文档库 最新最全的文档下载
当前位置:文档库 › 工业零件的机器视觉检测方案【干货】

工业零件的机器视觉检测方案【干货】

工业零件的机器视觉检测方案【干货】
工业零件的机器视觉检测方案【干货】

工业零件的机器视觉检测

内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!

更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.

在工业生产中,传统的检测技术需要众多的检测工人,不仅影响生产效率,而且带来不可靠因素。视觉检测技术克服了传统检测技术的缺点,它以检测的安全性、可靠性及自动化程度高等优点而得到广泛的应用,成为当今检测技术的研究热点之一。

机器视觉检测的主要过程为:首先采用CCD摄像机将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号。图像系统对这些信号进行各种运算来抽取目标的特征,如:面积、长度、数量、位置等。后,根据预设的容许度和其他条件输出结果,如:尺寸、角度、偏移量、个数、合格/不合格等,极大的提高了工作效率和产品的质量。

今天,给大家分享一下基于机器视觉的工业零件检测是如何实现的,

对于工业零件的全系统检测过程如下:

(1)将零件放到传送带上,随步进电机的移动送到CCD下方;

(2)对工业相机进行曝光控制并采集图像;

(3)将采集到的图像传给计算机;

(4)对图像进行滤波等预处理;

(5)选取待测量部分区域,对这一区域进行亚像素定位,找出这一区域的边缘,完成边缘之间长度的测量;

(6)对角度的测量采用模板匹配的方法自动找出待测图像中的角度,然后测出角度的值;

(7)在实际生产测量中,根据技术指标要求,判断零件是否合格;

(8)合格零件由剔除机构送入产品箱,不合格零件送入废品箱。

我们知道,影响系统测量精度的因素有很多种,通过实际分析,主要有成像系统的误差、各种噪声、标定误差和软件算法等的误差,下面我们来看看这些误差对检测系统的影响和解决办法。

1.成像系统的误差:CCD的分辨率是测量系统中的一项重要指标,使用的CCD摄像机分辨率越高、被测目标物的实际尺寸越小,图像的物面分辨率就越高,即可使得系统检测精度越高。成像系统的几何畸变误差是典型的系统误差,是影响光学检测精度的因素之一。选用维视图像高质量的双远心镜头可提高检测精度。

2.各种噪声:包括照明系统由于供电电源波动以及光源本身的发光不稳定产生的随机起伏噪声,光响应非均匀性引起的空间起伏噪声,摄像机由于暗电流分布不均、各光敏元大小、间隔不等引起的噪声。选用亮度大、亮度可调、均匀性及稳定性好的机器视觉光源和对CCD进行合理的参数设置可有利于噪声的控制。

3.标定误差:系统在标定过程中会引入误差,通过对标准件在摄像机视场内不同方位进行多次采集图像进行标定,然后求其均值作为终的标定系数,这样既可消除镜头畸变引起的误差又可去掉标定过程引入的随机误差。

4.软件算法误差:不同的图像处理和分析手段以及不同的检测方法和计算公式,都会带来不同的误差。SVMS智能检测软件配合高分辨CCD和双远心镜头可有效提高检测精度,减少软件算法误差。

加工工艺方案

拨叉零件的机械加工工艺方案设计 设计要求: 综合运用已有知识,收集查阅相关资料,设计符合机械加工工艺规程设计基本原则的零件机械加工工艺方案。所附为一些中批量生产的零件图样,供选择。 设计要求: 在所提供的各类零件中自选一个作为分析对象,综合运用已有知识,收集查阅相关资料,设计符合机械加工工艺规程设计基本原则的零件机械加工工艺方案。 所附为一些中批量生产的零件图样,供选择。 工作量: 1、分析零件的加工工艺性,选择毛坯种类,指出机械加工的难点与处理方案。 2、分析比较不同的工艺方案,从中选出较优的机械加工工艺路线,且为各道工序选择定位基准(分析到工步,标明工序内容、定位基准与机床设备),并说明理由。 3、完成所选零件的机械加工工艺路线设计说明书。 附件:零件图样 3、CA6140拨叉(2) 零件的机械加工工艺方案 1 零件结构特点与技术要求的分析

该工件为拨叉,拨叉零件主要用在操纵机构中,比如改变车床滑移齿轮的位置,实现变速;或者应用于控制离合器的啮合、断开的机构中,从而控制横向或纵向进给。该工件的主要技术要求如下: ①宽度为mm的槽尺寸精 度。此处用于与滑移齿轮配合,保 证滑移齿轮的位置精度,精度等级 为IT6,要求高。 ②花键毂的加工精度。其为 标准件,松联接。 ③花键孔的加工精度。其精 度等级为IT12,要求低,其中心轴线作为一个精基准。 ④宽度为mm的槽尺寸精度、此处精度等级为IT9,要求低。 ⑤表面粗糙度Ra值要求为、 ⑥其余尺寸,形位,表面粗糙度等级要求一般。 综上分析可知,径向尺寸的精基准为花键孔中心轴线,轴向尺寸的精基准为拨叉右端面,分别为两组加工表面。 2毛坯的选择 根据技术要求,零件材料选择HT200,生产纲领要求为中批生产,且零件尺寸较小,形状比较简单,采用砂型铸造,生产成本低,制造的工件可满足使用需求,适应性强,

机器视觉测量技术

机器视觉测量技术 杨永跃 合肥工业大学 2007.3

目录第一章绪论 1.1 概述 1.2 机器视觉的研究内容 1.3 机器视觉的应用 1.4 人类视觉简介 1.5 颜色和知觉 1.6 光度学 1.7 视觉的空间知觉 1.8 几何基础 第二章图像的采集和量化 2.1 采集装置的性能指标 2.2 电荷藕合摄像器件 2.3 CCD相机类 2.4 彩色数码相机 2.5 常用的图像文件格式 2.6 照明系统设计 第三章光学图样的测量 3.1 全息技术 3.2 散斑测量技术 3.3 莫尔条纹测量技术 3.4 微图像测量技术 第四章标定方法的研究 4.1 干涉条纹图数学形成与特征 4.2 图像预处理方法 4.3 条纹倍增法 4.4 条纹图的旋滤波算法 第五章立体视觉 5.1 立体成像

