文档库 最新最全的文档下载
当前位置:文档库 › Liouville-type theorems for foliations with complex leaves

Liouville-type theorems for foliations with complex leaves

a r

X

i

v

:07

8

.

1

5

5

v

1

[

m

a

t h

.

C

V ]

1

1

A

u

g

2

7

Liouville-type theorems for foliations with complex leaves Giuseppe Della Sala February 1,2008Introduction In this paper we discuss some structure problems regarding the foliation of Levi ?at manifolds,i.e.those CR manifolds which are foliated by complex leaves or,equivalently,whose Levi form vanishes.Levi ?at manifolds have a particular signi?cance among CR manifolds,since -due to their degenerate nature -they often behave as “limit case”,or they are an obstruction in extension problems of CR objects (see,for example,[3]).The geometry of Levi ?at manifolds is a source of many interesting problems (see [2],[1]).Here,we address the following general question:assuming that a Levi ?at submanifold S ?C n is bounded in some directions,what can be said about its foliation?We will show that,in some circumstances,it is possible to conclude that the foliation (or even,more generally,a complex leaf of a foliated manifold)is “trivial”,i.e.is made up by complex planes.A ?rst result in this direction is the following Theorem 0.1Let S be a smooth Levi-?at hypersurface of C n =C n ?1×C w ,contained in C ={|w |<1}and closed in

We shall see that Theorem0.1becomes then a rather easy consequence of the results already obtained for analytic multifunctions,namely,the exten-sion of Liouville’s theorem to such objects.Then,we generalize Theorem0.1 to higher codimension(see Theorem1.3)by a slightly less trivial application of the Liouville Theorem.

Later on,we will discuss other related problems which cannot be treated by means of analytic multifunctions.In section2,we consider the case of a (complex leaf of a)foliation of the graph of a bounded function on C n×R. In this case,an analysis of each single complex leaf is required.Afterwards, in section3we consider a(real)foliation of D×C by complex leaves,and we show that under suitable(maybe too restrictive)geometric conditions on this foliation it is again possible to prove a triviality result. Acknowledgements

This paper would not have been written without the help of G.Tomassini, who suggested the problems and gave many important advices.

I also wish to thank N.Shcherbina for several helpful talks,expecially for the idea of adopting the methods of analytic multifunctions.

1Levi?at manifolds contained in a cylinder 1.1Analytic multifunctions and Liouville Theorem Consider a function f:C n→P(C),i.e.a set-valued function from C n to the power set of C.LetΓ(f)?C n+1be de?ned as

Γ(f)= z∈C n{z}×f(z).

We say that f is an analytic multifunction if each value f(z)is a compact set and C n+1\Γ(f)is pseudoconvex.With this de?nition,a holomorphic function f∈O(C n)is clearly an analytic multifunction.

Letρ:C n+1→R be a continuous plurisubharmonic function.Letρ′: C n→R be de?ned as

ρ(w).

ρ′(z)=max

w∈f(z)

In[7]the following is proved:

Lemma1.1For any analytic multifunction f and continuous psh function ρ,ρ′is a plurisubharmonic function.

2

From now on,by analytic multifunction we mean a multifunction for which the conclusion of Lemma1.1holds true.

The following Liouville result(see also[5])on analytic multifunction de-pends only on the property of Lemma1.1:

Lemma1.2Let f be an analytic multifunction on C n,and suppose that f is bounded in the following sense:

Γ(f)?{|w|

for some M>0.Let?f be the multifunction de?ned as

?f(z)= f(z),z∈C n

where K is the polynomial hull of K.Then?f is constant.

Proof.Let P(w)be a polynomial on C w,and denote again by P the trivial extension of P to C n+1P(z,w)=P(z).Then|P|is a plurisubharmonic function on C n+1,therefore by Lemma1.1

P′(z)=max{|P(w)|:w∈f(z)}

is psh on C n.But,de?ning

P(w)

C=max

|w|≤M

we have that P′(z)≤C for all z∈C n.Then,by Liouville’s Theorem for psh functions it follows that P′is constant.We deduce that?f is constant. Indeed,in the opposite case we could?nd w1∈C and z1,z2∈C n such that w1∈(?f(z1)\?f(z2)),i.e.there would exist a polynomial P1such that

|P1|,

|P1(w1)|>max

?f(z

2)

hence

P′1(z2)<|P1(w1)|≤P′1(z2)

which is a contradiction.

Example1.1The hypothesis of Lemma1.2does not imply that f is in turn a constant multifunction.A simple example is the following:

f(z)= {|w|=1},z=0;

{|w|≤1},z=0.

3

Example1.2A modi?cation of the previous example shows that,even if Γ(f)is a(disconnected)manifold,f need not be constant if we adopt the second de?nition of analytic multifunction(i.e.the property discussed in Lemma1.1).Indeed,de?ne f(z)to be the union of the unit circle bD and any compact set contained in the unit disc D;then,since any subharmonic function can“detect”the behavior of f only in bD,f satis?es the statement of Lemma1.1but the complement is not pseudoconvex.As we show below, nevertheless,the result holds ifΓ(f)has the structure of a(even discon-nected)Levi?at manifold(which is obviously not the case in the previous example).

Lemma1.2provides a useful tool which allows to prove Theorem0.1quite easily.In fact,setting

f S(ζ)=S∩{z=ζ}

forζ∈C n we have that f S is by de?nition an analytic multifunction. Proof of Theorem0.1.By hypothesis the multifunction f S is bounded, therefore in view of Liouville’s Theorem?f S is constant.We have to show that the multifunction f S is constant,too.In order to do this,choose z0∈C n in such a way that the complex line L z

={z=z0}?C n+1intersects S transversally.This means that f(z0)is a smooth compact real1-submanifold

of C,i.e.a?nite set{λi(z0)}1≤i≤k(z

0)of simple C∞loops contained in D=

{|w|<1}.Let U i(z0)be the bounded connected component of C\λi(z0),

and let{αj(z0)}1≤j≤h(z

0)be the“maximal”loops,i.e.thoseλi’s which are

not contained in any U j.For every z∈C n such that L z∩S is transversal, adopting the same notations as above we de?ne

M(z)= 1≤i≤h(z)αi(z).

Let I?C n be the set of z∈C n for which

?L z has transversal intersection with ζM(ζ);

?M(z)=M(z0).

It su?ces to show that I is both open and closed.Indeed,in this case f′S(z)=f S(z)\M(z)is an analytic multifunction,thus we can prove the statement of0.1inductively,where the induction is performed on the number of loops of f(z0).

I is open

the connected components of C\αi(z),then?f(z)= i V i(z).This implies immediately that M(z)is constant on?.

I is closed I.Then,

M I∩L z

2

=M(z2),this implies that L z

2

∩M is transversal,i.e.z2∈I.

1.2Higher codimension

The analogous of Theorem0.1for Levi?at surfaces S of higher codimension can also be proved by following the same methods.However,in this case, analyticity of the multifunction f S de?ned by S is more involved,due to the fact that S is no longer pseudoconvex.Also the proof of the fact that f S is constant whenever?f S is needs to be adapted using[8](see the proof of Theorem1.3).

We consider a real(2d?1)-codimensional submanifold S?C n+d~= C n×C d,with coordinates z1,...,z n,w1,...,w d.

Theorem1.3Let S?C n+d be a(2d?1)-codimensional Levi?at subman-ifold(i.e.foliated by complex leaves of dimension n),contained in

C={(z,w)∈C n+d:

d

i=1|w i|2<1}

and closed in

Lemma1.4f S is an analytic multifunction.

Proof.Letρ:C n+d→R be a psh function,and de?neρ′as above.Let z0∈C n,and let L?C n be a complex line passing through z0.For a generic choice of L,the intersection of S with the complex(d+1)-plane

{(z,w)∈C n+d:z∈L}

is transversal,and thus a Levi?at submanifold of C d+1.Therefore,since it is su?cient to show that the restriction ofρ′to a generic L is subharmonic, we can suppose n=1.

Assume,then,that f S is a P(C d)-valued multifunction de?ned over C z, and?x z0∈C.If w∈f(z0),we denote byΣw the leaf of the foliation of S through w.Two cases are possible:

?T(z

0,w)

(Σw) C d;

?T(z

0,w)

(Σw)?C d.

In the former,for a su?ciently small neighborhood V w=(?×U)w of(z0,w) we have thatΣw∩V w can be written

Σw∩V w={(z,w)∈?×U:w1=g w1(z),...,w d=g w d(z)}

for some holomorphic function g w i∈O(?).Moreover,observe that for w′∈f(z0)in a small enough neighborhood W w of w,we can choose a?which does not depend on w′.

