选定。结构抗震性能目标分为A、B、C、D 四个等级,结构抗震性能分为1、2、3、4、5 五个水准(表3.11.1),每个性能目标均与一组在指定地震地面运动下的结构抗震性能水准相对应。

表3.11.1 结构抗震性能目标

性能目标

性能

地震水准水准

A B C D

多遇地震1 1 1 1

设防烈度地震1 2 3 4

预估的罕遇地震2 3 4 5

【说明】本条规定了结构抗震性能设计的三项主要工作。

1. 分析结构方案在房屋高度、规则性、结构类型、场地条件或抗震设防标准等方面的特殊要求(详见

第1.0.3 条的条文说明),以确定结构设计是否需要采用抗震性能设计方法并以此特殊性作为选用性能目的主要依据。结构方案特殊性的分析中需要注重分析结构方案不符合抗震概念设计的情况和程度。国内外历次大地震的震害经验已经充分说明,抗震概念设计是决定结构抗震性能的重要因素。按本节要求采用抗震性能设计的工程,一般不能完全符合抗震概念设计的要求。结构工程师应根据本规程第4 章以及第6~12 章有关抗震概念设计的规定,与建筑师协调,改进结构方案,尽量减少结构不符合概念设计的情况和程度,不应采用严重不规则的结构方案。对于特别不规则结构,可按本节规定进行抗震性能设计,但需慎重选用抗震性能目标,并通过深入的分析论证。

2. 选用抗震性能目标。本条提出A、B、C、D 四级结构抗震性能目标和五个结构抗震性能水准(1、2、

3、4、5),四级抗震性能目标与《建筑抗震设计规范》GB50011 提出结构抗震性能1、2、3、4 是一致的。

地震地面运动一般分为三个水准,即多遇地震(小震)、设防烈度地震(中震)及预估的罕遇地震(大震)。在设定的地震地面运动下,与四级抗震性能目标对应的结构抗震性能水准的判别准则由本规程第3.11.2 条作出规定。A、B、C、D 四级性能目标的结构,在小震作用下均应满足第1 抗震性能水准,即满足弹性设计

要求;在中震或大震作用下,四种性能目标所要求的结构抗震性能水准有较大的区别。

A 级性能目标:是最高等级,中震作用下要求结构达到第1 抗震性能水准,大震作用下要求结构达到第2 抗震性能水准,即结构仍处于基本弹性状态;

B 级性能目标,要求结构在中震作用下满足第2 抗震性能水准,大震作用下满足

3 抗震性能水准,结构仅有轻度损坏;

C 级性能目标,要求结构在中震作用下满足第3 抗震性能水准,大

作用下满足第4 抗震性能水准,结构中度损坏;

D 级性能目标是最低等级,要求结构在中震作用下满足第4

抗震性能水准,大震作用下满足第5 性能水准,结构有比较严重的损坏,但不致倒塌或发生危及生命的严重破坏。选用性能目标时,需综合考虑抗震设防类别、设防烈度、场地条件、结构的特殊性、建造费用、震后损失和修复难易程度等因素。鉴于地震地面运动的不确定性以及对结构在强烈地震下非线性分析方法(计算模型及参数的选用等)存在不少经验因素,缺少从强震记录、设计施工资料到实际震害的验证,对

结构抗震性能的判断难以十分准确,尤其是对于长周期的超高层建筑或特别不规则结构的判断难度更大,因此在性能目标选用中宜偏于安全一些。例如:特别不规则的、房屋高度超过B 级高度很多的高层建筑或处于不利地段的特别不规则结构,可考虑选用A 级性能目标;房屋高度超过B 级高度较多或不规则性超过本规程适用范围很多时,可考虑选用B 级或C 级性能目标;房屋高度超过B 级高度或不规则性超过适用范围较多时,可考虑选用C 级性能目标;房屋高度超过A 级高度或不规则性超过适用范围较少时,可考虑选用C 级或D 级性能目标。结构方案中仅有部分区域结构布置比较复杂或结构的设防标准、场地条件等特殊性,使设计人员难以直接按本规程规定的常规方法进行设计时,可考虑选用C 级或D 级性能目标。以上仅仅是举些例子,实际工程情况很多,需综合考虑各项因素。性能目标选用时,一般需征求业主和有关专家的意见。

3. 结构抗震性能分析论证的重点是深入的计算分析和工程判断,找出结构有可能出现的薄弱部位,提出有针对性的抗震加强措施,必要的试验验证,分析论证结构可达到预期的抗震性能目标。一般需要进行如下工作:

1)分析确定结构超过本规程适用范围及不规则性的情况和程度;

2)认定场地条件、抗震设防类别和地震动参数;

3)深入的弹性和弹塑性计算分析(静力分析及时程分析)并判断计算结果的合理性;

4)找出结构有可能出现的薄弱部位以及需要加强的关键部位,提出有针对性的抗震加强措施;

5)必要时还需进行构件、节点或整体模型的抗震试验,补充提供论证依据,例如对本规程未列入的新型结构方案又无震害和试验依据或对计算分析难以判断、抗震概念难以接受的复杂结构方案;

