文档库 最新最全的文档下载
当前位置:文档库 › 三维风洞

三维风洞

三维风洞
三维风洞

风洞尺寸1000×300×300mm,双圆柱,长度300mm,直径7mm

1.启动gambit

2.建立三维风洞,;依次点击Operation—Geometry—V olume—Create Real Brick

3.调整坐标系,右键点击Active下面的按钮,选择第4个坐标系(注:坐标系的选择可随意确定,但要与下面的风洞尺寸相对应),如下图所示。

4.在Create Real Brick对话框中,输入风洞尺寸1000×300×300,Direction中选择

,点击Apply,具体如下图所示。

5,顺次点击Active下面的、按钮,调整风洞模型在可视窗口中自适应的尺寸,如下图所示。(注:鼠标左键点击图形,可对图形进行旋转,点击,即可恢复)

6.建立双圆柱。依次点击Operation—Geometry—V olume,右键点击V olume选择Cylinder,如下图所示

7得到Create Real Cylinder对话框,如下图所示

择Positive Z,点击Apply,同样。再插入Y方向另一圆柱,具体如下图所示

按钮,出现Move/Copy V olumes对话框,在Move/Copy V olumes对话框中的V olumes选择Z 方向的圆柱体,首先鼠标点击“黄色区域”,按住shift键,并点击圆柱,即可选中,在Global

中输入X、Y、Z方向的移动距离150×150×0,点击Apply,如下图所示。

选中,在Global中输入X、Y、Z方向的移动距离156×0×150,点击Apply,如下图所示。

11再做一个长为700,半径为50的圆柱体,在Axis Location中右键选择centered X,点击Apply,如下图所示

12.在Move/Copy V olumes对话框中的V olumes选择上面的圆柱体,在Global中输入X、Y、Z方向的移动距离0×150×150,点击Apply,

13.接下来进行布尔操作,把双圆柱从风洞中“减去”,在Operation—Geometry—V olume下,右键点击,选择,出现Subtract Real V olumes对话框,在V olume中选择“风洞”,在Subtract V olumes中选择“双圆柱”,具体操作方法仍然是按住Shift键,鼠

标点击风洞(或双圆柱)。点击Apply,如下图所示。

两个体,不选中connected,单击Apply,如下图所示

15.点击图标,删去突出长方体外的那个圆柱体部分,如下图所示

16.点击Active下的,即可看出布尔操作的结果(注:右键点击,选择

即可恢复原图),如下图所示

17.双圆柱绕流风洞建立完毕,接下来就是画网格。

顺次点击Operation—Mesh—Edge,得到Mesh Edges对话框,如下图所示

选中两个小圆柱与大圆柱和长方体的重合部分,共8个,点击Interval size,选择Interval count,

并输入“6”,其它默认设置,点击Apply,如下图所示

认设置,点击Apply,如下图所示

19.接下来画面网格,顺次点击Operation—Mesh—Face,得到Mesh Faces对话框。首先在Faces中选中大圆柱的两个面,在Elements中选中“Tri”,其它默认设置,点击Apply,如下图所示

20.同样在对大圆柱面画网格,在Elements中选中“Tri”,其它默认设置,点击Apply,如下图所示

“Tri”,其它默认设置,点击Apply,如下图所示

22.接下来进行体网格的划分,顺次点击Operation—Mesh—V olume,在V olumes中选中大圆柱内的两个小圆柱体,在Elements中选择Tet/Hybrid,点击Apply,其它默认设置,如下图所示

23.再对大圆柱划分体网格,在Elements中选择Tet/Hybrid,点击Apply,其它默认设置,如下图所示

点击Apply,其它默认设置,如下图所示

至此,网格划分结束,接下来设置边界条件

25首先点击“solver”选择,再点击Operation—Zones下面的得到Specify

Boundary Types对话框,设置进口边界:Names:输入inlet,Type:选中VELOCITY_INLET,Entity—Faces下选中风洞的进口面,即风洞中与双圆柱最接近的正方形面,选择所包括的两个面,点击Apply即可,如下图所示

26.设置出口边界:Names:输入oulet,Type:选中OUTFLOW,Entity—Faces下选中风洞的出口面,即风洞中与双圆柱最远的正方形面,点击Apply即可,如下图所示

Interface3 ,interface4。如下图所示

国内几个大型风洞实验室资料

1)石家庄铁道大学风洞实验室参数

2)湖南大学风洞实验室 湖南大学风工程试验研究中心目前拥有国内先进的大型边界层风洞实验室,风洞试验室占地2000m2,建筑面积3200 m2。该风洞气动轮廓全长53m、宽18 m,为低速、单回流、并列双试验段的中型边界层风洞,其试验速度相对较高的试验段(高速试验段)长17 m,模型试验区横截面宽3 m、高2.5 m,试验段风速0~60 m /s连续可调。高速试验段有前后两个转盘,前转盘位置可模拟均匀流风场,通过在该试验段一定范围内布置边界层发生器,在后转盘位置可进行与边界层有

关的桥梁节段模型试验、局部构件抗风性能试验。试验速度相对较低的试验段(低速试验段)长15 m、模型试验区横截面宽5.5 m、高4.4 m,最大风速不小于16 m /s,可进行长大桥梁全桥模型抗风试验研究。 3)大连理工大学风洞实验室介绍 大连理工大学风洞实验室(DUT-1)建成于2006年4月,是一座全钢结构单回流闭口式边界层风洞,采用全自动化的测量控制系统。风洞气动轮廓长43.8 m,宽13.1 m,最大高度为6.18m;试验段长18m,横断面宽3m,高2.5m,空风洞最大设计风速50m/s,适用于桥梁与建筑结构等抗风试验研究。 4)中国建筑科学研究院实验室介绍 风洞试验室建筑面积4665平米,拥有目前国内建筑工程规模最大、设备最先进的下吹式双试验段边界层风洞,风洞全长96.5m,高速试验段尺寸为4m×3m×22m(宽×高×长),最高风速30m/s;低速段尺寸为6m×3.5m×21m,最高风速18m/s。拥有1280点同步电子扫描阀、多点激光测振仪、高频天平等先进的测试设备,可进行结构抗风和风环境的风洞试验、CFD数值模拟、风振分析等研究和咨询工作。 风洞采用先进的交流变频调速系统,试验段转盘和移测架均由微机控制,自动化程度较高。风洞压力测量系统包含美国Scanivalve公司的3台DSM主机和20个压力扫描阀,能够实现1280点的压力同步测量,可满足海量测点压力测试的要求。振动测量系统包括美国NI公司的动态信号采集系统、PCB和Dytran公司的超小型精密加速度传感器以及德国Polytec公司的四台激光测振仪,可进行建筑物模型气动弹性试验。此外实验室还配备了高频底座天平、

