文档库 最新最全的文档下载
当前位置:文档库 › 电离层理论简要

电离层理论简要

电离层理论简要
电离层理论简要

电离层理论

一、电离层背景(基本结构、光化学过程、动力学和电动力学过程,及对无线电电波传播

产生的影响)

二、简述赤道区电离层等离子体漂移观测特征、电离层电场产生的物理机制,及其赤道异常

的影响

三、简述赤道区电离层中存在的等离子体不稳定性及其可能的物理机制

四、简述高纬对流电场、粒子沉降、场向电流在磁层-电离层耦合中的作用及其对高纬电离

层结构和动力学的影响。

五、简述磁暴期间对电离层扰动产生明显影响的各种可能的物理机制

一、电离层背景(基本结构、光化学过程、动力学和电动力学过程,及对无线电电波传播

产生的影响)

电离层基本结构

电离层是由高层大气层中气体电离而形成的,其中的电子密度足以影响到无线电波的传播。气体的电离主要依赖于太阳及其活动。电离层的结构及峰密度(NmF2)随时间(太阳黑子周期、季节、昼夜)、地理位置(极区、极光区、中纬和赤道区)以及一些与太阳相关的电离层扰动而发生很大的变化。

电离层的电离源主要是来自太阳的(极)紫外辐射(Extreme ultraviolet radiation)和高能粒子辐射。对电离层产生显著影响的是地球相对于太阳的旋转,电离成分在阳侧半球增加而在夜侧半球减少。除此之外,宇宙射线也可以影响到电离成分的分布,电离层对大气的变化极为敏感,任何大气的扰动都会影响到电离成分的重新分布。

电离层按电子密度的分布可分为四个区域:即D区、E区、F区和顶部区,这些区域可以作进一步划分,如F区可以分为F1区和F2区等。可以认为各层由于中性大气的某种成分吸收太阳辐射而产生,他们对入射太阳光子谱的不同部分的响应不同。处于平衡态的电离层受到如下各种因素的联合作用:光化学过程、热力学过程、动力学过程、电磁学或电动力学过程。其中的E层和F1层,近似为Chapman层,由Chapman产生率函数和光化平衡条件决定。在较高处的F2层,它的分布除受光化学过程外还受到诸如中性曳力和磁层过程的共同作用。最低处的D层则与大多数的高能辐射有关(X光子,宇宙射线离子),对它的损失过程目前还了解不多。

D层:位于地面以上约60-90km的区域,是多原子离子“团”的稀薄层,浓度为102-104/cm3。由于电子-中性分子的高碰撞频率使得通过其中的无线电波的吸收显得尤为明显,所以该区域在实际的无线电通讯中起着重要的作用;特别是在磁暴时,这种吸收明显,叫做短波突然衰落,严重时使短波通讯中断。通常只有最强的电离源才可以渗透到D区高度上,它们是太阳X射线,宇宙线和Lyman-α射线。在80-90 km之间,来源于0.1-1nm的X光是主要的电离源,来源于太阳的强Lyman-α(121.6-nm)辐射在约70-80 km的高度上存在相应的产生率

峰值,而宇宙射线粒子则控制着底部,主要的离子为+

O,可以和电子复合,但是

N O和+

2

在这些低的高度上,电子也可以附着到中性成分上形成负离子,这样,处理D层“平衡”分布不是那么直观、简单的,而且前面提到过电离源都在不停地变化着,依赖于太阳活动和行星际条件,这些考虑使得D区像F区一样,成为一个值得不断进行深入研究的课题。

E层:又称为发电机层,位于地面以上约90-150km之间,其浓度为105-106/cm3。。通常明显的特征是白天电离层密度分布在110km处有一倾斜很大的变化。该层中的离子主要是+和NO+,它们由100-150nm范围内的紫外辐射和1-10 nm范围内的太阳X光产生。该层中O

2

的密度峰值非常接近于离子产生率Q的峰值,有效复合率 可以由Q除以观测到的2

n而推

e

出。离子的垂直输运在该层形成中的作用是不重要的。E层还包括一个偶发E层(Es),它是出现在高度100-120km E层上的异常电离。它的形态多样,与太阳辐射几乎没有什么直接关系。它在不同纬度有明显的不同特征,在低纬度地区主要出现在白天;在中纬度地区主要出现在夏季;而在极区主要出现在夜间。

F层:位于地面150 km 以上,F层通常又分为F1和F2层两部分,两部分呈现不同的变化。F1层主要由O+组成,符合查普曼模式,最大电子密度约为2x1011m-3,一般出现于170km 高度附近,非常接近于谱范围为17-19 nm之间光子所产生的最大离子产生率,该层更象一个边界,一般不很明显,几乎全部融入到包含电离层密度主峰的F2层中。F2层的峰密度也是处于以O+为主的区域。但是在它出现的高度上,除O+与周围电子的直接复合外,还存在一些非常重要的化学反应,垂直漂移也会影响到离子的分布。通常在F2层中复合反应发生前,离子可能先与附近中性分子反应,即O+先将它的电荷传递给分子,再进行游离复合。只要这种反应的速率超过简单的复合反应的速率,它们就会控制离子的损失。此外,碰撞和双极扩散、磁层和大气发电机电场驱动的垂直漂移,都会明显地影响到F2峰附近的离子运动。因此电离层的主峰不能由简单的Chapman理论来描述。

质子层:该区域起始于F2区密度最大的高度,主要成分是稀薄的氢离子(H+),随着密度的减少,一直向上扩展到O+向H+和He+过渡的高度。过渡高度是随时间而变化的,但在夜间很少降到500km 以下,而在白天很少降到800km以下,有时可能位于1000km 以上。在转变高度以上,弱电离成分密度近似呈指数衰减分布,对跨越电离层的无线电电波传播信号几乎没有什么影响。