6)论证结构能满足所选用的抗震性能目标的要求。

3.11.2 结构抗震性能水准可按表3.11.2 进行宏观判别。

计算判断结构能否满足小震、中震、大震下结构变形、受力性能等要求,并对结构进行评估。目前由于性能化设计还有一些问题[3]有待深入研

究,故在工程中还未得到广泛应用,且结构性能化设

计主要还是针对结构的整体性能,对结构构件承载

力则很少采用性能设计来控制。

目前抗震性能化设计大都采用弹塑性计算方

法,即静力弹塑性分析(pushover)和动力弹塑性时

程分析,两种方法均在一定程度上反映了结构的弹

塑性,但pushover 法更多的是通过单一加载方式得

到的基底剪力、顶点位移来反映结构的抗震性能;动

力时程分析反映了结构在某一单一时程数据的动力

效应,难以覆盖整个建筑物生命历程中可能发生的

地震效应。两种计算方法还停留在对结构进行校核

阶段,其分析结果的可信度取决于多种因素,前者主

要取决于加载方式,后者主要取决于地震波的合理

性,难以真正用于结构的承载力设计。

本工程地处6 度抗震设防区域,地震作用较小计算分析结果表明,大震作用下主体结构基本处于弹性状态,少部分连梁屈服。结构在小、中、大震作

用下性能化设计采用线弹性计算方法是基本可行

的,相应结构构件承载能力的控制标准见下文。

建筑结构基于性能抗震设计的问题分析 崔婷

建筑结构基于性能抗震设计的问题分析崔婷 发表时间:2019-01-14T13:36:57.110Z 来源:《防护工程》2018年第30期作者:崔婷 [导读] 能有效包含人们的生命与财产,现在基于性能抗震设计是未来房屋建筑的主要发展方向。 中煤科工集团沈阳设计研究院有限公司辽宁沈阳 110000 摘要:现在我国建筑房屋基本都是高层,一旦发生地震会给人们的生命和财产带来一定的损失,如何提高房屋的抗震能力,减少由于地震带来的损失,这是建筑类专家需要解决的实际问题。基于性能抗震设计能够有效防止地震房屋倒坍等现象引起的用户损失,能有效包含人们的生命与财产,现在基于性能抗震设计是未来房屋建筑的主要发展方向。 关键词:建筑结构;抗震设计;问题分析 引言 建筑结构的设计处理是比较关键的一个重要环节,其对于后续建筑工程项目建设的指导性比较强,如果设计环节出现了问题和隐患,必然会影响到后续建筑工程项目的施工效果,需要不断优化建筑结构设计水平。结合建筑结构设计工作的开展,注重抗震设计是比较基本的一个要求,建筑结构抗震设计的难度比较大,要求相对也比较高,需要结合不同需求进行详细分析,确保其能够体现出更强的适宜性。为了更好提升建筑结构抗震设计水平,基于性能进行抗震设计是比较有效的一个方式,其在当前的实际运用也确实表现出了一些明显优势,具备较强探讨价值。 1建筑结构抗震设计的问题 1.1建筑结构规则性问题 现代建筑体形普遍较大,因此一旦遭受地震灾害,其受到的影响更加严重,但如果建筑结构设计能够形成规则性,那么就能够适当的降低地震灾害对建筑的影响。而目前社会对于建筑设计的要求多种多样,其中难免存在部分不规则的建筑,此类建筑通过分析可以证实,其在许多实际地震当中受到的损害最为严重。建筑结构不规则的主要表现为:建筑外部存在明显凹凸、建筑没有依照对称原则进行设计,此类结构设计虽然能够满足观感上的需求,但显然在地震灾害当中,会受到更多的影响,出现坍塌、剧烈晃动等现象,不利于人群撤离。 1.2建筑平面布设问题 (1)建筑承重物的分布布设。建筑承重物主要是指承重柱,在现代大规模建筑的条件下,其相对较低的楼层规模会更大,此时就需要运用大量的承重柱来进行支撑,而因为规模较大,承重柱的分布布设难度也会提高,所以在部分建筑结构当中,承重柱的布设会出现不协调的现象。 (2)电梯平面布设。电梯是现代建筑当中常用设备,而电梯需要电梯井提供行动空间,但在许多建筑结构设计当中,其并没有考虑到电梯井的抗侧力刚度,此时如果遭受地震灾害,很容易从电梯井处导致建筑结构的坍塌。 (3)墙体布设。墙体是任何形式建筑物都必须具备的建筑结构,其同样起到了承重作用,在地震灾害当中的功能与承重柱相同,但在许多建筑当中因不同的设计要求出现了不均匀墙体布设,使得整体建筑结构的力学结构出现不合理现象,降低了建筑整体的抗震性。此外,部分墙面的结构刚度分布存在不足,同样不利于建筑抗震性。 1.3屋顶设计的问题 在现代大规模建筑的基础上,当其遭受地震灾害时,其不单地基基础会受到剧烈影响,屋顶同时导致剧烈摇晃的重要因素。屋顶在建筑整体当中,除了实现遮风挡雨的功能外,还能够向承重柱、承重墙施加应力,使整体建筑结构的稳固性提升。而部分建筑当中,其对于屋顶的建筑存在过重或者过轻的现象,影响了相互应力的作用。此外,还有部分设计当中出现了屋顶重心偏移的现象,此类现象在地震内,非常容易出现坍塌,需要严格进行改善。 2建筑结构基于性能抗震设计要点 2.1承载能力设计方法 承载能力设计是提高抗震性能设计的常用方法,也是一种有效的方法。承载能力设计方法是通过底部剪力计算出来的,是一种比较科学的方法,加强建筑物结构强度设计,计算构件之间应该具有的承载能力,这是设计方法可靠,概念性能清晰等优点,能达到一定的预期目标。但承载能力设计方法有一定的特点就是以弹性反应为基础,对于非弹性建筑物不能全面进行计算,计算出的数值不准确,不能应用承载能力设计方法进行抗震性能设计。 2.2抗震设计以位移为基础 抗震设计以位移为基础能全面进行抗震性能设计,提高建筑物的抗震能力,是符合现代建筑物抗震设计的需要。该方法是以位移为基本出发点,通常将位移控制运用到建筑结构的设计过程中,通过为位移谱的位移偏移计算出剪力的数值,进行建筑物的结构分析,如何进行性能提升,通过具体的配筋进行有效设计,采用增加刚度的方法,将位移目标进行变化,提高建筑物的抗震能力,有效的考虑抗震性能中的位移偏移的重要性,有效提升其在设计理论的应用过程,有效增加其使用方法,有效提高建筑物的抗震性能。抗震设计以位移为基础的方法是提高建筑物抗震性能的有效方式,符合现代建筑物提高性能的有效方法。 2.3注重可靠度理论的应用 建筑结构基于性能的抗震设计还需要把握好可靠度理论的应用,能够更好实现对于可靠度理论的融入,针对建筑结构中可能存在的各个不确定因素进行及时处理,并且结合相关规范进行严格控制,力求建筑结构具备更强的抗震性能。结合这种可靠度理论的引入和应用,其需要围绕着设计表达式进行分析,确保各分项系数能够符合可靠性要求,能够在明确的抗震性能水准要求下进行处理,避免可能形成的明显地震影响和威胁。当然,这种可靠度理论同样也需要考虑到建筑结构的各个相关因素,能够基于多个影响因素进行综合评价,需要进行大量统计和试验分析,避免仅仅单纯考虑单一结构体系。 2.4合理确定地震设防水平 对于建筑结构基于性能的抗震设计工作落实,需要首先从地震设防水平入手进行明确,这也是基本抗震原则履行的基本条件,需要明