简易风洞及控制系统

简易风洞及控制系统(G题) 摘要:本帆板控制系统由单片机ATMEGA328作为帆板转角的检测和控制核心,实现按键对风扇转速的控制、调节风力的大小、改变帆板转角θ、液晶显示等功能。引导方式采用角度传感器感知与帆板受风力大小的转角θ的导引线。通过PWM波控制电机风扇风力的大小使其改变帆板摆动的角度θ。风扇控制核心采用L298电机驱动模块,用ATMEGA328单片机为控制核心,产生占空比受数字PID 算法控制的PWM脉冲,实现对直流电机转速的控制,同时利用光电传感器将电机速度转化成脉冲频率反馈到单片机中,实现转速闭环控制,达到转速无静差调节的目的。MMA7455三轴加速传感器把角度输出信号传送给ATMEGA328单片机进行处理。 关键词:ATMEGA328,MMA7455,PWM波,PID算法

目录 1. 系统设计 1.1 任务与要求 1.1.1 主要任务 1.1.2 基本要求 1.1.3 说明 1.2总体设计方案 1.2.1 设计思路· 1.2.2 方案论证与比较 1.2.3 系统的组成 2. 单元电路设计 2.1 风速控制电路 2.2小球测距原理 2.3控制算法 3. 软件设计 3.1风速控制电路设计计算 3.2控制算法设计与实现 3.3程序流程图 4. 系统测试 4.1 调试使用的仪器与方法 4.2 测试数据完整性 4.3 测试结果分析 4.4 结束语 5. 总结 参考文献 附录1 元器件明细表 附录2 电路图图纸 附录3 程序清单

1.1任务与要求 1.1.1 主要任务 设计制作一简易风洞及其控制系统。风洞由圆管、 连接部与直流风机构成,如图所示。 圆管竖直放置,长度约40cm,内径大于4cm且内 壁平滑,小球(直径4cm黄色乒乓球)可在其中上下运 动;管体外壁应有A、B、C、D等长标志线,BC段有 1cm间隔的短标志线;可从圆管外部观察管内小球的位置;连接部实现风机与圆管的气密性连接,圆管底部应有防止小球落入连接部的格栅。控制系统通过调节风机的转速,实现小球在风洞中的位置控制。 1.1.2 基本要求 (1)小球置于圆管底部,启动后5s内控制小球向上到达BC段,并维持5s 以上。 (2)当小球维持在BC段时,用长形纸板(宽度为风机直径的三分之一)遮挡风机的进风口,小球继续维持在BC段。 (3)以C点的坐标为0cm、B点的坐标为10cm;用键盘设定小球的高度位置(单位:cm),启动后使小球稳定地处于指定的高度3s以上,上下波 动不超过±1cm。 (4)以适当的方式实时显示小球的高度位置及小球维持状态的计时。(5)小球置于圆管底部,启动后5s内控制小球向上到达圆管顶部处A端,且不跳离,维持5s以上。 (6)小球置于圆管底部,启动后30s内控制小球完成如下运动:向上到达AB段并维持3~5s,再向下到达CD段并维持3~5s;再向上到达AB段 并维持3~5s,再向下到达CD段并维持3~5s;再向上冲出圆管(可以

2014年TI杯大学生电子设计竞赛赛题-G题风洞控制系统V4—专科

2014年TI杯大学生电子设计竞赛题 G题:简易风洞及控制系统(高职) 设计制作一简易风洞及其控制系统。风洞由圆管、连接部与直 流风机构成,如右所示。圆管竖直放置,长度约40cm,内径大于 4cm且内壁平滑,小球(直径4cm黄色乒乓球)可在其中上下运动; 管体外壁应有A、B、C、D等长标志线,BC段有1cm间隔的短标 志线;可从圆管外部观察管内小球的位置;连接部实现风机与圆管 的气密性连接,圆管底部应有防止小球落入连接部的格栅。控制系 统通过调节风机的转速,实现小球在风洞中的位置控制。 2.要求 (1)小球置于圆管底部,启动后5秒内控制小球向上到达BC 段,并维持5秒以上。(20分) (2)当小球维持在BC段时,用长形纸板(宽度为风机直径的 三分之一)遮挡风机的进风口,小球继续维持在BC段。(10分) (3)以C点的坐标为0cm、B点的坐标为10cm;用键盘设定小球的高度位置(单位:cm),启动后使小球稳定地处于指定的高度3秒以上,上下波动不超过± 1cm。(10分) (4)以适当的方式实时显示小球的高度位置及小球维持状态的计时。(10分)(5)小球置于圆管底部,启动后5秒内控制小球向上到达圆管顶部处A端,且不跳离,维持5秒以上。(10分) (6)小球置于圆管底部,启动后30秒内控制小球完成如下运动:向上到达AB段并维持3~5秒,再向下到达CD段并维持3~5;再向上到达AB段并维持3~5, 再向下到达CD段并维持3~5;再向上冲出圆管(可以落到管外)。(20分)(7)风机停止时用手将小球从A端放入风洞,小球进入风洞后系统自动启动,控制小球的下落不超过D点,然后维持在BC段5秒以上。(10分) (8)其他自主发挥设计。(10分) (9)设计报告。(20分) 共1页,G-1

