文档库 最新最全的文档下载
当前位置:文档库 › 解斜三角形习题精选

解斜三角形习题精选

解斜三角形习题精选
解斜三角形习题精选

解斜三角形习题精选

1.已知(a +b +c )(b +c -a )=3bc ,则∠A =_______.

2在锐角△ABC 中,边长a =1,b =2,则边长c 的取值范围是_______.

3在△ABC 中,若∠C =60°,则

c

a b c b a +++=_______.

4.在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若三角形的面积S =41(a 2+b 2-c 2),则∠C 的度数是_______.

5已知锐角△ABC 中,sin (A +B )=53,sin (A -B )=5

1. (1)求证:tan A =2tan B ;

(2)设AB =3,求AB 边上的高.

6在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边长,已知a 、b 、c 成等比数列,且a 2-c 2=ac -bc ,求∠A 的大小及c

B b sin 的值.

7在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,依次成等比数列,求y =

B

B B cos sin 2sin 1++的取值范围.

8.已知△ABC 中,22(sin 2A -sin 2C )=(a -b )sin B ,外接圆半径为2.

(1)求∠C ;

(2)求△ABC 面积的最大值.

答案:1解析:由已知得(b +c )2-a 2=3bc ,∴b 2+c 2-a 2

=bc .∴bc a c b 2222-+=21.∴∠A =3π. 2解析:若c 是最大边,则cos C >0.∴ab

c b a 22

22-+>0,∴c <5.又c >b -a =1, ∴1<c <5.

3解析:c a b c b a +++=))((c a c b bc b ac a +++++22=2

22c bc ac ab bc ac b a ++++++.

(*)

∵∠C =60°,∴a 2+b 2-c 2=2ab cos C =ab .

∴a 2+b 2=ab +c 2. 代入(*)式得

222c bc ac ab bc ac b a ++++++=1.

答案:1 4解析:由S =41(a 2+b 2-c 2)得21ab sin C =41·2ab cos C .∴tan C =1.∴C =4

π. 答案:45°

5剖析:有两角的和与差联想到两角和与差的正弦公式,结合图形,以(1)为铺垫,解决

(1)证明:∵sin (A +B )=53,sin (A -B )=5

1, ∴???

????=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A B A B A B A tan tan 51sin cos 52cos sin ????

????==?=2. ∴tan A =2tan B .

(2)解:2π<A +B <π,∴sin (A +B )=5

3. ∴tan (A +B )=-4

3, 即

B A B A tan tan 1tan tan -+=-43.将tan A =2tan B 代入上式整理得2tan 2B -4tan B -1=0,解得tan B =262±(负值舍去).得tan B =2

62+,∴tan A =2tan B =2+6. 设AB 边上的高为CD ,则AB =AD +DB =A CD tan +B CD tan =6

23+CD .由AB =3得CD =2+6,所以AB 边上的高为2+6.

6、剖析:因给出的是a 、b 、c 之间的等量关系,要求∠A ,需找∠A 与三边的关系,故可用余

弦定理.由b 2

=ac 可变形为c b 2=a ,再用正弦定理可求c

B b sin 的值. 解法一:∵a 、b 、c 成等比数列,∴b 2=ac .

又a 2-c 2=ac -bc ,∴b 2+c 2-a 2=bc .

在△ABC 中,由余弦定理得 cos A =bc a c b 2222-+=bc bc 2=2

1,∴∠A =60°. 在△ABC 中,由正弦定理得sin B =a

A b sin , ∵b 2=ac ,∠A =60°, ∴ac

b c B b ?=60sin sin 2=sin60°=23. 解法二:在△ABC 中, 由面积公式得21bc sin A =2

1ac sin B . ∵b 2=ac ,∠A =60°,∴bc sin A =b 2sin B . ∴

c

B b sin =sin A =23.

7、解:∵b 2=ac ,∴cos B =ac b c a 2222-+=ac ac c a 222-+=21(c a +a c )-21≥2

1. ∴0<B ≤3π, y =B B B cos sin 2sin 1++=B B B B cos sin cos sin 2++)(=sin B +cos B =2sin (B +4π).∵4π<B +4π≤12

π7, ∴22<sin (B +4

π)≤1.故1<y ≤2. 8、解:(1)由22(sin 2A -sin 2C )=(a -b )·sin B 得22(

224R a -224R c )=(a -b )R

b 2. 又∵R =2,

∴a 2-c 2=ab -b 2.∴a 2+b 2-c 2=ab .

∴cos C =ab c b a 2222-+=2

1. 又∵0°<C <180°,∴C =60°.

(2)S =21ab sin C =21×23ab =23sin A sin B =23sin A sin (120°-A ) =23sin A (sin120°cos A -cos120°sin A )

=3sin A cos A +3sin 2A

=2

3sin2A -23sin2A cos2A +23 =3sin (2A -30°)+2

3. ∴当2A =120°,即A =60°时,S max =

233.