5.2 基本约束 5.3 边缘匹配 5.4 匹域相关性 5.5 从x恢复形状的方法 5.6 测距成像 第六章标定 6.1 传统标定 6.2 Tsais万能摄像机标定法 6.3 Weng’s标定法 6.4 几何映射变换 6.5 重采样算法 第七章目标图像亚像素定位技术 第八章图像测量软件 (多媒体介绍) 第九章典型测量系统设计分析9.1 光源设计 9.2 图像传感器设计 9.3 图像处理分析 9.4 图像识别分析 附:教学实验 1、视觉坐标测量标定实验 2、视觉坐标测量的标定方法。 3、视觉坐标测量应用实验 4、典型零件测量方法等。

第一章绪论 1.1 概述 人类在征服自然、改造自然和推动社会进步的过程中,面临着自身能力、能量的局限性,因而发明和创造了许多机器来辅助或代替人类完成任务。智能机器或智能机器人是这种机器最理想的模式。 智能机器能模拟人类的功能、能感知外部世界,有效解决问题。 人类感知外部世界:视觉、听觉、嗅觉、味觉、触觉 眼耳鼻舌身 所以对于智能机器,赋予人类视觉功能极其重要。 机器视觉:用计算机来模拟生物(外显或宏观)视觉功能的科学和技术。 机器视觉目标:用图像创建或恢复现实世界模型,然后认知现实世界。 1.2 机器视觉的研究内容 1 输入设备成像设备:摄像机、红外线、激光、超声波、X射线、CCD、数字扫描仪、 超声成像、CT等 数字化设备 2 低层视觉(预处理):对输入的原始图像进行处理(滤波、增强、边缘检测),提取角 点、边缘、线条色彩等特征。 3 中层视觉:恢复场景的深度、表面法线,通过立体视觉、运动估计、明暗特征、纹理 分析。系统标定 4 高层视觉:在以物体为中心的坐标系中,恢复物体的完整三维图,识别三维物体,并 确定物体的位置和方向。 5 体系结构:根据系统模型(非具体的事例)来研究系统的结构。(某时期的建筑风格— 据此风格设计的具体建筑) 1.3 机器视觉的应用 工业检测—文件处理,毫微米技术—多媒体数据库。 许多人类视觉无法感知的场合,精确定量感知,危险场景,不可见物感知等机器视觉更显其优越十足。 1 零件识别与定位

机器视觉检测系统简述及系统构成

机器视觉检测系统简述及系统构成 1机器视觉检测的一般模式 机器视觉检测的目标千差万别,检测的方式也不尽相同。农产品如苹果、玉米等通常是检测其成熟度,大小,形态等,工业产品如工业零件,印刷电路板通常是检测其几何尺寸,表面缺陷等。不同的应用场合,就需要采用不同的检测设备和检测方法。如有的检测对精度要求高,就需要选择高分辨率的影像采集装置;有的检测需要产品的彩色信息,就需要采用彩色的工业相机装置。正是由于不同检测环境的特殊性,目前世界上还没有一个适用于所有产品的通用机器视觉检测系统。虽然各个检测系统采用的检测设备和检测方法差异很大,但其检测的一般模式却是相同的。机器视觉检测的一般模式是首先通过光学成像和图像采集装置获得产品的数字化图像,再用计算机进行图像处理得到相关检测信息,形成对被测产品的判断决策,最后将该决策信息发送到分拣装置,完成被测产品的分拣。 机器视觉检测的一般模式如图1所示: 图1机器视觉检测的一般模式 1.1图像获取 图像获取是机器视觉检测的第一步,它影响到系统应用的稳定性和可靠性。图像的获取实际上就是将被测物体的可视化图像和内在特征转换成能被计算机处理的图像数据。机器视觉检测系统一般利用光源,光学镜头,相机,图像采集卡等设备获取被测物体的数字化图像。 1.2视觉检测 视觉检测通过图像处理的方法从产品图像中提取需要的信息,做出结果处理并发送相应消息到分拣机构。通常这部分功能由机器视觉软件来完成。优秀的机器视觉软件可对图像中的目标特征进行快速准确地检测,并最大限度地减少对硬件系统的依赖性,而算法设计不够成熟的机器视觉软件则存在检测速度慢,误判率高,对硬件依赖性强等特点。在机器视觉检测系统中视觉信息的处理主要依赖于图像处理方法,它包括图像增强,数据编码和传输,平滑,边缘锐化,分割,特征提取,目标识别与理解等内容。 1.3分拣 对于一个检测系统而言,最终是要实现次品(含不同种类的次品)与合格品的分离即分拣,这部分功能由分拣机构来完成。分拣是机器视觉检测的最后一个也是最为关键的一个环节"对于不同的应用场合,分拣机构可以是机电系统!液压系统!气动系统中的某一种。但无论是哪一种,除了其加工制造和装配精度要严格保证以外,其动态特性,特别是快速性和稳定性也十分重要,必须在设计时予以足够的重视。 2机器视觉检测系统的构成 一个典型的机器视觉检测系统主要包括光源、光学镜头、数字相机、图像采集卡、图像处理模块、分拣机构等部份。其构成如图2所示。 图2典型的机器视觉检测系统 3光源

零件加工工艺设计.doc

目录 1.零件的加工工艺设计-----------------------1 1.1零件的工艺性审查 1.2基准的选择 2.拟定机械加工工艺路线--------------------3 2.1确定各加工表面的加工方法及路线 3.选择机床设备及工艺设备-----------------7 4.小结--------------------------------------------8 5.参考文献--------------------------------------9

1.零件的加工工艺设计 1.1零件的工艺性审查 1.1.1零件的结构特点 该零件是用三孔形成,中间孔为支力点,常常靠两头的小孔来传递动力作用,其中作为支力点的大孔为Φ90H6,小孔及耳部分别为Φ35H6和Φ25H6。 1.1.2主要技术要求 零件的主要技术要求为:连杆不得有裂纹、夹渣等缺陷。热处理后226~271HBS。 1.2基准的选择 1.2.1毛坯的类型及制造方法 零件材料为45钢,考虑零件形状,应用模锻毛坯。 由于零件是中批量生产,所以设备要充分利用,以减少投资、降低成本。故确定工艺的基本特征:毛坯采用效率高和质量较好的制造方法:拟定成的工艺过程卡和机械加工工序卡片。 1.2.2确定毛坯的制造方法和技术要求。 由于该零件的尺寸不大,而且工件上有许多表面不切削加工,故模锻。 毛坯的技术要求: 1.不得有裂纹、夹渣等缺陷/ 2.锻造拔模斜度不大于7·