风洞测控系统集成

风洞测控系统集成 系统简介 拓普测控的风洞测控系统广泛应用于低速、高速、高超声速风洞相关实验需求,提供了包括“马赫数(Ma)控制子系统”、“模型姿态控制子系统”、“数据测量子系统”、“实验监视子系统”及局域网络设备在内的风洞测控系统解决方案,满足风洞实验各项专业要求。同时,还配置风洞运行安全监控及流场校测等设备,并可根据用户具体项目情况灵活调整配置或定制专用功能。 系统特点 ★高度自动化的测控 整套风洞测控系统采用性能优越的虚拟仪器技术,通过局域网络进行管理,能够完成风洞试验中多种动、静态信号的采集记录及数据的分析、处理,并通过调压阀实现风洞流场马赫数的自动控制;通过控制步进电机实现模型姿态角(攻角)的控制。从而完成整个风洞系统参数的动态测控。 ★可靠、稳定的系统 拓普测控具有一批从事风洞测量控制系统的队伍和专家,已为国内多个风洞完成了测控系统设计制造,其通过局域网络进行管理的方式,具有较高的自动化程度、较强的可靠性和较大的扩展性。同时其较强的试验能力和先进的技术指标,完全满足各类风洞试验项目的测量、控制需要。 ★专业化的全套方案 拓普测控基于多年来深耕于行业以及多个国家重点风洞、实验室的实际应用经验,以雄厚的技术实力做为支撑,为您提供从传感器、硬件到分析软件以及现场安装、调试、试验等全面、全套的解决方案。 ★无法拒绝的高性价比

拓普测控强大的研发动力和虚拟仪器平台自有的知识产权,让您能以低于进口仪器的价格,购买到比肩进口仪器性能的仪器。 典型应用 ★风洞参数测量 天平测力;压力测量;温度测量;气流量测量;其它风洞参数测量。 ★风洞系统控制 马赫数控制子系统;模型姿态控制子系统;数据测量子系统;试验监视子试验系统等。

简易风洞及控制系统

简易风洞及控制系统 This model paper was revised by the Standardization Office on December 10, 2020

简易风洞及控制系统(专科组G题) 作者:王康、赵辉、张帅帅 赛前辅导教师:吉武庆 文稿整理辅导教师:吉武庆 摘要 本文介绍了简易风洞控制系统的设计方案。本设计以STC89C52RC单片机为主控芯片,利用涡轮式轴流风机来为小球的运动提供动能。通过在风洞表面安装的8个光电式光线传感器来检测小球位置,而后通过PID算法对轴流风机的抽风量进行进一步调校.从而形成一个完整的闭环控制系统。 关键词:PID算法,PWM调速,闭环控制 Abstract This paper introduces the design plan of a simple wind tunnel control system. The design STC89C52RC microcontroller as the main control chip, using turbine type axial flow fan to provide kinetic energy for the movement of the ball. To detect the location of the ball in a wind tunnel by surface mounted 8 photoelectric light sensor, and then through the exhaust volume PID algorithm flow fan on the shaft was further adjusted. So as to form a complete closed-loop control system. Keywords: PID algorithm, PWM speed control, closed loop control

风洞试验

风洞实验 科技名词定义 中文名称:风洞实验 英文名称:wind tunnel testing 定义:在风洞中进行模拟飞行器在大气中运动时的空气动力学现象。 应用学科:航空科技(一级学科);飞行原理(二级学科) 本内容由全国科学技术名词审定委员会审定公布 流体力学方面的风洞实验指在风洞中安置飞行器或其他物体模型,研究气体流动及其与模型的相互作用,以了解实际飞行器或其他物体的空气动力学特性的一种空气动力实验方法;而在昆虫化学生态学方面则是在一个有流通空气的矩形空间中,观察活体虫子对气味物质的行为反应的实验。 目录

编辑本段原理 风洞实验的基本原理是相对性原理和相似性原理。根据相对性原理,飞机在静止 风洞实验 空气中飞行所受到的空气动力,与飞机静止不动、空气以同样的速度反方向吹来,两者的作用是一样的。但飞机迎风面积比较大,如机翼翼展小的几米、十几米,大的几十米(波音747是60米),使迎风面积如此大的气流以相当于飞行的速度吹过来,其动力消耗将是惊人的。根据相似性原理,可以将飞机做成几何相似的小尺度模型,气流速度在一定范围内也可以低于飞行速度,其试验结果可以推算出其实飞行时作用于飞机的空气动力。[1] 编辑本段优点 风洞实验尽管有局限性,但有如下四个优点:①能比较准确地控制实验条 风洞实验 件,如气流的速度、压力、温度等;②实验在室内进行,受气候条件和时间的影响小,模型和测试仪器的安装、操作、使用比较方便;③实验项目和内容多种多样,实验结果的精确度较高;④实验比较安全,而且效率高、成本低。因此,风洞实验在空气动力学的研究、各种飞行器的研制方面,以及在工业空气动力学和其他同气流或风有关的领域中,都有广泛应用。 编辑本段要求

小型模拟风洞系统设计报告

综合电子设计 小型模拟 风洞系统 刘石劬 22011231 尹哲浩 22011214 赵正扬 22011212 董元 22011207

一、引言 二、设计思路 2.1 整体功能设想 2.2 模块实现方式确定 三、设计内容及部分电路仿真 3.1 输入模块设计部分 3.1.1 按钮功能电路实现与仿真 3.1.2 控制输入电路实现与仿真 3.2 控制模块设计部分 3.2.1 硬件选型及论证 3.2.2 风扇控制信号的分析 3.3 整体原理图与PCB设计 四、整体实物图即测试结果 五、课程收获与心得 六、参考文献