必修五解三角形常考题型非常全面

必修五解三角形常考题型 1.1正弦定理和余弦定理 1.1.1正弦定理 【典型题剖析】 考察点1:利用正弦定理解三角形 例1 在V ABC 中,已知A:B:C=1:2:3,求a :b :c. 【点拨】 本题考查利用正弦定理实现三角形中边与角的互化,利用三角形内角和定理及正弦定理的变形形式 a :b :c=sinA: sinB: sinC 求解。 解:::1:2:3,A . ,,, 6 3 2 1::sin :sin :sin sin :sin :sin :1 2.6 3 2 2A B C B C A B C a b A B C ππ π π π π π =++=∴= = = ∴=== =Q 而 【解题策略】要牢记正弦定理极其变形形式,要做到灵活应用。 例2在ABC 中,已知 ,C=30°,求a+b 的取值范围。 【点拨】 此题可先运用正弦定理将a+b 表示为某个角的三角函数,然后再求解。 解:∵C=30°, ,∴由正弦定理得: sin sin sin a b c A B C === ∴ )sin (150°-A ). ∴ )[sinA+sin(150° )·2sin75°·cos(75° -A)= 2 cos(75°-A) ① 当75°-A=0°,即A=75°时,a+b 取得最大值 2 ; ② ∵A=180°-(C+B)=150°-B,∴A <150°,∴0°<A <150°, ∴-75°<75°-A <75°,∴cos75°<cos(75°-A)≤1, ∴> 2 cos75° = 2 × 4 . 综合①②可得a+b 的取值范围为 ,8+ 考察点2:利用正弦定理判断三角形形状 例3在△ABC 中,2 a ·tanB=2 b ·tanA ,判断三角形ABC 的形状。 【点拨】通过正弦定理把边的关系转化为角的关系,利用角的关系判断△ABC 的形状。

高三数学一轮复习---解斜三角形(复习)公开课教案

解斜三角形(复习)公开课教案 [教学目标] 一:巩固对正弦、余弦、面积公式的掌握,并能熟练地运用公式解决问题。 二:培养学生分析、演绎和归纳的能力。 [教学重点] 正弦、余弦、面积公式的应用。 [教学难点] 选择适当的方法解斜三角形。 [教学过程] 一:基本知识回顾: 1.1、正弦定理及其变形; 正弦定理:2sin sin sin a b c R A B C ===(R 是三角形外接圆的半径) 变式一:sin 2a A R =、sin 2b B R =、sin 2c C R = 变式二:sin :sin :sin A B C ::a b c = 1.2、余弦定理及其变形; 余弦定理:2 2 2 2cos a b c bc A =+-,变式:222 cos 2b c a A bc +-= 2 2 2 2cos b a c ac B =+-, 222 cos 2a c b B ac +-= 2 2 2 2cos c a b ab C =+-。 222 cos 2a b c C ab +-= 1.3、面积公式 二:例题分析: 1、正弦定理 (1)在△ABC 中,已知 ,则 sin B= ( ) (2)在△ABC 中,若a = 2 ,b =0 30A = , 则B 等于60?或120? 111sin sin sin 222S ab C bc A ac B ===4,303 a b A ===?

2、余弦定理 (1)在△ABC 中,满足 ,则A = 60° (2)已知△ABC 的周长为9,且4:2:3sin :sin :sin =C B A ,则cosC 的值为 A .4 1 - B .41 C .3 2 - D . 3 2 3、三角形解的个数 (1)在△ABC 中,已知 , 这个三角形解的情况是:( C ) A.一解 B.两解 C.无解 D.不能确定 (2)△ABC 中,∠A ,∠B 的对边分别为a ,b ,且∠A=60°,4,6== b a ,那么 满 足条件的△ABC ( ) A .有一个解 B .有两个解 C .无解 D .不能确定 4、判断三角形形状 (1)若c C b B a A cos cos sin = =则△ABC 为( ) A .等边三角形 B .等腰三角形 C .有一个内角为30°的直角三角形 D .有一个内角为30°的等腰三角形 (2)关于x 的方程02 cos cos cos 2 2=-??-C B A x x 有一个根为1,则△AB C 一定是 A .等腰三角形 B .直角三角形 C .锐角三角形 D .钝角三角形 5、正余弦定理的实际应用 (1)有一长为1公里的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要 伸长( ) A .1公里 B .sin10°公里 C .cos10°公里 D .cos20°公里 (2) 10105/4/o C v v B AB o 某渔船在航行中遇险发出呼救信号,我海军舰艇在A处获悉后立即测出该渔船在方向角为北偏东45,距离海里的处,渔船沿着方位角为的方向以海里小时的速度向小岛靠拢,我海军艇舰立即以海里小时的速度前去营救。设艇舰在处与渔船相遇,求方向的方位角的正弦值 18,20,150a b A ===?222a b c bc =+-