超限高层建筑结构基于性能抗震设计

超限高层建筑结构基于性能抗震设计的研究超限高层建筑的结构抗震设计中,采用基于性能要求的抗震设计方法,有助于提高高层建筑工程抗震设计的可靠性、避免抗震安全隐患,同时又促进高层建筑技术发展。 阐述基于性能抗震设计方法与常规抗震设计方法的比较;针对超限高层建筑结构的特点,提出结构的抗震性能目标、性能水准以及实施性能设计的主要方法,包括性能水准判别准则、性能目标的选用及结构计算和试验要求。文中还列举了应用性能设计理念和要求的部分工程实例。 基于性能的抗震设计理念和方法,自世纪年代在美国兴起,并日益得到工程界的关注。美国的ATC40(1996年)、FEMA237(1997年)提出了既有建筑评定、加固中使用多重性能目标的建议,并提供了设计方法。美国加州结构工程师协会SEAO于1995年提出了新建房屋基于性能的抗震设计。1998年和2000年,美国FEMA又发布了几个有关基于性能的抗震设计文件。2003年美国ICC(Internation-alCode Council)发布了《建筑物及设施的性能规范》,其内容广泛,涉及房屋的建筑、结构、非结构及设施的正常使用性能、遭遇各种灾害时(火、风、地震等)的性能施工过程及长期使用性能,该规范对基于性能设计方法的重要准则作了明确的规定。日本开始将抗震性能设计的思想正式列入设计和加固标准中,并已由建筑研究所(BRI)提出个性能标准。欧洲混凝土协会(CRB)于2003 年出版了“钢筋混凝土建筑结构基于位移的抗震设计”报告。澳大利亚则在基于性能设计的整体框架以及建筑防火性能设计等方面做了许多研究,提出了相应的建筑规范(BCA1996)。我国在基于性能的抗震设计方面也发表了不少论文加以研究和探讨。基于性能的抗震设计是建筑结构抗震设计的一个新的重要发展,它的特点是:使抗震设计从宏观定性的目标向具体量化的多重目标过渡,业主(设计者)可选择所需的性能目标;抗震设计中更强调实施性能目标的深入分析和论证,有利于建筑结构的创新,经过论证(包括试验)可以采用现行标准规范中还未规定的新的结构体系、新技术、新材料;有利于针对不同设防烈度、场地条件及建筑的重要性采用不同的性能目标和抗震措施。这一方法是一种发展方向。目前,这一方法在工程中还未得到广泛的应用,还有一些问题有待研究改进,诸如:地震作用的不确定性、结构分析模型和参数的选用存在不少经验因素、模型试验和震害

18抗震性能设计

18抗震性能设计 抗震性能设计 一、规范规定 《建筑抗震设计规范统一培训教材》中指出: 抗震性能化设计仍然是以现有的抗震科学水平和经济条件为前提的,一般需要综合考虑使用功能、设防烈度、结构的不规则程度和类型、结构发挥延性变形的能力、造价、震后的各种损失及修复难度等等因素。不同的抗震设防类别,其性能设计要求也有所不同。 鉴于目前强烈地震下的结构非线性分析方法的计算模型和计算参数的选用尚存在不少经验因素,缺少从强震记录、设计施工资料到设计震害的详细验证,对结构性能的判断难以十分准确,因此在性能设计指标的选用中宜偏于安全一些。

建筑的抗震性能化设计,立足于承载力和变形能力的综合考虑,具有很强的针对性和灵活性。针对具体工程的需要和可能,可以对整个结构、也可以对某些部位或关键构件,灵活运用各种措施达到预期的性能目标——着重提高抗震安全性或满足使用功能的专门要求。例如,可以根据楼梯间作为“抗震安全岛” 的要求,提出确保大震下楼梯间具有安全避难通道的具体目标和性能要求;可以针对特别不规则、复杂建筑结构的具体情况,对抗侧力结构的水平构件和竖向构件分别提出相应的性能目标,提高其整体或关键部位的抗震安全性;对于地震时需要连续工作的机电设备,其相关部位的层间位移需满足设备运行所需的层间位移限值的专门要求;其他情况,可对震后的残余变形提出满足设施检修后运行的位移要求,也可提出大震后可修复运行的位移要求。建筑构件采用与结构构件柔性连接,只要可靠拉结并留有足够的间隙,如玻璃幕墙与钢框之间预留变形缝隙,震害经验表明,幕墙在结构总体安全时可以满足大震后继续使用的要求。还可以提高结构在罕遇地震下的层间位移控制值,如国外对抗震设防类别高的建筑,其弹塑性层间位移角比普通建筑的规定值减少20%~50% 。

高层钢结构震害现象及原因

高层震害现象及原因是非常重要的,了解现象以及发生的原因,才能根据专业知识制定对应 的方案,防范于未然。小编就高层钢结构震害现象及原因和大家说一下。 钢结构被认为具有卓越的抗震性能,在历次的地震中,钢结构房屋的震害要小于钢筋混凝土 结构房屋。很少发生整体破坏或倒塌现象。尽管如此,由于焊接、连接、冷加工等工艺技术 以及外部环境的影响,钢材材料的优点将受到影响。特别是因设计、施工以及维护不当,就 很可能造成结构的破坏。根据钢结构在历次地震中的破坏形态,可能破坏形式分为以下几类:1、结构倒塌 结构倒塌是地震中结构破坏最严重的形式。造成结构倒塌的主要原因是结构薄弱层的形成, 而薄弱层的形成是由于结构楼层屈服强度系数和抗变4刚度沿高度分布不均匀造成的。这就 要求在设计过程中应尽量避免上述不利因素的出现。 2、节点破坏 节点破坏是地震中发生最多的一种破坏形式。剐性连接的结构构件一般采用铆接或焊接形式 连接。如果在节点的设计和施工中,构造及焊缝存在缺陷,节点区就可能出现应力集中、受 力小均的现象,在地震中很容易出现连接破坏。梁柱节点可能出现的破坏现象主要表现为: 铆接断裂,焊接部位位脱,加劲板断型、屈曲,腹板断裂、屈曲等。 3、构件破坏 在以往所有地震中,多钢结构构件破坏的主要形式有支撑的破坏与失稳以及梁柱局部破坏两种。(1)支撑的破坏与失稳。当地震强度较大时,支撑承受反复拉压的轴向力作用,一旦 压力超出支撑的屈曲临界力时,就会出现破坏或失稳。(2)梁柱局部破坏。对于框架柱, 主要有翼缘屈曲、翼缝撕裂,甚至框架柱会出现水平裂缝或断裂破坏。对于框架梁,主要有 翼缘屈曲、腹板屈曲和开裂、扭转屈曲等破坏形态。 4、基础锚固破坏 件与基础的锚固破坏主要表现为柱脚处的地脚螺栓脱开、混凝土破碎导致锚固失效、连接板 断裂等,这种破坏形式曾发生多起,根据对上述钢结构房屋震害特征的分析可知,尽管钢结 构抗震性能较好,但在历次的地震中,也会出现不同程度的震害。究其原因,元素是和、结 构构造、施工质量、材料质量、日常维护等有关,为了预防以上震害的出现,减轻震害带来 的损失,多高层钢结构房屋抗震设计必须严格遵循有关规程进行。