电离层简析

电离层简析 07084017 强龙 摘要: 此论文主要针对电离层模型作用及其概念论述的一些观点,希望借此让自己对电离层有更好地了解。 引言: 包围地球的是厚达两万多千米的大气层,起运动的、变化对无线电波传播有很大的影响,对人类的生存也起着至关重要的影响,由其是电离层起着保护人类的作用。研究电离层对我们的重要性不言而喻。 1899年特斯拉试图使用电离层进行远距无线能量传送。他在地面和电离层所谓的科诺尔里亥维赛层之间发送极低频率波。基于他的试验的基础上他进行了数学计算,他对这个区域的共振频率的计算与今天的试验结果相差不到15%。1950年代学者确认这个共振频率为6.8Hz。 1901.12.12古列尔莫·马可尼首次收获跨大西洋的信号传送。马可尼使用了一个通过风筝竖起的400英尺长的天线。在英国的发送站使用的频率约为500kHz,其功率为到那时为止所有发送机的100倍。收到的信号为摩尔斯电码中的S(三点)。要跨越大西洋,这个信号必须两次被电离层反射。继续理论计算和今天的试验有人怀疑马可尼的结果,但是1902年马可尼无疑地达到了跨大西洋传播。 1902年奥利弗·黑维塞提出了电离层中的科诺尔里亥维赛层的理论。这个理论说明电波可以绕过地球的球面。这个理论加上普朗克的黑体辐射理论能阻碍了射电天文学的发展。事实上一直到1932年人类才探测到来自天体的无线电波。1902年亚瑟·肯乃利(Arthur Kennelly)还发现了电离层的一些电波-电子特性。 1912年美国国会通过1912年广播法案,下令业余电台只能在1.5MHz以上工作。当时政府认为这以上的频率无用。致使1923年使用电离层传播高频无线电波的发现。 1947年爱德华·阿普尔顿因于1927年证实电离层的存在获得诺贝尔物理学奖。莫里斯·维尔克斯和约翰·拉克利夫研究了i长波长电波在电离层的传播。维塔利·金兹堡提出了电磁波在电离层这样的等离子体内的传播的理论。 正文: 离地面约10~12km以内的空间里是大气的对流层。是由于地面吸收太阳辐射能量而向上传输热能形成强烈的对流而形成的。顶部气温大概在-50oC左右,大气3/4的质量和90%的水汽都集中在这层,几乎所有的气象现象都是在这一层发生的。离地面10~60km的空间气温会随高度略有增加,对流减弱,称为平流层,对电波传播影响很小。 平流层向上到1000km的区域称为电离层,主要是由自由电子、正离子、负离子、中性分子和原子等组成的等离子体。 电离层的由来: 太阳辐射的紫外线、X射线、高能带电微粒流、微流星及其他来自宇宙的射线电磁波,其中太阳中紫外线辐射是主要的原因,由于起带有大量带电粒子,所

电离层无线电波传播

电离层无线电波传播 dianliceng wuxian dianbo chuanbo 电离层无线电波传播 radio wave propagation in the ionosphere 无线电波在电离层中传播的规律及其应用的研究,早先着重于电波在电离层F2层电子密度峰值以下区域的传播问题,人造卫星上天以后,扩展到穿越整个电离层区域的传播规律问题。 基本理论电离层由自由电子正离子负离子、分子和原子组成,是部分电离的等离子体介质。带电粒子的存在影响无线电波的传播,其机制是带电粒子在外加电磁场的作用下随之振动,从而产生二次辐射,同原来的场矢量相加,总的效果表现为电离层对电波的折射指数小于1。由于自由电子的质量远小于离子的质量,一般电子的作用是主要的,只要考虑电子就够了。但如电波频率较低而接近于离子的等离子体频率时,离子的影响也不能忽略。由于地磁场的存在,带电粒子也受它的影响,所以电离层又是各向异性的(见磁离子理论)。电离层的形成和结构特性是受太阳控制的,因此它既随时间又随空间变化。在这样复杂的介质中,分析无线电波传播问题必须建立相对简化的物理模型并根据电波的频率采用相应的理论和方法。对于电离层电波传播,介质的折射指数是一个最根本的参数,实验证明相当有效。为人们普遍接受的磁离子理论表达的折射指数的公式称为阿普尔顿-

哈特里公式,它是电离层电子密度和电波频率的函数,所以又被称为色散公式,而电离层则是一种色散介质。对于短波和波长更短的电波传播问题,可以采用近似的射线理论,对长波和超长波则一般需要采用波动理论,有时可将地面和电离层底部之间看作一个同心球形波导。 折射和反射电离层的折射指数主要取决于电子密度和电波频率,电子密度愈大或电波频率愈低,折射指数愈小。因为电离层的折射指数小于1,电波在电离层中受到向下折射,在垂直投射的情况下,折射指数等于零时,电波不能传播,产生“反射”。在一定值的电子密度情况下,使折射指数为零的频率称为电波的临界频率,在地磁场的影响可以忽略时,这一频率就等于电子的等离子体频率。电离层的电子密度随高度的变化具有分层结构(见电离层结构),因此从地面向上传播的电波受到折射后传播路径逐步弯曲,最后转向地面;从而使地面上的远距离传播成为可能。较高频率的电波,穿透电离层的程度也较深,受折射影响偏离直线传播的程度则较小。电波频率超过某一数值时将穿透整个电离层而不被反射。在垂直投射时,对应这一频率的值就是电离层最大电子密度处的临界频率。在斜投射的情况下,也有一个大于上述垂直投射时临界频率的临界值,称为最高可用频率,用MUF表示,只有当使用的电波频率低于它时,电波才能返回地面。显然MUF与电波的投射角度有关,仰角愈小,MUF愈大,传播的距离也愈远。 电波的吸收电离层对电波有衰减作用,称为电离层的吸收,主要