解三角形的必备知识和典型例题及习题

解三角形的必备知识和典型例题及习题 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。 (1)三边之间的关系:a 2+b 2=c 2。(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。 (1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 a 2= b 2+ c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =2 1ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)?S =21ab sin C =21bc sin A =21ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题: 第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题: 第1、已知三边求三角. 第2、已知两边和他们的夹角,求第三边和其他两角. 5.三角形中的三角变换 三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

三角形的证明测试题(最新版含答案)

第一章三角形的证明检测题 (本试卷满分:100分,时间:90分钟) 一、选择题(每小题3分,共30分) 1.下列命题: ①等腰三角形的角平分线、中线和高重合;②等腰三角形两腰上的高相等; ③等腰三角形的最短边是底边;④等边三角形的高、中线、角平分线都相等; ⑤等腰三角形都是锐角三角形. 其中正确的有() A.1个 B.2个 C.3个 D.4个 2.如图,在△ABC 中,∠BAC =90°,AB =3,AC =4.AD 平分∠BAC 交BC 于点D ,则BD 的长为( ) A.157 B. 125 C. 207 D.215 3. 如图,在△ABC 中,,点D 在AC 边上,且 , 则∠A 的度数为() A. 30° B. 36° C. 45° D. 70° 4.(2015?湖北荆门中考)已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为( ) A.8或10 B.8 C.10 D.6或12 5.如图,已知, , ,下列结论: ①;② ; ③ ;④△ ≌△ . 其中正确的有( ) A.1个 B.2个 C.3个 D.4个 6.在△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,最短边cm , 则最长边AB 的长是() A.5 cm B.6cm C.5cm D.8 cm 7.如图,已知, ,下列条件 能使△≌△的是( ) A. B. C. D.三个答案都是 8.(2015·陕西中考)如图,在△ABC 中,∠A =36°,AB =AC ,BD 是△ABC 的角平分线,若在边AB 上截取BE =BC ,连接DE ,则图中等腰三角形共有( ) A.2个 B.3个 C.4个 D.5个

解三角形典型例题

1.正弦定理和余弦定理 在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 2.S △ABC =2ab sin C =2bc sin A =2ac sin B =4R =2(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r . 1.在△ABC 中,A >B ?a >b ?sin A >sin B ?cos A c; a-b

(完整版)直角三角形单元测试题

图4 4米3米 湘教版八年级数学下册《直角三角形》单元测试题 姓名 得分: 一、填空题(每小题2分,共30分) 1、直角三角形中一个锐角为30°,斜边和最小的边的和为12cm,则斜边长为 . 2、等腰直角三角形的斜边长为3,则它的面积为 . 3.如图,一棵大树在一次强台风中于离地面3米处折断倒下,倒下 树尖部分与树根距离为4米,这棵大树原来的高度为__________米。 4、△ABC 中各角的度数之比如下,能够说明△ABC 是直角三角形的是( ) A.1:2:3 B.2:3:4 C.3:4:5 D.3:2:5 5、直角三角形中,两锐角的角平分线相交所成的角的度数为 . 6、等腰三角形一腰上的高等于该三角形一条边长度的一半,则其顶角为 . 7、长方体地面长为4,宽为3,高为12,那么长方体对角线的长是 . 8、在直角三角形ABC 中,∠ACB=90度,CD 是AB 边上中线,若CD=5cm,则AB=____ _ 9、在直角三角形中,有一个锐角为52度,那么另一个锐角度数为 10、在直角三角形中,斜边及其中线之和为6,那么该三角形的斜边长为________. 11、在△ABC 中, ∠ACB=90 °,CE 是AB 边上的中线,那么与CE 相等的线段有_________,与∠A 相等的角有_________,若∠A=35°,那么∠ECB= _________. 12、在直角三角形ABC 中,∠C=90°,∠BAC=30°,BC=10,则AB=________. 13、顶角为30度的等腰三角形,若腰长为2,则腰上的高__________,三角形面积是________ 14、等腰三角形顶角为120°,底边上的高为3,则腰长为_________ 15、三角形ABC 中,AB=AC=6,∠B=30°,则BC 边上的高AD=_______________ 二、选择题(每小题2分,共20分) 1、在△ABC 中, ∠A: ∠B: ∠C=1:2:3,CD ⊥AB 于D,AB=a ,则DB 等于( ) A.2a B.3a C.4a D.以上结果都不对 2.Rt △ABC 中,∠C=90°,∠B=54° ,则∠A=( ) A.66° B.36° C.56° D.46° 3.△ABC 中,∠A :∠B :∠C=1:2:3,则△ABC 是( ) A.等腰三角形 B.直角三角形 C.锐角三角形 D.钝角三角形 4.以下四组数中,不是勾股数的是( ) A.3,4,5 B.5,12,13 C.4,5,6 D.8,15,17 5.下列条件不能判定两个直角三角形全等的是( ) A.两条直角边对应相等 B.有两条边对应相等 C.一条边和一个锐角对应相等 D.两个锐角对应相等 6.三角形中,到三边距离相等的点是( ) A.三条边的垂直平分线的交点 B.三条高的交点 C.三条中线的交点 D.三条角平分线的交点 7.等腰三角形腰长为13,底边长为10,则它底边上的高为 ( ) A.12 B.7 C.5 D.6 8.如右图,Rt △ABC 中,∠C=90°,∠B=30°,AD 是∠BAC 的平分线,AD=10,则点D 到AB 的距离是( ) A.8 B.5 C.6 D.4