钢结构抗震性能分析

钢结构抗震性能分析 摘要:钢结构建筑具有建设速度快、工业化程度比较高、技术经济指标好、抗震性能相比较其他建筑材料比较优越,所以能够广泛地应用于建筑的各个领域,有着得天独厚的发展优势。本文对钢结构建筑的抗震性能进行分析,总结出钢结构抗震的特点及在建设中的应用,分析了几种钢结构所具有的抗震性能,为建筑中明确钢结构的抗震性能找到了依据。 关键词:建筑;钢结构;发展;抗震;分析 引言 近几年,随着我国建筑产业高速发展,钢铁材料和结构体逐渐呈现多元化的发展趋势,建筑行业的发展也更是各具特色。作为现代建筑领域新兴的钢结构建筑,也越来越被建筑界所重视,这对地震多发的地区,建筑在地震中由于倒坍所造成的灾害,将会成为地震灾害中,对于生命和财产安全中,最具破坏力和杀伤力的直接因素,这就需要不断加强钢结构的抗震性能,提升钢结构建筑抗震的能力 1 钢结构的特点 优质的钢结构具有良好的延伸性,能够将震动时发生的波动抵消掉。对于钢结构在抗拉、抗压、抗剪的强度要求上都很高,特别是钢结构需要凭着工艺制造,利用其所具有的高延性,提升其在地震中的抗震能力[1]。钢结构通过自身的塑性变形特点,达到吸收和消耗震动过程中,抵抗强烈地震的能力。 2 建筑中的钢结构体系 在钢结构建筑中,用的较多钢结构框架体系有纯框架结构、中心支撑结构、偏心支撑结构等。纯框架结构延性和抗震性能比较好,但是由于抗侧刚度比较差,一般不太适合用于层数比较高的建筑。以中心支撑的钢结构框架结构抗侧刚度大,适用于层数较高的建筑。由于一些钢结构支撑构件,具有的滞回性能较差,对于耗散的震动的能量有限,抗震性能没有钢结构纯框架的性能好。钢结构的框架偏心支撑结构,还可以通过偏心连梁进行剪切,达到耗散地震的能量,保证通过钢结构框架的支撑不丧失稳定,这种抗震性能的效果,优于中心支撑的钢结构框架[2],并且其弹性阶段的刚度也接近中心支撑框架。如果采用能与钢结构框架抗侧刚度相匹配含有钢板的剪力墙,还有带竖缝剪力墙的钢结构代替支撑,可以构成具有钢结构框架的抗震墙板结构,其抗震的性能强于由钢结构框架构成的中心支撑结构。当房屋建筑的刚度要求更高时,一般都可以采用沿着建筑周边,有秩序地进行设置一些密柱深梁框架,来构成钢结构的框筒结构。这样设计安装的框筒结构抗侧刚度大,能够起到具有良好抗震性能的效果。 3 建筑中钢结构的抗震性能分析

钢结构抗震性能设计

第四章抗震性能设计 4.2b 综述适用于钢构件、钢节点、钢连接的几种滞回模型和损伤指数。(重点阐述有关钢结构的内容) 答: 1、滞回模型 (1)钢构件的滞回模型: a、轴心受力构件 反复荷载作用下轴心受力钢构件滞回模型 b、受弯构件

反复荷载作用下受弯钢构件的滞回模型 c、钢板 反复荷载作用下受弯钢构件板的滞回模型 (2)钢连接的几种滞回模型 线性模型非线性模型

(3)钢节点的滞回性能模型 反复荷载作用下受弯钢节点的几种滞回模型 2、损伤指数综述 为了定量描述结构防止在地震中倒塌的安全度,提出了损伤指数的概念。对结构在其寿命周期内所能承受的地震破坏总量的预测由损伤指数(Damage Index)控制,而损伤指数由刚度、强度和延性确定。对于其中的延性而言,损伤指数分别从构件级别、楼层级别和整体结构级别代表了塑性铰的塑性转动能力。 (1)构件损伤指数 可以由所需塑性转动能力和可提供的塑性主动能力之间的比值计算得出。 a dm I θθ/r (2)楼层损伤指数 代表了楼层抵御地震破坏的能力: (3)整体损伤指数 描述整个结构的损伤指数,包括地震作用下的结构整体性能。

4.3c综述屈曲约束支撑(无粘结支撑、防屈曲支撑)的特点、类型、设计要点以及国内外最新研究进展和工程应用现状。答: 1、特点 在普通支撑外部设置套管,约束支撑的受压屈曲,构成屈曲约束支撑。屈曲约束支撑仅芯板与其他构件连接,所受的荷载全部由芯板承担,外套筒和填充材料仅约束芯板受压屈曲,使芯板在受拉和受压下均能进入屈服,因而,屈曲约束支撑的滞回性能优良。 .屈曲约束支撑与普通支撑滞回性能对比 优点: (1)承载力与刚度分离 普通支撑因需要考虑其自身的稳定性,使截面和支撑刚度过大,从而导致结构的刚度过大,这就间接地造成地震力过大,形成了不可避免的恶性循环。选用防屈曲支撑,即可避免此类现象,在不增加结构刚度的情况下满足结构对于承载力的要求。 (2)承载力高 抗震设计中,普通支撑和屈曲约束支撑的轴向承载力设计值为:

从结构抗震的角度论述钢结构的性能

题目: 从结构抗震的角度论述钢结构的性能,优缺点及发展前景 学院:土木工程学院 专业:建筑工程技术专业 班级:建工一班 姓名:杨星星 指导教师:盛朝晖 2014年04月10日从结构抗震的角度论述钢结构的性能,优缺点及发展前景 论文摘要: 本文简要分析了钢结构建筑的结构体系及性能特点,优缺点,抗震性能以及日后良好的发展前景。 关键词: 钢结构,抗震性能好,施工方便,耐火性差,质量轻,强度大,发展前景好。 目录: 一、摘要 二、绪论 三1.1钢结构的性能及特点。 1.1.1钢结构的特点: 1.1.2钢结构的性能 四、1.2钢结构的优缺点 1.2.1钢结构的优点

1.2.2钢结构的缺点 五、1.3钢结构的发展前景 1.3.1钢结构的应用范围 1.3.2钢结构的发展前景 1.3.3发展方向 六、 1.4结论 七、参考文献 二、绪论 三 1.1钢结构的性能及特点。 近年来,全世界地震频频发生,对人们是生命财产安全造成了很大的威胁。在地震中造成人员财产损失的因素之一是建筑物的倒塌,如 何提高建筑物的抗震性能就显得尤为重要。目前建筑使用较多的轻钢结构建筑其抗震的能力有明显成果。 1.1.1钢结构的特点 1.钢材的材质均匀,质量稳定,可靠度高;自重轻,变形大,可以吸收很大能量,而且可以通过构造实现强梁弱柱、强剪弱弯。 2.钢材的强度高,塑性和韧性好,抗冲击和抗振动能力强; 3.钢结构工业化程度高,工厂制造,工地安装,加工精度高,制造周期短,生产效率高,建造速度快; 4.钢结构抗震性能好; 5.耐腐蚀和耐火性差,单价较高。 1.1.2钢结构的性能