In the latter,consider the restriction of the projectionπ:C d+1→C to a small neighborhood V w of(z0,w)inΣw.We can suppose that V w is a local chart such that(z0,w)~=0.Denote byζthe complex coordinate on V w. Sinceπ|V

w

is a holomorphic function and its prime derivative vanishes at0, there exists k≥1such that

?k

?ζπ|V

w

=0.

Otherwise,we would haveπ|V

w

≡z0and thusΣw would be a complex line contained in C d,which is impossible since it must be contained in the cylin-der C of Theorem1.3.It follows thatπ|V

w

is a k-sheeted covering over some neighborhood?of z0.Now,the restriction ofπto the leavesΣw′passing through the points(z0,w′)of a small neighborhood of(z0,w)can be interpreted as a smooth one-parameter family of holomorphic functions

6

πt:V k→C z,such thatπ0=π.For|t|<<1,the argument principle implies that the sum of the orders of the zeroes of(?/?ζ)πt is still k?1.

This in turn means that for w′su?ciently close to w the projectionπ|Σ

w′is

still a k-sheeted covering over some neighborhood?w′;in a su?ciently small neighborhood W w we can assume to have chosen a?independent from w′.

Since f(z0)is a compact set,we can choose?nitely many open sets as

above,W w

1,...,W w

h

,in such a way that

h

i=1W w i=f(z0).

Choose a disc???w

1∩...∩?w

h

.We claim thatρ′is plurisubharmonic

on?.In order to prove this,choose w∈f(z0):?if w∈W w

j

with w j of the?rst kind,then we de?ne

ρj w=ρ|Σ

w∩π?1(?)

;

?if w∈W w

j

with w j of the second kind,we de?ne

ρj w=(max

Σw∩π?1(?w

j )

ρ(z,w))|?.

In both cases,ρj w is a psh function.Observe that it may occurρi w=ρj w when i=j.Nevertheless,consider

?(z)=max

1≤i≤h,w∈f(z0)

ρi w;(1)

we have to show that?(z)=ρ′(z).A priori,the maximum in equation(1) may be performed,for z=z0,on a proper subset of f(z),due to the possible existence of leaves of S which accumulate to f(z0)without intersecting it. However,this does not happen.This is a consequence of the fact that

w∈f(z0)Σw∩π?1(?)=S∩π?1(?)

as proved in Lemma1.5below.It follows that?(z)=ρ′(z).Since we already know thatρ′(z)is continuous,(1)impliesρ′(z)is plurisubharmonic.

Lemma1.5Let z0∈C z,and letΣbe a leaf of the foliation of S such that z0∈

Proof.Observe that,sinceΣ?C,and consequently the w-coordinates are

bounded onΣ,there exists w∈f(z0)such that(z0,w)is a cluster point forΣ.Take a neighborhood U of(z0,w)such that the foliation is trivial on

S∩U.ThenΣ∩U is a union of leaves of this trivial foliation.LetΣ0be

the leaf of S∩U passing through(z0,w);then,eitherΣcontainsΣ0or it contains a sequence of leaves that converges toΣ0.Suppose that the second

case occurs.Arguing as in the previous Lemma,we show thatΣ0is not “vertical”i.e.it is not contained in C d.Thenπ(Σ0)is a open set containing

z0;but forΣ′close enough toΣ0,π(Σ′)is an open set containing z0.This

proves the thesis.

Lemma1.4allows to prove,exactly in the same way as before,that?f S is a constant multifunction.We have to show,again,that this fact forces f S to

be constant.

Proof of Theorem1.3.Observe that,for z belonging to a dense,open

subset J of C n,L z intersects S transversally.For z∈J,f(z)=L z∩S is the

disjoint union of a?nite set{γi(z)}1≤i≤k(z)of loops in C d.It is a well-known fact([8])that,in this case,the polynomial hull?f(z)of f(z)is given by the union of some of the loopsγi and some complex varietiesΛj whose boundaries

are the othersγi’s.We choose the minimal subsets of loops{αi(z)}1≤i≤h(z) such that,if M(z)=α1∪...∪αh(z),then M(z)=?f(z).Observe that M(z) is univocally de?ned.It is su?cient to prove that M(z)is constant,because

in such a case we can proceed inductively as in the proof of Theorem0.1.In

view of the structure of the hull?f S(z),it is clear that M(z)is constant for z∈J.Moreover,arguing again as in0.1,it is clear that

M= z M(z)

is a manifold with transversal intersection with L z also for z∈

is a Levi?at graph.Then the leaves of the foliation associated to S are regular(immersed)complex manifolds of dimension1.We claim that the following holds true:

Theorem2.1Suppose that|ρ|is bounded by some constant M;then S is foliated by complex lines,i.e.ρhas the form

ρ(z,u)=?(u)

for some smooth function?:R→R.

Actually,we are going to prove a sharper result.If S is any foliated3-submanifold,we say that a leafΣof S is properly embedded if,for(almost) every ball B?C2,the connected components of

B∩S with boundary.We say that the foliation of S is proper if the leaves are properly embedded.

Theorem2.2Let S={v=ρ(z,u)}be a properly foliated hypersurface of C2,and suppose thatρis bounded.Then every complex leaf of S is a complex line.

Theorem2.1is a consequence of Theorem2.2,the foliation of a Levi?at graph being proper(see,for example,the main Theorem of[6]).A simple proof of2.1can be given using analytic multifunctions.

Proof of Theorem2.1.By hypothesis there exists a complex line{w=c} such that S lies outside the cylinder

C={(z,w):|w?c|<ε}.

Then,we can perform a rational change of coordinates(acting only on the w-coordinate)such that the image S′of S is contained in C z×D w,where D w is the unit disc.The complement of

w }

is a psh exhaustion function for

due to the fact that,if f is the multifunction representing S′,in general f(z) is no longer a C1curve but only a C0one.

It is clear that Theorem2.2cannot be treated by applying the methods of analytic multifunctions.As already observed,its proof requires an accurate analysis of a single leaf.

2.1Preliminary results

First of all,we show the following

Lemma2.3LetΣbe any complex leaf of the foliation of S.Then the pro-jectionπ|Σis a local homeomorphism.

Proof.Let p∈Σ,p=(p z,p w);it su?ces to show that the di?erential of π|Σis surjective in p.In the opposite case,there would exist neighborhoods U of p in C2and V of p w in C w,and a holomorphic function f:V→C such that,denoting byΣ′the connected component ofΣ∩U which contains p, we would have

Σ′={z=f(w)}

and?f

?v

∈T p(S),

which contradicts the fact thatρis a smooth function on C z×R u.

Lemma2.3shows that a complex leafΣof the foliation is locally a graph over C z,but,since we do not know whether or notπ:Σ→C z is actually a

covering,we cannot conclude immediately thatπ|?1

Σis single-valued.How-

ever,if this is the case,it is easy to deduce that the thesis of Theorem2.1 holds true forΣ,provided that the projectionπ|Σis onto:

Lemma2.4LetΣbe a complex leaf of S,and suppose that

?π(Σ)=C z;

?for every z0∈C z,π?1(z0)∩Σis a single point.

Then there exists c∈C such that

Σ={w=c}.

10

Proof.Indeed,in this case the leafΣis biholomorphic to C asπ|Σis one to one;then,denoting by v the projection on the v-coordinate,v?(π|Σ)?1is a harmonic,bounded function on C z,which is constant by Liouville’s Theorem. Therefore v|Σis also constant and so is u|Σ,which is conjugate to v inΣ. Remark2.1One may ask whether the latter hypothesis in Lemma2.4can be replaced by

?π|Σis a local homeomorphism.

This is not the case,as it is shown by the following example.

Example2.1Consider the subset

L={(x,y)∈R2:|y|<1}.

It is simple to show that there exists a mapφ:L→C such that

?φis onto;

?the di?erential ofφis always invertible;

?φextends as a continuous function

ψ(Aε)contains{∞}and(for smallε)0/∈ψ(Aε).If{U n}is a fundamental system of neighborhoods of

Aε,it is also clear that the setsψ(U n)approach∞∈CP1as n→+∞. Let g∈O(CP1\{0})be such that g(∞)=0and g≡0.Then,in view of the previous observations,the function f∈O(φ(Aε))de?ned by f=g?ψ?φ?1is continuous up toφ({y=1}),and vanishes on this set.This is a contradiction (see also Lemma2.14).

It follows that X=D.Let i:D→C2be de?ned as

i(z)=(φ?ψ?1(z),z);

then i is a holomorphic embedding of D in C2and we setΣ=i(D).Observe thatπ:Σ→C is onto and a local homeomorphism;moreover,by construc-tion|v|<1onΣ.It is clear that,for topological reasons,Σcannot be the leaf of any foliation of a graph in C2.

