文档库 最新最全的文档下载
当前位置:文档库 › 全国第七届研究生数学建模竞赛-与封堵溃口有关的重物水中运动过程建模

全国第七届研究生数学建模竞赛-与封堵溃口有关的重物水中运动过程建模

全国第七届研究生数学建模竞赛-与封堵溃口有关的重物水中运动过程建模
全国第七届研究生数学建模竞赛-与封堵溃口有关的重物水中运动过程建模

全国第七届研究生数学建模竞赛

题目与封堵溃口有关的重物水中运动过程建模

摘要

本文对溃坝封口有关的重物落水后运动过程进行分析,通过对小型实验获取的相关数据进行拟合,分析计算并最终求得水流的阻力系数,分析物体落水后的运动过程,建立运动方程,并最终获得数学模型。

针对问题1,建立大实心方砖落水后的运动模型,先对其进行运动阶段划分,并进行各个阶段的受力分析,结合Matlab进行数据拟合和优度检验,求解其数学模型。

针对问题2,将问题1中的模型进行推广,综合考虑其它因素的影响,得出对于不同水速、投放高度及投放方式的求出相应的水流阻力系数,运用Matlab 进行建模。

针对问题3,对建立的数学模型进行相应的误差分析,并针对物体的有效触底位置问题,利用牛顿运动定律及最小二乘法,列出重物落水后的水平位移公式,建立模型。

针对问题4,根据工程流体力学和水力学的相关知识,主要考虑重力及压差阻力对重物在水中运动时的影响,分析了此次小型试验所要满足的主要相似准则为重力相似准则和欧拉准则,忽略了对过程影响较小的相似准则,以便最终将模型推广到实际中。最后对于提出的具体问题,求出准确的重物投放位置。

关键字:数据拟合优度检验相似准则

1 问题重述

我国经常发生洪水,溃坝溃堤进而引发泥石流灾害造成国家和人民生命财产的严重损失。利用直升飞机投放堵口组件,不仅能显著提高溃口抢险的快速反应能力,而且容易解决溃口交通不便、堵口物资缺乏等问题。但是,投入溃口的重物落水后受到溃口水流的作用会向下游漂移。为了使封堵用的重物落水后能够沉底并保持在预想的位置,尽可能减少无效投放,必须掌握重物落水后的运动过程,在预定沉底位置的上游一定距离投放达到一定体积和重量的重物。

由于具体情况不同,我们只能利用理论分析和小型试验获取相关数据的方法进行分析,并且在小型试验中假设各种不同情况,利用基础力学和流体力学的相关知识加以研究,并在此基础上依照实际情况进行改进和推广,研究问题如下:

1、对相关数据进行分析,寻找影响重物在水中运动过程的因素,并建立大

实心方砖落水后运动过程与上述主要因素之间联系的数学模型。

2、对小型实验中相关数据进行分析处理,考虑重物在水中运动的各种因素,

建立能够适应不同情况的描述单个重物水中运动过程的数学模型。

3、对单个重物水中运动过程的数学模型进行误差分析,利用小型试验数据

验证模型的合理性,并根据所建模型研究让堵口重物恰好在最有效的位置

触底并进行验证。

4、研究小型试验满足的相似准则,对依据相似准则将小型试验及所建立的

数学模型的成果加以推广提出建议。

5、根据所建立的数学模型,假定溃口几何形状及水流速度与小型试验相似,

溃口水深分别为3m和4m,溃口流速为4m/s和5m/s,若重物重量为1.5t,根据建立的数学模型求解距离水面2m投放重物时,应分别提前多远投放

才能使重物沉底到预定位置。

2 模型假设

假设1:实验中水槽的流速基本设置成均匀流速;

假设2:水流有不可压缩性,使得水流场的速度与压力成为相互独立的量;

假设3:重物入水后并不发生翻转。

3 符号说明

h

:重物距离水面的高度

t

:重物从被抛出到落水前运动的时间

m

:重物的质量

F

:重物在水中水平方向受到的水流阻力

'

F

:重物在水中竖直方向受到的水流阻力

F

:重物在水中受到的浮力

v

:重物落水时的初速度

v

:水流速度

G

:重物的重力

:重物从入水到触底的时间

t

h

:水的深度

:水的密度

g:重力加速度

s:重物正对水流的面积

c:水流的阻力系数

4 问题1分析及建模

4.1 问题分析

重物在水中的运动会受到多方面因素的影响,这些因素可总结如下:

(1) 重物的形状及材质。由于溃坝时具体情况不同,溃口的纵、横断面千差万别,而且都不是规则的矩形、梯形或V字形,因此封堵用重物的形状、大小,重量、体积、面积各不相同,不可能一模一样。它们都会直接影响到封堵用重物落在溃口后的运动过程和沉底后状况。

(2) 水的流速和温度。溃坝处的流速是封堵溃口问题必须考虑的因素之一,水的流速大小会影响到重物在水中的运动轨迹。水具有流动性,是介于气态和固态物质属性之间的一种物质形态,具有分子的可流动性和体积不可压缩性两大特点。水分子在不停的无序运动,并且以水的温度所标示的气体分子的运动速度在运动。液体的粘滞系数和液体的温度有一定的关系。随液体分子运动速度的增加而减小。当水温升高的时候,随着水分子运动速度的增加,那么会使水的粘滞系数减小。因此,水的温度会对实验产生一定的影响。

(3) 重物的投放高度。组件投放高度不同,其入水初速度就会不同,所以投放高度会直接影响到封堵溃坝口的效果。试验中,通过将重物试件重心置于不同的高度后释放,由于经过一段自由落体运动,重物试件获得一定入水初速度。高度不同,入水初速度不同,会影响到重物落水后的运动过程。

(4) 重物的投放方式。重物投放方式不同,在水中受力情况亦不相同,这会导致封堵溃口试件在水中下沉过程中运动状态不同,从而影响堵口的效果。

(5) 水的阻力。流体对运动物体的阻力,主要有粘性阻力、压差阻力和兴波阻力三种。

在流体缓慢流过静止的物体或者物体在流体中运动时,流体内各部分流动的速度不同,存在粘滞阻力,粘滞阻力的大小与物体的运动速度成正比。

当流体运动遇到物体时,流体会被物体分开,从物体的不同侧面流过。如果流体具有一定的粘性,靠近物体的那部分流体的速度将减慢,在物体的后面一侧形成“真空”地带,离物体较远处的流体将向这个“真空”地带补充,出现湍流。

此时,物体前后两部分流体内单位体积分子数不同,前后侧面受到流体的压力不同,使得物体受到流体的阻力,这种阻力称为压差阻力。压差阻力的大小与物体运动速度的平方成正比,即22f C V =。

产生压差阻力的机制与粘滞阻力不同。粘滞阻力是物体表面处流体与物体相互作用的结果;压差阻力是物体前后面出现压力差的结果。从本质上讲,压差阻力也是由粘滞阻力引起的。因为流体与物体之间存在粘滞阻力,才使得从物体侧面流过的流体不能立刻到达物体的后方,出现后方的“真空”、“尾流”,产生压力差。

液体的密度比较大,在液体中运动的物体受到压差阻力的影响占大部分,因此,本文可以考虑压差阻力的影响,忽略粘滞阻力对物体运动的影响。

(6)测量误差。由于本题中所用数据是依据重物下沉过程的录像中某个时刻的截图,显示在玻璃网格上的重物的重心横纵坐标值,由于水的折射及其它因素难免会存在一些误差,在具体分析中可不考虑,认为原始数据是较为准确的。 4.2 大实心方砖水中运动分析