冲击波原理及使用说明

冲击波疗法 冲击波(Shock Wave)是利用能量转换和传递原理,造成不同密度组织之间产生能量梯度差及扭拉力,并形成空化效应,产生生物学效应。冲击波分为机械波和电磁波,作用于局部组织而达到治疗效应。它在穿越人体组织时,其能量不易被浅表组织吸收,可直接到达人体组织的深部[1]。 体外冲击波(extracorporeal shock wave,ESW)是一种兼具声、光、力学特性 的机械波,它的特性在于能在极短的时间(约10 ns)内达到500 bar(1 bar=10 5 Pa)的高峰压,周期短(10 口s)、频谱广(16Hz?2X 108H Z)[2]。 自从1979年德国Dornier公司研制成功第一台Dornier HMI型体外冲击波碎石机,并于1980年2 月7 日成功用于肾结石患者治疗以来,人们对冲击波的认识越来越深刻,同时冲击波的应用也越来越广泛。人们对冲击波的物理学特性及其对组织产生的影响进行了广泛而深入的研究;开始试图用高能冲击波来治疗肿瘤,并在体外实验中取得一定的疗效。 此外,目前西欧各国已经将体外冲击波疗法(Extracorporeal Shock Wave Therapy , ESWT应用于10余种骨科疾病,ESW1已经成为治疗特定运动系统疾病的新疗法。近年来,国内也在陆续开展此疗法。 一、冲击波的物理基础 冲击波的压力波形包括一个在冲击波前沿迅速升压随后逐渐衰减的压力相(正相),和一个持续时间较长的张力相(负相)。通过对冲击波压力分布的测量, 可以引出以下几个临床上常用的概念和治疗参数[1,3]:(1)焦点、焦斑和焦区:焦点 是指散射的冲击波经聚焦后产生的最高压力点,焦斑是指冲击波焦点处的横截面,

电离层闪烁模型

ITU-R P.531-9建议书 卫星业务和系统设计中需要的 电离层传播数据和预测方法 (ITU-R 218/3号研究课题) (1978-1990-1992-1994-1997-1999-2001-2003-2005-2007年) 范围 ITU-R P.531建议书介绍了一种在0.1至12GHz频率范围内在地对空路径上评价电离层传播效应的方法。当信号通过电离层时,可能在地对空路径上发生以下效应: - 由于在路径上的地球磁场内电磁波与离子化媒质发生交互作用而导致的极化的旋转(法拉第旋转);- 由于在路径上积累的总电子含量(TEC)而导致的信号成组延迟; - 由于电离层的小规模不规则结构而导致的幅度和相位的迅速变化(闪烁); - 由于衍射而导致的到达方向的明显变化; - 由于非线性极化旋转和时延而导致的多普勒效应。 本建议书所述的数据和方法适用于在附件1所述的各有效范围内所进行的卫星系统规划工作。 国际电联无线电通信全会, 考虑到 a)电离层对至少12 GHz以下频率的传播有显著的影响; b)对3 GHz以下频率的非对地静止卫星轨道业务影响尤为显著; c)已经给出了经验数据和/或提出了建模方法,可用于预测卫星系统规划所需的电离层传播参数; d)电离层作用有可能影响综合业务数字网(ISDN)以及包括空间飞行器在内的其他无线电系统的设计和性能指标; e)已经发现这些数据和方法在传播现象自然变异性范围内可适用于卫星系统规划, 建议 1附件1中给出的数据和提出的方法在各自适用的范围内适用于规划卫星系统。

附件 1 1 引言 本附件涉及电离层传播对地—空路径的影响。从系统设计的角度来说,电离层效应可以归为以下几类: a)卫星移动业务(MSS)传输路径上积聚的电子总容量(TEC)渗透电离层可引起MSS载波的极化旋转(法拉第旋转)和信号时延,并且因为折射效应引起到达方向的变化; b)电离层的局部随机性,也就是通常所说的电离层不规则性,将进一步引起超量和随机的旋转以及信号时延,这些只能用随机术语进行描述; c)因为与旋转和时延相关的电子密度与频率的关系是非线性的,并且由于链路在局部不规则的电离层中的显著移入和移出产生的多普勒效应,a)和b)会进一步导致MSS载波的散射和群速度失真; d)此外,电离层的局部不规则性如聚焦或散焦的棱镜也会引起电波的会聚或发散。这些效应通常被称为闪烁,将引起MSS信号的幅度、相位和到达角的变化。 因为电离层物理特性复杂,上面提到的受电离层效应影响的系统参数不总是能用简单的分析公式简洁地表述。相关数据将以表格和/或图片的方式表达,并辅以进一步描述或限定性说明,在实际使用中这是最好的表述。 在考虑传播效应对3 GHz以下频率的MSS系统设计的影响时,必须认识到: e)与§f)和h)带来的影响相比,通常认为水汽现象对空—地传播路径的影响较小; f)自然表面或人为障碍物影响和/或在较低仰角情况下带来的近地表面多径效应通常比较严重; g)近地表面多径效应在各个地点的影响是不同的,因此在MSS系统设计中考虑全球范围内传播因素时,该效应不占主导地位; h)在全球范围内进行MSS系统设计时,电离层效应是需要考虑的最重要的传播因素。 2 背景 因太阳辐射而产生的地球电离层由几个离子化区域组成。从实际通信目的出发,电离层区域D、E、F 和电离区域顶端被认为有助于形成卫星和地面终端之间的TEC。 每个区域中的电离介质在空间上不均匀,在时间上也不稳定。一般而言,电离背景与有序的昼夜、季节和为期11年的太阳活动周期的更替相关,并且强烈依赖于地理位置和地磁活动。除电离背景之外,总是存在着被称为不规则性的高动态、小规模、非稳定的结构。电离背景和不规则性都将使无线电波恶化,进一步地还会使得折射率由频率决定,也即介质色散。