(完整版)高中数学必修五解三角形测试题及答案

(数学5必修)第一章:解三角形 [基础训练A 组] 一、选择题 1.在△ABC 中,若0 30,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32- 2.若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A .A sin B .A cos C .A tan D . A tan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( ) A .2 B . 2 3 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( ) A .006030或 B .006045或 C .0060120或 D .0015030或 6.边长为5,7,8的三角形的最大角与最小角的和是( ) A .090 B .0120 C .0135 D .0150 二、填空题 1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。 2.在△ABC 中,若=++=A c bc b a 则,2 2 2 _________。 3.在△ABC 中,若====a C B b 则,135,30,20 _________。 4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________。 5.在△ABC 中,,26-= AB 030C =,则AC BC +的最大值是________。 三、解答题 1. 在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?

解三角形典型例题答案

1. 解:cos cos cos ,sin cos sin cos sin cos a A b B c C A A B B C C +=+= sin 2sin 2sin 2,2sin()cos()2sin cos A B C A B A B C C +=+-= cos()cos(),2cos cos 0A B A B A B -=-+= cos 0A =或cos 0B =,得2A π=或2B π= 所以△ABC 是直角三角形。 2. 证明:将ac b c a B 2cos 222-+=,bc a c b A 2cos 2 22-+=代入右边 得右边22222222 22()222a c b b c a a b c abc abc ab +-+--=-= 22a b a b ab b a -==-=左边, ∴)cos cos (a A b B c a b b a -=- 3.证明:∵△AB C 是锐角三角形,∴,2A B π+>即022A B ππ>>-> ∴sin sin()2 A B π >-,即sin cos A B >;同理sin cos B C >;sin cos C A > ∴C B A C B A cos cos cos sin sin sin ++>++ 4.解:∵2,a c b +=∴sin sin 2sin A C B +=,即2sin cos 4sin cos 2222 A C A C B B +-=, ∴1sin cos 222B A C -==0,22 B π<<∴cos 2B = ∴sin 2sin cos 22244B B B ==?=839 5解:22222222sin()sin cos sin ,sin()cos sin sin a b A B a A B A a b A B b A B B ++===-- cos sin ,sin 2sin 2,222cos sin B A A B A B A B A B π===+=或2 ∴等腰或直角三角形 6解:2sin sin 2sin sin )sin ,R A A R C C b B ?-?=- 222sin sin )sin ,,a A c C b B a c b -=--=-

直角三角形的性质、判定习题

直角三角形习题 一、填空题 1、直角三角形中一个锐角为30°,斜边和最小的边的和为12cm,则斜边长为 . 2、等腰直角三角形的斜边长为3,则它的面积为 . 3、等腰三角形一腰上的高等于该三角形一条边长度的一半,则其顶角为 . 4、已知在△ABC 中,∠ACB=90°,CD 是高,∠A=30°,AB=4cm,则BC=_______cm,∠BCD=_______,BD=_______cm ,AD=________cm ; 5、已知三角形的的三个内角的度数之比为1:2:3,且最短边是3厘米,则最长边上的中线等于____________; 6、在△ABC 中,∠C=90°,∠A 、∠B 的平分线相交于O ,则∠AOB=_________; 7、等边三角形的高为2,则它的面积是 。 8、直角三角形两直角边分别为6cm 和8cm 9、如图,有一块直角三角形纸片,两直角边AC=6cm , BC=8cm ,现将直角边AC 沿直线 AD 折迭, 使E 它落在斜边AB 上,且与AE 重合,则CD 等于 。 二、选择题 10、在△ABC 中, ∠A: ∠B: ∠C=1:2:3,CD ⊥AB 于D,AB=a ,则DB 等于( ) A.2a B.3a C.4 a D.以上结果都不对 11、 下列各组数为边长的三角形中,能构成直角三角形的有 组 (1)7,24,25 (2)2 2 2 3,4,5 (3)35,2,22 (4)8,15,17 (5)10,15,20 12、下列命题错误的是( ) A .有两个角互余的三角形一定是直角三角形; B .三角形中,若一边等于另一边一半,则较小边对角为30° C .直角三角形斜边上的中线等于斜边的一半; D .△ABC 中,若∠A :∠B :∠C=1:4:5,则这个三角形为直角三角形。 13、如果三角形的两条边上的垂直平分线的交点在第三条边上,那么这个三角形是( ) A.锐角三角形 B.等腰三角形 C.直角三角形 D.钝角三角形 14、将一张长方形纸片ABCD 如图所示折叠,使顶点C 落在C ′点. 已知AB=2,∠DEC ′ =30°, 则折痕DE 的长为( )A 、2 B 、32

