文档库 最新最全的文档下载
当前位置:文档库 › Plerixafor 8HCl (AMD3100 8HCl)_CXCR4拮抗剂_155148-31-5_Apexbio

Plerixafor 8HCl (AMD3100 8HCl)_CXCR4拮抗剂_155148-31-5_Apexbio

Plerixafor 8HCl (AMD3100 8HCl)_CXCR4拮抗剂_155148-31-5_Apexbio
Plerixafor 8HCl (AMD3100 8HCl)_CXCR4拮抗剂_155148-31-5_Apexbio

pikakt信号通路图谱

P I3K/A K T信号通路 磷脂酰肌醇3-激酶(PI3Ks)信号参与增殖、分化、凋亡和葡萄糖转运等多种细胞功能的调节. 近年来发现, IA型PI3K和其下游分子蛋白激酶B(PKB或Akt)所组成的信号通路与人类肿瘤的发生发展密切相关. 该通路调节肿瘤细胞的增殖和存活, 其活性异常不 仅能导致细胞恶性转化, 而且与肿瘤细胞的迁移、黏附、肿瘤血管生成以及细胞外基质的降解等相关, 目前以PI3K-Akt信号通路关键分子为靶点的肿瘤治疗策略正在发展中. 在PI3K家族中, 研究最广泛的是能被细胞表面受体所激活的I型PI3K. 哺乳动物细胞中Ι型PI3K又分为IA和IB两个亚型, 他们分别从酪氨酸激酶连接受体和G蛋白连接受体传递信号.IA 型PI3K是由催化亚单位p110和调节亚单位p85所组成的二聚体蛋白, 具有类脂激酶和蛋白激酶的双重活性.PI3K通过两种方式激活, 一种是与具有磷酸化 酪氨酸残基的生长因子受体或连接蛋白相互作用, 引起二聚体构象改变而被激活; 另 一种是通过Ras和p110直接结合导致PI3K的活化. PI3K激活的结果是在质膜上产生 第二信使PIP3, PIP3与细胞内含有PH结构域的信号蛋白Akt和 PDK1(phosphoinositidedependentkinase-1)结合, 促使PDK1磷酸化Akt蛋白的 Ser308导致Akt的活化. Akt还能通过PDK2(如整合素连接激酶ILK)对其Thr473的磷酸化而被激活.活化的Akt通过磷酸化作用激活或抑制其下游靶蛋白Bad 、Caspase9、NF-κB、GSK-3、FKHR、 p21Cip1和p27 Kip1等, 进而调节细胞的增殖、分化、凋亡 以及迁移等. PI3K-Akt信号通路的活性被类脂磷酸酶PTEN(phosphatase and tensin homolog deleted on chromosome ten)和SHIP(SH2-containing inositol 5-phosphatase)负调节, 他们分别从PIP3的3′和5′去除磷酸而将其转变成PI(4,5)P2和PI(3,4)P2而降解. 迄今为止, 尚未发现下调Akt活性的特异磷酸酶, 但用磷酸酶抑制剂处理细胞后, 发 现Akt的磷酸化和活性均有所增加. 最近发现Akt能被一种C末端调节蛋白(CTMP)所失活, CTMP能结合Akt并通过抑制Akt的磷酸化而阻断下游信号的传递, CTMP的过表达能够逆转v-Akt转化细胞的表型. 热休克蛋白90(HSP90)亦能结合Akt, 阻止Akt被 PP2A磷酸酶的去磷酸化而失活, 因此具有保护Akt的作用. 本信号转导涉及的信号分子主要包括 Integrin,FAK,Paxillin,ILK,PIP3,S6,p70S6K,RTK,Gab1,Gab2,IRS-1,PI3K,PTEN,AKT,PDK1,Cytokine Receptor,Jak1,CD19,BCR,Ag,BCAP,Syk,Lyn,GPCR,TSC1,TSC2,Gβγ,GαGTP,PP2A,PHLPP,CTMP,PDCD4,4E-BP1,ATG13,mTORC1,TSC1,TSC2,PRAS40,XIAP,FoxO1,Bim,Bcl-2,Bax,MDM2,p53,Bax,Bad,14-3-3,Wee1,Myt1,p27Kip1,p21Waf1/Cip1,CyclinD1,GSK-3,GS,Bcl-2,mTORC2,LaminA,Tpl2,IKKα,eNOS,GABAAR,Huntingtin,Ataxin-1,PFKFB2,PIP5K,AS160等。