一、引言 风洞是空气动力学研究的重要地面试验设备,通过对流体力学方法的计算,可以研究物体模型所受不同方向、不同大小的气动阻力影响,为汽车、高速列车等等的选型提供大量的参考依据。同时,风洞也是试验高速飞行器必不可少的一种设备,是保证一个国家航空航天处于领先地位的基础研究设施]1[。随着时代的发展,飞机研究制造业的竞争越加激烈,尤其在军事领域,现有风洞试验设备的模拟能力已经成为制约第四第五代战斗机的研制和未来高超声速飞行器发展的瓶颈。 这次课题设计,我们想以自己现有的能力和一些简单的器材来完成一个简易的小型风洞设计,用以模拟产生不同风力大小的气流。我们采用电脑CPU风扇作为风力的发生装置,以输入信号的占空比来调节风扇转速的大小,并可以根据风扇所发出的风力大小来实现结果的反馈。 二、设计思路 2.1 整体功能设想 风扇的输入信号可以控制风扇实现不同的转速,也可以让风扇的工作处于测试模式下,即风扇的转速按预定的延时变化,风力将由大至小,再由小变大循环往复。也可以通过键盘,让帆板到达指定高度。 2.2 模块实现方式确定 (1) 输入模块:使用者将通过按钮进行输入信号的控制,工作时不会存在两个按钮同时有效的情况。本模块的大体部分会以门电路的形式构成,功能上通过计数器不同的计数值来形成不同的输入信号,但必须保证信号的频率一致。最后,所有档位的信号必须以同一个输出端口输送至风扇,对风扇进行相应的控制。 (2) 控制模块:采用MSP430F6638作为主控芯片,它是由TI公司推出的16位超低功耗、具有精简指令集(RISC)的混合信号处理器。用LSM303作为检测角度的传感器,用AVC 8038风扇作为风力来源。

简易风洞控制系统设计

简易风洞控制系统设计 【摘要】本设计主要通过MSP430单片机控制直流风机完成简易风洞试验。风洞由圆管,连接部与直流风机构成,由单片机产生PWM控制直流风机的转速,通过红外对管阵列采集光强信息检测小球在圆管中的位置,同时由12864液晶显示小球的高度位置及维持状态的时间,从而实现小球在简易风洞中的位置控制。 【关键词】风洞;MSP430;控制系统 1.引言 风洞,是指在一个管道内,用动力设备驱动一股速度可控的气流,用以对模型进行空气动力实验的一种设备。最常见的是低速风洞。但由于风洞造价过高,导致对气流研究成本偏高。所以本次设计为一个简单的风洞,可以在导管中研究小球漂浮时气流对它的影响。 2.总体设计方案 本系统主要由主控板模块、测距模块、显示模块、电机驱动模块、电源模块组成,系统方框图如图1所示。图中MSP430控制器模块为系统的核心部件,按键和液晶显示器用来实现人机交互功能,其中通过键盘将需要设置的参数和状态输入到单片机中,并通过控制器显示到液晶屏上。在运行过程中控制器产生PWM 脉冲送到风机驱动电路中,控制直流电机转速,同时控制器经过数字PID运算后改变PWM脉冲的占空比,实现电机转速达到实时、准确控制的目的。 图1 系统总体框图 3.硬件设计 3.1 微控制器电路设计 MSP430是一个超低功耗的16位单片机,它处理速度快、运算能力强、功耗低、片内资源丰富、开发方便。其最小系统如图2所示。 3.2 传感器电路设计 传感器部分采用红外对管进行小球位置点信息的采集。红外分为两个部分,一个部分为发射,另外一部分为接收,每当小球穿过红外的时候,电路会给主控芯片送入低电平,从而达到判断小球位置的目的。电路图如图4所示。 图2 MSP430单片机最小系统电路原理图 图3 红外测距模块电路原理图

PID控制在风洞风速调节中的应用

PID控制在风洞风速调节中的应用 陈树权 (哈尔滨150001) 摘要为了完成某研究所风洞的风速控制系统,设计了一套以计算机为中心基于PLC的风速控制系统,给出了系统的硬件设计和软件设计,在提出PI控制方案的基础上,介绍了PID 控制的原理和特点,对风速控制精度及PID参数整定进行了研究。经实际运行验证了在风洞交流电机变频调速系统中PID控制的可靠性和实用性。 关键词PID控制交流电机变频调速 引言 风洞是空气动力学试验系统的必要设备。它依据运动的相对性原理,将飞行器的模型或实物固定在风洞中,通过风洞气流流过,以此模拟飞行器空中各种复杂的飞行状态,获取实验数据。风洞是研制飞机必需的一种试验装置。它模拟飞机飞行中各种气动力条件,以便获取飞机在空中飞行时的各种参数。 气流的改变是通过调节风洞系统中的电机转数调节风速实现的,风速采用安川G7系列变频控制器,并配以编码器反馈完成高精度控制,通过可编程逻辑控制器(PLC)实现PID 控制,使用具有触摸操作和通信功能的人机界面。PID控制是闭环控制系统中比例一积分一微分控制算法,它可以看作是这三项之和,根据设定值与被控对象实际值的差值,按PID方式汁算出控制输出量,使反馈跟随设定值变化,因此PID控制是负反馈闭环控制其中比例项是增益(Kc)与偏差的乘积,积分项与偏差的和成正比,微分项与偏差的变化成正比,而可编程控制器(PIC)是利用其闭环控制模块来实现PID控制。 1 PID控制介绍 1.1 PID控制的原理和特点 在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID 控制,又称PID调节PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时。系统控制器的结构和参数必须依靠经验和现场调试来确定时,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。本系统中只采用比例和积分控制。1.1.1 比例(P)控制 比例控制是一种最简单的控制方式。其控制器的输出与输人误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady—stateerror)。 1.1.2 积分(I)控制 在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进人稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System withSteady—stateError)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。1.1.3 微分(D)控制 在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大

风洞风速与风量测试校准系统

风洞风速与风量测试 校准系统 课程:热工计量技术 学院:计量测试工程学院 班级:10力学1班 姓名:林星驰 学号:100205126 指导老师:孙在 2013年6月20日