钢结构轻质高强,所以地震时受地震作用小。而钢结构具有良好的延展性,可以将地震波的能耗抵消掉。钢材基本上属各向同性材料,扛拉、抗压、扛剪强度均很高,而且具有良好的延展性,特别是钢结构凭着自己特有的高延展性减轻了地震反应。钢结构还可以看作比较理想的弹塑性结构,可以通过结构的塑性变形吸收和消耗地震输入能量,从而具有较高的抵抗强烈地震的能力。钢结构相对于其他结构自重轻,这也大大减轻了地震作用的影响。不同的结构形式,抗震性能明显不同。混凝土结构的房屋受压较好,但不抗拉力,两种力的差距达10倍。当地震来临时,房屋在地震波循环荷载情况下,极易发生整体垮塌。钢结构除了抗震性能高,施工周期短、工业化程度高、环保性能好的特点也显著优于混凝土结构。 三1.2 钢结构的优缺点 1.2.1钢结构工程优点 钢结构住宅建筑是以工厂化生产的钢梁、钢柱为骨架,同时配以新型轻质、保温、隔热、高强的墙体材料作为围护结构建造而成,其中主要承重骨架是由钢构件或钢管(圆管或矩形管)混凝土构件所组成。在建筑中应用钢结构的优势主要体现在以下几个方面: .1 强度高、自重轻、抗震性能好 钢结构体系轻质高强,可减轻建筑结构自重的30%,大大降低基础的造价;钢结构是柔性结构,有很好的抗震,同时结构安全度高,受损轻,而且由于钢材便于加工,灾后容易修复。型钢结构建筑重量轻、强度高、整体刚性好、变形能力好。低层别墅的屋面大都为坡屋面,因此屋面结构基本上采用的是由冷弯型钢构件做成的三角型屋架体系,轻钢构件在封完结构性板材及石膏板之后,形成了非常坚固的“板肋结构体系”,这种结构体系有很明显的抗震及抵抗水平荷载的能力,用于抗震烈度为八度以上的地区。 .2 功能区分割灵活 传统的砖混、钢筋混凝土的结构自重大,进深和开间相对较小,梁、柱粗大,空间利用

结构抗震性能设计解读

结构抗震性能设计解读 结构抗震性能设计解读 【摘要】对结构抗震性能设计中的4个结构抗震性能目标和5种结构抗震性能水准进行深入解读,对不同的结构抗震性能水准提出对应的计算、设计方法及注意事项。 【关键词】抗震性能化设计;抗震性能水准;弹塑性分析;加速度反应谱;时程分析 中图分类号: TU352.1+1文献标识码: A 0 引言:我国建筑抗震设计主要以下三部分组成:一、规范限定的适用条件;二、结构和构件的计算分析;三、结构和构件的构造要求。对于一个建筑物的抗震设计,当满足以上三部分要求时,就是符合规范的设计;当不满足第一部分要求时,就被称为“超限”工程,需要采取比第二、三部分更严格的计算和构造,以证明该建筑可以达到抗震设防目标。结构抗震性能设计着重于通过现有手段(计算及构造措施),是解决“超限”结构在中震和大震下的结构计算和设计的一种基本方法。结构抗震性能设计实现了结构抗震设计从宏观性的目标向具体量化的多重目标过度。 1 地震作用:由于建筑结构抗震设计是一个十分复杂的问题,有许多难点,例如:地震地面运动的不确定性;抗震设防水准及对地震作用的预估;地震作用下结构反应分析的正确性;对影响结构抗震性能因素的认识及所采取措施的有效性等。当前世界各国的建筑抗震设计主要采用以下两种方法。 (1)拟静力法---加速度反应谱法。它将影响地震作用大小和分布的各种因素通过加速度反应谱曲线予以综合反映,建筑结构抗震设计时利用反应谱得到地震影响系数,进而得到作用于建筑物的拟静力的水平地震作用。此理论接受度比较高,适用于大部分结构;由于此方法存在一定的不足,因此不太适用于“超限”结构的抗震设计。 (2)直接动力法---时程分析法。此方法根据建筑物所在地区的基本烈度、设计分组的判断估计、建筑物所在场地的类别,选择适

基于性能的抗震设计

基于性能的抗震设计是近年来提出并备受关注的一种新的抗震设计思想。下面先从回顾传统抗震设计思想入手,进而引出这种新的抗震设计思想的发展轨迹及其主要问题。 1 传统抗震设计思想及方法 考察目前世界各国抗震设计规范,大多数国家均以“小震不坏、中震可修、大震不倒”作为抗震设计思想,我国2001年的新的《建筑抗震设计规范》也是如此。为实现上述三水准抗震设防要求,各国采取了不同的设计方法,但均大同小异。我国是采用二阶段抗震设计方法来保障对大量的一般工业和民用建筑实现其三水准的抗震设防要求,同时以此方法为基础通过对建筑物进行抗震重要性分类(甲、乙、丙、丁四类)来区别不同类别的建筑并采取相应的修正方法来满足不同的抗震设防要求。这二阶段设计方法是:第一阶段进行强度验算,即取第一水准烈度(小震)的地震动参数,用弹性反应谱计算结构的弹性地震作用及效应,并与其他荷载效应组合,对构件截面进行抗震承载力验算,以保证必要的强度可靠度要求;再通过合理的结构布置和有关的构造措施,保证结构具有必要的变形能力。第二阶段进行弹塑性验算,即对特别重要的建筑和地震时易倒塌的结构,要按第三水准烈度(大震)的地震动参数进行薄弱层(部位)的弹塑性变形验算,并采用相应的构造措施以满足“大震不倒”的设防要求。 归纳起来,传统抗震设计思想及其方法具有如下五个特点: (1)三水准抗震设计思想是以保障人民生命安全为基本目标的,因此与现代建筑所蕴含的经济、社会、政治等多方面功能无法适应。 (2)三水准抗震设计思想对结构的功能要求规定过于泛化,因而无法满足投资者、业主或环境对其功能上的“个性”要求。 (3)三水准抗震设计思想对三级设防水准小震、中震、大震用不同的50年基准期内的超越概率(分别为%、10%和2%~3%)来定义,且以各地地震基本烈度为基础反映,在应用上不方便。 (4)二阶段抗震设计方法中对地震作用(包括弹性和弹塑性)的计算是以加速度反应谱作为其基本的表达方式,它无法解决地面运动长周期成分所引起的结构的速度和位移响应问题。 (5)二阶段抗震设计方法所采用的基于概率的极限状态设计思想其可靠度只局限在构件层次,且采用分项系数来保证可靠度。显然,由此得到的结构体系的可靠度会分布在一个很大的范围内。 基于现有建筑结构抗震设计规范的缺陷及存在的问题,为了更好地满足社会和公众对结构抗震性能的多种需求,美国联邦紧急救援署(FEMA)和国家自然科学基金会(NSF)资助开展了一项为期6年的行动计划,对未来的抗震设计进行了多方面的基础性研究,提出了基于性能的抗震设计理论,包括设计理论的框架、性能水准的定性与定量描述、结构非线性分析方法。日本、新西兰、欧共体、加拿大、澳大利亚相继开展了基于性能的结构抗震设计理论的研究。2000年11月15日,这些国家的地震工程研究人员汇集日本国土交通省建筑研究所,就基于性能的结构抗震设计理论的概念性框架、荷载与反应、抗震设计等主要内容进行了学术交流。可以肯定地说,基于性能的结构抗震设计理论已成为这些国家地震工程研究的热门课题。我国在该领域的研究是近几年的事,主要集中在如何消化国外研究成果,这在新的《建筑结构抗震设计规范》中得到了一定程度的体现。我国工程抗震界普遍认为,中国21世纪的抗震设计规范应顺应国际发展,发展适合国情的基于性能的结构抗震设计理论。 2 基于性能的抗震设计概念 如上所述,传统的抗震设计思想及方法无法满足人们对结构抗震功能的深