3.正火处理226~271HBS 4.喷砂,去毛刺 1.2.3绘制毛坯图 1.2.4基准选择 由于该零件多数尺寸及形位公差以Φ90H6孔及端面为设计基准,因此首先将Φ60H6端面加工好,为后续加工基准。根据粗、精基准选择的原则,确定各加工表面的基准。(1)Φ90H6孔端面:零件外轮廓(粗基准) (2)Φ35H6孔及Φ90H6孔端面(粗加工):Φ90H6孔端面(3)Φ35H6孔及Φ90H6孔端面(精加工):Φ90H6孔端面(4)Φ25H6孔端面:Φ90H6孔端面 (5)三孔:Φ90H6孔端面 2.拟定接写加工工艺路线 该三孔连杆零件加工表面:大头孔、小头孔及耳部端面。根据各加工表面的精度要求和粗糙度要求。

视觉检测系统报告

视觉检测系统报告 年春季学期研究生课程考核(阅读报告、研究报告)考核科目:视觉测量系统学所在院(系):电气工程及自动化学院学生所在学科:仪器科学与技术学生姓名:***学 号:10S001***学生类别:工学硕士考核结果: 阅卷人: 视觉测量系统课程报告第一部分视觉测量系统发展现状综述机器视觉自起步发展到现在,已有15年的发展历史。应该说机器视觉作为一种应用系统,其功能特点是随着工业自动化的发展而逐渐完善和发展的。 目前全球整个视觉市场总量大概在60~70亿美元,是按照每年 8、8%的增长速度增长的。而在中国,这个数字目前看来似乎有些庞大,但是随着加工制造业的发展,中国对于机器视觉的需求将承上升趋势。 一、机器视觉的定义及特点简言之,机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。

机器视觉系统的特点是提高生产的柔性和自动化程度。在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。 正是由于机器视觉系统可以快速获取大量信息,而且易于自动处理,也易于同设计信息以及加工控制信息集成,因此,在现代自动化生产过程中,人们将机器视觉系统广泛地用于工况监视、成品检验和质量控制等领域。在中国,这种应用也在逐渐被认知,且带来最直接的反应就是国内对于机器视觉的需求将越来越多。 二、机器视觉在国内外的应用现状在国外,机器视觉的应用普及主要体现在半导体及电子行业,其中大概40%~50%都集中在半导体行业。具体如PCB印刷电路:各类生产印刷电路板组装技术、设备;单、双面、多层线路板,覆铜板及所需的材料及辅料;辅助设施以及耗材、油墨、药水药剂、配件;电子封装技术与设备;丝网印刷设备及丝网周边材料等。SMT表面贴装:SMT工艺与设备、焊接设备、测试仪器、返修设备及各种辅助工具及配件、SMT材料、贴片剂、胶粘剂、焊剂、焊料及防氧化油、焊膏、清洗剂等;再流焊机、波峰焊机及自动化生产线设备。电子生产加工设备:电子元件制造设备、半导体及集成电路制造设备、元

典型零件加工工艺

箱体类零件加工工艺 箱体零件是机器或部件的基础零件,轴、轴承、齿轮等有关零件按规定的技术要求装配到箱体上,连接成部件或机器,使其按规定的要求工作,因此箱体零件的加工质量不仅影响机器的装配精度和运动精度,而且影响机器的工作精度、使用性能和寿命。下面以图1所示齿轮减速箱体零件的加工为例讨论箱体类零件的工艺过程。 图1 某车床主轴箱体简图

箱体类零件的结构特点和技术要求分析 图3所示零件为某车床主轴箱体类零件,属于中批生产,零件的材料为HT200铸铁。一般来说,箱体零件的结构较复杂,内部呈腔形,其加工表面主要是平面和孔。对箱体类零件的技术要求分析,应针对平面和孔的技术要求进行分析。 1.平面的精度要求箱体零件的设计基准一般为平面,本箱体各孔系和平面的设计基准为G面、H面和P面,其中G面和H面还是箱体的装配基准,因此它有较高的平面度和较小表面粗糙度要求。 2.孔系的技术要求箱体上有孔间距和同轴度要求的一系列孔,称为孔系。为保证箱体孔与轴承外圈配合及轴的回转精度,孔的尺寸精度为IT7,孔的几何形状误差控制在尺寸公差范围之内。为保证齿轮啮合精度,孔轴线间的尺寸精度、孔轴线间的平行度、同一轴线上各孔的同轴度误差和孔端面对轴线的垂直度误差,均应有较高的要求。 3.孔与平面间的位置精度箱体上主要孔与箱体安装基面之间应规定平行度要求。本箱体零件主轴孔中心线对装配基面(G、H面)的平行度误差为0.04mm。 4.表面粗糙度重要孔和主要表面的粗糙度会影响连接面的配合性质或接触刚度,本箱体零件主要孔表面粗糙度为0.8μm,装配基面表面粗糙度为1.6μm。 箱体类零件的材料及毛坯 箱体零件的材料常用铸铁,这是因为铸铁容易成形,切削性能好,价格低,且吸振性和耐磨性较好。根据需要可选用HT150~350,常用HT200。在单件小批量生产情况下,为缩短生产周期,可采用钢板焊接结构。某些大负荷的箱体有时采用铸钢件。在特定条件下,可采用铝镁合金或其它铝合金材料。 铸铁毛坯在单件小批生产时,一般采用木模手工造型,毛坯精度较低,余量大;在大批量生产时,通常采用金属模机器造型,毛坯精度较高,加工余量可适当减小。单件小批生产直径大于50mm的孔,成批生产大于30mm的孔,一般都铸出预孔,以减少加工余量。铝合金箱体常用压铸制造,毛坯精度很高,余量很小,一些表面不必经切削加即可使用。 箱体类零件的加工工艺过程 箱体零件的主要加工表面是孔系和装配基准面。如何保证这些表面的加工精度和表面粗糙度,孔系之间及孔与装配基准面之间的距离尺寸精度和相互位置精度,是箱体零件加工的主要工艺问题。 箱体零件的典型加工路线为:平面加工-孔系加工-次要面(紧固孔等)加工。 图1车床主轴箱体零件,其生产类型为中小批生产;材料为HT200;毛坯为铸件。该箱体的加工工艺路线如表1。 表1车床主轴箱体零件的加工工艺过程