{高中试卷}高三生物一轮复习:反射活动的基本原理[仅供参考]

20XX年高中测试 高 中 试 题 试 卷 科目: 年级: 考点: 监考老师: 日期:

第三章动物稳态维持的生理基础 第一、二节神经冲动的产生和传导反射活动的基本原理 1.(20XX·徐州模拟)在用脊蛙(去除脑保留脊髓的蛙)进行反射弧分析的实验中,破坏缩腿反射弧在左后肢的部分结构,观察双侧后肢对刺激的收缩反应,结果如下表: 上述结果表明,反射弧的被破坏部分可能是() ①感受器和传入神经②感受器和效应器③感受器④传入神经和效应器⑤传入 神经和传出神经 A.②或④或⑤ B. ②或③或④ C.②或③或⑤D.①或②或⑤ 解析:根据表格中在破坏前刺激此脊蛙的左或右后肢,左、右后肢都要收缩,说明左、右后肢都有感受器、传入神经、传出神经、效应器,且左或右后肢的反射弧间能交叉连接。破坏缩腿反射弧在左后肢的部分结构后,刺激左后肢,左、右后肢都不收缩,说明破坏部位可能是感受器或传入神经;刺激右后肢,左后肢不收缩而右后肢收缩,说明破坏部位可能是传出神经或效应器,综合两个实验可知,破坏部位可能是感受器和传出神经或感受器和效应器或传入神经和传出神经或传入神经和效应器。 答案:A 2.(20XX·宁夏高考)下列对于神经兴奋的叙述,错误的是() A.兴奋部位细胞膜两侧的电位表现为膜内为正、膜外为负 B.神经细胞兴奋时细胞膜对Na+通透性增大 C.兴奋在反射弧中以神经冲动的方式双向传递 D.细胞膜内外K+、Na+分布不均匀是神经纤维兴奋传导的基础 解析:本题主要考查神经兴奋的产生及传导的特点。受到一定强度的刺激时,钠离子通

道打开,导致Na+大量内流,所以由外正内负转变为外负内正;兴奋在神经元之间的传递是通过突触完成的,只能单向传递,在神经纤维上可以(不一定)双向传导。 答案:C 3.(20XX·山东高考)如图表示枪乌贼离体神经纤维在Na+浓度不同的两种海水中受刺激后的膜电位变化情况。下列描述错误的是() A.曲线a代表正常海水中膜电位的变化 B.两种海水中神经纤维的静息电位相同 C.低Na+海水中神经纤维静息时,膜内Na+浓度高于膜外 D.正常海水中神经纤维受刺激时,膜外Na+浓度高于膜内 解析:神经元细胞膜受到一定强度的刺激后,钠离子通道打开,钠离子大量内流导致膜电位由“外正内负”变为“外负内正”,所以a可以表示正常电位变化;静息电位由图可知是相同的,均为“外正内负”。 答案:C 4.(新题快递)如图表示一个神经元在一次兴奋后,将兴奋传递给另一个神经元的过程。下面相关叙述正确的是() A.a处和c处的动作电位是同步发生的 B.从图可看出c处先产生兴奋再传到a处引起兴奋 C.a处产生的动作电位表现为内负外正 D. 兴奋由a→b→c的传递过程中的信号变化为电信号→化学信号→电信号 解析:兴奋在两个神经元之间传递是通过突触实现的,从突触前神经元传到突触后神经元,前后是不同步的,信号变化为电信号→化学信号→电信号。 答案:D 5.(20XX·江苏名校联考)如图表示刺激强度逐渐增加(S1~S8)时下一个神经元膜电位的变化规律,下列叙述正确的是()

电离层垂直探测知识讲解

电离层垂直探测

电离层垂直探测目录 一、概论 二、系统设备 三、基本原理 四、电离层垂测图数据处理及分析 五、电离层垂测的目的与用途

电离层垂直探测 一、概论 电离层垂直探测是电离层研究中历史最悠久、至今仍然广泛使用的电离层地面常规探测方法。这种方法通过垂直向上发射频无线电脉冲,频率f在1~30MHz范围内变化(频率扫描),接收在不同频率上由电离层反射的回波(Echo),测量回波的传播时间τ(Time of Flight),或者虚高(h’= cτ/2)随频率变化的频高图(Ionogram)。根据对频高图的度量分析和反演,可以获得电离层特征参数,如F 层临界频率foF2,最大电子密度NmF2,以及探测点上空峰值高度以下电子密度随高度的一维分布,即电子密度剖面。这是传统垂直探测方法能够提供的最重要的关于电离层结构的信息。现代数字测高仪除了测量回波的传播时间,还可测量回波的偏振、振幅和相位谱,以及回波到达角,提供更丰富的关于电离层结构与动力学信息。 简单地说电离层垂直探测是用电离层测高仪(垂测仪)从地面对电离层进行日常观测的技术。这种技术垂直向上发射频率随时间变化的无线电脉冲,在同一地点接受