方砖从被抛出到落入水中直到触底,中间的运动过程可分解为两段来分析。 方砖从抛出到落入水中之前,若不计空气阻力,可认为方砖在这段过程中做自由落体运动;从落入水中后到触底前,方砖受到多个力的作用,运动轨迹需要详细分析。下面分别分析这两段运动过程。

落水之前,方砖的自由落体运动可用公式来表示

2

12

h gt =

(1)

v =

物 (2)

其中h 为方砖距离水面的高度,g 为重力加速度,v 物为方砖落水时的初速度。

方砖落水后受到重力、水对它的浮力及水流阻力的作用,其运动轨迹可分解为水平和竖直两个方向的运动。其中在水平方向上,方砖受到水的推力(即水流阻力),这时方砖的控制运动方程可列为:

2

2d x m

F dt

=阻 (3)

而在竖直方向上,方砖在水中受到向上的浮力和水流阻力及向下的重力,此时方砖的运动方程可列为

2

2G 'd y m

F F dt

=--阻浮物 (4)

由上面的分析可得物体在水中运动时受到水流的阻力,在流体力学中,水流阻力的计算公式如下:

2

12

F v sc ρ=

阻水 (5)

重物受到的浮力为

F gV ρ=浮水物

(6)

经过分析可知,可以利用Matlab 对方砖落水后运动的数据进行拟合,模拟出其运动轨迹,然后对所得函数与原始数据进行拟合优度检验,检验模型是否满足实验要求。

4.3 大实心方砖落水后水中运动建模

由于大实心方砖的投放高度、投放方式以及水的流速的影响,试验中给出了多组数据,并在不同情况下进行了多次模拟实验,如表1所示:

合出相应的运动方程,由于过程繁杂且重复性高,本文以试验工况1(即水流速度在0.34 m/s ,重物在水面投放)为例来进行数据的拟合和优化。以下图1到图

假设实际测得的值为0x ,其平均值x ,为根据拟合曲线所求得的理论值为'x ,则可得其误差平方和为2

0(')x x -∑,均方差为2

0()x x -∑,若误差平方和与均方差的比值越小则说明实际观察值与估计值越接近,曲线拟合的越好。为此可定义相关系数,其计算公式为

2

2

2

001(')/()R x x x x =---∑∑ (7)

运行MATLAB ,计算各拟合曲线的误差平方和与相关系数,可得误差平方和与均方差的比值较小,相关系数2

R 已经很接近于1,说明曲线与实际数据拟合的比较好,模型已经可以很好的解释物体的运动轨迹。

5 问题2分析及建模

重物在水中的运动会受到多方面因素的影响,要综合考虑各种因素是不太可

能的,只有尽量把主要影响因素考虑在内,如重物投放高度及方式(平放、竖放、立放)以及水的流速,对单个物体在水中运动过程的分析可参考问题1中对大实心方砖的分析。

重物的运动过程分为落水前和落水后两个阶段,落水前重物只受重力的影响,对于在空气中的粘滞阻力可暂不考虑,因此可看作是自由落体运动;落水后重物的运动分解为水平与竖直两个方向的运动,水平方向重物受到压差阻力的作用而向前运动(在水中压差阻力对于物体运动影响较大,可不考虑粘滞阻力的影响),竖直方向重物受到重力、浮力及压差阻力的影响(粘滞阻力影响较小同样不予考虑)。

粘滞阻力的计算公式如下:

2

12

F v

s c ρ=

阻 (8)

水平方向:

2

11112

c m F v s a ρ==

水阻 (9)

竖直方向:

2

22212

m a m g gV v s c ρρ=--

水物 (10)

其中1v 为水平方向水流与物体的相对运动速度,2v 为竖直方向物体下降速度与水流速度的相对运动速度,V 物为物体的体积。另设v 1为物体水平方向的运动速度,2v 为物体在竖直方向的运动过程,1s 、2s 分别为物体在水平、竖直方向运动时的受力特征面积,1c 、2c 分别为物体在水平、竖直方向运动时的阻力系数。可列方程组如下:

()2

1112

s c dv m

d v v t

ρ=

-1水水1 (11)

2

22212

dv m g gV m

v t

s c d ρρ=--2水物 (12)

关键要求得压差阻力系数1c 、2c ,可参考问题1的方法用Matlab 对其它重物的数据进行拟合,得到拟合曲线,分析计算进而得到各单件重物的阻力系数,

如下表:

可知因素,我们只能尽量满足主要因素的影响,用Matlab拟合后分析计算进而得到压差阻力系数后,我们可以将压差阻力系数代入物体在水平和竖直方向的运动方程(11)、(12),那么就得到了物体在水中的运动模型。

如果将两个重物连在一起投放,那么物体在水中的运动过程将更难掌握,因为我们无法准确的确定两个物体在水中运动时的受力情况,水流对两个物体的影响可能不会完全一致,建立数学模型将更加困难。

我们仍可以利用问题1用到的方法建立一个大概的模型,利用Matlab将实验数据进行拟合与优化,得到拟合曲线,分析计算并最终求出组合物体在水中的压差阻力系数,代入物体的运动方程,建立起数学模型。

6 问题3分析及建模

6.1 模型误差分析

对于所建模型,用MATLAB对本题中给出的数据进行分析,并求出各种情况的误差平方和及相关系数2R的值,列表得

表中的2

01(')sum x x =-∑,2

2

2001(')/()R x x x x =---∑∑,此两项参数用于进行拟合优度检验。

从上表中可以看出,总体看2R 已经很接近于1,说明所建模型与实际观测值比较接近,模型已经可以很好的解释物体的运动轨迹。 6.2 有效触底位置分析与建模 现实中发生溃坝溃堤时,投入溃口的重物落水后受到水流阻力的作用会向下

游移动,为了使封堵用的重物落水后能够落到预想的位置,必须掌握掌握落水后的运动过程,在预定沉底位置的上游一定距离投放一定质量的重物。

为了解决这个问题,首先要把重物的运动过程分析清楚,由前两个问题的分析基本推导出了重物从被抛出到落入水中直至触底的运动过程,即从被抛出到入水前是做自由落体运动,到达水面时获得一定的入水速度。入水后运动可分为水平方向和竖直方向两个方向的运动。

在竖直方向上重物受到重力,重物做自由落体运动。入水后的重物初速度由公式(13)求出

v =

物 (13)

在竖直方向上重物受到自身重力、浮力和水流阻力的作用,则重物有一个向下的加速度,表示为

1G F F a m --=

阻浮

物物

(14)

而重物受到的水流阻力F 阻可由

2

1F s c 2

v ρ=

阻水 (15)

得出,其中水流密度、水流速度及重物的特征面积均已知,水对重物的阻力系数可由前面的表格查得。给定水的深度h 水,则重物从被抛出到落水前的时间t 水可由下面的公式求出

2

112

v t a t h +=

物水

(16)

然后进行运动分析,由此求出重物从入水到触底所用的时间t 水,这样竖直方向上的运动情况可知。

在水平方向上,重物受到水的推力(即水流阻力)作用,则重物在水平方向的加速度为

'

2F a m =

(17)

则重物落水后的水平位移x 可得

2

212x a t

=

水 (18)

由以上分析可推出,在封堵溃坝时如果要想投放重物后让重物在理想的有效

位置触底,应该在距离理想的有效位置上游x 处投放重物。

7 问题4分析

根据流体力学相似原理,本题中所提及的小型试验满足了重力准则和欧拉准则。在所建立的模型中,主要考虑重力及压差阻力对重物在水中运动时的影响,水流阻力主要考虑压差阻力,粘滞力作用、表面张力和弹性力不起主要作用,因此,小型试验满足了重力准则和欧拉准则。