视觉检测系统报告样本

年春季学期研究生课程考核 ( 阅读报告、研究报告) 考核科目:视觉测量系统 学所在院( 系) :电气工程及自动化学院学生所在学科:仪器科学与技术 学生姓名:*** 学号:10S001*** 学生类别:工学硕士 考核结果: 阅卷人:

视觉测量系统课程报告 第一部分视觉测量系统发展现状综述 机器视觉自起步发展到现在, 已有的发展历史。应该说机器视觉作为一种应用系统, 其功能特点是随着工业自动化的发展而逐渐完善和发展的。 当前全球整个视觉市场总量大概在60~70亿美元, 是按照每年8.8%的增长速度增长的。而在中国, 这个数字当前看来似乎有些庞大, 可是随着加工制造业的发展, 中国对于机器视觉的需求将承上升趋势。 一、机器视觉的定义及特点 简言之, 机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指经过机器视觉产品( 即图像摄取装置, 分CMOS和CCD两种) 将被摄取目标转换成图像信号, 传送给专用的图像处理系统, 根据像素分布和亮度、颜色等信息, 转变成数字化信号; 图像系统对这些信号进行各种运算来抽取目标的特征, 进而根据判别的结果来控制现场的设备动作。 机器视觉系统的特点是提高生产的柔性和自动化程度。在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合, 常见机器视觉来替代人工视觉; 同时在大批量工业生产过程中, 用人工视觉检查产品质量效率低且精度不高, 用机器视觉检

测方法能够大大提高生产效率和生产的自动化程度。而且机器视觉易于实现信息集成, 是实现计算机集成制造的基础技术。 正是由于机器视觉系统能够快速获取大量信息, 而且易于自动处理, 也易于同设计信息以及加工控制信息集成, 因此, 在现代自动化生产过程中, 人们将机器视觉系统广泛地用于工况监视、成品检验和质量控制等领域。在中国, 这种应用也在逐渐被认知, 且带来最直接的反应就是国内对于机器视觉的需求将越来越多。 二、机器视觉在国内外的应用现状 在国外, 机器视觉的应用普及主要体现在半导体及电子行业, 其中大概40%~50%都集中在半导体行业。具体如PCB印刷电路: 各类生产印刷电路板组装技术、设备; 单、双面、多层线路板, 覆铜板及所需的材料及辅料; 辅助设施以及耗材、油墨、药水药剂、配件; 电子封装技术与设备; 丝网印刷设备及丝网周边材料等。SMT表面贴装: SMT工艺与设备、焊接设备、测试仪器、返修设备及各种辅助工具及配件、 SMT材料、贴片剂、胶粘剂、焊剂、焊料及防氧化油、焊膏、清洗剂等; 再流焊机、波峰焊机及自动化生产线设备。电子生产加工设备: 电子元件制造设备、半导体及集成电路制造设备、元器件成型设备、电子工模具。机器视觉系统还在质量检测的各个方面已经得到了广泛的应用, 而且其产品在应用中占据着举足轻重的地位。除此之外, 机器视觉还用于其它各个领域。 而在中国, 以上行业本身就属于新兴的领域, 再加之机器视

3D机器视觉应用解决方案

3D机器视觉应用解决方案

3D视觉 R G B + XYZ 机器需要显性的三维数据以更好地理解物理世界 2D机器视觉开始逐步普及 3D机器视觉刚刚开始落地

3D机器视觉普及的关键障碍 ?光学:精度、分辨率、量程等 硬件核心规格 ?电学:速度、接口、传输等 ?尺寸、功耗、结构等 硬件物理指标 ?工况条件适应性、稳定性 ?相机价格、上位机成本、软件成本 系统实施成本 ?使用和维护成本 ?3D视觉算法和软件的稀缺性 软件完整成熟 ?软件工程优化和实际使用场景下的成熟度商业软件和开源软件在硬件大量普及的基础上预期发展会加速起来

3D 相机硬件综述 高度标准化的硬件模组 低性能小尺寸极低价 工业场景不适用 2D大厂、3D创新极其缓慢 特殊规格顶级相机,价格昂贵 应用场景非常有限,出货量少 工业级硬件+ 软件方案 合适精度、超低成本、小型化 新的产业需求,致力3D无处不在 传统机器视觉大厂消费类3D视觉 3D在工业的普及应用 图漾已经在此占据明显的领先优势

1-硬件价格和系统成本 ?必须突破2年投入回报期的决策困局,为客户带来超预期的性价比 ?>2年回报期:少量非用不可的节点 ?<1年回报期:大规模普及应用 ?硬件成本三大件= 手+ 眼+ 脑 ?脑:计算单元成本相对透明合理,比较标准化,选择多 ?手:进口和国产机器人齐头并进,性价比趋于合理,比较标准化 ?眼:技术和研发难度大,软件占比高,国外产品成本虚高 ?机器视觉之眼 ?2D:国产工业相机在起步,国内软件在起来,应用集成类上市公司在涌现 ?3D:国内核心技术有突破,应用环节也应该走在全球前沿

机器视觉测量技术

机器视觉测量技术杨永跃合肥工业大学 2007.3 目录 第一章绪论 1.1 概述 1.2 机器视觉的研究内容 1.3 机器视觉的应用 1.4 人类视觉简介 1.5 颜色和知觉 1.6 光度学 1.7 视觉的空间知觉 1.8 几何基础 第二章图像的采集和量化 2.1 采集装置的性能指标 2.2 电荷藕合摄像器件 2.3 CCD 相机类 2.4 彩色数码相机 2.5 常用的图像文件格式

2.6 照明系统设计 第三章光学图样的测量 3.1 全息技术 3.2 散斑测量技术 3.3 莫尔条纹测量技术 3.4 微图像测量技术 第四章标定方法的研究 4.1 干涉条纹图数学形成与特征4.2 图像预处理方法 4.3 条纹倍增法 4.4 条纹图的旋滤波算法 第五章立体视觉 5.1 立体成像 2 5.2 基本约束 5.3 边缘匹配 5.4 匹域相关性 5.5 从 x 恢复形状的方法 5.6 测距成像