多发性骨髓瘤

血液系统肿瘤 概述 骨髓中的浆细胞恶变的疾病。 多发性骨髓瘤是怎样一种疾病呢?在恶性血液病之中,骨髓瘤是与老年化及免疫能力关系最为密切的疾病。近年来,随着社会老龄化,骨髓瘤的发病人数正在急剧上升,其年龄和性别的死亡率的峰值,也有向高龄化移动的趋势。 过去,骨髓瘤曾是男性居多,最近男女差别已基本消失。 要注意因抗感染能力低下的问题。 恶变的机理和过程:骨髓中的浆细胞具有制造抗体的重要机能,即能产生对抗感染,增加抵抗力的免疫球蛋白。当浆细胞恶变为骨髓瘤细胞时,瘤细胞会无限制地恶性增殖,并破坏骨质,发展成为骨髓瘤。 因病变同时可在身体的各个部位发生,所以称为多发性骨髓瘤。 一般情况下,浆细胞可制造出数种免疫球蛋白。但一经恶变,在血液或尿液中,能大量发现单一种类的免疫球蛋白,即骨髓瘤蛋白,也就是M蛋白,从而导致正常免疫球蛋白减少,进而对感染的抵抗力下降,易发生肺炎等感染。 骨髓瘤的种类:根据骨髓瘤细胞的增殖方式,可分为四种类型:①单发病灶型(仅形成一个病灶)。②多发病灶型(限局在几个地方增殖的类型)。③弥漫增殖型(广泛扩大增殖的类型)。④混合型(弥漫增殖型加多发病灶型)。 以上这些类型对治疗效果及预后来说,均有各自的特征。而且由于形成肿瘤的类型和变为浆细胞白血病的类型等的不同,其病理状态也多种多样,加之M蛋白的种类的不一,预后也必然有所差别。 自觉症状 腰椎、胸椎和背部的骨痛是其特征。 症状 本病突出的特点是全身持续性骨痛,这是因为全身各处的骨骼受到破坏的缘故。尤其以胸部、背部和腰部的骨痛最显著。而且身体活动时,也可明显疼痛;有些天骨痛,有些天似乎不痛,没有规律,且程度不同。 由于种瘤压迫不同部位的神经,可引起视力障碍或手足活动受限、手足麻木等。而骨髓的正常造血功能障碍,可发生全身倦怠、头晕目眩、呼吸困难和因感染所致的发热,以及发生出血倾向等。如骨髓瘤造成肾损害时,可发生食欲不振、浮肿等。

常用有机溶剂毒性分类

常用有机溶剂毒性分类 第一类溶剂 是指已知可以致癌并被强烈怀疑对人和环境有害的溶剂。在可能的情况下,应避免使用这类溶剂。如果在生产治疗价值较大的药品时不可避免地使用了这类溶剂,除非能证明其合理性,残留量必须控制在规定的范围内,如: 苯(2ppm)、四氯化碳(4ppm)、1,2-二氯乙烷(5ppm)、1,1-二氯乙烷(8p pm)、1,1,1-三氯乙烷(1500ppm)。 第二类溶剂 是指无基因毒性但有动物致癌性的溶剂。按每日用药10克计算的每日允许接触量如下: 2-甲氧基乙醇(50ppm)、氯仿(60ppm)、1,1,2-三氯乙烯(80ppm)、1,2-二甲氧基乙烷(100ppm)、1,2,3,4-四氢化萘(100ppm)、2-乙氧基乙醇(1 60ppm)、环丁砜(160ppm)、嘧啶(200ppm)、甲酰胺(220ppm)、正己烷(2 90ppm)、氯苯(360ppm)、二氧杂环己烷(380ppm)、乙腈(410ppm)、二氯甲烷(600ppm)、乙烯基乙二醇(620ppm)、N,N-二甲基甲酰胺(880ppm)、甲苯(890ppm)、N,N-二甲基乙酰胺(1090ppm)、甲基环己烷(1180ppm)、1,2-二氯乙烯(1870ppm)、二甲苯(2170ppm)、甲醇(3000ppm)、环己烷(3880 ppm)、N-甲基吡咯烷酮(4840ppm)、。 第三类溶剂 是指对人体低毒的溶剂。急性或短期研究显示,这些溶剂毒性较低,基因毒性研究结果呈阴性,但尚无这些溶剂的长期毒性或致癌性的数据。在无需论证的情况下,残留溶剂的量不高于0.5%是可接受的,但高于此值则须证明其合理性。这类溶剂包括: 戊烷、甲酸、乙酸、乙醚、丙酮、苯甲醚、1-丙醇、2-丙醇、1-丁醇、2-丁醇、戊醇、乙酸丁酯、三丁甲基乙醚、乙酸异丙酯、甲乙酮、二甲亚砜、异丙基苯、乙酸乙酯、甲酸乙酯、乙酸异丁酯、乙酸甲酯、3-甲基-1-丁醇、甲基异丁酮、2-甲基-1-丙醇、乙酸丙酯。 除上述这三类溶剂外,在药物、辅料和药品生产过程中还常用其他溶剂,如1,1-二乙氧基丙烷、1,1-二甲氧基甲烷、2,2-二甲氧基丙烷、异辛烷、异丙醚、甲基异丙酮、甲基四氢呋喃、石油醚、三氯乙酸、三氟乙酸。这些溶剂尚无基于每日允许剂量的毒理学资料,如需在生产中使用这些溶剂,必须证明其合理性。