In order to prove Theorem2.1our aim is to apply Lemma2.4and so, from now on,we shall focus on a single complex leafΣof the foliation of S and we will prove that its projection over C z is a biholomorphism.

We set

π(Σ)=??C z;

?is an open subset of C z.

We suppose,by contradiction,that? C z,and let z0∈b?.The following result shows that z0must actually belong to?at least in some special case,thus proving that b(?)=?in such a situation.

Lemma2.5Let z0∈C z and suppose that there exist p0such thatπ(p0)=z0 and p0is a cluster point forΣ.Then z0∈?.

Remark2.2Since we do not know,at this stage,whether or notΣis a closed submanifold,it is a priori possible that p0/∈Σ.Nevertheless,π?1(z0)∩Σ=?.

Proof of Lemma2.5.Let V be a neighborhood of p0on which the foliation of S∩V is trivial.Then,eitherΣ∩V has?nitely many connected components -in this case one of them must contain p0-or the connected components of Σ∩V accumulate to the leafΣ′of S∩V containing p0.ThenΣ′must be a complex leaf,too.Thus,from Lemma2.3it follows that,if V′?V(p0∈V′)

12

is small enough,all the leaves of S∩V′intersect(possibly in V)π?1(z0).By hypothesis

V′∩Σ=?,

thusΣcontains a leaf of S∩V′,therefore

π?1(z0)∩Σ=?.

In section2.3,applying the results of[6],we will prove thatπ|?1

Σis single-

valued.Then,given z∈?,we will denote by w(z)(respectively u(z),v(z))

the w-coordinates(resp.the u-and v-coordinate)ofπ|?1

Σ(z).With these

notations,we can state the following straightforward corollary of Lemma 2.5:

Corollary2.6Let z0∈b?,and let{U k}k∈N be a fundamental system of neighborhoods of z0in C z.Then,for any M>0there exists K∈N such that|w(z)|>M for all z∈?∩U k with k≥K.

Proof.Otherwise,there would exist M>0and a sequence{z n}n∈N such that

?z n∈?for every n∈N;

?z n→z0;

?for every n∈N there exists p n∈Σsuch thatπ(p n)=z n and|w(p n)|≤M.

Then{p n}n∈N would admit an accumulation point p0in C2such thatπ(p0)= z0.By Lemma2.5this would imply z0∈?,a contradiction.

Since,by the main hypothesis,v(z)is bounded on?,it follows immedi-ately

Corollary2.7Let z0∈b?,and let{U k}k∈N be a fundamental system of neighborhoods of z0in C z.Then for any M>0there exists K0∈N such that|u(z)|>M for all z∈?∩U k with k≥K0.

Remark2.3In any case,since?∩U k needs not be connected even for large k,it is possible that u assumes both signs in every neighborhood of https://www.wendangku.net/doc/ff4127448.html,ter on we are going to prove that it is not the case.

13

2.2Unbounded harmonic functions on the disc

Our strategy is now to reduce our situation to a problem on the disc.For this,we will need some results about holomorphic functions on D={z∈C: |z|<1}.

The following one shows that a conjugate to a bounded harmonic function on D,although not necessarily bounded,cannot go to in?nity on too“large”

a subset of the boundary.

Lemma2.8Let f∈O(D),u=Ref and v=Imf.Suppose that there exists a non-constant arcγin bD such that for every M>0there exist a neighborhood U M ofγin C such that

u(z)>M?z∈U M∩D.

Then v is not bounded on D.

Proof.Taking polar coordinates(r,θ),we may assume that

γ={r=1,?ε≤θ≤ε}

for someε>0.Consider the family of arcs

γt={r=t,?ε≤θ≤ε}

and set(for t<1)

I t= γt u(θ)dθ

the hypothesis of the Lemma implies that I t→+∞as t→1.Take

t)J t=I t?I

t≤r≤t,?ε≤θ≤ε?u

t≤r≤t

?u

t,θ))dθ=I t?I

t such that

?ε≤θ≤ε

?u

?r (t′,θ)dθ= ?ε≤θ≤ε??v

Example2.2The previous result fails to be true if we drop any hypothesis which guarantees that u goes to in?nity on a su?ciently large subset of the boundary of D.A simple example is the following.Consider the set

L={z∈C:|y|<1}

and choose a biholomorphismφ:L→D.Then

u=x?φ?1:D→R

is a harmonic function,conjugate to

v=y?φ?1:D→R;

but u is not bounded while|v|<1on D.In this case,the upper and lower level sets of u approach(two)isolated points on bD,rather than segments of positive measure.

2.3Analysis of?

Our purpose now is to show that?is simply connected,which will allow us to apply Riemann’s mapping Theorem and then Lemma2.8.In order to achieve this we apply some of the results of[6],in particular the in-depth analysis which is carried out therein on the leaves of the foliation of the Levi-?at

solution for graphs.First of all,we prove thatπ|?1

Σis actually single-valued

over?.

Lemma2.9Let?andΣbe as above.Thenπ|?1

Σ(z)consists of a point for

every z∈?.

Proof.Suppose that,for some z∈?,there exist p,q∈Σ(p=q)such that π(p)=π(q)=z.Since,by de?nition,Σis connected,there exists an arc γwhich joins p and q.Letγ=π? γbe the corresponding loop in?.Let B be a ball in C z×R u,centered at z,with a large enough radius such thatγ?B andτ? γ?B.Then

S∩τ?1(B)=Γ(ρ|B)?C2

is the Levi?at surface which has the graph

S∩τ?1(bB)=Γ(ρ|bB)

as boundary.By the results in[6],we conclude that each leaf of the foliation is properly embedded in S∩τ?1(B)(observe that,under the hypothesis of

15

Theorem2.2,this fact is granted by our assumption)and,therefore,that τ(Σ)is properly embedded in B.By the choice of B,τ(p)andτ(q)belong to the same connected component ofτ(Σ)∩B;letΣ′be this component. Lemma2.3implies thatΣ′is locally a graph over C z;since B is convex,by virtue of Lemma3.2in[6]we deduce thatΣ′is globally a graph over some subdomain of?.Sinceτ(p)andτ(q)have the same projection over?,it followsτ(p)=τ(q)and consequently p=q,a contradiction.

By the previous LemmaΣis represented by the graph of a holomorphic function over?.Let us denote by u(respectively v)the real(respectively the imaginary)part of this function.The following Lemma is an immediate consequence of the results in[6]:

Lemma2.10?is simply connected.

Proof.Observe that,if?is not simply connected,then D∩?is not simply connected for some open disc D?C z.Arguing as in the previous Lemma, we prove thatτ(Σ)is properly embedded on some subdomain

D×(?R,R)?C z×R u,R>>0

(again,under the hypothesis of Theorem2.2this is a direct consequence of the assumption).Butτ(Σ)is the graph of u over D∩?;since v is a single-valued harmonic conjugate of u,we can apply Lemma3.3of[6]to obtain that D∩?is in fact simply connected.

Because of the previous Lemma,we can consider a biholomorphic map R:?→?,where D?C is the unit disc.Our aim is to apply Lemma2.8 and in order to do so we must examine the behavior of R near the boundary of?.

2.4Proof of Theorem2.2

Lemma2.11Let C be a connected component of the boundary of?.Then there exist a neighborhood U of C in

there exist a disc D(z,ε)such that|u|>0on D(z,ε)∩?;thus K can be covered by a?nite set{D1,...,D k}of such discs.Ifδis small enough,then U′={z∈C:d(z,K)<δ}?D1∪...∪D k.

The thesis then follows from the fact that there is a connected component of U′∩?whose boundary contains K.Suppose that this is not the case, and choose a connected component V of U′∩?such that E=b V∩K=?. Observe that b V=E∪F∪G,where

F=b V∩{z∈C:d(z,K)=δ}and G=b V∩C\K; obviously E∩F=?and thus G has at least two connected component. Moreover,E is connected since otherwise C\K would have more than two connected components.But if E K is connected then it can touch at most one connected component of C\K and thus of G;it follows E=K.

Corollary2.12Let C be a connected component of b?.Then there is a fundamental system{V n}n∈N of neighborhoods of C in

V n+1?V n(where the closure is taken in?).