最新解三角形测试题(附答案)

解三角形单元测试题 一、选择题: 1、在△ABC 中,a =3,b =7,c =2,那么B 等于( ) A . 30° B .45° C .60° D .120° 2、在△ABC 中,a =10,B=60°,C=45°,则c 等于 ( ) A .310+ B .( ) 1310 - C .13+ D .310 3、在△ABC 中,a =32,b =22,B =45°,则A 等于( ) A .30° B .60° C .30°或120° D . 30°或150° 4、在△ABC 中,a =12,b =13,C =60°,此三角形的解的情况是( ) A .无解 B .一解 C . 二解 D .不能确定 5、在△ABC 中,已知bc c b a ++=2 2 2 ,则角A 为( ) A . 3 π B . 6 π C .32π D . 3π或32π 6、在△ABC 中,若B b A a cos cos =,则△ABC 的形状是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等腰或直角三角形 7、已知锐角三角形的边长分别为1,3,a ,则a 的范围是( ) A .()10,8 B . ( ) 10,8 C . ( ) 10,8 D . ()8,10 8、在△ABC 中,已知C B A sin cos sin 2=,那么△ABC 一定是 ( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .正三角形 9、△ABC 中,已知===B b x a ,2, 60°,如果△ABC 两组解,则x 的取值范围( ) A .2>x B .2

正弦定理余弦定理综合应用解三角形经典例题老师

一、知识梳理 1.内角和定理:在ABC ?中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C - 面积公式: 111 sin sin sin 222ABC S ab C bc A ac B ?= == 在三角形中大边对大角,反之亦然. 2.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二: ?? ? ??===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 形式三:::sin :sin :sin a b c A B C = 形式四: sin ,sin ,sin 222a b c A B C R R R = == 3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:2 2 2 2cos a b c bc A =+- 2 2 2 2cos b c a ca B =+- 222 2cos c a b ab C =+-(解三角形的重要工具) 形式二: 222cos 2b c a A bc +-= 222cos 2a c b B ac +-= 222 cos 2a b c C ab +-= 二、方法归纳 (1)已知两角A 、B 与一边a ,由A +B +C =π及sin sin sin a b c A B C == ,可求出角C ,再求b 、c . (2)已知两边b 、c 与其夹角A ,由a 2=b 2+c 2 -2b c cosA ,求出a ,再由余弦定理,求出角B 、C . (3)已知三边a 、b 、c ,由余弦定理可求出角A 、B 、C . (4)已知两边a 、b 及其中一边的对角A ,由正弦定理sin sin a b A B = ,求出另一边b 的对角B ,由C =π-(A +B ),求出c ,再由sin sin a c A C =求出C ,而通过sin sin a b A B = 求B 时,可能出一解,两解或无解的情况 a = b sinA 有一解 b >a >b sinA 有两解 a ≥b 有一解 a >b 有一解 三、课堂精讲例题 问题一:利用正弦定理解三角形

解斜三角形应用举例(第一课时) 教案

解斜三角形应用举例(一) ●教学目标 (一)知识目标 1.实际应用问题中的专用名词; 2.解斜三角形问题的类型. (二)能力目标 1.会在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法; 2.搞清利用解斜三角形可解决的各类应用问题的基本图形和基本等量关系; 3.理解各种应用问题中的有关名词、术语,如:坡度、俯角、仰角、方向角、方位角等; 4.通过解三角形的应用的学习,提高解决实际问题的能力. (三)德育目标 通过解斜三角形在实际中的应用,要求学生体会具体问题可以转化为抽象的数学问题,以及数学知识在生产、生活实际中所发挥的重要作用. ●教学重点 1.实际问题向数学问题的转化; 2.解斜三角形的方法. ●教学难点 实际问题向数学问题转化思路的确定. ●教学方法 启发式 在教学中引导学生分析题意,分清已知与所求,根据题意画出示意图,并启发学生在解三角形时正确选用正、余弦定理. ●教具准备 投影仪、三角板、幻灯片 第一张:例1、例2(记作§5.10.1 A) [例1]自动卸货汽车的车箱采用液压结构,设计时需要计算油泵顶杆BC的长度.已知车箱的最大仰角为60°,油泵顶点B与车箱支点A之间的距离为1.95 m,AB与水平线之间的夹角为6°20′,AC长为1.40 m,计算BC的长(保留三个有效数字). [例2]某渔船在航行中不幸遇险,发出求救信号,我海军舰艇在A处获悉后,立即测出该渔船在方位角为45°、距离A为10 n mile的C处,并测得渔船正沿方位角为105°的方向,以9 n mile/h的速度向某小岛B靠拢,我海军舰艇立即以21 n mile/h的速度前去营救,试问舰艇应按照怎样的航向前进?并求出靠近渔船所用的时间. 第二张:例3、例4(记作§5.10.1 B) [例3]用同样高度的两个测角仪AB和CD同时望见气球E在它们的正西方向的上空,分别测得气球的仰角是α和β,已知B、D间的距离为a,测角仪的高度是b,求气球的高度. [例4]如图所示,已知半圆的直径AB=2,点C在AB的延长线上,BC=1,点P为半圆上的一个动点,以DC为边作等边△PCD,且点D与圆心O分别在PC的两侧,求四边形OPDC 面积的最大值.