流体运动状态的改变是惯性力和其他各种作用力相互作用的结果。因此,各种作用力之间的比例关系应以惯性力为一方来相互比较。其中,惯性力的表达式为:3

22

2

1I m a l l v

T

ρρ===。

重力相似准则:222

3

l v v

Fr gl

gl

ρρ=

=

=

惯性力重力

,一般取F r =

当重力起主要作用时,动力相似有:p m Fr Fr =或

2

1v

g l

λλλ=。

欧拉准则:22

2

2

l v v Eu pl

p

ρρ=

=

=

惯性力压力

当压力起主要作用时,动力相似有:p m

E u E u =或1v p

ρλλλ=。

根据相似准则将小型试验及所建立的数学模型加以推广,关键问题是要使得模型水流和实际水流保持流动相似。流动相似是指两个流动的相应点上的同名物理量(如速度、压强、各种作用力等)具有各自的固定比例关系。模型水流和原型水流保证流动相似,应满足几何相似、运动相似、动力相似、初始条件和边界条件相似。几何相似是指模型和原型的全部对应线形长度的比值为一常数;运动相似是指满足几何相似的流场中,对应时刻、对应点流速(加速度)的方向一致,大小成比例;动力相似是指两个运动相似的流场中,对应空间点、对应瞬时,作用在两相似几何微团上的力,方向相同、大小成比例。

(1)几何相似

长度比例尺

'

'

'

l L

l h

C L

l

h =

=

=

面积比例尺 '

'22

2

A l A

l C C A

l

=

=

=

体积比例尺

''3

3

3

V l

V l

C C

V l

===

(2)速度场相似

时间比例尺

'

''

3

12

123

t

t

t t

C t t t

===

速度比例尺

'

''

l v

t

l

C

v t

C

l

v C

t

===

加速度比例尺

'

2

''

v v a

t l

v

C C

a t

C

v

a C C

t

====

如上所述,若实际溃口与所建立的数学模型满足几何相似及速度场相似的条件,且长度比例尺和速度比例尺可以相应确定,则可由它们确定所有运动学量的比例尺,将数学模型推广到实际溃口中,进行分析并求解。

8 模型总结及评价

对于重物落水后运动过程的分析与建模是个比较复杂的问题,在实验过程中重物会受到多方面因素的影响,很难将各种因素综合考虑在内,只能抓住主要因素,忽略次要因素的影响。在与实际的联系中,由于很难使试验中水的流动与原型完全相似,而且定性准则数越多,小型试验的设计越困难,甚至根本无法进行。为了解决这方面的矛盾,在实际的小型试验中,一般只能满足某个或某些相似准则,忽略对过程影响比较小的相似准则,抓住问题的主要物理量,使问题得到简化。论文中的模型的建立依赖于小型实验得出的原始数据,可能与实际情况会有较大的偏差,也是不可避免的。为了得到更加准确的模型,还需要对实际的情况进行更加深入的研究和分析。

9 参考文献

[1] 归柯庭,《工程流体力学》,北京:科学出版社,2003年

[2] 赵孝保,《工程流体力学》,南京:东南大学出版社,2004年

[3] 许波、刘征,《Matlab工程数学应用》,北京:清华大学出版社,2000 年

[4] 赵宝贵,Matlab在数据拟合中的应用,科技广场,10(7),2007年

[5] 任正义、刘静娜、谢韶旺、李庆芬,基于数据拟合的模型重构和误差分析, 31

(2),2000年

大学生数学建模竞赛组队方案

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):成都纺织高等专科学校 参赛队员(打印并签名) :1. XXX(机电XXX) 2. XXX国贸XXX) 3. XXX(电商XXX) 指导教师或指导教师组负责人(打印并签名): 日期: 2014 年 06 月 06 日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

目录 一、问题的重述 (1) 1.1 背景资料与条件 (1) 1.2 需要解决的问题 (1) 二、问题的分析 (2) 2.1 问题的重要性分析 (2) 2.2问题的思路分析 (3) 三、模型的假设 (4) 四、符号及变量说明 (4) 五、模型的建立与求解 (4) 5.1建立层次结构模型 (4) 5.2构造成对比较矩阵 (5) 5.3成对比较矩阵的最大特征根和特征向量的实用算法 (6) 5.4一致性检验 (7) 5.5层次分析模型的求解与分析 (8) 5.5.1 构造成对比较矩阵 (8) 5.5.2计算25优秀大学生的综合得 (9) 六、模型的应用与推广 (11) 七、模型的评价与改进 (12) 7.1模型的优点分析 (12) 7.2模型的缺点分析 (12) 7.3模型的进一步改进 (12) 八、参考文献 (13) 附件一 (14) 附件二 (16)

2017全国数学建模竞赛B题

2017年高教社杯全国大学生数学建模竞赛题目 (请先阅读“全国大学生数学建模竞赛论文格式规范”) B题“拍照赚钱”的任务定价 “拍照赚钱”是移动互联网下的一种自助式服务模式。用户下载APP,注册成为APP的会员,然后从APP上领取需要拍照的任务(比如上超市去检查某种商品的上架情况),赚取APP对任务所标定的酬金。这种基于移动互联网的自助式劳务众包平台,为企业提供各种商业检查和信息搜集,相比传统的市场调查方式可以大大节省调查成本,而且有效地保证了调查数据真实性,缩短了调查的周期。因此APP成为该平台运行的核心,而APP中的任务定价又是其核心要素。如果定价不合理,有的任务就会无人问津,而导致商品检查的失败。 附件一是一个已结束项目的任务数据,包含了每个任务的位置、定价和完成情况(“1”表示完成,“0”表示未完成);附件二是会员信息数据,包含了会员的位置、信誉值、参考其信誉给出的任务开始预订时间和预订限额,原则上会员信誉越高,越优先开始挑选任务,其配额也就越大(任务分配时实际上是根据预订限额所占比例进行配发);附件三是一个新的检查项目任务数据,只有任务的位置信息。请完成下面的问题: 1.研究附件一中项目的任务定价规律,分析任务未完成的原因。 2.为附件一中的项目设计新的任务定价方案,并和原方案进行比较。 3.实际情况下,多个任务可能因为位置比较集中,导致用户会争相选择,一种 考虑是将这些任务联合在一起打包发布。在这种考虑下,如何修改前面的定价模型,对最终的任务完成情况又有什么影响? 4.对附件三中的新项目给出你的任务定价方案,并评价该方案的实施效果。 附件一:已结束项目任务数据 附件二:会员信息数据 附件三:新项目任务数据

2017年研究生数学建模竞赛A题

2017年中国研究生数学建模竞赛A题 无人机在抢险救灾中的优化运用 2017年8月8日,四川阿坝州九寨沟县发生7.0级地震,造成了不可挽回的人员伤亡和重大的财产损失。由于预测地震比较困难,及时高效的灾后救援是减少地震损失的重要措施。无人机作为一种新型运载工具,能够在救援行动中发挥重要作用。为提高其使用效率,请你们解决无人机优化运用的几个问题。 附件1给出了震区的高程数据,共有2913列,2775行。第一行第一列表示(0,0)点处的海拔高度值(单位:米),相邻单元格之间的距离为38.2米,即第m行第n列单元格中的数据代表坐标(38.2(m-1), 38.2(n-1))处的高度值。震区7个重点区域的中心位置如下表所示(单位:千米): 除另有说明外,本题中的无人机都假设平均飞行速度60千米/小时,最大续航时间为8小时,飞行时的转弯半径不小于100米,最大爬升(俯冲)角度为±15°,与其它障碍物(含地面)的安全飞行距离不小于50米,最大飞行高度为海拔5000米。所有无人机均按规划好的航路自主飞行,无须人工控制,完成任务后自动返回原基地。 问题一:灾情巡查 大地震发生后,及时了解灾区情况是制订救援方案的重要前提。为此,使用无人机携带视频采集装置巡查7个重点区域中心方圆10公里(并集记为S)以 内的灾情。假设无人机飞行高度恒为4200米,将在地面某点看 无人机的仰角大于60°且视线不被山体阻隔视为该点被巡查。 若所有无人机均从基地H(110,0)(单位:千米)处派出,且完成任