第六章标定 6.1 传统标定 6.2 Tsais 万能摄像机标定法 6.3 Weng ’ s 标定法 6.4 几何映射变换 6.5 重采样算法 第七章目标图像亚像素定位技术第八章图像测量软件 (多媒体介绍 第九章典型测量系统设计分析9.1 光源设计 9.2 图像传感器设计 9.3 图像处理分析 9.4 图像识别分析 附:教学实验 1、视觉坐标测量标定实验 2、视觉坐标测量的标定方法。 3、视觉坐标测量应用实验 4、典型零件测量方法等。

3 第一章绪论 1.1 概述 人类在征服自然、改造自然和推动社会进步的过程中,面临着自身能力、能量的局限性, 因而发明和创造了许多机器来辅助或代替人类完成任务。智能机器或智能机器人是这种机器最理想的模式。 智能机器能模拟人类的功能、能感知外部世界,有效解决问题。 人类感知外部世界:视觉、听觉、嗅觉、味觉、触觉 眼耳鼻舌身 所以对于智能机器,赋予人类视觉功能极其重要。 机器视觉:用计算机来模拟生物(外显或宏观视觉功能的科学和技术。 机器视觉目标:用图像创建或恢复现实世界模型,然后认知现实世界。 1.2 机器视觉的研究内容 1 输入设备成像设备:摄像机、红外线、激光、超声波、 X 射线、 CCD 、数字扫描仪、超声成像、 CT 等 数字化设备 2 低层视觉(预处理 :对输入的原始图像进行处理(滤波、增强、边缘检测 ,提取角点、边缘、线条色彩等特征。 3 中层视觉:恢复场景的深度、表面法线,通过立体视觉、运动估计、明暗特征、纹理分析。系统标定

机械零件加工工艺规程方案设计

《机械制造技术基础》综合训练(三)项目名称:机械零件加工工艺规程方案设计 学生姓名:李超张强鲁晓帆尹业鑫李世辉 汤龙彪田大江邢永强姬笑歌班级:机自15-4班 学号: 03 05 06 10 15 16 20 22 24 任课教师:刘宏梅 完成时间: 2018.6.15 辽宁工程技术大学机械工程学院 二零一八年二月

综合训练项目三机械零件加工工艺规程方案设计 一、目的 1.使学生具有制定工艺规程的初步能力。能综合运用金属切削原理、金属切削刀具、金属切削机床、机床夹具等的基本理论和方法,合理的制定零件的机械加工工艺规程,包括零件工艺性分析、工艺路线拟定,编制零件加工工艺过程卡片。 2.进一步提高查阅资料,熟练地使用设计手册、参考资料等方面的能力。 3.通过设计的全过程,使学生学会进行工艺设计的程序和方法,培养独立思考和独立工作的能力。 二、设计原始条件 1.原始零件图1张 2.生产纲领:大批大量生产 三、设计工作内容(成果形式) 1.零件图1张(比例1:1); 2.机械加工工艺过程卡片1张; 3.设计说明书1份。 四、评价标准 评价表 总成绩:(总分 10%) 指导教师:年月日

摘要 本文是对拔叉零件加工应用及加工的工艺性分析,主要包括对零件图的分析、毛坯的选择、零件的装夹、工艺路线的制订、刀具的选择、切削用量的确定、加工工艺文件的填写。选择正确的加工方法,设计合理的加工工艺过程。此外还对拔叉零件的两道工序的加工设计了专用夹具. 机床夹具的种类很多,其中,使用范围最广的通用夹具,规格尺寸多已标准化,并且有专业的工厂进行生产。而广泛用于批量生产,专为某工件加工工序服务的专用夹具,则需要各制造厂根据工件加工工艺自行设计制造。本论文夹具设计的主要内容是设计2套夹具。 关键词:加工工艺;加工方法;工艺文件;夹具

机器视觉在线检测系统项目实施流程

精选文档 随着机器视觉检测技术的日益成熟,越来越多的企业选择安装机器视觉在线检测系统,企业如何做到机器视觉在线检测项目的顺利实施,企业用户对机器视觉在线检测系统设计制作流程的了解至关重要,今天创视新小编在这里整理了整个机器视觉在线检测系统从前期的产品检测评估到系统设备设计制作集成的整个过程做一个简单的介绍: 1、项目的前期评估 A、通过电话联系我们公司,我们公司将会有专业项目工程工程师跟您进行 初步的沟通,了解您的需求; B、需要您提供检测样品(0K品和各种NG品数个)以及现场环境,如果 不是做整机检测设备的还需要提供视觉设备的安装空间及外围I0通讯。如有 需要,项目工程师可以到贵公司进行现场评估; C、根据提供的样品,项目工程师会在公司进行初步的技术评估,一般在收 到样品后两个工作日内会给出测试结果; D、项目工程师会根据测试结果,向您提出专业的意见。提供合适的视觉产品 (包括工业相机、镜头、光源、电脑、机器视觉系统软件等)给您,然后在测 试结果出来后给您提供初步方案及项目费用预估。 E、如对方案存在疑问,可以随时联系项目工程师,项目工程师会对您的疑 问进行解答并完善方案,尽力满足您的需求。 2、立项 项目经过初步评估后,双方确认项目方案的可行性,项目工程师接下来会建 立一个新项目流程往下进行。 3、检测标准的明确 需要您收集0K品和限度NG品(即初步测试中认为可以检测出来的NG品 种类),需要一定数量。项目工程师会对您提供的样品进行测试,详细的检测标准跟您进行确认 精选文档

4、其他确认 明确了检测标准后,项目工程师会进一步和您确认检测设备达到安装现场,机械和电气要求;如果贵公司对设备使用有特殊要求的,请及时提出,以便我们进行评估和设计。 5、整体方案书制作、明细报价单、合同制作 项目工程师根据以上的确认制作详细的整体方案,整体包含整机图、视觉系统配置、检测标准、软件功能等。 机器视觉在线检测系统设备设计制作流程 在签完合同和各方面财务确认后就开始进一步的系统设备的设计制作。 1、客服提供相关的辅料 需要提供不同程度的良品与不良品样品、产品样品外观尺寸和设计品载具。如果需要使用专用载具,请提供专用载具的相关尺寸以提供我们的设计使用。 2、设备整机布置图和电气控制动作流程的确认 我们在收到您提供的相关辅料几个工作日后,提供设备整机布置图和电气控制动作流程给贵公司的责任人确认,如有疑问可以和公司的技术工程师沟通,技术工程师会尽快解决您的问题。 3、机器零件图设计 整机布置图确认后,接着就是进行机械零件的设计。 4、机械、电气标准件的选型 精选文档 整机布置图和电控动作流程确认后,接着就是完成机械、电气标准件的选型。