长期毒性试验

长期毒性试验 药物毒性是否产生,取决于: a药物本身的理化特性b给药情况c如何被机体代谢 对一特定药物而言,最重要的影响毒性的因素: a给药途径b体内停留时间c给药频率 (影响靶组织的药物浓度) 1.半数有效量(ED50):能引起50%的动物或实验标本产生反应的浓度或剂量。 2.半数致死量(LD50 ):能引起50%的动物死亡的浓度或剂量。 3.治疗指数:TI= LD50/ ED50 药物实验动物的LD50和ED50的比值称为治疗指数(TI),用以表示药物的安全性。 4.安全范围:ED99~LD1(或ED95~LD5)之间的距离。值越大越安全。 ?有效量曲线和致死量曲线的斜率不一样时,以TI评价药物的安全性并不可靠。(原因?)六、药物毒性作用类别 药物不良反应(adverse reaction):凡是不符合用药目的并为病人带来不适或痛苦的有害反应统称为药物不良反应。 包括:副反应、后遗效应、停药反应、毒性反应、变态反应、特异质反应、致癌性、致畸性、致突变性; (三)药物毒性临床前评价程序(三水平) 第一水平,急性毒性试验: 第二水平,长期毒性试验(第一阶段) 第三水平,长期毒性试验(第二阶段) (四)药物毒理学研究在新药临床试验各阶段的任务 第一期临床研究→探索安全的人用剂量 第二期临床研究→安全性{疗效(有效性)不良反应(安全性) 第三期临床研究→大范围的社会考察 不良反应监测→提高疗效,降低不良反应 多数毒物发挥其毒性作用至少经历四个过程: a毒物吸收后经过多种屏障转运到一个或多个靶部位; b进入靶部位的终毒物与内源靶分子发生交互作用; c毒物引起机体分子、细胞和组织水平功能和结构紊乱; d机体启动不同水平的修复机制。当此机制低下或功能和结构紊乱超过机体修复能力时,机体即出现组织坏死、癌症、纤维化等毒性损害。 长期毒性试验的意义 a判断受试药物能否进行临床试验; b预测人类临床用药时可能毒性和安全范围; c制定临床试验中的防治措施; d确定应该着重评价的生理生化指标; e选择I期临床试验时的初试剂量,等。 一、一般原则 1动物选择: a.敏感动物,年轻动物,雌雄各半 b.2种(啮齿—大鼠6w、非啮齿—比格犬4-6m) c.体重差异不大于平均体重的20% d..单笼饲养、定量喂食

长期毒性病理报告

SD大鼠经口灌胃4周及恢复期2周长期毒性试验 病理学检查报告 1.研究目的 通过观察经口灌胃4周及恢复期2周长期毒性试验对SD大鼠机体产生毒性病理性损伤的部位、程度和性质,以及经过恢复期病理性损伤的可逆程度,以确定经口灌胃给予对SD大鼠产生毒性作用的靶器官或靶组织,为口服的安全性评价提供形态学依据。 2.试验设计与方法 SPF级SD大鼠80只,雌雄各半,开始试验时1~2月龄,体重120~150g。按体重分层将SD大鼠随机分为0.5%CMC-Na 溶媒对照组(10ml/kg)、低剂量组(0.5ml原液/kg)、中剂量组(1.5ml原液/kg)、高剂量组(0.5ml 原液/kg),每组20只,雌雄各半。每天上午经口灌胃给药1次,每周7次,连续给药28天,各试验组动物给药容积均为10ml/kg,灌胃操作均在1小时内完成,恢复期2周。 表1 SD大鼠经口灌胃 4周及恢复期2周长期毒性试验试验设计与方法 组别供试品 剂量给药体积动物笼号及编号 解剖时间ml原液 /kg (ml/kg) 雄性雌性 1 0.5% CMC-Na 10 1 1101~1105 3 1211~1215 给药结束 2 1106~1110 4 1216~1220 恢复期结束 2 0.5 10 5 2121~2125 7 2231~2235 给药结束 6 2126~2130 8 2236~2240 恢复期结束 3 1.5 10 9 3141~3145 11 3251~3255 给药结束 10 3146~3150 12 3256~3260 恢复期结束 4 3 10 13 4161~416 5 15 4271~4275 给药结束 14 4166~4170 16 4276~4280 恢复期结束 给药期末经腹腔注射戊巴比妥钠(40mg/kg)麻醉并腹主动脉采血后解剖动物,每组10只,雌雄各半;恢复期末解剖其余动物,每组10只,雌雄各半。解剖时检查动物体型、毛色、皮肤、外生殖器和腔道等;然后剖开动物胸腹部皮肤,观察皮下组织变化;并按照顺序打开腹腔、盆腔、胸腔、颅腔,检查各腔内脏器组织的在体位置、颜色、大