这些脉冲的电离层反射信号,测量出电波往返的传递时延,从而获得反射高度与频率关系的反射曲线。 二、 系统设备 垂直探测设备主要包括:发射系统、接收机系统、频率合成系统、同步控制与时钟系统、数字处理、数据终端、自动判读和天线系统等 。 垂测设备组成框图 发射天线 接收天线 GPS 天线 输出滤波 发射机 频率合成 接收机 信号处理 控制器 网络 计算机数据线端 电源 时钟 接口

地震波运动学理论

第二章地震波运动学理论 一、名词解释 1. 地震波运动学:研究在地震波传播过程中的地震波波前的空间位置与其传播时间的关系,即研究波的传播规律,以及这种时空关系与地下地质构造的关系。 2. 地震波动力学:研究地震波在传播过程中波形、振幅、频率、相位等特征的及其变化规律,以及这些变化规律与地下的地层结构,岩石性质及流体性质之间存在的联系。 3. 地震波:是一种在岩层中传播的,频率较低(与天然地震的频率相近)的波,弹性波在 岩层中传播的一种通俗说法。地震波由一个震源激发。 4. 地震子波:爆炸产生的是一个延续时间很短的尖脉冲,这一尖脉冲造成破坏圈、塑性带,最后使离震源较远的介质产生弹性形变,形成地震波,地震波向外传播一定距离后,波形逐渐稳定,成为一个具有2-3个相位(极值)、延续时间60-100毫秒的地震波,称为地震子波。地震子波看作组成一道地震记录的基本元素。 5.波前:振动刚开始与静止时的分界面,即刚要开始振动的那一时刻。 6.射线:是用来描述波的传播路线的一种表示。在一定条件下,认为波及其能量是沿着一条“路径”从波源传到所观测的一点P。这是一条假想的路径,也叫波线。射线总是与波阵面垂直,波动经过每一点都可以设想有这么一条波线。 7. 振动图和波剖面:某点振动随时间的变化的曲线称为振动曲线,也称振动图。地震勘探中,沿测线画出的波形曲线,也称波剖面。 8. 折射波:当入射波大于临界角时,出现滑行波和全反射。在分界面上的滑行波有另一种特性,即会影响第一界面,并激发新的波。在地震勘探中,由滑行波引起的波叫折射波,也叫做首波。入射波以临界角或大于临界角入射高速介质所产生的波 9.滑行波:由透射定律可知,如果V2>V1 ,即sinθ2 > sinθ1 ,θ2 > θ1。当θ1还没到90o时,θ2 到达90o,此时透射波在第二种介质中沿界面滑行,产生的波为滑行波。 10.同相轴和等相位面:同向轴是一组地震道上整齐排列的相位,表示一个新的地震波的到达,由地震记录上系统的相位或振幅变化表示。 11.地震视速度:当波的传播方向与观测方向不一致(夹角θ)时,观测到的速度并不是波前的真速度V,而是视速度Va。即波沿测线方向传播速度。 12 波阻抗:指的是介质(地层)的密度和波的速度的乘积(Zi=ρiVi,i为地层),在声学中称为声阻抗,在地震学中称波阻抗。波的反射和透射与分界面两边介质的波阻抗有关。只有在Z1≠Z2的条件下,地震波才会发生反射,差别越大,反射也越强。 13.纵波:质点振动方向与波的传播方向一致,传播速度最快。又称压缩波、膨胀波、纵波或P-波。 14.横波:质点振动方向与波的传播方向垂直,速度比纵波慢,也称剪切波、旋转波、横波或S-波,速度小于纵波约0.7倍。横波分为SV和SH波两种形式。 15.体波:波在无穷大均匀介质(固体)中传播时有两种类型的波(纵波和横波),它们在介质的整个立体空间中传播,合称体波。 16共炮点反射道集:在同一炮点激发,不同接收点上接收的反射波记录,称为共炮点道集。在野外的数据采集原始记录中,常以这种记录形式。可分单边放炮和中间放炮。 17.面波:波在自由表面或岩体分界面上传播的一种类型的波。 18.纵测线和非纵测线:激发点与接收点在同一条直线上,这样的测线称为纵测线。用纵测线进行观测得到的时距曲线称为纵时距曲线。激发点不在测线上,用非纵测线进行观测得到的时距曲线称为非纵时距曲线。

冲击波的适应症与禁忌症

体外冲击波疗法治疗原理、适应症及禁忌症 治疗原理:冲击波是利用高压导致水份爆炸而产生的声波能量,这些声波由反射器反射后集中成高能量的冲击波。冲击波的能量是超音波的一千倍左右,在人体造成物理冲击,刺激生长激素释放,导致微血管新生,达到组织再生以及修复的功能冲击波可促进组织代谢、循环;冲击波内的有止痛与组织修复功能,对肌健筋膜病变的慢性疼痛及骨折未愈合有惊人的疗效。 适应症:骨科和软组织疾病,包括肩周炎、肩峰下滑囊炎、肱二头肌长头腱炎、钙化性岗上肌腱炎、网球肘(肱骨外上髁炎)、肱骨内上髁炎,髋部及膝部慢性损伤性疾病,如弹响髋、跳跃膝(胫骨结节骨骺骨软骨炎)等,足跟痛及足底跖筋膜炎等;骨坏死性疾病(月骨坏死、距骨坏死、舟状骨坏死)等。 禁忌症:(1)全身因素:装有心脏起博器患者,出血性疾病、肿瘤患者,血栓形成患者,骨未成熟痛者,妊娠者。(2)局部因素:治疗部位各种感染及皮肢破溃、急性肌腱及筋膜炎症和关节积液;冲击波焦点勿用于脊髓组织、大血管及神经走行部位,冲击波勿用于骨感染者和骨缺损大于1cm者。