目录 一、风洞的介绍及概述 二、实验原理概述 (一)风速的测量校准 1、风速测量原理及装置 2、测量方法及步骤 3、风洞中风速的校准 4、误差分析 (二)风量的测量校准 1、风量测量原理与装置 2、测量方法与步骤 3、风洞中风量的校准 三、心得总结

一.风洞的介绍及概述 风洞实验是飞行器研制工作中的一个不可缺少的组成部分。它不仅在航空和航天工程的研究和发展中起着重要作用,随着工业空气动力学的发展,在交通运输、房屋建筑、风能利用等领域更是不可或缺的。这种方法,流动条件容易控制,可重要依据是运动的相对性原理。实验时,常将模型或实物固定在风复地、经济地取得实验数据。为使实验结果准确,实验时的流动必须与实际流动状态相似,即必须满足相似律的要求。但由于风洞尺寸和动力的限制,在一个风洞中同时模拟所有的相似参数是很困难的,通常是按所要研究的课题,选择一些影响最大的参数进行模拟。此外,风洞实验段的流场品质,如气流速度分布均匀度、平均气流方向偏离风洞轴线的大小、沿风洞轴线方向的压力梯度、截面温度分布的均匀度、气流的湍流度和噪声级等必须符合一定的标准,并定期进行检查测定。 流体力学方面的风洞实验指在风洞中安置飞行器或其他物体模型,研究气体流动及其与模型的相互作用,以了解实际飞行器或其他物体的空气动力学特性的一种空气动力实验方法;而在昆虫化学生态学方面则是在一个有流通空气的矩形空间中,观察活体虫子对气味物质的行为反应的实验。简单地讲,就是依据运动的相对性原理,将飞行器的模型或实物固定在地面人工环境中,人为制造气流流过,以此模拟

低速风洞稳风速控制系统的设计

文章编号:10035850(2005)12005503 低速风洞稳风速控制系统的设计 Design of Control System of Holding Wind Velocity for Low Speeding Wind Tunnel 宋 伟 施洪昌 (江苏技术师范学院 常州 213001)(中国空气动力研究与发展中心 绵阳 261000) 【摘 要】在风洞模型试验过程中,洞内风速是否稳定将直接影响到实验结果的准确性,因此,稳风速控制系统是风洞测控系统中重要组成部分。以江苏技术师范学院信控研究所研制的低速风洞测控系统为例,简要介绍其稳风速控制过程。 【关键词】稳风速,测控系统,控制过程 中图分类号:T P 273  文献标识码:A ABSTRACT Dur ing the ex per iment of w ind tunnel mo del,the steady o f w ill directly affect the accur acy o f ex perim ent result,so the contr ol sy stem o f ho lding w ind v elo city is the impor tant co mponent o f mea sur ement and co nt ro l system in w ind t unnel .T his pa-per w ill take an ex ample of measurement and contr ol sy st em fo r successive low speeding wind tunnel developed by info rmation co n-tr ol r esear ch institute o f Jiang su T eachers U niver sity ,br iefly intr oduce its co mponets and contr ol pr ocedur e o f co nt ro l sy stem o f holding w ind velocity ,a nd analyze kinds o f inter ference ex cited in sy st em ,and then adv ance so me effective measurement of inhibi-tio n interfer ence . KEYWORDS ho ld w ind v elo city ,measur ement and contr ol system ,co nt ro l pro cedur e 连续式低速风洞由一台风扇提供试验气流,其吹风速度一般低于60m /s ,为了实现对其洞内气流稳风速控制,要求风扇转速控制的调整比为1:10~1:20,能无级变速;稳速精度为0.1%~0.2%;额定转速在30m in 内漂移小于0.1%~0.2%。 1 系统硬件设计 稳风速控制系统包括风扇电机、直流调整装置、测速编码器、模拟量输出板等部分,如图1 所示。 工作过程是由计算机给定一个风速,通过模拟量输出板将模拟电压或电流信号输出到调速器,速压传 感器测得风速的压力,温度传感器测得洞内温度,根据公式: V F =K rp P d T K rp ——比例系数在风速标定时测得P d ——风速压力值T ——风洞绝对温度 通过计算V F 和给定风速比较,不断改变模拟量输 出板的输出值,以达到风速稳定。 1.1 转速控制装置 调整装置采用模拟量给定,脉冲编码器作为速度反馈元件。风洞实验时,稳风速系统中的软速压调节器比较风速压力给定值与速压传感器反馈值,输出转速给定值。本文案采用西门子调整装置来控制风扇转速。采用脉冲编码器作为反馈元件,提高反馈精度。通风机的转动惯量大,启动时间长,用软启动器启动可减少启动电流对控制供电回路的冲击和影响。为减少干扰,启动结束后软启动器旁路。抽吸机采用变频器调整速以控制抽气量,变频器由计算机系统给定,根据需要控制抽气机转速。1.2 速压传感器 低速风洞风速一般低于60m /s,速压值在0到3kPa, * 20050822收到,20051101改回 ** 宋 伟,男,1976年生,助教,2000年毕业于江苏师范学院,研究方向:测控系统。 ?55?第18卷 第12期 电脑开发与应用 (总805)