Caspase信号通路

Caspases are a family of cysteine proteases that act in concert in a cascade triggered by apoptosis signaling. The culmination of this cascade is the cleavage of a number of proteins in the cell, followed by cell disassembly, cell death, and, ultimately, the phagocytosis and removal of the cell debris. The Caspase cascade is activated by two distinct routes: one from cell surface and the other from mitochondria (Ref.1). The pathway leading to Caspase activation varies according to the apoptotic stimulus. Initiator Caspases (including 8, 9, 10 and 12) are closely coupled to pro-apototic signals. Pro-apoptotic stimuli include the FasL (Fas Ligand), TNF (Tumor Necrosis Factor), Granzyme-B, GRB (Growth Factor Receptor-Bound Protein), DNA damage, Ca2+ (Calcium) channels and ER (Endoplasmic Reticulum) stress. Once activated, these Caspases cleave and activate downstream effector Caspases (including 3, 6 and 7). Caspase8 cleaves BID (BH3 Interacting Death Domain). tBID (Truncated BID) disrupts the outer mitochondrial membrane to cause release of the pro-apoptotic factors CytoC (Cytochrome-C) which is crucial for activating pro-Caspase9. CytoC that is released from the intermembrane space binds to APAF1 (Apoptotic Protease Activating Factor-1), which recruits Caspase9 and in turn can proteolytically activate Caspase3. SMAC (Second Mitochondria-Derived Activator of Caspase)/DIABLO is also released from the mitochondria along with CytoC during apoptosis, and it functions to promote caspase activation by inhibiting IAP (Inhibitor of Apoptosis) family proteins. ER stress leads to the Ca2+-mediated activation of Caspase12 (Ref.2). Fas and the TNFR (TNF Receptor) activate Caspases8 and 10. Cell death caused by activation of the TNFR or Fas receptors is brought about by the recruitment of the adaptor protein FADD (Fas Associated Death Domain). In the case of the TNFR1, FADD recruitment requires prior binding of TRADD (TNFR-Associated Death Domain Protein). FADD in turn recruits ProCaspase8. The TNFR1 receptor can also mediate activation of Caspase2 via the recruitment of a death-inducing signaling complex. In this case RIP (Receptor-Interacting Protein) acts as an adaptor for the recruitment of RAIDD (RIP-Associated ICH-1/CED-3-homologous protein with a Death Domain), which subsequently binds to ProCaspase2. TNFR also activates Caspase3, 6,7 via TRADD, TRAF2 (TNF Receptor-Associated Factor-2) and RICK (RIP-like Interacting Clarp Kinase). TNF not only induces apoptosis by activating Caspase8 and 10, but can also inhibit apoptosis signaling via NF-KappaB (Nuclear Factor-KappaB), which induces the expression of IAP, an inhibitor of Caspases3, 7 and 9 (Ref.3). GRB (Growth Factor Receptor-Bound Protein), Granzyme B and perforin proteins released by cytotoxic T-Cells induce apoptosis in target cells, forming transmembrane pores, and triggering apoptosis, perhaps through cleavage of Caspases, although Caspase-independent mechanisms of Granzyme-B mediated apoptosis have been suggested (Ref.4). After activation, down stream Caspases cleave cytoskeletal and nuclear proteins (structural, signaling proteins or kinases) like PARP (Poly ADP-Ribose Polymerase), DNA-PK (DNA-Dependent Protein Kinase), Rb (Retino Blastoma Tumor Supressor Protein), PAK1 (p21-Activated Kinase-1), GDID4, Fodrin, Lamin-A, Lamin-B1, Lamin-B2, thus inducing apoptosis. Caspase3 cleaves ICAD (Inhibitor of CAD) to free CAD (Caspase-Activated DNase) to cause DNA fragmentation. The events culminating in Caspase activation and the subsequent disassembly of the cell are the subject of intense study because of their role in many neurodegenerative disorders such as Parkinson's and Alzheimer’s diseases, autoimmune disorders, and tumorigenesis. References: 1. Srinivasula SM,Ahmad M,Fernandes-Alnemri T,Alnemri ES. Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell. 1998 Jun;1(7):949-57. 2. Pirnia F,Schneider E,Betticher DC,Borner MM. Mitomycin C induces apoptosis and caspase-8 and -9 processing through a caspase-3 and Fas-independent pathway. Cell Death Differ. 2002 Sep;9(9):905-14.

多发性骨髓瘤的诊断标准

多发性骨髓瘤的诊断标准 识别多发性骨髓瘤的诊断标准,让我们为治疗做准备。多发性骨髓瘤(MM)为发生于B淋巴细胞的恶性浆细胞病。好发于中老年,但近年发病率有增高及发病年龄有提前趋势。本病误诊率很高,患者可因发热、尿改变、腰腿痛被误诊为呼吸系统感染、肾炎、骨病而延误病情。那么,多发性骨髓瘤都有哪些诊断标准呢?现在就让我们专家来为大家介绍一下,希望能为大家带来帮助! 现代中医血液肾病医院专家指出,多发性骨髓瘤的诊断标准有如下几种: 一、常规检查 骨髓:出现一定比例的异常浆细胞(骨髓瘤细胞主要为原始浆细胞或幼稚浆细胞)或组织活检证实为骨髓瘤细胞。血清中出现大量单克隆免疫球蛋白(单克隆免疫球蛋白可在血清蛋白电泳的γ区或β区或α2区出现一窄底高峰,又称M蛋白)或尿单克隆免疫球蛋白轻链(即尿本周氏蛋白);无其他原因的溶骨性病变或广泛骨质疏松。