钢结构抗震优缺点

钢结构工程学习小节 钢结构就是指用钢板与热扎、冷弯或焊接型材通过连接件连接而成的能承受与传递荷载的结构形式。钢结构体系具有自重轻、工厂化制造、安装快捷、施工周期短、抗震性能好、投资回收快、环境污染少等综合优势,与钢筋混凝土结构 相比,更具有在“高、大、轻”三个方面发展的独特优势,在全球范围内,特别就是发 达国家与地区,钢结构在建筑工程领域中得到合理、广泛的应用。钢结构行业通 常分为轻型钢结构、高层钢结构、住宅钢结构、空间钢结构与桥梁结构五大子类, 钢结构在各项工程建设中的应用极为广泛,如钢桥、钢厂房、钢闸门、各种大型 管道容器、高层建筑与塔轨机构等。根据每平米用钢量及主要构件钢板厚度,钢 结构有轻钢与重钢之分,轻钢结构住宅的墙体主要由墙架柱、墙顶梁、墙底梁、 墙体支撑、墙板与连接件组成。钢结构与其它建设相比,在使用中、设计、施工 及综合经济方面都具有优势,造价低,可随时移动,钢结构与普通钢筋混凝土结构 相比,其匀质、高强、施工速度快、抗震性好与回收率高等优越性,钢比砖石与砼 的强度与弹性模量要高出很多倍,因此在荷载相同的条件下,钢构件的质量轻。从 被破坏方面瞧,钢结构就是在事先有较大变形预兆,属于延性破坏结构,能够预先 发现危险,从而避免。 钢结构工程优点 抗震性:低层别墅的屋面大都为坡屋面,因此屋面结构基本上采用的就是由冷 弯型钢构件做成的三角型屋架体系,轻钢构件在封完结构性板材及石膏板之后,形 成了非常坚固的“板肋结构体系”,这种结构体系有着更强的抗震及抵抗水平荷 载的能力,适用于抗震烈度为八度以上的地区。 抗风性:型钢结构建筑重量轻、强度高、整体刚性好、变形能力强。建筑物 自重仅就是砖混结构的五分之一,可抵抗每秒七十米的飓风,使生命财产能得到有效的保护。

抗震性能设计

抗震性能设计 一、规范规定 《建筑抗震设计规范统一培训教材》中指出: 抗震性能化设计仍然是以现有的抗震科学水平和经济条件为前提的,一般需要综合考虑使用功能、设防烈度、结构的不规则程度和类型、结构发挥延性变形的能力、造价、震后的各种损失及修复难度等等因素。不同的抗震设防类别,其性能设计要求也有所不同。 鉴于目前强烈地震下的结构非线性分析方法的计算模型和计算参数的选用尚存在不少经验因素,缺少从强震记录、设计施工资料到设计震害的详细验证,对结构性能的判断难以十分准确,因此在性能设计指标的选用中宜偏于安全一些。 建筑的抗震性能化设计,立足于承载力和变形能力的综合考虑,具有很强的针对性和灵活性。针对具体工程的需要和可能,可以对整个结构、也可以对某些部位或关键构件,灵活运用各种措施达到预期的性能目标——着重提高抗震安全性或满足使用功能的专门要求。 例如,可以根据楼梯间作为“抗震安全岛”的要求,提出确保大震下楼梯间具有安全避难通道的具体目标和性能要求;可以针对特别不规则、复杂建筑结构的具体情况,对抗侧力结构的水平构件和竖向构件分别提出相应的性能目标,提高其整体或关键部位的抗震安全性;对于地震时需要连续工作的机电设备,其相关部位的层间位移需满足设备运行所需的层间位移限值的专门要求;其他情况,可对震后的残余变形提出满足设施检修后运行的位移要求,也可提出大震后可修复运行的位移要求。建筑构件采用与结构构件柔性连接,只要可靠拉结并留有足够的间隙,如玻璃幕墙与钢框之间预留变形缝隙,震害经验表明,幕墙在结构总体安全时可以满足大震后继续使用的要求。还可以提高结构在罕遇地震下的层间位移控制值,如国外对抗震设防类别高的建筑,其弹塑性层间位移角比普通建筑的规定值减少 20%~50%。 《抗震规范》附录M对结构抗震性能设计的不同要求做了规定,分别给出在设防烈度地震、罕遇地震时,按照设计值和规范值进行计算的相关公式。 《高规》3.11节最先提出结构抗震性能设计分为1、2、3、4、5五个性能水准,并对每一个性能设计水准规定了具体的计算公式和方法。 《广东高规》3.11节对《高规》的五个性能设计水准给出了更明确的计算公式,比如《广东高规》规定了不同性能水准下的构件重要性系数及承载力利用系数,特别是《广东高规》对第3、第4、第5性能设计水准不再像《高规》那样提出“应进行弹塑性计算分析”的要求,明确了可按线弹性有限元计算出的内力位移进行性能设计的公式,这些规定便于软件实现,使软件可以直接利用线弹性有限元结果进行性能设计。 《上海抗规》附录L对抗震性能化设计做了规定。 二、软件实现 抗震性能设计的计算参数如图3.9.1所示。

高层钢结构抗震措施

浅谈高层钢结构抗震措施 【摘要】随着城市建设的发展,钢结构在高层建筑中的应用越来越广泛,因为高层钢结构抗震性能卓越,材料强度、延性良好,施工便利,便于回收,能够可持续利用,空间使用率高、有效节省土地以及节能、降耗等特点。本文主要从高层钢结构的抗震性能及措施进行探讨。 【关键词】高层建筑钢结构抗震 【 abstract 】 with the development of urban construction, steel structures in high-rise building more and more wide application, for high-rise steel structure seismic performance is remarkable, material strength and ductility is good, construction is convenient, easy recycling, able to sustainable use, the space utilization rate is high, effectively save the land and energy saving, consumption reduction etc. characteristics. this article mainly from the high-rise steel structure seismic performance and measures are discussed. 【 key words 】 high-rise; steel structure; seismic 中图分类号:[tu208.3] 文献标识码:a文章编号: 前言 我国地处地震带附近,地质灾害影响特别大,而地震对不同的结构产生着不同的影响,不同的结构在地震中的破坏程度和形式也