务后再回到H,希望在4小时之内使区域S内海拔3000米以下的地方尽可能多地被巡查到,最少需要多少架无人机?覆盖率是多少?每架无人机的飞行路线应如何设计?在论文中画出相应的飞行路线图及巡查到的区域(不同的无人机的飞行路线图用不同的颜色表示)。 进一步,为及时发现次生灾害,使用无人机在附件1给出的高度低于4000米的区域(不限于S)上空巡逻。问最少需要多少架无人机、如何设定每架无人机的飞行时间、路线,才能保证在72小时内,上述被巡查到的地方相邻两次被巡查的时间间隔不大于3小时(无人机均需从H出发并在8小时内回到H,再出发的时间间隔不小于1小时)? 问题二:生命迹象探测 使用无人机携带生命探测仪搜索生命迹象,能够给灾后救援提 供准确的目标定位。拟从基地H(110,0),J(110,55)(单位:千米)处 总共派出30架无人机(各15架),任务完成后回到各自的出发地。 探测仪的有效探测距离不超过1000米,且最大侧视角(探测仪到可 探测处的连线与铅垂线之间的夹角)为60度。请你们规划它们的飞 行路线,使附件1所给出的全区域内海拔3000米以下部分能被探测到的面积尽可能大,且使从第一架无人机飞出到最后一架完成任务的无人机回到基地的时间间隔尽量短。 问题三:灾区通信中继 大地震发生后,地面电力设施被破坏,灾区通信中断。太阳能无人机(白天不受续航能力限制,其余条件同前述)可以作为地面移动终端之间的通信中继,为灾区提供持续的通信保障(地面终端只能与无人机进行通信,无人机之间只要不超过最大通信距离就可以互相通信,地面与地面之间的通信由无人机转接)。假设无人机在空中飞行时,可与距离3000米以内的移动终端通信,无人机之间的最大通信距离为6000米,问最少需要多少架无人机、每架无人机的飞行路线如何,才能保证在白天12小时内,附件2中的任意两个地面终端之间都能实现不间断通信(作为中继的无人机之间的切换时间忽略不计,地面终端的移动距离不超过2千米)? 问题四:无人机对地的数据传输 指挥中心拟从H派出3架无人机携带通信装备向灾区内的72个地面终端(分布见附件2)发送内容不同,总量均为500M(1M按106比特计算)的数据。设每台通信装备的总功率是5瓦,可同时向不超过10个地面终端发送数据。数据传输过程可以简化为:当地面终端i看无人机的仰角大于30°、距离不超过3000米且没有山体阻隔时,如果无人机当前服务用户少于10

全国大学生数学建模竞赛的准备方法

全国大学生数学建模竞赛的准备方法 全国大学生数学建模竞赛于每年9月上旬(今年是9月7日)举行。但是在此之前,需要做好哪些准备,让各个参赛队员在竞赛中做到有备无患呢?在总结过去多年培训指导各种数学建模竞赛的基础上,仅就个人观点,介绍一些关于如何准备数学建模竞赛的经验和体会,仅供参考。在这里主要向大家介绍竞赛的基本情况,包括如何组队、如何选题以及在竞赛中如何合理分配时间。通过本次学习,希望大家能够了解数学建模竞赛的基本情况,为全国大学生数学建模竞赛以及其他各类数学建模竞赛做好准备。 一、如何组建优秀数学建模队伍 进入大学阶段参加各种科技竞赛,可以体会到一种和中学竞赛不同的感受,这种感受来自团队合作。以前的各项赛事都是以个人为单位参加竞赛,它们都是考查个人的能力。但是在大学中,由于难度和任务量的加重以及对团队合作精神的关注,因此大部分的赛事都是以团队为单位参加的。竞赛在考查个人能力的同时,还考查团队成员的合作精神。在数学建模竞赛中,团队合作精神是能否取得好成绩的最重要的因素,一队三个人要分工合作、相互支持、相互鼓励。从历年的统计数据可以看出,竞赛成绩优秀的队员往往并不是每个人在各个方面都特别擅长的队伍,而是团队相处得最融洽的队伍。从这一点也可以看出团队合作的重要性。 在竞赛的过程中,切勿自己只管自己的那一部分,一定要记住这是一个集体的竞赛。很多时候,往往一个人的思考是不全面的,只有大家一起讨论才有可能把问题搞清楚。因此无论做任何事情,三个人一定要齐心才行,只靠一个人

的力量,要在3天之内写出一篇高水平的论文几乎是不可能的。让三人一组参赛一方面是为了培养合作精神,其实更为重要的原因是这项工作确实需要多人合作,因为一个人的能力是有限的,知识掌握也往往是不全面的。一个人做题,经常会走向极端,得不到正确的解决方案。而三个人相互讨论、取长补短,可以弥补一个人所带来的不足。 在队伍组建的时候,需要强调“队长”这个名词概念。虽然在全国大学生数学建模竞赛中并没有设立队长,作为队长在获得的证书上也没有特别标注。但是在队内设立“队长”是非常有必要的。因为在比赛中可能会碰到各种突发状况,队长是很重要的,他的作用就相当于计算机中的CPU,是全队的核心。如果一个队的队长不得力,往往影响一个队的正常发挥。竞赛是非常残酷的,在3天3夜(72h)的比赛中,大家睡眠时间都得不到保障,怎样合理安排团队时间就是队长需要做的事情。在比赛过程中,由于睡眠不足,大家脾气都会很急躁。在这种情况,往往会为了一些小事而发生争吵,如果没有适当的处理,有些队伍将会放弃比赛,而队长就应该在这个时候担起责任。 在明确“队长”这个概念后,接下去谈谈怎样科学选择队友。在数学建模竞赛中,题目要求完成的工作量是很大的,因此这项任务是必须分工完成的,各有侧重、相互帮助,这样才能获得好成绩。而科学地选择队友则显得非常重要,也是走向成功的第一步。一般情况下选择队友可以从以下几个方面考虑着手: 1. 在组队的时候需要考虑队伍成员的多元化,尽量和不同专业、不同特长的同学组队。因为同系同专业甚至同班的话大家的专业知识一样,如果碰上专业知识以外的背景那会比较麻烦的。所以如果是不同专业组队则有利的多。因为数学建模题有可能出现在各个领域,这也是数学建模适合各个专业学生参加的原因所在,也是数学建模竞赛赛事的魅力所在。

全国大学生数学建模竞赛论文

2009高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名):1. 2. 3. 指导教师或指导教师组负责人(打印并签名):指导教师组 日期:年月日 赛区评阅编号(由赛区组委会评阅前进行编号):

2009高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国评阅编号(由全国组委会评阅前进行编号):

论文标题 摘要 摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。 一般说来,摘要应包含以下五个方面的内容: ①研究的主要问题; ②建立的什么模型; ③用的什么求解方法; ④主要结果(简单、主要的); ⑤自我评价和推广。 摘要中不要有关键字和数学表达式。 数学建模竞赛章程规定,对竞赛论文的评价应以: ①假设的合理性 ②建模的创造性 ③结果的正确性 ④文字表述的清晰性 为主要标准。 所以论文中应努力反映出这些特点。 注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