二、鉴别诊断 1.反应性浆细胞增多症:见于结核、伤寒、自身免疫病等,一般骨髓浆细胞不超过10%,且均为成熟浆细胞。 2.其他产生M蛋白的疾病:诊断多发性骨髓瘤的方法要科学准确,慢性肝病、自身免疫病、恶性肿瘤如淋巴瘤等可产生少量M蛋白。 3.意义未明的单克隆免疫球蛋白血症(MGUS):血清中M蛋白低于30g/L,骨髓中浆细胞低于10%,无溶骨性病变、贫血、高钙血症和肾功能不全。M蛋白可多年无变化。约5%的患者最终发展为多发性骨髓瘤。 4.骨转移癌:不同的多发性骨髓瘤患者就要采用不同的方法进行治疗,还需要通过正确的检查才可以确定治疗方法,多伴成骨形成,溶骨性缺损周围有骨密度增加,且血清碱性磷酸酶明显升高。有原发病灶存在。 三、医学分析 1.免疫分型:用患者骨髓进行检查,CD10、CD19、 CD20等B细胞标记单抗、 CD38 、CD138浆细胞标记单抗表达增高。 2.细胞遗传学检查:多了解有关多发性骨髓瘤疾病的常识,会让人们把预防工作做到位,远离多发性骨髓瘤才不会受到伤害,多表现为14q+、del(14)、t(11;14);

常用溶剂对人体危害

、石油醚 侵入途径:吸入、食入。 健康危害:其蒸气或雾对眼睛、粘膜和呼吸道有刺激性。中毒表现可有烧灼感、咳嗽、喘息、喉炎、气短、头痛、恶心和呕吐。本品可引起周围神经炎。对皮肤有强烈刺激性。 急性毒性:LD5040mg/kg(小鼠静脉);LC503400ppm,4小时(大鼠吸入) 危险特性:其蒸气与空气可形成爆炸性混合物。遇明火、高热能引起燃烧爆炸。燃烧时产生大量烟雾。与氧化剂能发生强烈反应。高速冲击、流动、激荡后可因产生静电火花放电引起燃烧爆炸。其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。 燃烧(分解)产物:一氧化碳、二氧化碳。 二、正已烷 正己烷虽可经呼吸道、消化道、皮肤进入机体,但职业中毒仅见于经呼吸道吸收者。正已烷吸收入血有剂量-反应关系。大鼠暴露于浓度1800、3600、10800 和3600Omg/m3,6h后血**已烷半减期为1~2h;人接触360mg/m3,安静下4h血半减期为1.5h;生理负荷3h后,半减期为2h。人按触正已烷313.2~439.2mg/m3及其他溶剂,测定呼出气,平均吸收27.8%±5.3%,呼吸道存留5.6%±5.7%。 2.分布 正已烷在体内分布与器官的脂肪含量有关,主要分布于脂肪含量高的器官,如脑、肾、肝、脾、睾丸等。 3.转化 正已烷的生物转化主要在肝脏,微粒体细胞色素P450及细胞色素C直接参与其氧化代谢。代谢产物有2-已醇、3-已醇、2-已酮(甲基正丁基甲酮)、2,5-已二酮等。 【毒性】 正已烷属低毒类,但其毒性较新已烷大,且具有高挥发性、高脂溶性,并有蓄积作用。毒作用为对中枢神经系统的轻度抑制作用,对皮肤粘膜的刺激作用。长期接触可致多发性周围神经病变。 l.急性毒性 正已烷小鼠吸入LC为120~15Og/m3(2h),麻醉浓度为100g/m3 (lh)。大鼠经口LD50为24~29ml/kg。兔涂皮2~5ml/kg(4h),引起共济失调与躁动。人吸入单纯正已烷180Omg/m3,3~5min无刺激;2880mg/m3,l5min眼及上呼吸道有刺激;5040~720Omg/m3,lOmin,有恶心、头痛、眼及咽刺激;1800Omg/m3,lOmin,出现眩晕、轻度麻醉。经口中毒可出现恶心、呕吐等消化道刺激症状及急性支气管炎,摄入50g可致死。溅入眼内可引起结膜刺激症状。 2.慢性毒性 正已烷慢性毒作用主要为多发性神经病。神经传导速度减慢,甚至肌肉萎缩。严重者可引起肝肾损害。大鼠每日大入2.76g/m3,143天,仅有夜间活动减少,但体重、血象、血清蛋白与对照组无明显差异,处死后组织学检查见网状内皮系统有轻度反应,末梢神经有髓鞘退行性变、轴突轻度变性,腓肠肌肌纤维轻度萎缩。18000mg/m3,每周16h,共4周,周围神经运动传导速度明显下降,肌力降低。小鼠吸入360mg/m3,每周6天,经1年,未引起神经病;9OOmg/m3,引起轻度神经病; 180Omg/m3,出现步态不稳、肌萎缩。长期职业性低浓度接触正已烷的工人,可发生周围神经病,特点是隐匿性和进展缓慢。轻症者多为远端感觉型周围神经病;较重者出现运动型周围神经病;严重者可发生下肢瘫痪及肌肉萎缩,并可伴有自主神经功能障碍。正已烷可刺激皮肤,引起潮红、水肿、水疱、皮肤粗糙。正已烷无致癌活性。也未见致畸报告。 1.急性中毒