Now we?x our attention to the sequence{W n=R(V n)}n∈N of domains of D.For each n∈N,we de?ne

Λn=

Proof.We prove various points separately:

?eachΛn is closed by de?nition,and the sequence is non-increasing by Remark2.4;

?Λn=?for,in the opposite case,we would have W n?D,which implies that R is not proper.This is a contradiction because R is a biholomorphism;

?Λn is connected because otherwise we would have that

D\W n=R(?\V n)

is not connected,which would contradict the choice of V n(see Remark

2.4).Indeed,suppose thatΛ′andΛ′′are two disjoint connected com-

ponents ofΛn,and choose a simple arcγ?W n joining a point ofΛ′and a point ofΛ′′.Then D\γhas two connected components D1and D2,and we must have D j∩(D\W n)=?for j=1,2sinceΛ′andΛ′′are disconnected.This implies that D\W n is disconnected.

From the previous Lemma it follows that,if we set

Λ= n∈NΛn

thenΛis a closed,non-empty interval of bD.A priori,Λcould be reduced to a single point of bD.In order to apply Lemma2.8,we must prove that this is not the case.

Lemma2.14The intervalΛ?bD is not reduced to a point.

Proof.We argue by contradiction and assume thatΛ={z0}with z0∈bD. Observe that,for everyε>0,there exists N∈N such that

W n?D(z0,ε)∩D?n≥N,

where D(z0,ε)is the disc centered at z0with radiusε.Indeed,in the opposite case there would exist(cfr.Remark2.4)p∈D such that p∈W n for all n∈N,and this is not possible since V n is a fundamental system of neighborhoods of C.Now consider,on D,the holomorphic function f(z)=z?z0,and let g∈O(?)be de?ned by g=f?R.Then,by the choice of f and the previous observation,g extends to?∪C as a continuous function putting g≡0on

18

C .Choose a point w ∈C and consider a disc

D ′=D (w,ε)such that D ′\C is disconnected.De?ne a function g :D ′→C by

g (z )= g (z ),z ∈?.

Then g is continuous.Moreover,by de?nition g is holomorphic outside the set { g =0};therefore,by Rado’s Theorem, g ∈O (D ′).Since ?{ g =0} =?,

we have g ≡0on D ′and consequently g ≡0on ?,which is a contradiction.

Now we are in position to prove Theorem 2.2:Lemma 2.14allows us to apply Lemma 2.8and deduce that u cannot be unbounded on ?.By Corollary 2.7we have that ?=C z and thus πis onto.Lemma 2.9implies that πis one to one,therefore we can apply Lemma 2.4and conclude that Σ={w =c }for some c ∈C ,whence the thesis of Theorem 2.1.

2.5The result in C n

The statement of Theorem 2.1can be generalized to the case when S is a Levi-?at hypersurface of C n .Consider holomorphic coordinates (z 1,...,z n ?1,w )=(z,w ),z j =x j +iy j ,w =u +iv ,and let ρ:C n ?1×R →R be a smooth function such that S ={v =ρ(z,u )}is a Levi-?at graph.Then we can restate almost verbatim Theorem 2.1:

Theorem 2.15S is foliated by complex hyperplanes,i.e.ρhas the form

ρ(z,u )=?(u )

for some smooth function ?:R →R .

Proof.This is an easy consequence of Theorem 2.1.Indeed,let p 1=(z 1,u )

and p 2=(z 2,u )be two points in C n ?1z ×R u with the same u -coordinate,

and consider the complex line L ?C n ?1z such that z 1,z 2∈L .Then the restriction of ρto L ×R u has a Levi-?at graph

S L =S ∩(L ×C w )?L ×C w ~=C 2.

Theorem 2.1applies to S L ,showing that ρ|L ×R u is a function of u and thus

that ρ(p 1)=ρ(p 2).This proves the thesis.

19

2.6Generalization to a continuous graph

The arguments of the previous sections work in the case thatρis at least of class C2.However,it is possible to generalize the result to the case of a continuous graph.In order to achieve this,the Main Theorem of Shcherbina’s paper[6](which gives also a description of the leaves of the foliation of the polynomial hull of a graph in C2)can be applied,rather than Lemmas3.2 and3.3.We say that a continuous hypersurface S?C n(i.e.a subset which is locally a graph of a continuous function over an open subset of a real hyperplane of C n)is Levi?at if it(locally)separates C n in two pseudoconvex domains.Note that,in the case n=2,S is locally the union of a disjoint family of complex discs(see again[6],Corollary1.1).So,letρ:C n?1×R→R be a continuous function such that S={v=ρ(z,u)}is a Levi?at graph. Then,as before,we have

Theorem2.16S is foliated by complex hyperplanes,i.e.ρhas the form

ρ(z,u)=?(u)

for some continuous function?:R→R.

Once again it is su?cient to show that the statement is true for n=2.In this case we do not know a priori whether S has a foliated atlas;nevertheless, since each p∈S is contained in a germ of holomorphic curveΣp?S(and this germ is unique in view of Lemma4.1of[6])we can still consider the maximal connected surfaceΣthat passes through p.Our aim is to carry out an analysis ofΣsimilar to that delivered in the previous sections for the C2 case.First of all,we want to generalize Lemma2.3:

Lemma2.17LetΣbe any leaf of the foliation of S.Then the projection π|Σis a local homeomorphism.

Proof.In this case the fact that?/?v∈T(Σ)does not give a contradiction, since S is only a continuous graph.Instead,we rely on the Main Theorem of [6]Let p∈Σ,p=(p1,p2),B a ball in C z×R u containing the point(p1,Re p2) and considerρ|bB.Then Shcherbina’s Theorem applies toγ=Γ(ρ|bB),hence by the point(ii)of that statement it follows that the disc through p is a graph over a domain of C z.

As before,we de?ne?=π(Σ)and we prove thatπ|?1

Σis single-valued

and that?is simply connected.

Lemma2.18Let?andΣbe as above.Thenπ|?1

Σ(z)consists of a point for

every z∈?.

20

[批处理]计算时间差的函数etime

[批处理]计算时间差的函数etime 计算时间差的函数etime 收藏 https://www.wendangku.net/doc/ff4127448.html,/thread-4701-1-1.html 这个是脚本代码[保存为etime.bat放在当前路径下即可:免费内容: :etime <begin_time> <end_time> <return> rem 所测试任务的执行时间不超过1天// 骨瘦如柴版setlocal&set be=%~1:%~2&set cc=(%%d-%%a)*360000+(1%%e-1%%b)*6000+1%%f-1% %c&set dy=-8640000 for /f "delims=: tokens=1-6" %%a in ("%be:.=%")do endlocal&set/a %3=%cc%,%3+=%dy%*("%3>> 31")&exit/b ---------------------------------------------------------------------------------------------------------------------------------------- 计算两个时间点差的函数批处理etime 今天兴趣大法思考了好多bat的问题,以至于通宵 在论坛逛看到有个求时间差的"函数"被打搅调用地方不少(大都是测试代码执行效率的) 免费内容: :time0

::计算时间差(封装) @echo off&setlocal&set /a n=0&rem code 随风@https://www.wendangku.net/doc/ff4127448.html, for /f "tokens=1-8 delims=.: " %%a in ("%~1:%~2") do ( set /a n+=10%%a%%100*360000+10%%b%%100*6000+10%% c%%100*100+10%%d%%100 set /a n-=10%%e%%100*360000+10%%f%%100*6000+10%%g %%100*100+10%%h%%100) set /a s=n/360000,n=n%%360000,f=n/6000,n=n%%6000,m=n/1 00,n=n%%100 set "ok=%s% 小时%f% 分钟%m% 秒%n% 毫秒" endlocal&set %~3=%ok:-=%&goto :EOF 这个代码的算法是统一找时间点凌晨0:00:00.00然后计算任何一个时间点到凌晨的时间差(单位跑秒) 然后任意两个时间点求时间差就是他们相对凌晨时间点的时间数的差 对09这样的非法8进制数的处理用到了一些技巧,还有两个时间参数不分先后顺序,可全可点, 但是这个代码一行是可以省去的(既然是常被人掉用自然体

延时子程序计算方法

学习MCS-51单片机,如果用软件延时实现时钟,会接触到如下形式的延时子程序:delay:mov R5,#data1 d1:mov R6,#data2 d2:mov R7,#data3 d3:djnz R7,d3 djnz R6,d2 djnz R5,d1 Ret 其精确延时时间公式:t=(2*R5*R6*R7+3*R5*R6+3*R5+3)*T (“*”表示乘法,T表示一个机器周期的时间)近似延时时间公式:t=2*R5*R6*R7 *T 假如data1,data2,data3分别为50,40,248,并假定单片机晶振为12M,一个机器周期为10-6S,则10分钟后,时钟超前量超过1.11秒,24小时后时钟超前159.876秒(约2分40秒)。这都是data1,data2,data3三个数字造成的,精度比较差,建议C描述。