2019年高考数学一轮总复习专题22解斜三角形检测文

路漫漫其修远兮,吾将上下而求索 - 百度文库
专题 22 解斜三角形
本专题特别注意: 1.解三角形时的分类讨论(锐角钝角之分) 2. 边角互化的选取 3. 正余弦定理的选取 4.三角形中的中线问题 5.三角形中的角平分性问题 6.多个三角形问题
【学习目标】 掌握正、余弦定理,能利用这两个定理及面积计算公式解斜三角形,培养运算求解能力.
【方法总结】 1.利用正弦定理,可以解决以下两类有关三角形的问题: (1)已知两角和任一边,求其他两边和一角; (2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角). 2.由正弦定理容易得到:在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也
较大,即 A>B?a>b?sin A>sin B. 3.已知三角形两边及其一边的对角解三角形时,利用正弦定理求解时,要注意判断三角形解的情况(存在两
解、一解和无解三种可能).而解的情况确定的一般方法是“大边对大角且三角形钝角至多一个”. 4.利用余弦定理,可以解决以下三类有关三角形的问题: (1)已知三边,求三个角; (2)已知两边和它们的夹角,求第三边和其余角; (3)已知两边和其中一边的对角,求其他边和角. (4)由余弦值确定角的大小时,一定要依据角的范围及函数值的正负确定.
高考模拟:
一、单选题
1. ABC 的内角 A , B , C 的对边分别为 a , b , c .若 ABC 的面积为 a2 b2 c2 ,则 C 4
A. 2
B. 3
【答案】C
C. 4
D. 6
1

解三角形专题高考题练习附答案

解三角形专题 1、在ABC ?中,已知内角3 A π = ,边BC =设内角B x =,面积为y . (1)求函数()y f x =的解析式和定义域; (2)求y 的最大值. 3、在△ABC 中,角A 、B 、C 所对的边分别是a ,b ,c ,且.2 1 222ac b c a =-+ (1)求B C A 2cos 2 sin 2++的值; (2)若b =2,求△ABC 面积的最大值. 4、在ABC ?中,已知内角A 、B 、C 所对的边分别为a 、b 、c ,向量(2sin ,m B =, 2cos 2,2cos 12B n B ? ?=- ?? ?,且//m n 。 (I )求锐角B 的大小; (II )如果2b =,求ABC ?的面积ABC S ?的最大值。 5、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cos B 的值; (II )若2=?,且22=b ,求c a 和b 的值.

6、在ABC ?中,cos A = ,cos B =. (Ⅰ)求角C ; (Ⅱ)设AB =,求ABC ?的面积. 7、在△ABC 中,A 、B 、C 所对边的长分别为a 、b 、c ,已知向量(1,2sin )m A =u r , (sin ,1cos ),//,.n A A m n b c =++=r u r r 满足 (I )求A 的大小;(II )求)sin(6π+B 的值. 8、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当13,4==c a ,求△ABC 的面积。 9、在△ABC 中,角A 、B 、C 所对边分别为a ,b ,c ,已知1 1tan ,tan 2 3 A B ==,且最长边的边长为l.求: (I )角C 的大小; (II )△ABC 最短边的长.