细胞凋亡的信号通路

山东农业大学学报(自然科学版),2015,46(4):514-518VOL.46N0.42015 Journal of Shandong Agricultural University(Natural Science Edition)doi:10.3969/j.issn.1000-2324.2015.04.007 细胞凋亡的信号通路 谢昆,李兴权 红河学院生命科学与技术学院,云南蒙自661199 摘要:细胞凋亡是细胞程序性死亡的一种方式,与自噬和坏死有明显的区别。细胞凋亡的信号途径比较复杂,在凋亡诱导因子的刺激下经历不同的信号途径。本文就细胞凋亡的三条信号通路——线粒体途径、内质网途径和死亡受体途径做一综述,以便为人们进一步了解细胞凋亡发生的机制,从而对癌症及其他一些相关疾病的治疗奠定基础。关键词:细胞凋亡;信号通路;线粒体途径;内质网途径;死亡受体途径 中图法分类号:R329.2+8文献标识码:A文章编号:1000-2324(2015)04-0514-05 The Signal Pathway of Apoptosis XIE Kun,LI Xing-quan Department of Life Science and Technology/Honghe University,Mengzi661199,China Abstract:Apoptosis is a process of programmed cell death which distinguishes from autophagy and necrosis.The signal pathways of apoptosis are complex and different under apoptosis induced factor stimulating.Three kinds of signal pathways of apoptosis including Mitochondrial pathway,Endoplasmic Reticulum pathway and Death Receptor pathway were summarized in this review in order to make people further comprehend the mechanism of apoptosis,so that it should make a basis for us all to treat cancer and other related diseases. Keywords:Apoptosis;signal pathway;Mitochondrial pathway;Endoplasmic Reticulum pathway;Death Receptor pathway 细胞凋亡是细胞程序性死亡(Program cell death,PCD)中特有的一种细胞死亡方式,是细胞在一系列内源性基因调控下发生的自然或生理性死亡过程。Kerr等1972年最早提出了凋亡(apoptosis)和坏死(necrosis)的概念[1],随后Paweletz等对其进行了详细的描述[2,3]。在形态学上,凋亡表现为核浓缩、细胞质密度增高、染色质凝聚、核膜破裂、核内DNA断裂、细胞集聚成团、形成凋亡小体(Apoptosome)等特征,这些凋亡小体最终被巨噬细胞清除,但不会引起周围细胞的炎症反应,另外,凋亡发生在单个细胞之间[4,5]。坏死,通常是由相邻的多个细胞之间发生细胞肿胀,细胞核溶解,细胞膜破裂,细胞质流入到细胞间质中,并伴发一系列的炎症反应,从而与凋亡表现为本质性区别[6,7]。 目前认为,凋亡发生的途径分为三种。第一种是线粒体途径,也称为内源性途径,该途径包括两类,第一类需要通过激活Caspase通路促进凋亡,在一序列凋亡诱导因素刺激下,线粒体中的Cyt C(细胞色素C)释放至细胞质中,从而与Apaf-1(Apoptosis protease activating factor1,凋亡蛋白酶活化因子1)结合形成多聚体,形成的多聚体再进一步与凋亡起始分子Caspase-9结合形成凋亡小体,凋亡小体激活Caspase-9,从而激活下游的凋亡执行分子Caspase-3,Caspase-6和Caspase-7等诱导细胞凋亡的级联反应;第二类是不依赖于Caspase途径的,通过线粒体释放AIF(Apoptosis induce factor,凋亡诱导因子)直接诱导凋亡的发生。但是在细胞内,直接检测AIF比较困难,而且AIF的变化不一定能代表凋亡发生的程度,因为引起凋亡发生的途径不一。第二种是死亡受体途径(也称为外源性途径),经由死亡受体(如TNF,Fas等)与FADD的结合而激活Caspase-8和caspase-10,进一步激活凋亡执行者caspase-3,6,7,从而促进凋亡的发生;第三条途径是内质网途径,内质网应激(蛋白质错误折叠或未折叠、内质网胁迫)会导致细胞内钙超载或钙离子稳态失衡一方面激活caspase-12,caspase-12进一步激活caspase-9而促进凋亡的发生,另一方面诱导Bcl-2(B细胞淋巴瘤蛋白)家族中促凋亡蛋白Bax和Bak的激活诱导凋亡[8]。 1凋亡的线粒体途径 在哺乳动物中,由于凋亡的激活需要线粒体中细胞色素C(CytC)的释放,因此CytC由线粒体膜间隙释放到细胞质中的多少可以作为判断凋亡发生强弱的指标之一。有研究认为,CytC的释放是通过Bcl-2家族调控线粒体膜透化(Mitochondrial outer membrane permeabilization,MOMP),科学 收稿日期:2013-03-07修回日期:2014-09-11 基金项目:云南省科技厅应用基础研究面上项目(2010ZC151) 作者简介:谢昆(1975-),男,云南富民人,博士研究生,研究方向为动物生物化学与分子生物学.E-mail:xk_biology2@https://www.wendangku.net/doc/fe5269105.html, 数字优先出版:2015-06-03https://www.wendangku.net/doc/fe5269105.html,