经颅磁刺激技术适应症 经颅磁刺激技术(Transcranial Magnetic StimulationTMS)是一种无痛、无创的绿色治疗方法,磁信号可以无衰减地透过颅骨而刺激到大脑神经,实际应用中并不局限于头脑的刺激,外周神经肌肉同样可以刺激,因此现在都叫它为“磁刺激”。 适应症:缺血性脑血管病:脑血栓形成和梗塞、脑供血不足、脑萎缩、脑动脉硬化、腔隙性梗塞、脑椎底供血不足;脑脊髓损伤性疾病:颅脑损伤、中毒性损伤、脊髓损伤、小儿脑瘫;脑功能性疾病:帕金森症、抑郁症、老年痴呆、精神障碍、神经衰弱、失眠、眩晕、神经性头痛、焦虑症、强迫症、恐惧症等。

实时区域电离层TEC建模、预报及差分码偏差估计

实时区域电离层TEC建模、预报及差分码偏差估计 畅鑫,张伟 武汉大学测绘学院,武汉430079 摘要: 电离层总电子含量(TEC)模型对于导航,精密定位以及其他相关应用有重要意义,能否有效地消除或减弱电离层延迟误差关系到众多单频GNSS接收机用户导航与定位的精度与可靠性。目前中国连续地面参考运行(CORS)系统的高速发展给实时精确建立区域电离层模型提供了条件。本文将使用电离层残差组合观测值和低阶球谐函数模型对区域电离层TEC建模,同时估计差分码偏差(DCBs)和VTEC。广域定位中,由于区域跨度大,观测站分布较稀疏,平均站间距较大,故选择欧洲均匀分布的14个IGS观测站将组成一个大型的CORS网,VTEC模型系数15分钟结算一次,差分码偏差一天结算一组结果。在与IGS分析中心CODE发布模型的对比中得出,差分码偏差的差值的平均值小于0.35 ns,RMS 小于0.2 ns,VTEC差值基本小于2TECU,作为预报的VTEC模型精度95%在1TECU内,在单频单点伪距静态定位中,较之CODE模型也有较大改善。 关键词: CORS;电离层;区域模型;预报;总电子含量;差分码硬件偏差 1 引言 电离层总电子含量(TEC)及其变化不但是电离层形态学研究的重要资料,也是精密定位、导航和电波科学中电离层改正的重要参数,在美国取消SA政策后,电离层延迟成为了影响定位和导航的最大误差源。在精密定位中,电离层的准确估计将更好的改正GNSS观测值,同时高精度的电离层估计对空间大气、地球观测等方面都有重要意义[1,2]。IGS于1998年采用Schaer[3]等提出的电离层总电子含量数据交换格式文件IONEX,同年成立IGS电离层工作组发布了全球电离层图(GIM),提供卫星和接收机频率间码延迟偏差DCB信息。Gao Y.[1]等对二维单层模型和三维层析模型进行了对比分析。萧佐[4]对电离层模型进行了系统的分类,将电离层模型分为统计、经验及物理等几种。Schaer[5]结合CODE分析中心的全球电离层模型对利用GPS技术探测电离层理论进行了详细介绍。GPS电离层探测技术可以反演电离层变化,对电离层物理特性及其观测进行研究。张小红、李征航等[6]人对利用双频GPS观测数据建立电离层延迟模型进行了深入研究。袁运斌,欧吉坤[7]利用GPS研究了电离层延迟及电子浓度变化的规律。章红平[8]着重对利用地基GPS 进行电离层模型建立、数据分析处理,电离层时空变化的监测进行了研究。 GPS差分码偏差(Difference Code Bias,DCB)包括卫星端和接收机端差分码偏差,是指同时刻同频率或不同频率不同伪距码观测量之间的时间偏差。DCB是一个相对量,根据接收机的不同,可分为P1码/P2码、P1码/C1码及C1码/P2码等。差分码偏差直接影响C1码、P1码及P2码相对测量精度,该参数的精密确定对提高GPS精密单点定位精度、GPS时间同步精度以及GPS电离层监测精度等具有重要作用[9]。 近年来,随着我国CORS的迅猛发展,如何利用区域CORS数据高精度实时电离层模型,尤其是针对广域定位,观测站分布稀疏,站间距较大的情况下,准确消去电离层影响对提高单频接收机定位精度具有重要应用价值。本文将研究基于P4(电离层残差)组合,将卫星端和接收机端DCB作为参数参于球谐函数区域电离层建模的方法,准确估计区域电离层模型及DCBs,并探讨使用较短时间间隔确定的VTEC模型作为后一时段的预报模型的精度与可靠性,采用单频单点伪距静态定位检验其效果。 2 GPS电离层探测方法 电离层是由电离化的等离子体等组成的距地球表面50-2000km的大气层区域。根据电子密度可以分为高度不同的层,一般在350km电子密度达到峰值。对于二维电离层模型,一般采用薄壳模型,如图1将整个电离层压缩成一个高度为H没有厚度的薄壳[10],以总电子含量TEC描述其性质,TEC是底面积为1m2的贯穿整个电离层的柱体中的自由电子数,通常用TECU(1 TECU=1016 Ne/m2)表示。