上表中e=-1的行(共11行)满足(2*R5*R6*R7+3*R5*R6+3*R5+3)=999,999 e=1的行(共2行)满足(2*R5*R6*R7+3*R5*R6+3*R5+3)=1,000,001 假如单片机晶振为12M,一个机器周期为10-6S,若要得到精确的延时一秒的子程序,则可以在之程序的Ret返回指令之前加一个机器周期为1的指令(比如nop指令), data1,data2,data3选择e=-1的行。比如选择第一个e=-1行,则精确的延时一秒的子程序可以写成: delay:mov R5,#167 d1:mov R6,#171 d2:mov R7,#16 d3:djnz R7,d3 djnz R6,d2

djnz R5,d1 nop ;注意不要遗漏这一句 Ret 附: #include"iostReam.h" #include"math.h" int x=1,y=1,z=1,a,b,c,d,e(999989),f(0),g(0),i,j,k; void main() { foR(i=1;i<255;i++) { foR(j=1;j<255;j++) { foR(k=1;k<255;k++) { d=x*y*z*2+3*x*y+3*x+3-1000000; if(d==-1) { e=d;a=x;b=y;c=z; f++; cout<<"e="<

仓储管理信息系统现状与发展

现代服务业学院 《文献检索与论文写作》课程论文 题目仓储管理信息系统现状与发展专业物流管理 班级133班 姓名徐洋洋 指导教师倪蔚颖(讲师) 完成时间:2014年112月

仓储管理信息系统现状与发展 物流管理133班徐洋洋 摘要:仓库管理信息系统是一个必要的信息技术手段,提高现代物流企业的仓库管理水平。随着现代仓储物流企业的转变,我国的传统仓储企业,也开始注重仓储管理信息系统的建设。然而,据统计,由于信息系统规划缺乏大多数企业,仓库管理信息系统的建设没有发挥提高存储服务水平,提高服务效率的作用。因此,本文根据物流仓储管理信息系统规划为研究对象,结合中国传统仓储企业的特点,通过与常用的信息系统规划方法目前比较,进行物流仓储管理信息系统规划。 关键词:仓储管理信息系统;现代物流;库存 物流作为一种服务功能和各行各业的跨行业,跨行业经营紧密地联系在一起。仓库管理是社会经济中不可缺少的重要组成部分,一般的仓储业是以储存、保管为宗旨,可称之为静态储存。而现代的仓储业则向流转中心发展,可集保管储存、流通加工、分类、拣选、商品输送等为一体,则称之为动态储存。而且随着新科技革命的计算机和网络管理的发展,计算机在仓储管理中的应用越来越普及,计算机可以使复杂的数据处理简单,大大提高仓库管理的效率。 一、国内仓储管理系统现状 近年来,物流业在中国迅速发展,已经成为中国国民经济的重要力量,但与发达国家相比,中国物流业的总体形势仍然比较混乱。虽然大部分企业都竖起了物流企业的旗帜,但功能和现代物流缺乏竞争力,物流管理落后,使其在不同的市场需求前处于被动地位。物流市场不断经历着重新洗牌和适者生存。另一方面,随着生产和流通规模的扩大发展,随着我国经济融入国际经济体系,加速物流在中国的发展速度,也会发生一系列的变化,这些变化主要体现在以下几个方面: (一)仓储业社会化、功能化 中国仓储业效率低,利用率不高,工作条件差,缺乏自我发展的能力,在市场经济的环境中,任何社会资源只有市场才能充分体现自由交换的价值,只有在

用c++编写计算日期的函数

14.1 分解与抽象 人类解决复杂问题采用的主要策略是“分而治之”,也就是对问题进行分解,然后分别解决各个子问题。著名的计算机科学家Parnas认为,巧妙的分解系统可以有效地系统的状态空间,降低软件系统的复杂性所带来的影响。对于复杂的软件系统,可以逐个将它分解为越来越小的组成部分,直至不能分解为止。这样在小的分解层次上,人就很容易理解并实现了。当所有小的问题解决完毕,整个大的系统也就解决完毕了。 在分解过程中会分解出很多类似的小问题,他们的解决方式是一样的,因而可以把这些小问题,抽象出来,只需要给出一个实现即可,凡是需要用到该问题时直接使用即可。 案例日期运算 给定日期由年、月、日(三个整数,年的取值在1970-2050之间)组成,完成以下功能: (1)判断给定日期的合法性; (2)计算两个日期相差的天数; (3)计算一个日期加上一个整数后对应的日期; (4)计算一个日期减去一个整数后对应的日期; (5)计算一个日期是星期几。 针对这个问题,很自然想到本例分解为5个模块,如图14.1所示。 图14.1日期计算功能分解图 仔细分析每一个模块的功能的具体流程: 1. 判断给定日期的合法性: 首先判断给定年份是否位于1970到2050之间。然后判断给定月份是否在1到12之间。最后判定日的合法性。判定日的合法性与月份有关,还涉及到闰年问题。当月份为1、3、5、7、8、10、12时,日的有效范围为1到31;当月份为4、6、9、11时,日的有效范围为1到30;当月份为2时,若年为闰年,日的有效范围为1到29;当月份为2时,若年不为闰年,日的有效范围为1到28。

图14.2日期合法性判定盒图 判断日期合法性要要用到判断年份是否为闰年,在图14.2中并未给出实现方法,在图14.3中给出。 图14.3闰年判定盒图 2. 计算两个日期相差的天数 计算日期A (yearA 、monthA 、dayA )和日期B (yearB 、monthB 、dayB )相差天数,假定A 小于B 并且A 和B 不在同一年份,很自然想到把天数分成3段: 2.1 A 日期到A 所在年份12月31日的天数; 2.2 A 之后到B 之前的整年的天数(A 、B 相邻年份这部分没有); 2.3 B 日期所在年份1月1日到B 日期的天数。 A 日期 A 日期12月31日 B 日期 B 日期1月1日 整年部分 整年部分 图14.4日期差分段计算图 若A 小于B 并且A 和B 在同一年份,直接在年内计算。 2.1和2.3都是计算年内的一段时间,并且涉及到闰年问题。2.2计算整年比较容易,但

仓储管理系统WMS商业计划书

仓储管理系统WMS商业计划书 一、基本市场状况分析(什么样的企业需要WMS): 1.全球性经济危机迫使制造业必须提高核心竞争力,降低生产成本,寻找新的利润源; 中国企业正在经历着前所未有的变革,谁先变革,谁将更有号召力和生命力。大家都在寻找最适合自己公司增长的利润源。 第一利润源:降低物料成本(产品开发、提高良率、减少浪费) 第二利润源:降低人力成本(提高生产效率、高效的内部物流) 第三利润源:降低物流成本(内部物流、外部物流) 第四利润源:增加企业利润,提高供应链运作效率(供应链管理); 企业已经极尽全力地挖掘“第一利润源”、“第二利润源”、“第三利润源”。 受“第三利润源”理论的推动,许多物流经理面临着没完没了压缩物流成本的巨大压力。中国的大多数企业还处于直接压缩物流基础作业成本的阶段,并没有考虑从物流服务的创新与开展物流增值服务中寻求利润。 如今,世界已经进入了信息时代,一种新的利润增长源悄然形成,即通过提高供应链运作效率,实现企业利润的增加,称为企业的“第四利润源”。 第四利润源不仅着眼于供应链管理,更强调通过现代管理技术和方法,构建完整高效的供应链管理体系,充分利用和挖掘外部资源,提高供应链的运作效率,增强企业的核心竞争力。 物流供应链软件使“第四利润源”成为可能; 缺少信息化的物流可能成为“盲流”,信息化是企业制胜的法宝;形象地说,信息流是整个企业的血液,掌握企业的命脉,而物流供应链软件就是输送血液的“心脏起搏器”,使企业的心脏永不衰竭。 毋庸置疑,物流供应链软件使企业赢得“第四利润源”成为可能,因为物流供应链在本质上增强了企业的核心竞争力,才能进入“第一利润源”--“第二利润源”--“第三利润源”—“第四利润源”的良性循环,使企业在“大浪淘沙”

Excel中如何计算日期差

Excel中如何计算日期差: ----Excel中最便利的工作表函数之一——Datedif名不见经传,但却十分好用。Datedif能返回任意两个日期之间相差的时间,并能以年、月或天数的形式表示。您可以用它来计算发货单到期的时间,还可以用它来进行2000年的倒计时。 ----Excel中的Datedif函数带有3个参数,其格式如下: ----=Datedif(start_date,end_date,units) ----start_date和end_date参数可以是日期或者是代表日期的变量,而units则是1到2个字符长度的字符串,用以说明返回日期差的形式(见表1)。图1是使用Datedif函数的一个例子,第2行的值就表明这两个日期之间相差1年又14天。units的参数类型对应的Datedif返回值 “y”日期之差的年数(非四舍五入) “m”日期之差的月数(非四舍五入) “d”日期之差的天数(非四舍五入) “md”两个日期相减后,其差不足一个月的部分的天数 “ym”两个日期相减后,其差不足一年的部分的月数 “yd”两个日期相减后,其差不足一年的部分的天数