机器视觉系统应用案例

机器视觉系统 1.引言 随着医疗水平和医疗器械的不断提高和更新,一次性注射针以其方便、卫生的特点深受用户的喜爱,其需求量也迅速增大,而针头外观的好坏直接影响到一次性注射针的质量。所以为了减少不合格品的数量,需要增加检测工序。手工外观检验和产品标记昂贵和不可靠。同时又意味着不近人情的单调工作。这里,自动化机器视觉系统提供了解决这些问题的方案。 2. 一次性注射针的缺陷 一次性注射针可以分为针座和针头两个部分。针座的缺陷对产品的质量影响可以不计。而针头就存在着两种缺陷情况:首先针头在制作过程中针尖部位可能会产生毛刺;其次针头在自动装配过程中可能会产生倒插现象(针尖部位被插入针座)。影响针头的几个缺陷为:针尖毛刺、倒插。其中倒插不仅会对产品的质量产生直接的影响,而且严重的会危害到人的生命。如图1: 正插倒插 图1 3. 利用机器视觉实现一次性注射针的外观缺陷的自动化检测 随着市场一次性注射针需求的不断增大,以及客户对产品质量的要求,越来越多的医疗器械生产厂商采用自动化注射针检测系统,对一次性注射针的外观缺陷进行综合检测。这种方法代替了传统的人工方法以提高生产效率和产品质量,解决了人工方法效率低、速度慢,以及受检测人员主观性制约等不确定因素

带来的误检及漏检,实现更好的100%产品在线检测。 3.1机器视觉系统概述 机器视觉系统是指通过图像摄取装置(分CMOS相机和CCD相机两种)把图像抓取到,然后将该图像传送至处理单元,通过数字化处理,根据像素分布和亮度、颜色等信息,来进行尺寸、形状、颜色等的判别。进而根据判别的结果来控制现场的设备动作。 3.2 机器视觉系统的特点 1). 机器视觉系统属于光电系统; 2). 机器视觉系统中的传感器属于阵列传感器; 3). 机器视觉系统中的数据量大; 4).运行速度快,但与集成电路的制造与发展相关。 3.3机器视觉实现一次性注射针的外观缺陷的自动化检测方案 本文采用了注射针检测系统用于一次性注射针的外观缺陷检测。该系统以西门子图像处理器为核心,并结合西门子自动化设备,形成了既有简单的数字信号接口又有复杂的工业网络接口的系统,让用户能选择适合自己工况的系统,既方便又节省投资。 其基本检测处理流程如图2,简易系统框架如图3: 图2 基本检测流程图图3简易系统框架

机器视觉检测分解

研究背景: 产品表面质量是产品质量的重要组成部分,也是产品商业价值的重要保障。产品表面缺陷检测技术从最初的依靠人工目视检测到现在以CCD 和数字图像处理技术为代表的计算机视觉检测技术,大致经历了三个阶段,分别是传统检测技术阶段、无损检测技术阶段、计算机视觉检测技术阶段。[] 传统检测技术 (1)人工目视检测法 (2)频闪检测法 无损检测技术 (1)涡流检测法 (2)红外检测法 (3)漏磁检测法 计算机视觉检测技术 (1)激光扫描检测法 (2)CCD 检测法 采用荧光管等照明设备,以一定方向照射到物体表面上,使用CCD摄像机来扫描物体表面,并将获得的图像信号输入计算机,通过图像预处理、缺陷区域的边缘检测、缺陷图像二值化等图像处理后,提取图像中的表面缺陷的相关特征参数,再进行缺陷图像识别,从而判断出是否存在缺陷及缺陷的种类信息等。 优点:实时性好,精确度高,灵活性好,用途易于扩充,非接触式无损检测。 基于机器视觉的缺陷检测系统优点: 集成化生产缩短产品进入市场时间改进生产流程100%质量保证实时过程监控提高产量精确检测100%检测 由于经济和技术原因国内绝大多数图像处理技术公司都以代理国外产品为主,没有或者很少涉足拥有自主知识产权的机器视觉在线检测设备,对视觉技术的开发应用停留在比较低端的小系统集成上,对需要进行大数据量的实时在线检测的研究很少也很少有成功案例,但是随着国内经济发展和技术手段不断提高对产品质量检测要求就更高,对在线检测设备的需求也就更大具有巨大的市场潜力。 机器视觉图像处理技术是视觉检测的核心技术 铸件常见缺陷:砂眼气孔缩孔披缝粘砂冷隔掉砂毛刺浇不足缺陷变形 问题的提出: 1.水渍、污迹等不属于铸件缺陷,但由于其外观形貌与缺陷非常类似, 因此易被检测系统误识为缺陷。从目前发表的文献来看,对于伪缺陷的识别率较低。 2.不同种缺陷之间可能存在形状、纹理等方面的相似性,造成缺陷误判。 国外研究发展现状: 20 世纪90 年代后,基于机器视觉检测系统的自动化功能和实用化水平得到了进一步的提高。 1990 年芬兰Rautaruukki New Technology公司研制了Smartivis表面检测系统[],该系统具有自学习分类功能,应用机器学习方法对决策树结构进行自动设计优化。 1996 年美国Cognex公司研发了一套iLearn自学习分类器软件系统并应用于其研制了iS-2000 自动检测系统。通过这两套系统的无缝衔接,极大地提高了检测系统实时的运算速度,有效的改进了传统自学习分类方法在算法执行速度、数据实时吞吐量、样本训练集规模及模式特征自动选择等方面的不足之处[]。 2004 年Parsytec公司发布了新一代表面质量检测产品Parsytec5i,该系统运用了自学习神经

机器视觉检测

机器视觉检测 一、概念 视觉检测是指通过机器视觉产品(即图像摄取装置,分 CMOS 和CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 机器视觉检测的特点是提高生产的柔性和自动化程度。 2、典型结构 五大块:照明、镜头、相机、图像采集卡、软件 1.照明 照明是影响机器视觉系统输入的重要因素,它直接影响输入数据的质量和应用效果。目前没有通用的照明设备,具体应用场景选择相应的照明装置。照射方法可分为: 分类具体说明优点 背向照明被测物放在光源和摄像机之 间能获得高对比度的图像 前向照明光源和摄像机位于被测物的 同侧 便于安装 结构光将光栅或线光源等投射到被 测物上,根据它们产生的畸 变,解调出被测物的三维信 息 频闪光照明将高频率的光脉冲照射到物