论地震勘探中几种主要地震波

论地震勘探中的几种主要地震波 论文提要 地震勘探,就是通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下地质构造,为寻找油气田或其它勘探目的服务的一种方法。也可以理解为就是利用地震子波从地下地层界面反射回地面时带回来的旅行时间和形状变化的信息,用以推断地下的底层构造和岩性。地震勘探在勘探已有的各种物探方法中,是最有效地方法。在地震勘探中用炸药激发时,一声炮响之后会产生各种各样的地震波。按波在传播过程中质点震动的方向来区分,可以纵波和横波;根据波动所能传播的空间范围而言,地震波又可以分为体波和面波;按照波在传播过程中的传播路径的特点,又可以把地震波分为直达波、反射波、透射波、折射波,等等。地震勘探在石油勘探中除了能产生来自地层界面有用的反射波外,还会产生各种各样的干扰波。因此,我们要更好的了解各种波的产生、特点、用途,等等。下面简单介绍几种地震勘探中产生的地震波。 正文 一、反射波 (一)反射波的形成 1、几何地震学的观点 当炸药在井中爆炸激发地震波时,在雷管引爆几百微妙之内爆炸便完成了,在接近爆炸点的压强是一个延续时间很短的尖脉冲,爆炸脉冲向外传播,压强逐渐减少,地层开始产生弹性形变,形成地震波。地震波继续传播,由于介质对高频的吸收,地震波信号减小。当波入射到两种介质的分界面时(当上层介质波阻抗与下层介质波阻抗不等时,弹性地震波才会发生反射;上层介质波阻抗与下层介质波阻抗差别越大,反射波越强——反射波条件),一部分波回到第一种介质中,这就是所谓的反射波。如图所示 2、物理地震学观点 地震波从震源出发以球面波的方式向下传播,到达反射界面S,S可以就看成有许多

骨科冲击波治疗仪的原理及适应症

体外冲击波治疗仪 XY-K-MEDICAL-300 一、产品的适用范围(适应症)、禁忌症 适应症:软组织疼痛类疾病、骨科类疾病、其他疾病 软组织疼痛类疾病包括:肩周炎、跟腱炎、颈椎病、足底筋膜炎、下腰痛、网球肘;骨科类疾病:骨不连、假关节、早中期的股骨头坏死;其他类疾病:肌痉挛、烧伤整形、阳痿治疗、心血管疾病、伤口愈合。禁忌症:抗凝血障碍的患者(或使用了抗凝血剂的患者)、肿瘤患者、糖尿病患者、血栓症患者或有血栓倾向的患者、治疗区急性化脓的患者、孕妇、14岁以下的儿童、使用了可的松等消炎物质的患者。二、优势 是慢性和疑难骨骼肌肉疾病的最佳治疗方案 治愈率是80% 治疗时间短:最长需要10分钟 平均需要6至8个疗程 可以替代手术治疗 可移动性 小巧和轻便的设备:易于安装 内置空气压缩机:不用保养 触摸屏操作 智能化操作系统

三、原理: 1.气动弹道式冲击波治疗仪的工作原理:气动弹道式体外治疗仪是压缩机产生的气动脉冲声波转化成精准的弹道式冲击波,通过物理介质传导(如空气、液体等)作用于人体,产生生物学效应,是能量的突然释放而产生的高能量压力波,具有压力瞬间增高和高速传导特性。 2.气动弹道式冲击波治疗仪的治疗原理:利用压缩气体产生能量,驱动手柄内的子弹体,使子弹体以脉冲方式冲击治疗部位。冲击波经过皮肤、脂肪、肌肉等软组织后作用于损伤区,由于所接触的介质不同,在不同组织的交界处可以产生不同的机械应力作用,表现为对细胞产生拉应力、压应力和剪切应力,在含有气泡的组织中还会产生空化效应。骨组织在交变应力作用下出现显微裂纹,而这是诱导骨重建的主要原因,而拉应力和空化效应可以松解黏连的组织,促进血液循环,修复组织,达到治疗的目的。 四、产品的注意事项 不要空打;谨记禁忌症和部位;定期保养:每天擦拭传导子,定期检

3.电离层数据浏览与显示

项目文档9 数字频高图自动度量分析软件 中国科学院地质与地球物理研究所 “电离层历史资料编研”项目组 2010年12月30日

目录 1SAO Explorer软件简介 (1) 2频高图的标定 (3) 3电离层数据浏览与显示 (5) 4SAO Explorer使用技巧 (8) 5总结 (16)

电离层频高图的标定是采用专用的软件对电离层频高图中所代表的电离层特征参数进行自动或者人工判读和度量,进而得到电离层参数和电子浓度剖面。在这方面,世界各国相关单位已经开展过一些研究与软件开发,目前使用得最广泛,最受研究人员欢迎的是SAO Explorer电离层频高图浏览与标定软件。该软件由美国麻州大学Lowell分校大气研究中心研发,并公开提供给各国研究人员使用。该软件的下载地址和相关文档可见如下网址: https://www.wendangku.net/doc/f15834341.html,/SAO-X/SAO-X.html 1.SAO Explorer软件简介 图1.1是SAO Explorer软件的界面。SAO Explorer能够打开频高图图片和ARTIST软件自动标定的SAO文件,人工检查标定结果,并能编辑自动标定时出错的结果。最终以SAO文件存储标定得到的电离层特征参数和电子浓度剖面。 SAO Explorer软件原本是用于美国Lowell大学所开发的Digisonde系列数字测高仪的数字频高图的标定,经过项目组的实验和使用,发现该软件用于胶片频高图所转换的数字频高图上也有较好效果。图1.2是采用SAO Explorer软件打开一幅经过由胶片频高图转换而来的数字频高图后,该频高图观测日期为1991年3月1日0700UT,图1.3是该频高图对应的分割定标之后的胶片频高图图片。可以看出,胶片频高图经转换成数字频高图后,较好地保留了原始观测信息,频高图的主描迹非常清晰,横轴(频率)、纵轴(高度)信息完整,描迹和坐标轴信息与胶片频高图上一致。另外,由于SAOExplorer默认显示世界时,而胶片频高图上显示的时间为地方时,1991年3月1日1500LT,所以实际上二者的时间信息一致。 图1.4则是对图1.3的频高图进行度量标定之后得到的电离层特征参数和电子浓度剖面信息。