表1units参数的类型及其含义 图1可以通过键入3个带有不同参数的Datedif公式来计算日期的差。units的参数类型 ----图中:单元格Ex为公式“=Datedif(Cx,Dx,“y”)”得到的结果(x=2,3,4......下同) ----Fx为公式“=Datedif(Cx,Dx,“ym”)”得到的结果 ----Gx为公式“=Datedif(Cx,Dx,“md”)”得到的结果 现在要求两个日期之间相差多少分钟,units参数是什么呢? 晕,分钟你不能用天数乘小时再乘分钟吗? units的参数类型对应的Datedif返回值 “y”日期之差的年数(非四舍五入) “m”日期之差的月数(非四舍五入) “d”日期之差的天数(非四舍五入) “md”两个日期相减后,其差不足一个月的部分的天数 “ym”两个日期相减后,其差不足一年的部分的月数 “yd”两个日期相减后,其差不足一年的部分的天数 假设你的数据从A2和B2开始,在C2里输入下面公式,然后拖拉复制。 =IF(TEXT(A2,"h:mm:ss")

单片机C延时时间怎样计算

C程序中可使用不同类型的变量来进行延时设计。经实验测试,使用unsigned char类型具有比unsigned int更优化的代码,在使用时 应该使用unsigned char作为延时变量。以某晶振为12MHz的单片 机为例,晶振为12M H z即一个机器周期为1u s。一. 500ms延时子程序 程序: void delay500ms(void) { unsigned char i,j,k; for(i=15;i>0;i--) for(j=202;j>0;j--) for(k=81;k>0;k--); } 计算分析: 程序共有三层循环 一层循环n:R5*2 = 81*2 = 162us DJNZ 2us 二层循环m:R6*(n+3) = 202*165 = 33330us DJNZ 2us + R5赋值 1us = 3us 三层循环: R7*(m+3) = 15*33333 = 499995us DJNZ 2us + R6赋值 1us = 3us

循环外: 5us 子程序调用 2us + 子程序返回2us + R7赋值 1us = 5us 延时总时间 = 三层循环 + 循环外 = 499995+5 = 500000us =500ms 计算公式:延时时间=[(2*R5+3)*R6+3]*R7+5 二. 200ms延时子程序 程序: void delay200ms(void) { unsigned char i,j,k; for(i=5;i>0;i--) for(j=132;j>0;j--) for(k=150;k>0;k--); } 三. 10ms延时子程序 程序: void delay10ms(void) { unsigned char i,j,k; for(i=5;i>0;i--) for(j=4;j>0;j--) for(k=248;k>0;k--);

物流仓储管理计划系统

物流仓储管理系统报告 引言 随着中国经济的迅猛发展和市场竞争的日趋激烈,越来越多的企业经营者发现,一个生产企业再没有足够的时间和资金来完成经营的全过程,他们急需一个长期且巩固的合作伙伴来分担这种压力,从而取得共同的发展和盈利。于是,作为第三方物流的关键环节,仓储管理也得到了企业家的高度重视。在现代物流管理科学蓬勃发展的情况下,仓储管理的角色也已起了质与量的变化,虽然其调节生产量与需求量的原始功能一直没有改变,但由于信息技术的高度发展和计算机知识在商业上的广泛应用,仓储业已越来越信息化、自动化。仓库库存管理系统是一个企业不可缺少的部分,它的内容对于企业的决策者和管理者来说都至关重要,所以仓库库存管理系统应该能够为用户提供充足的信息和快捷的查询手段。但一直以来人们使用传统人工的方式管理仓库中的各种物资设备,这种管理方式存在着许多缺点,如:效率低、另外时间一长,将产生大量的文件和数据,这对于查找、更新和维护都带来了不少的困难。随着科学技术的不断提高,计算机科学日渐成熟,其强大的功能已为人们深刻认识,它已进入人类社会的各个领域并发挥着越来越重要的作用。 一、需求分析 1、行业介绍 仓储在物流供应链中起着至关重要的作用,如果不能保证正确的进货和库存控制及发货,将会导致管理费用的增加,服务质量难以得到保证,从而影响企业的竞争力。传统的仓储管理系统注重对货物的出入库登记管理与货物数量的统计,时间长了会出现货物位置杂乱,为寻找货物带来难度,需要投入大量人力进行规范物品的放置、定期整理盘点以及出入库登记等工作,这使得仓储管理问题十分繁琐,浪费大量时间,增加管理的成本。随着国际物流业的迅猛发展,大量的信息技术被采用以提高该行业的服务效率和质量,现代物流发展趋势为:物流的系统化趋势;物流的信息化趋势;物流中心、批发中心、配送中心的社会趋势;仓储、运输的现代化与综合体系化趋势;物流与商流、信息流一体化趋势;可以清楚地看出,物流发展的五大趋势里非常突出的是信息化。因此,物流中心的

51单片机延时时间计算和延时程序设计

一、关于单片机周期的几个概念 ●时钟周期 时钟周期也称为振荡周期,定义为时钟脉冲的倒数(可以这样来理解,时钟周期就是单片机外接晶振的倒数,例如12MHz的晶振,它的时间周期就是1/12 us),是计算机中最基本的、最小的时间单位。 在一个时钟周期内,CPU仅完成一个最基本的动作。 ●机器周期 完成一个基本操作所需要的时间称为机器周期。 以51为例,晶振12M,时钟周期(晶振周期)就是(1/12)μs,一个机器周期包 执行一条指令所需要的时间,一般由若干个机器周期组成。指令不同,所需的机器周期也不同。 对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。 1.指令含义 DJNZ:减1条件转移指令 这是一组把减1与条件转移两种功能结合在一起的指令,共2条。 DJNZ Rn,rel ;Rn←(Rn)-1 ;若(Rn)=0,则PC←(PC)+2 ;顺序执行 ;若(Rn)≠0,则PC←(PC)+2+rel,转移到rel所在位置DJNZ direct,rel ;direct←(direct)-1 ;若(direct)= 0,则PC←(PC)+3;顺序执行 ;若(direct)≠0,则PC←(PC)+3+rel,转移到rel 所在位置 2.DJNZ Rn,rel指令详解 例:

MOV R7,#5 DEL:DJNZ R7,DEL; rel在本例中指标号DEL 1.单层循环 由上例可知,当Rn赋值为几,循环就执行几次,上例执行5次,因此本例执行的机器周期个数=1(MOV R7,#5)+2(DJNZ R7,DEL)×5=11,以12MHz的晶振为例,执行时间(延时时间)=机器周期个数×1μs=11μs,当设定立即数为0时,循环程序最多执行256次,即延时时间最多256μs。 2.双层循环 1)格式: DELL:MOV R7,#bb DELL1:MOV R6,#aa DELL2:DJNZ R6,DELL2; rel在本句中指标号DELL2 DJNZ R7,DELL1; rel在本句中指标号DELL1 注意:循环的格式,写错很容易变成死循环,格式中的Rn和标号可随意指定。 2)执行过程

excel中计算日期差工龄生日等方法

excel中计算日期差工龄生日等方法 方法1:在A1单元格输入前面的日期,比如“2004-10-10”,在A2单元格输入后面的日期,如“2005-6-7”。接着单击A3单元格,输入公式“=DATEDIF(A1,A2,"d")”。然后按下回车键,那么立刻就会得到两者的天数差“240”。 提示:公式中的A1和A2分别代表前后两个日期,顺序是不可以颠倒的。此外,DATEDIF 函数是Excel中一个隐藏函数,在函数向导中看不到它,但这并不影响我们的使用。 方法2:任意选择一个单元格,输入公式“="2004-10-10"-"2005-6-7"”,然后按下回车键,我们可以立即计算出结果。 计算工作时间——工龄—— 假如日期数据在D2单元格。 =DA TEDIF(D2,TODAY(),"y")+1 注意:工龄两头算,所以加“1”。 如果精确到“天”—— =DA TEDIF(D2,TODAY(),"y")&"年"&DATEDIF(D2,TODAY(),"ym")&"月"&DATEDIF(D2,TODAY(),"md")&"日" 二、计算2003-7-617:05到2006-7-713:50分之间相差了多少天、多少个小时多少分钟 假定原数据分别在A1和B1单元格,将计算结果分别放在C1、D1和E1单元格。 C1单元格公式如下: =ROUND(B1-A1,0) D1单元格公式如下: =(B1-A1)*24 E1单元格公式如下: =(B1-A1)*24*60 注意:A1和B1单元格格式要设为日期,C1、D1和E1单元格格式要设为常规. 三、计算生日,假设b2为生日