2017年中国研究生数学建模竞赛题

2017年中国研究生数学建模竞赛D题 基于监控视频的前景目标提取 视频监控是中国安防产业中最为重要的信息获取手段。随着“平安城市”建设的顺利开展,各地普遍安装监控摄像头,利用大范围监控视频的信息,应对安防等领域存在的问题。近年来,中国各省市县乡的摄像头数目呈现井喷式增长,大量企业、部门甚至实现了监控视频的全方位覆盖。如北京、上海、杭州监控摄像头分布密度约分别为71、158、130个/平方公里,摄像头数量分别达到115万、100万、40万,为我们提供了丰富、海量的监控视频信息。 目前,监控视频信息的自动处理与预测在信息科学、计算机视觉、机器学习、模式识别等多个领域中受到极大的关注。而如何有效、快速抽取出监控视频中的前景目标信息,是其中非常重要而基础的问题[1-6]。这一问题的难度在于,需要有效分离出移动前景目标的视频往往具有复杂、多变、动态的背景[7,8]。这一技术往往能够对一般的视频处理任务提供有效的辅助。以筛选与跟踪夜晚时罪犯这一应用为例:若能够预先提取视频前景目标,判断出哪些视频并未包含移动前景目标,并事先从公安人员的辨识范围中排除;而对于剩下包含了移动目标的视频,只需辨识排除了背景干扰的纯粹前景,对比度显著,肉眼更易辨识。因此,这一技术已被广泛应用于视频目标追踪,城市交通检测,长时场景监测,视频动作捕捉,视频压缩等应用中。 下面简单介绍一下视频的存储格式与基本操作方法。一个视频由很多帧的图片构成,当逐帧播放这些图片时,类似放电影形成连续动态的视频效果。从数学表达上来看,存储于计算机中的视频,可理解为一个3维数据,其中代表视频帧的长,宽,代表视频帧的帧数。视频也可等价理解为逐帧图片的集合,即,其中为一张长宽分别为 的图片。3维矩阵的每个元素(代表各帧灰度图上每个像素的明暗程度)为0到255之间的某一个值,越接近0,像素越黑暗;越接近255,像素越明亮。通常对灰度值预先进行归一化处理(即将矩阵所有元素除以255),可将其近似认为[0,1]区间的某一实数取值,从而方便数据处理。一张彩色图片由R(红),G(绿),B(蓝)三个通道信息构成,每个通道均为同样长宽的一张灰度图。由彩色图片

2020全国大学生数学建模竞赛试题

A题炉温曲线 在集成电路板等电子产品生产中,需要将安装有各种电子元件的印刷电路板放置在回焊炉中,通过加热,将电子元件自动焊接到电路板上。在这个生产过程中,让回焊炉的各部分保持工艺要求的温度,对产品质量至关重要。目前,这方面的许多工作是通过实验测试来进行控制和调整的。本题旨在通过机理模型来进行分析研究。 回焊炉内部设置若干个小温区,它们从功能上可分成4个大温区:预热区、恒温区、回流区、冷却区(如图1所示)。电路板两侧搭在传送带上匀速进入炉内进行加热焊接。 图1 回焊炉截面示意图 某回焊炉内有11个小温区及炉前区域和炉后区域(如图1),每个小温区长度为30.5 cm,相邻小温区之间有5 cm的间隙,炉前区域和炉后区域长度均为25 cm。 回焊炉启动后,炉内空气温度会在短时间内达到稳定,此后,回焊炉方可进行焊接工作。炉前区域、炉后区域以及小温区之间的间隙不做特殊的温度控制,其温度与相邻温区的温度有关,各温区边界附近的温度也可能受到相邻温区温度的影响。另外,生产车间的温度保持在25oC。 在设定各温区的温度和传送带的过炉速度后,可以通过温度传感器测试某些位置上焊接区域中心的温度,称之为炉温曲线(即焊接区域中心温度曲线)。附件是某次实验中炉温曲线的数据,各温区设定的温度分别为175oC(小温区1~5)、195oC(小温区6)、235oC(小温区7)、255oC(小温区8~9)及25oC(小温区10~11);传送带的过炉速度为70 cm/min;焊接区域的厚度为0.15 mm。温度传感器在焊接区域中心的温度达到30oC时开始工作,电路板进入回焊炉开始计时。 实际生产时可以通过调节各温区的设定温度和传送带的过炉速度来控制产品质量。在上述实验设定温度的基础上,各小温区设定温度可以进行oC范围内的调整。调整时要求小温区1~5中的温度保持一致,小温区8~9中的温度保持一致,小温区10~11中的温度保持25oC。传送带的过炉速度调节范围为65~100 cm/min。 在回焊炉电路板焊接生产中,炉温曲线应满足一定的要求,称为制程界限(见表1)。 表1 制程界限 界限名称 最低值 最高值

2017年中国研究生数学建模竞赛E题

2017年中国研究生数学建模竞赛E题 多波次导弹发射中的规划问题 随着导弹武器系统的不断发展,导弹在未来作战中将发挥越来越重要的作用,导弹作战将是未来战场的主要作战样式之一。 为了提高导弹部队的生存能力和机动能力,常规导弹大都使用车载发射装置,平时在待机地域隐蔽待机,在接受发射任务后,各车载发射装置从待机地域携带导弹沿道路机动到各自指定发射点位实施发射。每台发射装置只能载弹一枚,实施多波次发射时,完成了上一波次发射任务的车载发射装置需要立即机动到转载地域(用于将导弹吊装到发射装置的专门区域)装弹,完成装弹的发射装置再机动至下一波次指定的发射点位实施发射。连续两波次发射时,每个发射点位使用不超过一次。 某部参与作战行动的车载发射装置共有24台,依据发射装置的不同大致分为A、B、C三类,其中A、B、C三类发射装置的数量分别为6台、6台、12台,执行任务前平均部署在2个待机地域(D1,D2)。所属作战区域内有6个转载地域(Z01~ Z06)、60个发射点位(F01~ F60),每一发射点位只能容纳1台发射装置。各转载地域最多容纳2台发射装置,但不能同时作业,单台转载作业需时10分钟。各转载地域弹种类型和数量满足需求。相关道路情况如图1所示(道路节点J01~J62),相关要素的坐标数据如附件1所示。图1中主干道路(图中红线)是双车道,可以双车通行;其他道路(图中蓝线)均是单车道,只能在各道路节点处会车。A、B、C三类发射装置在主干道路上的平均行驶速度分别是70公里/小时、60公里/小时、50公里/小时,在其他道路上的平均行驶速度分别是45公里/小时、35公里/小时、30公里/小时。 部队接受发射任务后,需要为每台车载发射装置规划每个波次的发射点位及机动路线,要求整体暴露时间(所有发射装置的暴露时间之和)最短。本问题中的“暴露时间”是指各车载发射装置从待机地域出发时刻至第二波次发射时刻为止的时间,其中发射装置位于转载地域内的时间不计入暴露时间内。暂不考虑发射装置在发射点位必要的技术准备时间和发射后发射装置的撤收时间。

全国数学建模大赛题目

2010高教社杯全国大学生数学建模竞赛题目 A题储油罐的变位识别与罐容表标定 通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。 许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。 请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。 (1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。 (2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。 附件1:小椭圆储油罐的实验数据 附件2:实际储油罐的检测数据 地平线油位探针