国内几个大型风洞实验室资料

2)湖南大学风洞实验室 湖南大学风工程试验研究中心目前拥有国内先进的大型边界层风洞实验室,风洞试验室占地2000m2,建筑面积3200 m2。该风洞气动轮廓全长53m、宽18 m,为低速、单回流、并列双试验段的中型边界层风洞,其试验速度相对较高的试验段(高速试验段)长17 m,模型试验区横截面宽3 m、高m,试验段风速0~60 m /s连续可调。高速试验段有前后两个转盘,前转盘位置可模拟均匀流风场,通过在该试验段一定范围内布置边界层发生器,在后转盘位置可进行与边界层有关的桥梁节段模型试验、局部构件抗风性能试验。试验速度相对较低的试验段(低速试验段)长15 m、模型试验区横截面宽m、高m,最大风速不小于16 m /s,可进行长大桥梁全桥模型抗风试验研究。 3)大连理工大学风洞实验室介绍 大连理工大学风洞实验室(DUT-1)建成于2006年4月,是一座全钢结构单回流闭口式边界层风洞,采用全自动化的测量控制系统。风洞气动轮廓长 m,宽m,最大高度为;试验段长18m,横断面宽3m,高,空风洞最大设计风速50m/s,适用于桥梁与建筑结构等抗风试验研究。 4)中国建筑科学研究院实验室介绍 风洞试验室建筑面积4665平米,拥有目前国内建筑工程规模最大、设备最先进的下吹式双试验段边界层风洞,风洞全长,高速试验段尺寸为4m×3m×22m(宽×高×长),最高风速30m/s;低速段尺寸为6m××21m,最高风速18m/s。拥有1280点同步电子扫描阀、多点激光测振仪、高频天平等先进的测试设备,可进行结构抗风和风环境的风洞试验、CFD数值模拟、风振分析等研究和咨询工作。 风洞采用先进的交流变频调速系统,试验段转盘和移测架均由微机控制,自动化程度较高。风洞压力测量系统包含美国Scanivalve公司的3台DSM主机和20个压力扫描阀,能够实现1280点的压力同步测量,可满足海量测点压力测试的要求。振动测量系统包括美国NI公司的动态信号采集系统、PCB和Dytran公司的超小型精密加速度传感器以及德国

简易风洞

共1页,G-1 2014年陕西省TI 杯大学生电子设计竞赛题 G 题:简易风洞及控制系统(高职) 1. 任务 设计制作一简易风洞及其控制系统。风洞由圆管、连接部与直 流风机构成,如右所示。圆管竖直放置,长度约40cm ,内径大于 4cm 且内壁平滑,小球(直径4cm 黄色乒乓球)可在其中上下运动; 管体外壁应有A 、B 、C 、D 等长标志线,BC 段有1cm 间隔的短标 志线;可从圆管外部观察管内小球的位置;连接部实现风机与圆管 的气密性连接,圆管底部应有防止小球落入连接部的格栅。控制系 统通过调节风机的转速,实现小球在风洞中的位置控制。 2. 要求 (1) 小球置于圆管底部,启动后5秒内控制小球向上到达BC 段,并维持5秒以上。(20分) (2) 当小球维持在BC 段时,用长形纸板(宽度为风机直径的 三分之一)遮挡风机的进风口,小球继续维持在BC 段。(10分) (3) 以C 点的坐标为0cm 、B 点的坐标为10cm ;用键盘设定小球的高度位置(单 位:cm ),启动后使小球稳定地处于指定的高度3秒以上,上下波动不超过±1cm 。(10分) (4) 以适当的方式实时显示小球的高度位置及小球维持状态的计时。(10分) (5) 小球置于圆管底部,启动后5秒内控制小球向上到达圆管顶部处A 端,且不跳 离,维持5秒以上。(10分) (6) 小球置于圆管底部,启动后30秒内控制小球完成如下运动:向上到达AB 段 并维持3~5秒,再向下到达CD 段并维持3~5;再向上到达AB 段并维持3~5,再向下到达CD 段并维持3~5;再向上冲出圆管(可以落到管外)。(20分) (7) 风机停止时用手将小球从A 端放入风洞,小球进入风洞后系统自动启动,控制 小球的下落不超过D 点,然后维持在BC 段5秒以上。(10分) (8) 其他自主发挥设计。(10分) (9) 设计报告。(20分) 项 目 主要内容 分数 系统方案 方案比较,方案描述 5 设计与论证 风洞控制实现方法 电路设计及参数计算 8 测试 测试方法与测试结果 5 设计报告结构及规范性 摘要,正文结构完整性、内容规范性 2 小计 20

简易风洞及控制系统

简易风洞及控制系统(专科组G题) 作者:王康、赵辉、张帅帅 赛前辅导教师:吉武庆 文稿整理辅导教师:吉武庆 摘要 本文介绍了简易风洞控制系统的设计方案。本设计以STC89C52R单片机为主控芯片,利用涡轮式轴流风机来为小球的运动提供动能。通过在风洞表面安装的8个光电式光线传感器来检测小球位置,而后通过PID 算法对轴流风机的抽风量进行进一步调校. 从而形成一个完整的闭环控制系统。 关键词:PID算法,PW调速,闭环控制 Abstract This paper introduces the design plan of a simple wind tunnel control system. The design STC89C52RCmicrocontroller as the main control chip, using turbine type axial flow fan to provide kinetic energy for the movement of the ball. To detect the location of the ball in a wind tunnel by surface mounted 8 photoelectric light sensor, and then through the exhaust volume PID algorithm flow fan on the shaft was further adjusted. So as to form a complete closed-loop control system. Keywords: PID algorithm, PWM speed control, closed loop control

风洞试验与数值模拟

风洞试验与数值模拟 ――北京大学在数值模拟方面的技术进展 一.科学研究的方法: 人类在认识自然、认识科学的过程中,曾经创造出了两种方法,即:理论研究和实验研究。理论研究得出的结论,要经过严格的论证,这是十分必要的,但在工程实践中却难以应用。实验研究,结论清晰、直观,也就是俗话说的“看得见,摸的着”,但它的局限性太大,因而应用范围有限。 上世纪四十年代,电子计算机的横空出世,改变了人类的生活和思想。随着近年来计算机软硬件技术的突飞猛进,以前大量无法解决的工程实际问题,已经可以用新的计算方法来加以解决了。因此,第三种科学研究的方法发展出来了,那就是计算科学的方法(或称为数值模拟、数值计算)。它不仅具有理论研究的严谨性,又具有实验研究的直观性,更加具备极其广泛的应用范围。如今,计算科学在科学研究中所占的比重越来越大,并必将成为今后科学技术发展的主流。 二.什么是“风洞试验”: 风洞,从外观上看酷似一座洞,它是通过产生出可人工控制的气流,对试验模型周围的气体的流动进行模拟,并可量度气