正弦定理、余弦定理经典练习题

学科数学版本人教版大开本、3+x 期数2339 年级高一编稿老师梁文莉审稿教师 【同步教育信息】 一. 本周教学内容: §5.9正弦定理、余弦定理 目标:使学生理解正弦定理、余弦定理的证明和推导过程,初步运用它们解斜三角形。并会利用计算器解决解斜三角形的计算问题。培养学生观察、分析、归纳等思维能力、运算能力、逻辑推理能力,渗透数形结合思想、分类思想、化归思想,以及从特殊到一般、类比等方法,进一步提高学生分析问题和解决问题的能力。 二. 重点、难点: 重点: 正弦定理、余弦定理的推导及运用。 难点: (1)正弦定理、余弦定理的推导过程; (2)应用正弦定理、余弦定理解斜三角形。 [学法指导] 学习本节知识时可采用向量法、等积法(面积相等)等不同方法来推导正弦定理,以加深对定理的理解和记忆,由于已知两边及其中一边的对角,不能唯一确定三角形,此时三角形可能出现两解、一解、无解三种情况,因此解此类三角形时,要注意讨论。 深刻领会向量的三角形法则及平面向量的数量积是用向量法推导余弦定理的关键。注意余弦定理的每一个等式中都包含四个不同的量,它们分别是三角形的三边和一个角,知道其中的三个量,便可求得第四个量。当有一个角为90°时,即为勾股定理。因此,勾股定理可看作是余弦定理的特例。 正弦定理和余弦定理是解斜三角形和判定三角形类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系。一般地,利用公式a=2RsinA,b=2RsinB,c=2RsinC(R 为ΔABC外接圆半径),可将边转化为角的三角函数关系,然后利用三角函数知识进行化简,其中往往用到三角形内角和定理A+B+C=π。 可将有关三角形中的角的余弦转化为边的关系,然后充分利用代数知识来解决问题。在三角形中,有一个角的余弦值为负值,该三角形为钝角三角形;有一个角的余弦值为零,便是直角三角形;三个角的余弦值都为正值,便是锐角三角形。 【例题分析】

解三角形练习题及答案

解三角形练习题及答案 解三角形习题及答案 、选择题(每题5分,共40分) 1、己知三角形三边之比为5 : 7 : 8,则最大角与最小角的和为(). A. 90° B. 120° C. 135° D. 150° 2、在厶ABC中,下列等式正确的是(). A. a : b=Z A :Z B B . a : b= sin A : sin B C. a : b= sin B : sin A D . asin A= bsin B 1 : 2 : 3,则它们所对的边长之比为( 3、若三角形的三个内角之比为 A. 1 : 2 : 3 B . 1 : 3 : 2 C . 1 : 4 : 9 D . 1 :;』2 : 3 4、在厶ABC中,a= V5 , b= 尿,/ A= 30 °贝卩c等于(). A. 2 5 B. --:5C . 2 ;5或■、5 D. . 10或■,5 5、已知△ ABC中,/ A= 60° a=76 , b= 4,那么满足条件的厶ABC的形 状大小(). A .有一种情形B.有两种情形

C .不可求出 D .有三种以上情形 6、在厶ABC 中,若a2+ b2—c2v 0,则4 ABC 是(). A .锐角三角形B.直角三角形 C .钝角三角形 D .形状不能确定 7、sin7cos37 -sin 83 sin 37 的值为( ) A.—一 2 B. 1 2 C. 1 2 n 3 D.— — 8、化简1 T:等于( ) A. 3 B.二 C. 3 D. 1 2 二、填空题(每题5分,共20分) 9、已知cos a —cos B 二丄,sin a —sin 3 =丄,贝S cos (a —B )= . 2 3 10、在厶ABC 中,/ A= 105° / B= 45° c=忑,贝S b= _____________ . a + b + c 你在厶ABC 中,/ A= 60° a= 3,则sinA + sinB + sinC = --------- ? 12、在厶ABC中,若sin A : sin B : sin C = 2 : 3 : 4,则最大角的余弦值等于__ . 班别:__________ 姓名: _____________ 序号:_______ 得分: _______ 9、______ 10、_______ 11、 ________ 12、__________

解三角形(历届高考题)

解三角形(历届高考题) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

历届高考中的“解三角形”试题精选(自我测试) 1.(A 等于( ) (A )135° (B)90° (C)45° (D)30° 2.(2007重庆理)在ABC ?中,,75,45,300===C A AB 则BC =( ) A.33- B.2 C.2 D.33+ 3.(2006山东文、理)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、 c ,A =3 π ,a =3,b =1,则c =( ) (A )1 (B )2 (C )3—1 (D )3 4.(2008福建文)在中,角A,B,C 的对应边分别为a,b,c,若222a c b +-=,则角B 的值为( ) A.6π B.3π C.6π或56π D.3 π 或23π 5.(2005春招上海)在△ABC 中,若 C c B b A a cos cos cos = =,则△ABC 是( ) (A )直角三角形. (B )等边三角形. (C )钝角三角形. (D )等腰直角三角形. 6.(2006全国Ⅰ卷文、理)ABC ?的内角A 、B 、C 的对边分别为a 、b 、c ,若 a 、 b 、 c 成等比数列,且2c a =,则cos B =( ) A . 14 B .3 4 C .4 D .3 7.(2005北京春招文、理)在ABC ?中,已知C B A sin cos sin 2=,那么ABC ?一定是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .正三角形 8.(2004全国Ⅳ卷文、理)△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为2 3 ,那么b =( ) A .2 31+ B .31+ C .2 32+ D .32+ 二.填空题: (每小题5分,计30分) 9.(2007重庆文)在△ABC 中,AB =1, B C =2, B =60°,则AC = 。