=datedif(B2,today(),"y") DA TEDIF函数,除Excel2000中在帮助文档有描述外,其他版本的Excel在帮助文档中都没有说明,并且在所有版本的函数向导中也都找不到此函数。但该函数在电子表格中确实存在,并且用来计算两个日期之间的天数、月数或年数很方便。微软称,提供此函数是为了与Lotus1-2-3兼容。 该函数的用法为“DA TEDIF(Start_date,End_date,Unit)”,其中Start_date为一个日期,它代表时间段内的第一个日期或起始日期。End_date为一个日期,它代表时间段内的最后一个日期或结束日期。Unit为所需信息的返回类型。 “Y”为时间段中的整年数,“M”为时间段中的整月数,“D”时间段中的天数。“MD”为Start_date与End_date日期中天数的差,可忽略日期中的月和年。“YM”为Start_date与End_date日期中月数的差,可忽略日期中的日和年。“YD”为Start_date与End_date日期中天数的差,可忽略日期中的年。比如,B2单元格中存放的是出生日期(输入年月日时,用斜线或短横线隔开),在C2单元格中输入“=datedif(B2,today(),"y")”(C2单元格的格式为常规),按回车键后,C2单元格中的数值就是计算后的年龄。此函数在计算时,只有在两日期相差满12个月,才算为一年,假如生日是2004年2月27日,今天是2005年2月28日,用此函数计算的年龄则为0岁,这样算出的年龄其实是最公平的。 本篇文章来源于:实例教程网(https://www.wendangku.net/doc/ff4127448.html,) 原文链接:https://www.wendangku.net/doc/ff4127448.html,/bgruanjian/excel/631.html

仓储管理经典案例

仓储管理经典案例物流案例分析: 仓储是集中反映工厂物资活动状况的综合场所,是连接生产、供应、销售的中转站,对促进生产提高效率起着重要的辅助作用。 仓储是产品生产、流通过程中因订单前置或市场预测前置而使产品、物品暂时存放。它是集中反映工厂物资活动状况的综合场所,是连接生产、供应、销售的中转站,对促进生产提高效率起着重要的辅助作用。同时,围绕着仓储实体活动,清晰准确的报表、单据帐目、会计部门核算的准确信息也同时进行着,因此仓储是物流、信息流、单证流的合一。 仓储管理重点 随着接单和经营模式不同,仓储模式也不同。下面我们逐个介绍不同接单模式下的仓储管理重点,与经营方式相关联的仓储模式重要名词解释如下。经营模式与仓储模式相关联的重要名词解释:: 根据事前与客户协议的库存水平自动补货的一种交易模式,根据客户订单进行生产排配、物料采购、交货安排的弹性接单交易模式。,依客户选配订单由标准半成品起做测试组装交货的弹性接单交易模式,供应商免费存放,在距离组装地-小时车程、-天的订单或预测前置库存。制造商免费存放,在距离客户销货地-小时车程,-天的订单或预测前置成品库存。是传统的接单方式,在客户提供的预测需求下拟定生产计量,按既定的规格生产半成品、成品入库,客户下订单与交货通知时再由库存出货达交。其交期承诺的关键要素在“半成品在手库存量和成品在手库存量”能给已排定的生产计量补货并满足订单需求,必要时建立(中转仓)与最后组装线以满足客户最大需求。在交易方式下,不同仓储模式的管理重点如下:在原物料方面,要求贵重与自制的供应商进驻,生产前段尽量做到无库存(库存属供应商),要货时再调动,其真义已如名词解释;在半成品方面,依预计需求备料,但注意市场需求变量,随时调整库存量。最好用(最大需求量最小需求量)加配套管制其补充量。半成品需用(现场车间管理系统-,在工令投入前自动抓取库存信息,自动排配出较佳出货计划进行供应链管理活动)管制为佳。:设在客户处的,根据客户销售状况及的变量与客户共同协商调整的,要做到客户提货时自动反映库存与补货量回制造基地。在接单方式下,客户下订单后才排生产计划,仍按备料,愈靠近客户做最后组装愈有利,其交货期承诺的关键要素在于原物料供应与产能产量爬坡的速度。在交易方式下,不同仓储模式的管理重点如下:在原物料方面,贵重与自制的供货商进驻,生产前段尽量做到无库存(库存属供货商),供应商做到线边仓服务。在成品拣料方面,成品库存存放于出货口,按同一包装号、号排列,出货时把打包完成的订单货物放置到托盘上。单据上有发货通知()和运输序列()两种出货指示

2021仓储管理系统行业市场调研报告

2021年仓储管理系统行业市场调研报告

目录 1.仓储管理系统行业现状 (4) 1.1仓储管理系统行业定义及产业链分析 (4) 1.2仓储管理系统市场规模分析 (6) 2.仓储管理系统行业前景趋势 (8) 2.1仓储管理系统功能完善,市场规模不断扩大 (8) 2.2一体化、集成化成为主要发展方向 (8) 2.3柔性化、平台化趋势明显 (9) 2.4自动化、智慧化的广泛应用 (9) 2.5互联网+智能仓储设备 (9) 2.6共享化趋势 (9) 2.7需求开拓 (10) 3.仓储管理系统行业存在的问题 (10) 3.1仓库信息数据存在错误性和延迟性 (10) 3.2仓库物料/成品多,作业准确率低 (10) 3.3仓库流程不够规范 (11) 3.4缺乏追溯手段 (11) 3.5行业服务无序化 (11) 3.6供应链整合度低 (12) 3.7供给不足,产业化程度较低 (12) 4.仓储管理系统行业政策环境分析 (13)

4.1仓储管理系统行业政策环境分析 (13) 4.2仓储管理系统行业经济环境分析 (13) 4.3仓储管理系统行业社会环境分析 (13) 4.4仓储管理系统行业技术环境分析 (14) 5.仓储管理系统行业竞争分析 (15) 5.1仓储管理系统行业竞争分析 (15) 5.1.1对上游议价能力分析 (15) 5.1.2对下游议价能力分析 (15) 5.1.3潜在进入者分析 (16) 5.1.4替代品或替代服务分析 (16) 5.2中国仓储管理系统行业品牌竞争格局分析 (17) 5.3中国仓储管理系统行业竞争强度分析 (17) 6.仓储管理系统产业投资分析 (18) 6.1中国仓储管理系统技术投资趋势分析 (18) 6.2中国仓储管理系统行业投资风险 (18) 6.3中国仓储管理系统行业投资收益 (19)

延时计算

t=n*(分频/f) t:是你所需的延时时间 f:是你的系统时钟(SYSCLK) n:是你所求,用于设计延时函数的 程序如下: void myDelay30s() reentrant { unsigned inti,k; for(i=0;i<4000;i++) /*系统时钟我用的是24.576MHZ,分频是12分频,达到大约10s延时*/ for(k=0;k<8000;k++); } //n=i*k |评论 2012-2-18 20:03 47okey|十四级 debu(g调试),左侧有运行时间。在你要测试的延时子函数外设一断点,全速运行到此断点。记下时间,再单步运行一步,跳到下一步。再看左侧的运行时间,将这时间减去上一个时间,就是延时子函数的延时时间了。不知能不能上图。 追问 在delayms处设置断点,那么对应的汇编语言LCALL是否被执行呢?还有,问问您,在C8051F020单片机中,MOV指令都是多少指令周期呢?我在KEIL下仿真得出的结果,与我通过相应的汇编语言分析的时间,总是差了很多。 回答 C编译时,编译器都要先变成汇编。只想知道延时时间,汇编的你可以不去理会。只要看运行时间就好了。 at8051单片机12m晶振下,机器周期为1us,而c8051 2m晶振下为1us。keil 调试里频率默认为24m,你要设好晶振频率。

|评论 2012-2-23 11:17 kingranran|一级 参考C8051单片机内部计时器的工作模式,选用合适的计时器进行中断,可获得较高精度的延时 |评论 2012-2-29 20:56 衣鱼ccd1000|一级 要是精确延时的话就要用定时器,但定的时间不能太长,长了就要设一个变量累加来实现了; 要是不要求精确的话就用嵌套for函数延时,比较简单,但是程序复杂了就会增添不稳定因素,所以不推荐。 |评论