体上,摄像机拍摄要求与光 源同步 2.镜头 镜头的选择应注意以下几点:焦距、目标高度、影像高度、放大倍数、影响至目标的距离、中心点/节点、畸变。 3.相机 按照不同标准可分为:标准分辨率数字相机和模拟相机等。 要根据不同的实际应用场合选不同的相机和高分辨率相机:线扫描CCD 和面阵CCD;单色相机和彩色相机。 为优化捕捉到的图像,需要对光圈、对比度和快门速度进行调整。 4.图像采集卡 图像采集卡是图像采集部分和图像处理部分的接口。将图像信号采集到电脑中,以数据文件的形式保存在硬盘上。通过它,可以把摄像机拍摄的视频信号从摄像带上转存到计算机中。 5.软件 视觉检测系统使用软件处理图像。软件采用算法工具帮助分析图像。视觉检测解决方案使用此类工具组合来完成所需要的检测。是视觉检测的核心部分,最终形成缺陷的判断并能向后续执行机构发出指令。常用的包括,搜索工具,边界工具,特征分析工具,过程工具,视觉打印工具等。 3、关键——光源的选择 1.光源选型基本要素: 对比度机器视觉应用的照明的最重要的任务就是使需要被观察的特征与需要被忽略的图像特征之间产生最大的对比度,从而易于特

(工艺流程)典型的汽车零件的加工工艺流程

汽车发动机连杆加工工艺分析 3.1 汽车发动机连杆结构特点及其主要技术要求 连杆是汽车发动机中的主要传力部件之一,其小头经活塞销与活塞联接,大头与曲轴连杆轴颈联接.气缸燃烧室中受压缩的油气混合气体经点火燃烧后急剧膨胀,以很大的压力压向活塞顶面,连杆则将活塞所受的力传给曲轴,推动曲轴旋转。 连杆部件由连杆体,连杆盖和螺栓、螺母等组成。在发动机工作过程中,连杆要承受膨胀气体交变压力和惯性力的作用,连杆除应具有足够的强度和刚度外,还应尽量减小连杆自身的重量,以减小惯性力。连杆杆身的横截面为工字形,从大头到小头尺寸逐渐变小。 为了减少磨损和便于维修,在连杆小头孔中压入青铜衬套,大头孔内衬有具有钢质基底的耐磨巴氏合金轴瓦。 为了保证发动机运转均衡,同一发动机中各连杆的质量不能相差太大。因此,在连杆部件的大、小头端设置了去不平衡质量的凸块,以便在称重后切除不平衡质量。 连杆大、小头两端面对称分布在连杆中截面的两侧。考虑到装夹、安放、搬运等要求,连杆大、小头的厚度相等。 连杆小头的顶端设有油孔,发动机工作时,依靠曲轴的高速转动,气缸体下部的润滑油可飞溅到小头顶端的油孔内,以润滑连杆小头铜衬套与活塞销之间的摆动运动副。 连杆上需进行机械加工的主要表面为:大、小头孔及其两端面,连杆体与连杆盖的结合面及连杆螺栓定位孔等.连杆总成的技术要求如下: (1)为了保证连杆大、小头孔运动副之间有良好的配合,大头孔的尺寸公差等级为IT6,表面粗糙度Ra值应不大于0.4μm,小头孔的尺寸公差等级为IT5,表面粗糙度Ra 值应不大于0.4μm。对两孔的圆柱度也提出了较高的要求,大头孔的圆柱度公差为0.006mm,小头孔的圆柱度公差为0.00125mm。 (2)因为大、小头孔中心距的变化将会使气缸的压缩比发生变化,从而影响发动机的效率,因此要求两孔中心距公差等级为IT9。大、小头孔中心线在两个相互垂直方向上的平行度误差会使活塞在气缸中倾斜,致使气缸壁唐攒不均匀,缩短发动机的使用寿命,同时也使曲轴的连杆轴颈磨损加剧,因此也对其平行度公差提出了要求。 (3)连杆大头孔两端面对大头孔中心线的垂直度误差过大,将加剧连杆大头两端面与曲轴连杆轴颈两端面之间的磨损,甚至引起烧伤,所以必须对其提出要求。

机器视觉系统的关键技术在哪

机器视觉系统的关键技术在哪 机器视觉系统的关键技术在哪?专家解释,成功的机器视觉系统最主要的是解决图像采集和图像处理分析这两大问题,而图像的采集又牵扯到了光源、光学成像、数字图像获取和传输等几大技术问题。那对于机器视觉系统的关键技术该怎样认识呢? 机器视觉技术通过计算机对摄取的图像进行处理,分析其中的信息,并做出相应的判断,进而发出对设备的控制指令。机器视觉系统的具体应用需求千差万别,视觉系统本身也可能有多种不同的形式,但都包括以下过程: ◇图像采集利用光源照射被观察的物体或环境,通过光学成像系统采集图像,通过相机和图像采集卡将光学图像转换为数字图像,这是机器视觉系统的前端和信息来源。 ◇图像处理和分析计算机通过图像处理软件对图像进行处理,分析获取其中的有用信息。如PCB板的图像中是否存在线路断路、纺织品的图像中是否存在疵点、文档图像中存在哪些文字等。这是整个机器视觉系统的核心。 ◇判断和控制图像处理获得的信息最终用于对对象(被测物体、环境)的判断,并形成对应的控制指令,发送给相应的机构。如摄取的零件图像中,计算零件的尺寸是否与标准一致,不一致则发出报警,做出标记或进行剔除。 ◇照明设计照明设计主要包括三个方面: 光源、目标和环境的光反射和传送特性、光源的结构。照明直接作用于系统的原始输入,对输入数据质量的好坏有直接的影响。光源决不仅仅是为了照亮物体,通过有效的光源设计可以令需要检测的特征突出,同时抑制不需要的干扰特征,给后端的图像处理带来极大的便利。而不恰当的照明方案会造成图像亮度不均匀,干扰增加,有效特征与背景难以区分,令图像处理变得极其困难,甚至成为不可能完成的任务。由于被测对象、环境和检测要求千差万别,因而不存在通用的机器视觉照明设备,需要针对每个具体的案例来设计照明的方案,要考虑物体和特征的光学特性、距离、背景,根据检测要求具体选择光的强度、颜色和光谱组成、均匀性、光源的形状、照射方式等。 ◇相机是一个光电转换器件,它将光学成像系统所形成的光学图像转变成视频/数字电信号。相机通常由核心的光电转换器件、外围电路、输出/控制接口组成。目前最常用的光