常用有机溶剂按毒性大小分类表

常用有机溶剂按毒性大小分类表 一、第一类有机溶剂: 1、三氯甲烷 2、1,1,2,2,-四氯乙烷 3、四氯化碳 4、1,2二氯乙烯 5、1,2二氯乙烷 6、二硫化碳 7、三氯乙烯 8、苯 9、由以上溶剂组成的混合物 二、第二类有机溶剂: 1、丙酮 2、异戊醇 3、异丁醇 4、异丙醇 5、乙醚 6、乙二醇乙醚 7、乙二醇乙醚乙酸酯 8、乙二醇丁醚 9、乙二醇甲醚 10、邻—二氯苯 11、二甲苯 12、甲酚 13、氯苯 14、乙酸戊酯 15、乙酸异戊酯

16、乙酸异丁酯 17、乙酸异丙酯 18、乙酸乙酯 19、乙酸丙酯 20、乙酸丁酯 21、乙酸甲酯 22、苯乙烯 23、1,4—二氧杂环己烷 24、四氯乙烯 25、环己醇 26、环己酮 27、1—丁醇 28、2—丁醇 29、甲苯 30、二氯甲烷 31、甲醇 32、甲基异丁基甲酮 33、甲基环己醇 34、甲基环己酮 35、甲丁酮 36、1,1,1—三氯乙烷 37、1,1,2—三氯乙烷 38、丁酮 39、二甲基甲酰胺 40、四氢呋喃 41、正己烷 42、由以上溶剂组成的混合物

三、第三类有机溶剂 1、汽油 2、煤焦油精 3、石油醚 4、石油精 5、轻油精 6、松节油 7、矿油精 8、由以上溶剂组成的混合物 四、有机溶剂按其化学结构可分为10大类: 1、芳香烃类:苯、甲苯、二甲苯等; 2、脂肪烃类:戊烷、己烷、辛烷等; 3、脂环烃类:环己烷、环己酮、甲苯环己酮等; 4、卤化烃类:氯苯、二氯苯、二氯甲烷等; 5、醇类:甲醇、乙醇、异丙醇等; 6、醚类:乙醚、环氧丙烷等; 7、酯类:醋酸甲酯、醋酸乙酯、醋酸丙酯等; 8、酮类:丙酮、甲基丁酮、甲基异丁酮等; 9、二醇衍生物:乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚等; 10、其他:乙腈、吡啶、苯酚等。 经常使用有机溶剂,如,乙醇、苯乙烯、全氯乙烯、三氯乙烯、乙烯乙二醇醚和三乙醇胺。 五、常用有机溶剂对人体的危害 1、液氨:剧毒性、腐蚀性 2、液态二氧化硫:剧毒

参与细胞信号转导通路的蛋白简写及全拼

参与细胞信号转导通路的蛋白简写及全拼 4E-BP eIF4E binding protein Abl Ableson protein tyrosine kinase ACTR A histone acetyltransferase AIF Programmed cell death protein 8 ANT Adenine nucleotide translocation channel Apaf-1 Apoptotic protease activating factor 1 APP beta-Amyloid precursor protein APPs Acute phase proteins ASIP Agouti switch protein ASK Apoptosis signal-regulating kinase (e.g., ASK1) ATF-2 Activating transcription factor 2 ATM Ataxia telangiectasia?mutated protein kinase ATR ATM and Rad3?related protein kinase Bam32 B-cell adaptor molecule 32 kDa BCAP B-cell adaptor for PI3K Bcl-10 B-cell leukemia 10 protein Bfl-1 Bcl-2-related protein A1 Bid A BH3 domain?only death agonist protein Bimp1 B-lymphocyte-induced maturation protein 1 BLNK B-cell linker protein BRCA Breast cancer growth suppressor protein Btk Brutonís tyrosine kinase C3G Guanine nucleotide?releasing factor 2 CAD Caspase-activated deoxyribonuclease Cam Calmodulin CaMK Calcium/calmodulin-dependent kinase CAP c-Cbl-associated protein Cas p130CAS, Crk-associated substrate Caspase Cysteine proteases with aspartate specificity CBL Cellular homologue of the v-Cbl oncogene CBP CREB binding protein CD19 B-lymphocyte antigen CD19 CD22 B-cell receptor CD22 CD40 B-cell surface antigen CD40 CD45 Leukocyte common antigen, a phospho-tyrosine phosphatase CD5 Lymphocyte antigen CD5 cdc2 Cell division cycle protein 2, CDK1 cdc34 Cell division cycle protein 34, a ubiquitin conjugating (E2) enzyme cdc42 Cell division cycle protein 42, a G-protein CDK Cyclin-dependent kinase Chk Checkpoint kinase CHOP C/EBP homologous protein 10