第十五届华为杯中国研究生数学建模竞题—B题

2018年中国研究生数学建模竞赛B 题 光传送网建模与价值评估 1. 背景 2009年诺贝尔物理学奖授予了英籍华人高锟(Charles K. Kao )博士,以表彰他对光纤通信发展所做出的贡献,诺贝尔奖委员会在给公众的公开信中写到: “当诺贝尔物理学奖宣布的时候,世界大部分地方几乎瞬间收到了这条信息…文字、语音和视频信号沿着光纤在世界各地来回传输,几乎瞬时地被微小而便捷的设备接收,人们已经把这种情况当做习惯。光纤通信正是整个通信领域急速发展的前提。” 从诞生至今,50多年里基于数字光纤通信技术的光传送网构建起了全球通信的骨架。从城市内的传输,直到跨越大洋的传输,光传送网为人类提供了大容量、高可靠性和低能耗的信息传输管道,人类对通信容量的追求也成为光传送技术发展的源源不断的动力。 光传送网的规划与建设是运营商、设备商以及政府必须考虑的课题。光传送的基本规律是——在相同技术条件下传输的容量会随着传输距离增加而减小。网络规划者需要在有限资源的条件下,综合考虑传输距离,传输容量、网络拓扑等各种因素,以最大化网络的价值。本课题中,请你们站在上述角度,从底层物理出发为光传送链路建模,制定光传送网规划,探索光传送网有关规律。 本课题的内容包括: 1) 对光传送链路进行简单建模 2) 制定光传送网的规划,并探讨网络的价值 3)改进调制格式 2. 问题-1:光传送链路建模 现代数字传输系统可认为是对0101二进制序列进行编码传输的系统,1个二进制的0或1称为1个比特(bit )。无论是语音、视频还是任何类型的消息,都可以数字化为一串串”0101…”的二进制比特序列,经编码并调制为某个“载体信号”后,再经过特定的“信道”(信息的通道)传输到目的地。图1中给出了简化的模型。在光纤通信中,光纤就是信道,光纤传输的光波就是信息的载体。信道中无法避免的噪声可能导致最终接收的二进制序列中比特出错,即产生误码。 接收机解调制噪声信号接收 信号 发送序列 0101010...接收序列0101110...发射机 编码调制 图1 简化后的数字传输模型 二进制序列通常需要将K 个比特作为一个“符号”进行传输,每个符号有个不同状

为什么要参加大学生数学建模竞赛

为什么要参加大学生数学建模竞赛 大学生数学建模竞赛是培养学生创新能力和竞争能力的极好的、具体的载体。 1.对于学校的领导(校长、教务处长等)来说,全心全意把学校搞好(高质量的教学、高百分比的就业率、高水平的教师队伍以及提高知名度等)肯定是他们追求的办学目标而且会采取各种措施。但是就选派学生参加大学生数学建模竞赛来说,不少领导(甚至数学教师)会非常犹豫:我们数学课时少,教学任务重,即使参加了,拿不到奖的话,不但不能提高学校的知名度,甚至会招致一些负面的议论等等。实际上,领导们有三个问题考虑不够,它们是: ⑴对数学的极端重要性要有充分的认识。学生将来的发展和成就是和他们坚实的数学基础密切相关的。但是现在的数学教学确实有许多不足之处有待改革,特别是怎么做到不仅教知识,而且要教知识是怎样用来解决实际问题的能力是有待加强的。让部分师生参加到数学建模活动,特别是大学生数学建模竞赛肯定是有利于推动教学改革的。 ⑵ 办好学校的关键之一是提高教师的教学水平。怎样提高呢?鼓励教师组织学生参加大学生数学建模竞赛等数学建模活动,既可以帮助教师进一步了解怎样用数学来解决实际问题,更有助于数学教师到其他专业系科了解他们要用什么样的数学以及怎样用这些数学,互相学习,进行切磋,从而对怎样提高自己的教学水平,数学教学怎样更好为其他专业后继课,甚至对专业课题研究服务产生具体的想法,提出切实可行的措施,最终能够提高教师的专业水平和教学水平,从而也就提高了学校的水平。 ⑶ 学生要求参加大学生数学建模竞赛的积极性是很高的,关键是怎样组织好,培训好。实际上,即使是高职高专院校,也一定有一部分学生的数学基础是相当坚实的,他们之间又有一部分对数学,特别是用数学来解决实际问题有强烈的兴趣。为什么不组织他们参赛呢?培养一些数学基础好对应用又有能力的高职高专院校的学生,今后他们在工作中做出好成绩的可能性肯定会比较大。毕业生事业有成者多也标志了学校办得好、有水平。此外,对于怎样贯彻因材施教也会产生一些很好的想法。 2.对于数学教师来说,组织、指导学生参加大学生数学建模竞赛对自己也会有极大的好处。

中国研究生数学建模竞赛历届竞赛题目截止

中国研究生数学建模竞赛历届竞赛题目 第一届2004年题目 A题发现黄球并定位 B题实用下料问题 C题售后服务数据的运用 D题研究生录取问题 第二届2005年题目 A题HighwayTravelingtimeEstimateandOptimalRouting B题空中加油 C题城市交通管理中的出租车规划 D题仓库容量有限条件下的随机存贮管理 第三届2006年题目 A题AdHoc网络中的区域划分和资源分配问题 B题确定高精度参数问题 C题维修线性流量阀时的内筒设计问题 D题学生面试问题 第四届2007年题目 A题建立食品卫生安全保障体系数学模型及改进模型的若干理论问题 B题械臂运动路径设计问题 C题探讨提高高速公路路面质量的改进方案 D题邮政运输网络中的邮路规划和邮车调运 第五届2008年题目 A题汶川地震中唐家山堪塞湖泄洪问题 B题城市道路交通信号实时控制问题 C题货运列车的编组调度问题 D题中央空调系统节能设计问题 第六届2009年题目 A题我国就业人数或城镇登记失业率的数学建模 B题枪弹头痕迹自动比对方法的研究 C题多传感器数据融合与航迹预测 D题110警车配置及巡逻方案 第七届2010年题目 A题确定肿瘤的重要基因信息 B题与封堵渍口有关的重物落水后运动过程的数学建模 C题神经元的形态分类和识别 D题特殊工件磨削加工的数学建模 第八届2011年题目 A题基于光的波粒二象性一种猜想的数学仿真 B题吸波材料与微波暗室问题的数学建模 C题小麦发育后期茎轩抗倒性的数学模型 D题房地产行业的数学建模

第九届2012年题目 A题基因识别问题及其算法实现 B题基于卫星无源探测的空间飞行器主动段轨道估计与误差分析C题有杆抽油系统的数学建模及诊断 D题基于卫星云图的风矢场(云导风)度量模型与算法探讨 第十届2013年题目 A题变循环发动机部件法建模及优化 B题功率放大器非线性特性及预失真建模 C题微蜂窝环境中无线接收信号的特性分析 D题空气中PM2.5问题的研究attachment E题中等收入定位与人口度量模型研究 F题可持续的中国城乡居民养老保险体系的数学模型研究 第十一届2014年题目 A题小鼠视觉感受区电位信号(LFP)与视觉刺激之间的关系研究B题机动目标的跟踪与反跟踪 C题无线通信中的快时变信道建模 D题人体营养健康角度的中国果蔬发展战略研究 E题乘用车物流运输计划问题 第十二届2015年题目 A题水面舰艇编队防空和信息化战争评估模型 B题数据的多流形结构分析 C题移动通信中的无线信道“指纹”特征建模 D题面向节能的单/多列车优化决策问题 E题数控加工刀具运动的优化控制 F题旅游路线规划问题 第十三届2016年题目 A题多无人机协同任务规划 B题具有遗传性疾病和性状的遗传位点分析 C题基于无线通信基站的室内三维定位问题 D题军事行动避空侦察的时机和路线选择 E题粮食最低收购价政策问题研究 数据来源:

对中国大学生数学建模竞赛历年成绩的分析与预测

2012年北京师范大学珠海分校数学建模竞赛 题目:对中国大学生数学建模竞赛历年成绩的分析与预测 摘要 本文研究的是对自数学建模竞赛开展以来各高校建模水平的评价比较和预测问题。我们将针对题目要求,建立适当的评价模型和预测模型,主要解决对中国大学生数学建模竞赛历年成绩的评价、排序和预测问题。 首先我们用层次分析法来评价广东赛区各校2008年至2011年及全国各大高校1994至2011年数学建模成绩,从而给出广东赛区各校及全国各大高校建模成绩的科学、合理的评价及排序;其次运用灰色预测模型解决广东赛区各院校2012年建模成绩的预测。 针对问题一,首先我们对比了2008到2011年参加建模比赛的学校,通过分析我们选择了四年都参加了比赛的学校进行合理的排序(具体分析过程见表13),同时对本科甲组和专科乙组我们分别进行排序比较。在具体解决问题的过程中,我们先分析得出影响评价结果的主要因素:获奖情况和获奖比例,其中获奖情况主要考虑国家一等奖、国家二等奖、省一等奖、省二等奖、省三等奖,我们采用层次分析法,并依据判断尺度构造出各个层次的判断矩阵,对它们逐个做出一致性检验,在一致性符合要求的情况下,通过公式与matlab求得各大学的权重,总结得分并进行排序(结果见表11);在对广东赛区各高校2012建模成绩预测问题中,我们采用灰色预测模型,我们以华南农业大学为例,得到该校2012年建模比赛获奖情况为:省一等奖、省二等奖、省三等奖及成功参赛奖分别为5、9、8、8(其它各高校预测结果见表10)。 针对问题二,我们对全国各院校的自建模竞赛活动开展以来建模成绩排序采用与问题一相同的数学模型,在获奖情况考虑的是全国一等奖、全国二等奖。运用matlab求解,结果见表12。 针对问题三,我们通过对一、二问排序的解答及数据的分析,得出在对院校进评价和预测时还应考虑到各院的师资力量、学校受重视程度、学生情况、参赛经验等因素,考虑到这些因素,为以后评价高校建模水平提供更可靠的依据。 关键词:层次分析法权向量灰色预测模型模型检验 matlab

2017年中国研究生数学建模竞赛F题

2017年中国研究生数学建模竞赛F题 构建地下物流系统网络 背景 交通拥堵是世界大城市都遇到的“困局”之一。2015年荷兰导航经营商TomTom 发布了全球最拥堵城市排名,中国大陆有十个城市位列前三十名。据中国交通部2014年发布的数据,我国交通拥堵带来的经济损失占城市人口可支配收入的20%,相当于每年国内生产总值(GDP)损失5~8%。15座大城市的居民每天上班比欧洲发达国家多消耗28.8亿分钟。大量研究表明:“时走时停”的交通导致原油消耗占世界总消耗量的20%。高峰期,北京市主干线上300万辆机动车拥堵1小时所需燃油为240万~330万升。2015年城市交通规划年会发布数据显示:在石油消费方面,我国交通石油消费比重占到了消费总量的54%,交通能耗已占全社会总能耗10%以上,并逐年上升。高能耗也意味着高污染和高排放。 导致城市交通拥堵的主要原因是交通需求激增所带来的地面道路上车辆、车次数量巨增,其中部分是货物物流的需求增长。尽管货车占城市机动车总量的比例不大,但由于货运车辆一般体积较大、载重时行驶较慢,车流中如果混入重型车,会明显降低道路的通行能力,因此,其占用城市道路资源的比例较大。如北京,按常规的车辆换算系数(不同车辆在行驶时占用道路净空间的程度),货运车辆所占用的道路资源达40%。因此,世界各国都在为解决城市交通和环境问题进行积极探索,而处理好货运交通已成为共识。大量实践证明,仅通过增加地面交通设施来满足不断增长的交通需求,既不科学也不现实,地面道路不可能无限制地增加。因此“统筹规划地上地下空间开发”势在必行,“地下物流系统”正受到越来越多发达国家的重视。 概念 地下物流系统(Underground Logistics System——ULS)是指城市内部及城市间通过类似地铁的地下管道或隧道运输货物的运输和供应系统。它不占用地面道路,减轻了地面道路的交通压力,从而缓解城市交通拥堵;它采用清洁动力,有效减轻城市污染;它不受外界条件干扰,运输更加可靠、高效。地面货车的减少同时带来巨大的外部效益,如路面损坏的修复费用,环境治理的费用,可以用于补偿地下物流系统建设的高投资。

全国数学建模竞赛B题CUMCMB

2 0 1 3 高教社杯全国大学生数学建模竞赛题目 (请先阅读“全国大学生数学建模竞赛论文格式规范”) B 题碎纸片的拼接复原 破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。传统上,拼接复原工作需由人工完成,准确率较高,但效率很低。特别是当碎片数量巨大,人工拼接很难在短时间内完成任务。随着计算机技术的发展,人们试图开发碎纸片的自动拼接技术,以提高拼接复原效率。请讨论以下问题: 1. 对于给定的来自同一页印刷文字文件的碎纸机破碎纸片(仅纵切),建立碎纸片拼接 复原模型和算法,并针对附件1、附件 2 给出的中、英文各一页文件的碎片数据进行拼接复原。如果复原过程需要人工干预,请写出干预方式及干预的时间节点。复原结果以图片形式及表格形式表达(见【结果表达格式说明】)。 2. 对于碎纸机既纵切又横切的情形,请设计碎纸片拼接复原模型和算法,并针对附件3、附件4 给出的中、英文各一页文件的碎片数据进行拼接复原。如果复原过程需要人工干预,请写出干预方式及干预的时间节点。复原结果表达要求同上。 3. 上述所给碎片数据均为单面打印文件,从现实情形出发,还可能有双面打印文件的碎纸片拼接复原问题需要解决。附件 5 给出的是一页英文印刷文字双面打印文件的碎片数据。请尝试设计相应的碎纸片拼接复原模型与算法,并就附件 5 的碎片数据给出拼接复原结果,结果表达要求同上。 【数据文件说明】 (1) 每一附件为同一页纸的碎片数据。 (2) 附件1、附件2为纵切碎片数据,每页纸被切为19 条碎片。 (3) 附件3、附件4为纵横切碎片数据,每页纸被切为11X19个碎片。 (4) 附件5为纵横切碎片数据,每页纸被切为11 X 19个碎片,每个碎片有正反两面。该附件中 每一碎片对应两个文件,共有2X 11X 19个文件,例如,第一个碎片的两面分别对应文件000a、000b。 【结果表达格式说明】 复原图片放入附录中,表格表达格式如下: (1) 附件1、附件2的结果:将碎片序号按复原后顺序填入1X 19的表格; (2) 附件3、附件4的结果:将碎片序号按复原后顺序填入11X 19的表格; (3) 附件5的结果:将碎片序号按复原后顺序填入两个11X 19的表格;