抗震性能最好的建筑钢结构建筑

抗震性能最好的建筑----钢结构建筑 地震何时发生我们虽不能预知,但我们可以探讨建筑物于地震中受损倒塌的原因,并加以防范,从工程上建造经得起强震的抗震建筑。说到这里那么尼泊尔地区的建筑抗震性到底怎么样呢?4月25日下午2点11分,尼泊尔发生7.8级地震(中国地震台网测定是8.1级),还有4月26凌晨2:30左右此次地震至少造成超过1100人遇难;地震还引发了珠穆朗玛峰雪崩,大批游客和登山者被困,准确伤亡暂无法统计。另据报道,此次地震波及中国西藏,至少13人遇难4人失踪(另有4位同胞在尼境内遇难)。这是1934年尼泊尔比哈尔8.2级地震以来最强地震。 这几天连续发生的尼泊尔地震和珠穆朗玛峰雪崩引起了全球各国的重视,地震何时发生我们虽不能预知,但我们可以探讨建筑物于地震中受损倒塌的原因,并加以防范,从工程上建造经得起强震的抗震建筑,这是减少地震灾害最直接、最有效的方法。提高建筑物抗震性能,是提高城市综合防御能力的主要措施之一,同时也是防震减灾工作中一项“抗”的主要任务。说到这里那么尼泊尔地区的建筑抗震性到底怎么样呢?2013年春天,尼泊尔建筑界开了一次交流会,得出一个结论:在首都加德满都市区、巴丹市(Lalitpur)、巴克塔普尔地区(Bhaktapur)的绝大多数建筑,抗震能力极其脆弱。专

家说:“这些地方的绝大多数房子和建筑,都未能严格遵守施工管理规定、采用合格建筑材料。”加德满都建设部的高级工程师乌塔尔·库马尔·雷格米博士2013年说:“(加德满都)住房建设根本没按照基本的建筑安全标准进行,这让成千上万人的生命都处于风险中。” 可见尼泊尔地区的绝大多数建筑,抗震能力极其脆弱,雷格米博士指责说,尼泊尔建筑质量差的一个主要原因,是建筑材料质量不达标。负责钢材贸易的加德满都钢铁公司的负责人阿南达当时回应并承认,尼泊尔绝大多数厂商制造的钢材都是低级、劣质的,这些劣质钢材非常容易生锈。尼泊尔国家地震科技学会的专家相信:根本无需高烈度的地震,一场小震就可以把尼泊尔很多房子震塌。尼泊尔的建筑专家2013年公开建议:老百姓造房子时,一定要选择那些最高级别、最好质量的建筑材料,还要严格遵守相关建筑标准,并在建筑时采用抗震技术,这样才能让房子“安全一点”。 这此地震对尼泊尔来讲是一场巨大灾难,救援必须跟时间赛跑。也是一个很大的经验教训,希望经历过此次地震后,尼泊尔应将提高建筑抗震能力、生产发展高质量钢材和普及抗震知识重视起来。过去几年里,中国也发生了不少地震,造成了大量的人员伤亡。从汶川到雅安,岷县鲁甸,统计表明在我国发生的地震中,大多数发生在农村地区。震灾所到之处,断壁残垣,房屋损毁严重,大量人员伤亡。这是因

不同类型高层钢结构的优缺点教学文案

高层钢结构各种类型的优缺点分析 前言 随着我国在大中城市住宅建筑中禁止使用黏土砖,且混凝土结构施工复杂周期长。钢结构受到了工程界的青睐,已成为较有竞争力的民用建筑结构体系之一。与传统的住宅建筑结构体系相比,钢结构不仅具有环保、节能、产业化等特征,而且还具有强度高、自重轻、节约能源、抗震性能好等优点。国家建筑钢结构产业“十二五”计划和2020年发展纲要(草案)提出,“十二五”期间应以多高层钢结构房屋为突破点。 1. 纯框架结构体系 纯框架结构是指沿房屋的纵、横两个方向均由框架作为承重和抵抗水平抗侧力的主要构件所组成的结构体系。框架结构可以分为半刚接框架和全刚接框架两种,框架结构的梁柱宜采用刚性连接。与其他的结构体系相比,框架结构体系可以使建筑的使用空间增大,适用于多类型使用功能的建筑。其结构各部分的刚度比较均匀,构件易于标准化和定型化,构造简单,易于施工,常用于不超过30层的高层建筑。但该结构体系的弹性刚度较差且属于单一抗侧力体系,抗震能力较弱。 图1 纯钢框架结构三维模型图 1.1组成及其特点 典型的框架体系多层轻钢住宅由基础、H型或箱形框架梁柱、节点、轻质墙体、屋面板、楼层次梁、压型钢板楼盖等组成,常见柱距为5 m~8 m。具有下列优势:(1)它是一种延性体系;(2)在建筑设计和平面布置上具有很大的灵活性;(3)各部分刚度比较均匀,构造简单,易于施工;(4)自重周期较长,自重轻,对地震作用不敏感。 1.2 设计原则及注意问题 1)强柱弱梁的设计原则。这个设计原则是为了保证结构在最终破坏的时候具有较好的延性及耗能效果,保证结构的安全性,使塑性铰出现在梁端而不是发生在柱端。

浅析钢结构抗震性能的设计

浅析钢结构抗震性能的设计 摘要:钢结构在建筑行业得到了迅速发展,随着建筑造型和建筑功能要求日趋多样化,钢结构的抗震性能也不断的受到设计、施工等各方面的检验,文章通过对钢结构的特点、抗震性能等方面进行阐述,总结了目前建筑行业钢结构抗震设计的方法。 关键词:钢结构;建筑抗震;设计 引言 随着国民经济的快速发展以及人民生活水平的日益提高,钢结构已经广泛的应用在建筑行业,包括工业厂房、大跨度公共建筑、民用住宅等。钢结构在我国已经得到初步的发展,因其材料和结构形式的特点,钢结构具有建筑功能分区的可变性强、房屋自重轻、抗震性能优越、生产自动化施工装配化程度高和造价低综合经济效益好等优点。但推广和应用钢结构还需解决一系列的问题,实际设计和施工还存在不少争议和问题。这些都急需解决,以利于钢结构在我国健康快速持续发展。 一、钢结构的种类和特点 1、钢结构的种类 钢结构是指用钢板和热扎、冷弯或焊接型材通过连接件连接而成的能承受和传递荷载的结构形式。钢结构体系具有自重轻、工厂化制造、安装快捷、施工周期短、抗震性能好、投资回收快、环境污染少等综合优势,与钢筋混凝土结构相比,更具有在“高、大、轻”三个方面发展的独特优势,在全球范围内,特别是发达国家和地区,钢结构在建筑工程领域中得到合理、广泛的应用。钢结构行业通常分为轻型钢结构、高层钢结构、住宅钢结构、空间钢结构和桥梁钢结构5大子类。 钢结构在各项工程建设中的应用极为广泛,如钢桥、钢厂房、钢闸门、各种大型管道容器、高层建筑和塔轨机构等。 2、钢结构的特点 2.1、钢结构自重较轻 2.2、钢结构工作的可靠性较高 2.3、钢材的抗振(震)性、抗冲击性好 2.4、钢结构制造的工业化程度较高