淋巴瘤诊疗规范(2018年版)

淋巴瘤诊疗规范(2018年版) 一、概述 淋巴瘤(lyphoma)是我国最常见的恶性肿瘤之一。根据国家癌症中心公布的数据,2014年我国淋巴瘤的确诊发病率为10万,2015年预计发病率约为10万。由于淋巴瘤病理类型复杂,治疗原则各有不同,为进一步提高淋巴瘤诊疗能力和规范化水平,配合抗肿瘤药品供应保障有关政策调整,保障医疗质量与安全,现对《中国恶性淋巴瘤诊疗规范(2015年版)》进行修订和更新。 二、淋巴瘤的诊断 应当结合患者的临床表现、体格检查、实验室检查、影像学检查和病理学等进行诊断。 (一)临床表现 淋巴瘤的症状包括全身和局部症状。全身症状包括不明原因的发热、盗汗、体重下降、皮肤瘙痒和乏力等。局部症状取决于病变不同的原发和受侵部位,淋巴瘤可以原发于身体的任何器官和组织,通常分为原发于淋巴结和淋巴结外两大类。最常见表现为无痛性的进行性淋巴结肿大。如有以上述症状的患者在基层医院就诊时,应予以重视,并尽早转诊至上级医院或肿瘤专科医院。 (二)体格检查 应特别注意不同区域的淋巴结是否增大、肝脾的大小、伴随体征和一般状态等。 (三)实验室检查 应完成的实验室检查包括血常规、肝肾功能、乳酸脱氢酶(lactate dehydrogenase,LDH)、β2微球蛋白、红细胞沉降率、乙型肝炎和丙型肝炎病毒检测以及骨髓穿刺细胞学和活检等,还应包括人类免疫缺陷病毒(human immunodeficiency virus,HIV)筛查在内的相关感染性筛查。对原发胃的黏膜相关边缘带B细胞淋巴瘤,应常规进行幽门螺杆菌(helicobacter pylori,Hp)染色检查;对NK/T 细胞淋巴瘤患者,应进行外周血EB病毒DNA滴度检测。对

PIKAKT信号通路图谱

P I K A K T信号通路图谱公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

PI3K/AKT信号通路 磷脂酰肌醇3-激酶(PI3Ks)信号参与增殖、分化、凋亡和葡萄糖转运等多种细胞功能的调节. 近年来发现, IA型PI3K和其下游分子蛋白激酶 B(PKB或Akt)所组成的信号通路与人类肿瘤的发生发展密切相关. 该通路调节肿瘤细胞的增殖和存活, 其活性异常不仅能导致细胞恶性转化, 而且与肿瘤细胞的迁移、黏附、肿瘤血管生成以及细胞外基质的降解等相关, 目前以PI3K-Akt信号通路关键分子为靶点的肿瘤治疗策略正在发展中.

在PI3K家族中, 研究最广泛的是能被细胞表面受体所激活的I型PI3K. 哺乳动物细胞中Ι型PI3K又分为IA和IB两个亚型, 他们分别从酪氨酸激酶连接受体和G蛋白连接受体传递信号.IA 型PI3K是由催化亚单位p110和调节亚单位p85所组成的二聚体蛋白, 具有类脂激酶和蛋白激酶的双重活性.PI3K通过两种方式激活, 一种是与具有磷酸化酪氨酸残基的生长因子受体或连接蛋白相互作用, 引起二聚体构象改变而被激活; 另一种是通过Ras和p110直接结合导致PI3K的活化. PI3K激活的结果是在质膜上产生第二信使PIP3, PIP3与细胞内含有PH结构域的信号蛋白Akt和PDK1(phosphoinositidedependentkinase-1)结合, 促使PDK1磷酸化Akt蛋白的Ser308导致Akt的活化. Akt还能通过PDK2(如整合素连接激酶ILK)对其Thr473的磷酸化而被激活.活化的Akt通过磷酸化作用激活或抑制其下游靶蛋白Bad 、Caspase9、NF-κB、GSK-3、FKHR、 p21Cip1和p27 Kip1等, 进而调节细胞的增殖、分化、凋亡以及迁移等. PI3K-Akt信号通路的活性被类脂磷酸酶PTEN(phosphatase and tensin homolog deleted on chromosome ten)和SHIP(SH2-containing inositol 5-phosphatase)负调节, 他们分别从PIP3的3′和5′去除磷酸而将其转变成PI(4,5)P2和PI(3,4)P2而降解. 迄今为止, 尚未发现下调Akt活性的特异磷酸酶, 但用磷酸酶抑制剂处理细胞后, 发现Akt 的磷酸化和活性均有所增加. 最近发现Akt能被一种C末端调节蛋白(CTMP)所失活, CTMP能结合Akt并通过抑制Akt的磷酸化而阻断下游信号的传递, CTMP的过表达能够逆转v-Akt转化细胞的表型. 热休克蛋白

相关文档
相关文档 最新文档