高二数学解三角形测试题附答案

解三角形测试题 一、选择题: 1、ΔABC中,a=1,b=3, ∠A=30°,则∠B等于() A.60°B.60°或120°C.30°或150°D.120° 2、符合下列条件的三角形有且只有一个的是()A.a=1,b=2 ,c=3 B.a=1,b=2,∠A=30°C.a=1,b=2,∠A=100°D.b=c=1, ∠B=45° 3、在锐角三角形ABC中,有() A.cosA>sinB且cosB>sinA B.cosAsinB且cosBsinA 4、若(a+b+c)(b+c-a)=3abc,且sinA=2sinBcosC, 那么ΔABC是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形 5、设A、B、C为三角形的三内角,且方程(sinB-sinA)x2+(sinA-sinC)x +(sinC-sinB)=0有等根, 那么角B ()A.B>60°B.B≥60°C.B<60°D.B ≤60° 6、满足A=45,c=6,a=2的△ABC的个数记为m,则a m的值为() A.4 B.2 C.1 D.不定 7、如图:D,C,B三点在地面同一直线上,DC=a,从C,D两点测得A点仰角分别是β, α(α<β),则A点离地面的高度AB等于() A B

A . )sin(sin sin αββα-a B .)cos(sin sin βαβ α-?a C . )sin(cos sin αββα-a D .) cos(sin cos βαβ α-a 8、两灯塔A,B 与海洋观察站C 的距离都等于a(km), 灯塔A 在C 北偏东30°,B 在C 南 偏东60°,则A,B 之间的相距 ( ) A .a (km) B .3a(km) C .2a(km) D .2a (km) 二、填空题: 9、A 为ΔABC 的一个内角,且sinA+cosA= 12 7 , 则ΔABC 是______三角形. 10、在ΔABC 中,A=60°, c:b=8:5,内切圆的面积为12π,则外接圆的半径为_____. 11、在ΔABC 中,若S ΔABC = 4 1 (a 2+b 2-c 2 ),那么角∠C=______. 12、在ΔABC 中,a =5,b = 4,cos(A -B)=32 31 ,则cosC=_______. 三、解答题: 13、在ΔABC 中,求分别满足下列条件的三角形形状: ①B=60°,b 2=ac ; ②b 2tanA=a 2tanB ; ③sinC= B A B A cos cos sin sin ++④ (a 2-b 2)sin(A+B)=(a 2+b 2)sin(A -B). 14、已知ΔABC 三个内角A 、B 、C 满足A+C=2B, A cos 1+ C cos 1 =- B cos 2 , 求2 cos C A -的值. 15、二次方程ax 2-2bx+c=0,其中a 、b 、c 是一钝角三角形的三边,且以b 为最长. D C

解三角形经典例题及解答

知识回顾: 4、理解定理 (1) 正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即 存在正数 k 使 a ksinA , ________________ , c ksinC ; (2)」 b J 等价于 ______________________ sin A sin B sin C (3) 正弦定理的基本作用为: 正弦、余弦定理 1、直角三角形中,角与边的等式关系:在 Rt ABC 中,设 BC=a ,AG=b , AB=c , 根据锐角三角函数中正弦函数的定义,有 -sin A ,- sin B ,又sinC 1 -,从而在直角三 c c c 角形ABC 中,-?- sin A b sin B c si nC 2、当 ABC 是锐角三角形时,设边 AB 上的高是CD 根据任意角三角函数的定义, 有 CD=asinB bsinA ,则 一- b ,同理可得一 sin A sin B sin C b sin B 从而」- sin A b sin B c sin C 3、正弦定理:在一个三角形中,各边和它所对角的 ____ 的比相等,即旦 sin A b sin B c sin C c b a c sin C sin B ' sin A sin C

① 已知三角形的任意两角及其一边可以求其他边,如 a bsinA ; b sin B ② 已知三角形的任意两边与其中一边的对角可以求其他角的正弦值, 如 sin A a sin B ; sinC . b (4) 一般地,已知三角形的某些边和角,求其它的边和角的过程叫作 解三角形? 5、知识拓展 6、 勾股定理: ___________________________________ 7、 余弦定理:三角形中 __________ 平方等于 _______________________ 减去 _____________ ______________ 的两倍,即a 2 b 2 8、余弦定理的推论: cosC ____________________________ 。 9、在 ABC 中,若a 2 b 2 c 2,则 ______________________ ,反之成立; 典型例题: a b sin A sin B c si nC 2R ,其中2R 为外接圆直径. c 2 cosA cosB

相关文档
相关文档 最新文档