流对物体的作用,以及观察流动现象的一种管道状试验设备。 而风洞试验,是实验研究工程问题的一种方法。它是依据运动的相对性原理,将试验原型同比缩小的模型固定在风洞中,人为制造气流流过,获取各测试点的试验数据,并以此寻找出工程问题的解决方案。 风洞试验主要针对相似模型进行测力试验、测压试验和布局选型试验。 三.风洞试验在“挡风抑尘墙”工程实践中的局限性: “挡风抑尘墙”的作用就是降低露天堆场上方的风速,以达到抑尘效果。这是属于流体力学范畴的一类问题。流体力学是物理学的一个分支,是主要研究流体(包括气体和液体)与其中的物体相互作用的一门科学。 研究流体力学的方法同样有理论研究和实验研究。 在理论研究中,以理论流体力学的基本控制方程组和基本定律为出发点,采用适当的前提假设(如空气的不可压缩性假定),经过严格的数学推导,求解出方程中的未知量(如压力,速度等)。 鉴于理论流体动力学的基本控制方程组及其边界条件的强烈的非线性特性,只能在几种简单的情况下得到方程组的解析解,在复杂的情况下(如三维流场,复杂外形等)就无法获得解析解,这就决定了理论研究方法在“挡风抑尘墙”研究中具有很多的局限性,工程实践中很难采用这种方法。

简易风洞及控制系统

简易风洞及控制系统( 专科组 G题) 作者:王康、赵辉、张帅帅 赛前辅导教师:吉武庆 文稿整理辅导教师:吉武庆 摘要 本文介绍了简易风洞控制系统的设计方案。本设计以STC89C52RC单片机为 主控芯片 , 利用涡轮式轴流风机来为小球的运动提供动能。通过在风洞表面安装的 8 个光 电式光线传感器来检测小球位置,而后通过 PID 算法对轴流风机的抽风量进行进一步调校 . 从而形成一个完整的闭环控制系统。 关键词: PID 算法, PWM调速,闭环控制 Abstract This paper introduces the design plan of a simple wind tunnel control system. The design STC89C52RC microcontroller as the main control chip, using turbine type axial flow fan to provide kinetic energy for the movement of the ball. To detect the location of the ball in a wind tunnel by surface mounted 8 photoelectric light sensor, and then through the exhaust volume PID algorithm flow fan on the shaft was further adjusted. So as to form a complete closed-loop control system. Keywords: PID algorithm, PWM speed control, closed loop control

风洞试验

A.风洞实验的基本原理是相对性原理和相似性原理。根据相对性原理,飞机在静止风洞实验 空气中飞行所受到的空气动力,与飞机静止不动、空气以同样的速度反方向吹来,两者的作用是一样的。但飞机迎风面积比较大,如机翼翼展小的几米、十几米,大的几十米(波音747是60米),使迎风面积如此大的气流以相当于飞行的速度吹过来,其动力消耗将是惊人的。根据相似性原理,可以将飞机做成几何相似的小尺度模型,气流速度在一定范围内也可以低于飞行速度,其试验结果可以推算出其实飞行时作用于飞机的空气动力。[1] B.风洞实验原理及实验仪器 一、实验目的 通过参观,让学生了解风洞实验装置的构造、作用,常用的风洞实验仪器及作用,风洞实验的过程和风洞实验的原理。 二、风洞系统简介 风洞作为一套完整的空气动力实验装备,其构造是较为复杂的。按风洞实验段气流速度的大小,一般可分为:低速风洞(M≤0.3),高亚音速风洞(0.3≤M≤0.8),跨音速风洞(0.8≤M≤1.5)。超音速风洞(1.5≤M≤4.5)。高超音速风动(4.5≤M≤10),极高速风洞(M>10)。 1.以805实验室HG-4号超音速风洞为例,它主要由以下几部分组成: l 气源系统:由大型空气压缩机提供清洁干燥的高压空气; l 风洞本体:由高压管道、紧闭阀、快速阀、调压阀、稳定段、喷管、试验段、攻角机构、可调节超音速扩散、亚音速扩散段等组成;

l 控制系统:控制系统及模型状态等; l 测量系统:测量系统系数、模型空气动力及模型转速,并作为纹影显示及摄影等, l 消音系统:降低噪音。 实验过程:空气压缩机把压缩空气打进储气瓶储存起来,压缩空气经管道流向风洞。实验时,预给调压阀一开度,开启紧闭阀至完全打开后,开启快速阀,压缩空气经稳定段至喷管,到达试验段时已获得所需超音速流场,待稳定后测量系统工作。最后气流经扩压段扩压向出口消音塔排去。 2.低速风洞构造、作用:低速风洞的动力由风机提供、风速可通过调整风机的转速来调节。低速风洞有稳定段、实验段和扩压段,没有喷管。为了节约能源和降低噪音,低速风洞常做成环流式的。 3.常用仪器:风洞的常用仪器有压力传感器和天平,测温传感器、压力传感器和温度传感器是监测风洞流场必不可少的仪器。而天平则是用来测量实验模型在风洞中受力情况的一种多元传感器,它是通过受力产生形变,给出形变电信号经换算求出受力的一种精密仪器。 三、思考题 1.超音速流动是如何建立的? 2.超音速流场建立的条件如何? 3.风洞实验是如何测得模型气动力的? C.优点

国内几个大型风洞实验室资料

1)石家庄铁道大学风洞实验室参数 \\ 中帝冃吉1尺串飙说監目问国沁界总阳lb苴柱啦2昭卜口定* n伞£氏勺7点才斗斗米八翘咏'氐理咏?蚤杓!谑K汙如.供砖,高洼跑澹益誹,(02* "喲.ct米"呈士同淳丈于E 咏起.■!缸壬殺Hi贬剃tt就!!界层瓦坯锻抹准,高i±常吐段违域曲越工ilkh羽才学Riffl帕°她罐艮內配善有三址誓IW黑潮,虑诛诫总段內逋芒削嗟対“址般劫?=0哇尊收貝拱遞弋需戎烦的i!?區-跆4- —時拉沿桃色可L■綁”冊啊M加如顾亂订2斗」氐和議1. b财■散吐1趴JIHM世二iildi职刖中进11的慣也花氐还晟社扫高逐圉花卑护弟一捞便宝T中闷畝齐I的皆睛融図而*阪*可脚剛从L帀珈:显面^各広币曲W7B?协荷r-t-i配面丟郵,讪心y可fl傀刊晦调?岡7恬」亚TW0.nl TI“ mu “窗询,层词(TJ可iiWJ澤乐至少叮兰可的百槨和左求啄?棉于需孔谓观召?