零件的机械加工工艺方案设计

一. 零件的工艺分析: 1.加工表面分析 (1) 以花键孔的中心线为基准的加工面 这一组面包括:20.0025+ Φmm 的六齿方花键孔、 20.0022+ Φmm 花键底孔两端的??152倒角和距中心线为27mm 的平面。孔22Φmm 的上下加工表面,孔 22Φmm 的内表面,有粗糙度要求为Ra 小于等于6.3um ,25Φmm 的六齿 花键孔,有粗糙度要求Ra 小于等于 3.2um ,扩两端面孔,有粗糙度要求 Ra=6.3um ,加工时以上下端面和外圆40Φmm 为基准面,有由于上下端面 须加工,根据“基准先行”的原则,故应先加工上下端面(采用互为基准 的原则),再加工孔22Φmm, 六齿花键孔25Φmm 和扩孔。矚慫润厲钐瘗睞枥庑赖。 (2) 以工件右端面为基准的03.008+ mm 的槽和012.0018+ mm 的槽。 这一组加工表面包括:右侧距离18mm 的上下平面,Ra=3.2um ,有精铣平 面的要求,左侧距离为8mm 的上下平面,Ra=1.6um ,同样要求 精铣,加 工时以孔22mm ,花键孔25 mm 和上下平面为基准定位加工。聞創沟燴鐺險爱氇谴净。 根据各加工方法的经济精度及一般机床所能达到的位置精度,该零件没有很难 加工的表面尺寸,上述表面的技术要求采用常规加工工艺均可以保证,对于这两组加工表面而言,可以先加工其中一组表面,然后借助于专用夹具加工另一组表面,并且保证它们的位置精度要求。残骛楼諍锩瀨濟溆塹籟。 2.毛坯种类 CA6140拨叉位于车床变速机构中,主要起换档,使主轴回转运动按照工 作者的要求进行工作。宽度为012.0018+ mm 的槽尺寸精度要求很高,因为在拨叉拔动使滑移齿轮时如果槽的尺寸精度不高或间隙很大时,滑移齿轮得不到很高 的位置精度。所以,宽度为012.0018+ mm 的槽和滑移齿轮的配合精度要求很高。零件材料HT200,考虑到此零件的工作过程中并有变载荷和冲击性载荷,因此选用锻件,以使金属纤维尽量不被切断,保证零件的工作可靠。经查《机械加工工艺人员手册》表5-5取等级为2级精度底面及侧面浇注确定待加工表面的加工余量为3±0.8mm 。毛坯零件图如图1所示:酽锕极額閉镇桧猪訣锥。

基于机器视觉接插件连接器检测系统

基于机器视觉接插件(连接器)检测系统 接插件,又称连接器、插头、插座等。它作为集成电路板中电流、电压以及各种开关量传输的组件,其尺寸及外观的质量都有着严格的要求。随着接插件功能的不断增加,其结构越来越复杂,体积也越来越微型化,因此对产品的质量性能检测带来巨大的挑战。传统的检测方法主要靠操作员借助其他的检测工具(如千分尺、放大镜、三坐标测量仪等)进行目测或半自动测量,这种检测方法存在检测不准、效率低、人力成本过高等缺点,严重影响了产品的生产效率。 公司开发的接插件视觉检测系统,将接插件尺寸与外观检测质量过程完全避免人员干预,实现高效率、高重复性、高可靠性的检测测量流程。系统进行简单设定后,即可自动识别、检测和测量。如有异常发生,系统可提示报警或控制机器停机。对于不符合要求的工件即可输出控制信号,踢废不合格产品。 产品外观检测系统图 系统现场图

龙霖公司简介 龙霖科技有限公司是一家工业产品快速自动化检测、光电检测及图像影像测量解决方案提供商。公司总成光、机、电、计算机一体化等多种复合测量检测技术,业务范围涉及:自动化检测设备及项目研发,光电检测设备及项目研发,机器视觉系统集成及项目研发,专用三维测量设备开发,自动化及机电一体化设备及项目研发,高精度计量、检测设备及工具设计与制造等等。应用领域遍及轨道交通、军工、航空航天、重工船舶、汽车制造、机床模具、加工设备等装备制造业。 龙霖科技以强大技术优势引领中国自动化检测设备,测量仪器和专用测量设备的高端市场,研发技术支持来源于资深行业专家及高级工程师、国内的大学和研究所设计院。我们拥有自己在自动化技术和光电学技术领域整合能力,完善的工业检测解决方案设计能力及快速检测能力。打造为客户定向开发及个性化需求定制的新模式。提供机械设计、生产制造、品质控制等制造业的计量检测解决方案。 公司将最先进测量检测技术为中国的制造业服务,解决计量测量检测难题;致力于发展轻、精、快计量检测设备而奋斗。 服务范围 自动化检测设备及项目研发 现代计量检测行业,传统接触式已远远不能满足测量检测要求,会越来越多采用非接触式光电检测技术等综合检测技术手段,配置在装配组装过程控制生产线从而实现现场在线快速自动化,朝着快速、精准、有效的高端测量检测方向发展。 公司承接以下业务: 1.光学,声学快速测量检测技术 1)基于机器视觉检测技术设备项目研发 2)基于CCD成像检测技术设备及项目研发 3)基于影像检测技术设备及项目研发 4)基于激光检测技术设备及项目研发 5)基于光栅检测技术设备及项目研发 6)基于超声波检测技术设备及项目研发 2.快速测量检测线项目设计 3.快速自动化检测设备研发 4.在线高精度智能化检测工程设计 5.数字化制造全过程测量项目设计 6.现场快速检测线设备及项目研发 7.产品及零部件表面质量控制检测设备研发 非标计量与检测设备项研发 “非标计量与检测设备”就是根据用户的用途需要量身定做,定向开发设计制造的设备。 公司承接以下业务: 1.非标计量检测设备研发

相关文档
相关文档 最新文档