海外仓储管理系统解决方案

1.系统简介 海外仓储管理系统 海外仓系统OSWMS 面向拥有海外仓的电商卖家或者物流服务商,提供电子商务平台信息化和电商物流信息化整合服务。通过整合国内外电商平台将电商在各种直营、分销渠道的订单、客户、库存等信息进行集成同步和统一管理,实现国内电商与跨境电商业务的高效协同运营,让您在国内就能管理海外仓库,实时掌控货物库存,减少物流成本,快速响应订单,提高竞争力。 2.核心优势 你的企业是否遇到过以下问题? 1.找寻仓库中货物时,费时费力,常常找不到。 2.不清楚仓库中具有多少库存,不清楚具体存放位置。 3.每次盘点货物,耗时大。 4.入库,出库耗费时间较长,影响效率。 5.客户管理跟不上。 6.国内与国外信息难以共享、沟通困难,数据没有得到统一的管理。 7.国内无法时时了解到国外仓储的库存情况。 8.国内与国外之间在物流配送上失调等。 以上问题,会严重影响企业产品物流运送效率,造成管理混乱,增加企业的管理成本。 从客户体验感出发,简洁实用的功能和流程 我们设计出富有创意、值得信赖以及具有灵活度的商业流程,以满足海外仓市场的多面要求;

我们独特的解决方案有助于为您的系统吸引顾客,并通过得到认可的客户体验感为您与顾客建立长期的合作关系。 在行业竞争激烈拥有一个优秀的信息化系统,是您的优势所在,扩大市场的利剑! 成本节约 资深星级工程师从搭建到维护,一条龙服务,替您省下大量人力物力财力。 云仓储云服务 B/S结构,随时随地访问无人员数量限制 .net平台开发安全保障,拓展方便,有效承载高并发量 人性化设计 企业级官网,人性化界面,旗舰展示。 提升企业品牌,强化企业形象。 优选业务流程设计 整合行业优秀企业业务流程。多仓储多供应商模式,按自定义的拣货路径进行有效地拣货,自动增减库存,达到库存数据的高准确性。 主流电商平台无缝对接 电商平台实现无缝对接,实现订单数据自动传输,系统自动抓取订单信息。 运费预算、包裹跟踪 客户在线预算渠道报价、方便比多、便于选择。系统连接四大国际快递系统,自动轨迹跟踪。 管理高效 全面解决企业的核心运营问题,囊括订单处理、多仓储管理、头程管理、海外仓储管理、海外物流操作管理、财务管理、统计报表等,高效作业、轻松管理、释放资源。 API功能 打通ebay、速卖通、亚马逊多平台订单同步,跨平台物流统一管理,API数据接口自由互联用户系统。 3.服务保障 24小时全天候的服务 7*24小时全程基础运维外包服务, 99.5%以上可用率,提升企业全天候运作、促进业务增值能力 应急求援,进一步保障安全 为企业用户提供快速、专业、高效的灾难恢复帮助,通过远程、现场等方式提供应急响应 一对一客服支持 指导系统功能使用,问题解决 系统升级更新 系统会根据市场应用要求改进更新,新增功能等,同时为有个性需要的用户定制功能,满足用户各种要求。 4.系统功能

仓储管理的现状及发展趋势

内容摘要 仓储管理在物流业和整个经济活动中都具有重要的地位和作用。对仓储进行管理,主要是为了使仓库空间的利用与库存货品的处置成本实现平衡。它是降低仓储物流成本的重要途径之一。通过高效率的仓储活动,可使商品仓储在最有效的时间段发挥作用,创造商品仓储的“时间价值”和“空间价值”。此文浅谈了仓储管理的地位和作用,我国仓储管理的现状和未来的发展趋势,以及对加强和改进我国的仓储管理的意义 目录 内容摘要 (1) 一、仓储管理的地位和作用 (1) (一)什么是仓储管理 (1) 1.1仓储管理在物流管理和整个经济活动中的重要地位和作用 (2) 1)仓储管理在物流管理中的地位和作用。 (2) 2)仓储管理在整个国民经济中的地位和作用 (3) 二、我国目前仓储管理的现状与加强和改进仓储管理的对策 (4) (一)我国仓储管理存在的问题 (4) (二)我国仓储管理的长足发展 (4) (三) 加强和改进我国仓储管理的对策和措施 (5) 三、仓储管理的发展阶段和未来发展趋势 (6) (一)仓储管理的发展阶段 (6) 1、人工和机械化的仓储阶段 (6) 2、自动化仓储阶段 (6) 3、智能化仓储阶段 (7) (二)仓储管理的发展趋势 (7) 1、实现“零库存”管理 (7) 2、整合化管理 (8) 3、计算机化与网络化管理 (8) 四.结论 (8) 一、仓储管理的地位和作用 (一)什么是仓储管理 仓储管理就是对仓库及仓库内的物资所进行的管理,是仓储机构为了充分利用所具有的仓储资源提供高效的仓储服务所进行的计划、组织、控制和协调过程。

具体来说,仓储管理包括仓储资源的获得、仓储商务管理、仓储流程管理、仓储作业管理、保管管理、安全管理多种管理工作及相关的操作。 仓储管理的内涵是随着其在社会经济领域中的作用不断扩大而变化。仓储管理,即库管,是指对仓库及其库存物品的管理。仓储系统是企业物流系统中不可缺少的子系统。物流系统的整体目标是以最低成本提供令客户满意的服务,而仓储系统在其中发挥着重要作用。仓储活动能够促进企业提高客户服务水平,增强企业的竞争能力。现代仓储管理已从静态管理向动态管理发展,产生了根本性的变化。 1.1仓储管理在物流管理和整个经济活动中的重要地位和作用1)仓储管理在物流管理中的地位和作用。 从某种意义上讲,仓储管理在物流管理中占据着核心的地位。从物流的发展史可以看出,物流的研究最初是从解决“牛鞭效应”开始的,即在多环节的流通过程中,由于每个环节对于需求的预测存在误差,因此随着流通环节增加,误差被放大,库存也就越来越偏离实际的最终需求,从而带来保管成本和市场风险的提高。解决这个问题的思路,从研究合理的安全库存开始,到改变流程,建立集中的配送中心,以致到改变生产方式,实行订单生产,将静态的库存管理转变为动态的JIT配送,实现降低库存数量和周期的目的。在这个过程中,尽管仓库越来越集中,每个仓库覆盖的服务范围越来越大,仓库吞吐的物品越来越多,操作越来越复杂,但是仓储的周期越来越短,成本不断递减的趋势一直没有改变。从发达国家的统计数据来看,现代物流的发展历史就是库存成本在总物流成本中所占比重逐步降低的历史。 从许多微观案例来看,仓储管理已成为供应链管理的核心环节。这是因为仓储总是出现在物流各环节的结合部,例如采购与生产之间,生产的初加工与精加工之间,生产与销售之间,批发与零售之间,不同运输方式转换之间等等。仓储是物流各环节之间存在不均衡性的表现,仓储也正是解决这种不均衡性的手段。仓储环节集中了上下游流程整合的所有矛盾,仓储管理就是在实现物流流程的整合。如果借用运筹学的语言来描述仓储管理在物流中的地位,可以说就是在运输条件为约束力的情况下,寻求最优库存(包括布局)方案作为控制手段,使得物流达到总成本最低的目标。在许多具体的案例中,物流的整合、优化实际上归结为仓储的方案设计与运行控制。

仓储管理系统白皮书

PLT仓储物流管理系统白皮书大连口岸物流科技有限公司

PLT-仓储管理系统白皮书 目录 引言....................................................................................................................................... 错误!未定义书签。 1.产品简介.......................................................................................................................... 错误!未定义书签。 2.产品业务架构.................................................................................................................. 错误!未定义书签。 2.1.总体描述.......................................................................................................................... 错误!未定义书签。 2.2.架构优势.......................................................................................................................... 错误!未定义书签。 3.产品设计理念.................................................................................................................. 错误!未定义书签。 3.1.满足仓储管理需求.......................................................................................................... 错误!未定义书签。 3.2.满足仓储业务拓展需求.................................................................................................. 错误!未定义书签。 3.3.满足仓储服务需求.......................................................................................................... 错误!未定义书签。 4.产品特点.......................................................................................................................... 错误!未定义书签。 4.1.一站式订单服务.............................................................................................................. 错误!未定义书签。 4.2.方便快捷的费用结算...................................................................................................... 错误!未定义书签。 4.3.灵活高效的仓储操作...................................................................................................... 错误!未定义书签。 4.4.及时准确的库内业务...................................................................................................... 错误!未定义书签。 4.5.图形化合理管理货位...................................................................................................... 错误!未定义书签。 5.产品运行环境.................................................................................................................. 错误!未定义书签。 5.1.开发平台.......................................................................................................................... 错误!未定义书签。 5.2.运行平台.......................................................................................................................... 错误!未定义书签。 1

相关文档