盅养进行的试尝頂目 一、桥嘶凤常監: 1、节段鰹型测振r测力诃验; 2、桥塔气弹棋型JM振诃脸; 久溜隹素凤雨抿试验; 4>部分大跨桥全桥气弾損型试验等口 二、宦疏结构抗図悄验: 1,高层*高耸结构根型测压、测力、測拆恒验; H大肾屋茴浚特伸结枸按型測压、況报礎; 3、建疏群体风干扰履侃环境模型试验等= 三、地面交逋工具至气动力学试验: 1>列车擂凤试验硏究: 2、高速列车空气动力学複整试验; 3. 汽车空%动力学模型试验; 乐荷理住歸及桥梁行车安全性诃粒 四、M t&PJ用艮工业空吒动力学试验: 1.侃力机叶阳气动优昵试脸; 邑闻场迤址履同也诜裔抗凤设计试验: 3、站场及防风网设计诃髓: 4. 工业产品与设备的抗凤性能试验口 2)湖南大学风洞实验室 湖南大学风工程试验研究中心目前拥有国内先进的大型边界层风洞实验室, 风洞试验室占地2000m2,建筑面积3200 m2。该风洞气动轮廓全长53m、宽18 m,为低速、单回流、并列双试验段的中型边界层风洞,其试验速度相对较高的试验段(高速试验段)长17 m,模型试验区横截面宽3 m、高m,试验段风速0?60 m /s 连续可调。高速试验段有前后两个转盘,前转盘位置可模拟均匀流风场,通过在该试验段一定范围内布置边界层发生器,在后转盘位置可进行与边界层有关的桥梁

风洞试验概述_黄本才

第六章 风洞实验概述 风洞试验是依据运动的相似性原理,将被试验对象(飞机、大型建筑、结构等)制作成模型或直接放置于风洞管道内,通过驱动装置使风道产生一股人工可控制的气流,模拟试验对象在气流作用下的性态,进而获得相关参数,以确定试验对象的稳定性、安全性等性能。 世界上公认的第一个风洞是英国人于1871年建成的。美国的莱特兄弟于1901年制造了试验段0.56米见方、风速12m/s的风洞,从而于1903年发明了世界上第一架实用的飞机。风洞自19世纪后期问世以后,为风效应研究创造了良好的试验条件,开始了风对建筑物的破坏作用的研究。1894年,丹麦J. O. V. Irminger在风洞中测量了建筑物模型的表面风压。 风洞的大量出现是在20世纪中叶,随着工业技术的发展,风洞试验(主要是低速风洞)从航空航天领域扩大到一般工业部门。到了20世纪20年代,Jaray将空气动力学理论应用于汽车外形设计,以降低汽车的气动阻力系数。例如,当汽车速度达到180km/h时,空气阻力可占总阻力的1/3。对小汽车模型进行风洞试验,合理修形,可使气动阻力减小75%。 20世纪30年代,英国国家物理试验室(NPL)在低湍流度的航空风洞中进行了风对建筑物和构筑物影响的研究工作,指出了在风洞中模拟大气边界层湍流结构的重要性。1934年,德国L.Prandtl在哥廷根流体力学研究所(AVA)建造了世界上第一座环境风洞,开展环境问题的试验研究。20世纪50年代末,丹麦M. Jensen对于风洞模型相似律问题作了重要阐述,认为必须模拟大气边界层气流的特性。另外,美国J. E. Cermak在科罗拉多州大学和加拿大A.G.Davenport在西安大略大学分别建成了长试验段的大气边界层风洞,标志着对风工程有了专门的模拟试验研究设备。从20世纪80年代开始,大气边界层风特性的模拟技术,特别是大尺度湍流的模拟技术有了较大的发展,另外一些专用的实验设备及测试仪器的研制成功,使风洞中模拟各种气象、地面及地形条件的范围扩大以及研究空气污染和风载、风振问题的能力提高。 对建筑物模型进行风载荷试验,从根本上改变了传统的设计方法和规范,大型建筑物如大桥、电视塔、大型水坝、高层建筑群、大跨度屋盖等超限建筑和结构,我国结构风荷载规范建议进行风洞试验。对于大型工厂、矿山群等也可以做成模型,在风洞中进行防止污染和扩散的试验。 §4-1 风洞实验基础 一、风洞 风洞就是用来产生人造气流(人造风)的管道。在该管道中能造成一段气流均匀流动的区域,利用这一经过标定的流场,可以进行各种有关学科的科研活动。风洞种类繁多,有不同的分类方法。按行业分,有航空风洞和工业风洞;按实验段气流速度大小来区分,可以分为低速、高速和高超声速风洞;按回路分类,风洞可分为直流式、回流式;按运行时间分类,风洞可分为连续式、暂冲式。 近年来,由于工程材料及施工方法的大幅进步,工程设计逐步走向轻质量、大跨度及超高度的方向发展,使得在传统上地震力为结构的主要水平荷重观念逐渐改变。风荷重成为超高层建筑、体育场馆大跨屋盖、斜拉桥等结构的主要水平荷载。除此之外,由于环保意识的加强,社会上对于生活质量的要求,使得工业废气的排放及都市中大型建筑物造成环境微气候的改变,亦成为工程界必须予以重视的课题。为此,应运而生出现了许多大气边界层风洞(BLWT)。在这种风洞中,试验段的气流并不是均匀的,从风洞底板向上,速度逐渐增加,模拟地表风的运动情况(称为大气边界层)。大气边界层风洞是工业风洞的一种,为低速

相关文档