建筑结构抗震性能设计探究

建筑结构抗震性能设计探究 发表时间:2019-02-28T15:03:59.153Z 来源:《基层建设》2018年第36期作者:黄世文 [导读] 摘要:抗震性能设计是建筑结构设计的重要内容,对建筑结构安全有直接影响。 清远市城乡规划设计院清远市清城区 511500 摘要:抗震性能设计是建筑结构设计的重要内容,对建筑结构安全有直接影响。本文首先对建筑结构抗震性能设计要点进行分析,包括建筑抗震设计目标和抗震性能要求等。在此基础上,结合某建筑工程案例,具体研究建筑结构抗震设计方法,主要研究内容包括主体结构设计、基础选型、结构超限分析、大震弹塑性计算、抗震加固措施等,以期为相关工程提供参考。 关键字:建筑结构;抗震性能;设计策略 前言:地震是一种常见的自然灾害现象,会对建筑结构产生较大的破坏作用力。因此,在建筑设计之初,就需要充分考虑建筑结构的抗震需求,按照当地的地震灾害发生情况以及建筑等级的抗震设计要求,确保建筑结构的安全性。在具体设计过程中,则需要充分收集相关资料,并准确进行计算分析,确保建筑抗震设计的合理性。总体而言,有必要对建筑抗震设计进行研究,明确其设计要点及具体设计方法。 一、建筑结构抗震性能设计要点 (一)设计目标 在发生地震灾害的过程中,地壳快速释放具有破坏作用的地震能量,会引起地表振动,具有突发性和破坏性。建筑结构抗震设计的目的就是提升建筑结构自身强度和稳定性,从而在受到地震作用影响时,能够将破坏程度降至最低,避免引发结构坍塌、倾覆等严重问题。在工程实践中,需要同时满足工程设计要求和相关标准规范的要求。并将国家和行业制定的标准规范,作为建筑抗震设计依据,由资质合格的设计单位负责制定具体的抗震设计方案。同时,建筑抗震设计还要考虑工程的可操作性,充分开展地质勘察及周边环境调查等工作。分析静态地质状态下的地震变化情况,提升建筑抗震性能,为居住者的生命财产安全提供保障[1]。 (二)抗震性能要求 在实际工程中,建筑结构抗震性能会受多方面因素影响,需要全方位满足结构承载力、结构强度、结构损伤等方面的要求。首先从结构承载力方面来看,一般采用惯性力分析地震作用,判断建筑结构的构件强度,分析在极限状态下,是否会对建筑使用功能造成影响。同时也需要在极限状态下分析建筑的受力变化情况,判断受破坏的构件是否可以修复。一般情况下,如果建筑结构抗侧力和竖向重力荷载能够满足要求,就不会在抗震设防等级下出现大面积坍塌现象。此外,在设计过程中也要研究地震输入能量与结构之间的消能关系,比如地震能力是否能够被建筑结构和阻尼所消耗,从而判断建筑结构是否安全。结构总能耗与地震运动输入的平衡关系为EK+ED+ES=EEQ,其中,EK为结构体系功能,ED为阻尼能耗,ES为体系变形,EEQ为地震输入能量。最后,还要确保地震损伤指数符合要求,如表1所示。 表1 建筑结构地震损伤性能指标 二、建筑结构抗震性能设计的案例分析 (一)主体结构设计及基础选型 某建筑工程为综合建筑,建筑总面积为16.8万m2,抗震设防烈度为7度。在具体的设计过程中,首先要将抗震设计与主体结构设计、基础选型联系起来。该工程建筑的高宽比为6.4,主体结构采用钢筋混凝土剪力墙结构,裙楼采用框架结构,包括局部的框支转换结构和大跨度结构。建筑楼盖采用钢筋混凝土梁结构,地下室的顶板为嵌固层。由于该工程的地形条件较为复杂,在前期准备阶段,通过全面搜集勘察资料,并对超高层墙柱荷载进行分析,决定采用混凝土灌注桩基础。在抗震设计过程中,需要确保各部分结构均能满足小震、中震、大震中的抗震性能要求[2]。 (二)结构超限情况分析 由于该工程存在高度超限建筑,需要充分考虑楼板和构件不连续的问题,在建筑结构体系设计过程中,合理进行布局,对超限情况进行分析。最终给确定结构抗震性能的设计目标为C级。在小震作用下,底部加强区的剪力墙及关键构件、转换梁和转换柱、上部剪力墙、框架梁和框架柱等,都需要满足弹性要求。在中震作用下,各部分结构要满足抗弯不屈服、抗剪弹性要求。在大震作用下,底部加强区剪力墙和转换梁、转换柱,也要满足部分抗弯屈服和抗剪不屈服要求。上部剪力墙的框架柱应满足部分抗弯屈服要求,并满足抗剪截面验算。框架梁和连梁则要满足大部分屈服要求。根据建筑结构超限情况和具体抗震设计要求,开展相关计算分析工作。 (三)大震弹塑性计算 在工程抗抗震设计计算分析过程中,需要对单塔和多塔进行弹性计算,根据平扭耦联、双向地震作用和偶然偏心地震作用等参数,对结构抗震性能是否满足要求进行分析。在上述工程的分析过程中发现,底部部分楼层剪重比未达到设计要求,应该增加计算振型数、地震剪力系数。在计算过程中,选取5组天然波、2组人工波,开展补充弹性时程计算分析。其中,地震波最小峰值的加速度为36cm/s2,其持续时间符合要求。得到的前三周期平均地震影响系数、反应谱结构等,误差均小于20%。在中震和大震弹性计算分析过程中,需要综合考虑结构阻尼比和连梁刚度折减等方面的因素。特别是大底盘双塔结构抗震性能分析,需要采取动力弹性分析方法,分别确定结构在X、Y方向上的最大剪力值,确定剪重比和顶点平均位移值,如果不满足要求,需要采取相应的加固措施。 (四)抗震加固措施 根据上述分析计算结果,部分结构需要采取加固措施,具体包括:(1)剪力墙底部,需要对其配筋率进行调整,将最小配筋率改变为0.5%;(2)转换梁和转换柱,需要采取构件加固措施,具体可在其内部增设型钢材料,确保剪力墙整体结构负荷性能良好,并对其延性性能作出优化;(3)受拉墙肢,对于在中震作用下不屈服的受拉墙肢,需要对其进行调整,改变竖向的钢筋分布状态,调整配筋率,也提升到0.5%;(4)裙楼楼板,需要对裙楼楼板进行加厚处理,将其厚度增加到150mm,同时要进行双层双向配置。裙楼屋面的双向大跨度结构

相关文档
相关文档 最新文档