华为杯研究生数学建模获奖结果分析

华为杯研究生数学建模获奖结果分析 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

全国研究生数学建模竞赛获奖结果分析报告 全国研究生数学建模竞赛由教育部学位与研究生教育发展中心主办,是学位中心主办的"全国研究生创新实践系列活动"主题赛事之一。全国研究生数学建模竞赛是面向全国在读研究生的科技竞赛活动,目的在于激发研究生群体的创新活力和学习兴趣,提高研究生建立数学模型和运用计算机解决实际问题的综合能力,拓宽知识面,培养创新精神和团队合作意识,促进研究生中优秀人才的脱颖而出、迅速成长,推动研究生教育改革,增进各高校之间以及高校、研究所与企业之间的交流与合作。 本文依据“华为杯”第十三届全国研究生数学建模竞赛的获奖名单,分别对获奖与选题、地区以及学校之间的关系进行研究分析。 1.获奖与选题 在2016年“华为杯”研究生数学建模竞赛中,共有8894个队伍获奖,其中有150个队伍获得了一等奖。而对获奖名单进一步分析,统计并计算得到,选择每道题目的获奖(包括一、二、三等奖以及成功参与奖)的队伍数目及其所占比例和选择每道题目的获得一等奖的队伍数目及其所占比例,如下表所示: 题目类型 A B C D E 获奖队伍数1457 2712 1596 517 2612 所占比例0.1638 0.3049 0.1794 0.0581 0.2937 获一等奖队伍数26 40 27 17 40 所占比例0.1733 0.2667 0.1800 0.1133 0.2667 从表中不难发现,在所有获奖队伍中各个题目所占的比例与所有获一等奖队伍中各个题目所占比例接近,于是本文发现一个问题:能不能获奖是否与选哪道题相关?还有,所获奖的等级是否与选题有关?也就是说是否选择每道题获得一、二、三等奖概率不同? 于是本文将题号“ABCDE”换为“12345”,“成功参赛奖”换为“4”,将“题目类型”与“获奖等级”两列数据代入SPSS软件进行相关性分析,如下图所示: 结果如以下三图所示: 由分析结果可以看出,“题目序号”与“获奖等级”的Pearson相关系数为-0.008,显着性(双侧)sig=0.440>0.01;“题目序号”与“获奖等级”的Spearman相关系数为-0.010,显着性(双侧)sig=0.364>0.01;这两个检验结果均说明了“题目序号”与“获奖等级”的相关性很小,且相关关系不显着。

2017年全国研究生数学建模竞赛B题

2017年中国研究生数学建模竞赛B题(华为公司命题) 面向下一代光通信的VCSEL激光器仿真模型 友情提示:阅读本题附录3有助于理解本题的相关概念与方法。 随着互联网技术的快速发展,家庭固定网络速度从原来的2Mbps、10Mbps,快速发展到了今天的百兆(100Mbps),甚至千兆(1000Mbps)光纤宽带入户。“光纤宽带入户”,顾名思义,就是采用光纤来传输信号。光纤中传输的激光信号具有远高于电信号传输速率的特点(激光信号传输带宽远大于电信号传输带宽),更适合于未来高速率的传输网络。工程师们在光纤通信传输系统设计前,往往会通过计算机仿真的方式研究系统设计的指标,以便快速找到最适合的解决方案。因此在进行系统仿真时,需要准确掌握系统中各个器件的特性以保证仿真模型的精度。激光器作为光纤通信系统的核心器件是系统仿真中需要考虑的一个重要因素。 与我们生活息息相关的激光器种类繁多,其中的垂直腔面发射激光器(VCSEL: Vertical Cavity Surface Emitting Laser)具有使用简单,功耗较低等特点,一般VCSEL 的工作电流在6mA~8mA。本题的主要任务,就是得到能准确反映VCSEL激光器特性的数学模型。 激光器输出的光功率强度与器件的温度相关,当器件温度(受激光器自身发热和环境温度的共同影响)改变后,激光器输出的光功率强度也会相应发生变化。在进行建模时,我们既要准确反映VCSEL激光器特性,还要考虑: 1.激光器输出的功率强度与温度的关系——即该激光器可以在多大的外界 环境温度范围内使用; 2.如何设计激光器参数可以使激光器具有更大的传输带宽(即S21曲线上纵 坐标-10dB位置对应的横坐标频率值更大)——即可以实现更快的传输速 率。 1问题1:VCSEL的L-I模型

中国大学生数学建模竞赛历年试题

中国大学生数学建模竞赛(CUMCM)历年赛题一览! CUMCM历年赛题一览!! CUMCM从1992年到2007年的16年中共出了45个题目,供大家浏览 1992年A)施肥效果分析问题(北京理工大学:叶其孝) (B)实验数据分解问题(复旦大学:谭永基) 1993年A)非线性交调的频率设计问题(北京大学:谢衷洁) (B)足球排名次问题(清华大学:蔡大用) 1994年A)逢山开路问题(西安电子科技大学:何大可) (B)锁具装箱问题(复旦大学:谭永基,华东理工大学:俞文此) 1995年:(A)飞行管理问题(复旦大学:谭永基,华东理工大学:俞文此) (B)天车与冶炼炉的作业调度问题(浙江大学:刘祥官,李吉鸾) 1996年:(A)最优捕鱼策略问题(北京师范大学:刘来福) (B)节水洗衣机问题(重庆大学:付鹂) 1997年:(A)零件参数设计问题(清华大学:姜启源) (B)截断切割问题(复旦大学:谭永基,华东理工大学:俞文此) 1998年:(A)投资的收益和风险问题(浙江大学:陈淑平) (B)灾情巡视路线问题(上海海运学院:丁颂康) 1999年:(A)自动化车床管理问题(北京大学:孙山泽) (B)钻井布局问题(郑州大学:林诒勋) (C)煤矸石堆积问题(太原理工大学:贾晓峰) (D)钻井布局问题(郑州大学:林诒勋) 2000年:(A)DNA序列分类问题(北京工业大学:孟大志) (B)钢管订购和运输问题(武汉大学:费甫生) (C)飞越北极问题(复旦大学:谭永基) (D)空洞探测问题(东北电力学院:关信) 2001年:(A)血管的三维重建问题(浙江大学:汪国昭) (B)公交车调度问题(清华大学:谭泽光) (C)基金使用计划问题(东南大学:陈恩水) (D)公交车调度问题(清华大学:谭泽光) 2002年:(A)车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此) (B)彩票中的数学问题(解放军信息工程大学:韩中庚) (C)车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此))

全国研究生数学建模竞赛历年试题

全国研究生数学建模竞赛历年试题 2004年 A题发现黄球并定位 B题实用下料问题 C题售后服务数据的运用 D题研究生录取问题 2005年 A题高速公路行车时间的估计 B题空中加油 C题城市交通管理中的出租车规划 D题仓库容量有限条件下的随机存贮管理 2006年 A题Ad Hoc网络中的区域划分和资源分配问题 B题确定高精度参数问题 C题维修线性流量阀时的内筒设计问题 D题学生面试问题 2007年 A题建立食品卫生安全保障体系数学模型及改进模型的若干理论问题 B题机械臂运动路径设计问题 C题探讨提高高速公路路面质量的改进方案 D题邮政运输网络中的邮路规划和邮车调度

A题汶川地震中唐家山堰塞湖泄洪问题 B题城市道路交通信号实时控制问题 C题货运列车的编组调度问题 D题中央空调系统节能设计问题 2009年 A题我国就业人数或城镇登记失业率的数学建模 B题枪弹头痕迹自动比对方法的研究 C题多传感器数据融合与航迹预测 D题110警车配置及巡逻方案 2010年 A题确定肿瘤的重要基因信息—提取基因图谱信息方法的研究B题与封堵溃口有关的重物落水后运动过程的数学建模 C题神经元的形态分类和识别 D题特殊工件磨削加工的数学建模 2011年 A题基于光的波粒二象性一种猜想的数学仿真 B题吸波材料与微波暗室问题的数学建模 C题小麦发育后期茎秆抗倒性的数学模型 D题房地产行业的数学建模

A题基因识别问题及其算法实现 B题基于卫星无源探测的空间飞行器 ——主动段轨道估计与误差分析 C题有杆抽油系统的数学建模及诊断 D题基于卫星云图的风矢场(云导风)度量模型与算法探讨2013年 A题变循环发动机部件法建模及优化 B题功率放大器非线性特性及预失真建模 C题微蜂窝环境中无线接收信号的特性分析 D题空气中PM2.5问题的研究 E题中等收入定位与人口度量模型研究 F题可持续的中国城乡居民养老保险体系的数学模型研究

相关文档
相关文档 最新文档