第三章第二节反射活动的基本原理

第三章动物稳态维持的生理基础 第二节反射活动的基本原理 课前导学 知识回顾 1.人体神经调节的基本方式是________,它是在中枢神经系统(脑和脊髓)的参与下,人和动物体对体内和外界环境的各种刺激发生的规律性反应。分为_________和__________两种类型。 2.反射弧是完成_______________的结构基础。 3.兴奋在神经纤维上以___________形式传导,传导的方向是__________,与_________________的方向一致。新知预习 4.写出反射弧模式图中标号结构的名称 5.突触的结构 A._________ 突触 B._________ C._________ 其他结构:D._________、E.______、F._________、G.________。 6.反射中枢担负着对传入的神经冲动进行_______、_______、________的功能,是整个反射弧的____________。 ①二元反射弧:最简单,中枢由传入与传出神经元的________和___________构成,如_____反射的反射弧。 ②三元反射弧:在传入神经元与传出神经元之间增加了一个___________,如____反射的反射弧。 ③具有多个中间神经元的反射弧:绝大多数反射弧属于此类,中间神经元越________,反射中枢分析和综合能力就越强。 课中探究 探究点一:反射弧的构成和反射中枢 归纳提升 1.一个完整的反射活动必须保证反射弧的五个环节完整,所以仅靠一个神经元是不能完成的,至少需要2个神经元(1个感觉神经元和1个运动神经元)。 2.反射弧中传入神经和传出神经的判断: ①根据是否具有神经节:有神经节的是传入神经。 ②根据脊髓灰质中的突触结构:神经递质只能从突触前膜释放,作用于突触后膜。 ③根据脊髓灰质结构判断:与前角(膨大部分)相连的为传出神经,与后角(狭窄部分)相连的为传入神经。3.反射弧中任何一个环节中断,反射即不能发生,必须保证反射弧结构的完整性。特别需要注意的是,如果仅仅是感受器受损,刺激传入神经,效应器也会有应答反应,但这不属于反射。“吃糖感觉到甜”也不属于反射。 精讲精练 【例1】反射和反射弧的关系是() A.反射活动可以不通过反射弧实现

电离层垂直探测

电离层垂直探测目录 一、概论 二、系统设备 三、基本原理 四、电离层垂测图数据处理及分析 五、电离层垂测的目的与用途

电离层垂直探测 一、概论 电离层垂直探测是电离层研究中历史最悠久、至今仍然广泛使用的电离层地面常规探测方法。这种方法通过垂直向上发射频无线电脉冲,频率f在1~30MHz范围内变化(频率扫描),接收在不同频率上由电离层反射的回波(Echo),测量回波的传播时间τ(Time of Flight),或者虚高(h’= cτ/2)随频率变化的频高图(Ionogram)。根据对频高图的度量分析和反演,可以获得电离层特征参数,如F层临界频率foF2,最大电子密度NmF2,以及探测点上空峰值高度以下电子密度随高度的一维分布,即电子密度剖面。这是传统垂直探测方法能够提供的最重要的关于电离层结构的信息。现代数字测高仪除了测量回波的传播时间,还可测量回波的偏振、振幅和相位谱,以及回波到达角,提供更丰富的关于电离层结构与动力学信息。 简单地说电离层垂直探测是用电离层测高仪(垂测仪)从地面对电离层进行日常观测的技术。这种技术垂直向上发射频率随时间变化的无线电脉冲,在同一地点接受这些脉冲的电离层反射信号,测量出电波往返的传递时延,从而获得反射高度与频率关系的反射曲线。

二、系统设备 垂直探测设备主要包括:发射系统、接收机系统、频率合成系统、同步控制与时钟系统、数字处理、数据终端、自动判读和天线系统等 垂测设备组成框图 电离层测高仪(垂测仪):电离层测高仪是从地面对电离层进行常规探测。测高仪从地面垂直向上发射脉冲调制的高

频无线电波,并在同一地点接收它的反射信号,测量出频率连续改变的电波来回传播的时间(称为时延),从而获得反射高度与频率的关系曲线,这种曲线称为频高图或垂测电离图,从而获得电离层电子密度的高度分布。 电离层探测仪(垂测仪)按功能可以分为:发射机、滤波器、接收机、信号处理、系统电源、数据终端。 (1)发射机: 发射机由预放、激励器、功分器、功放、合成器组成,利用传输线变压器作为功率混合和分配网络来实现宽带功率合成和分配。发射机的作用是为发射天线提供满足系统要求的射频功率信号。在同步信号的控制下,1~32M H z的扫频脉冲编码信号首先进入发射机进行激励放大后,在经历进一步的功率合成到5000W的功率能量输出。原理如下图: 发射信号 去输出 自合成器 滤波器驻波检测 自控制器保护(2)输出滤波器

反射活动的基本原理人脑的高级功能教案-中图版高中生物必修3检测练习

第二、三节反射活动的基本原理人脑的高级功能 1.理解反射弧的构成。(重难点) 2.掌握突触和实触传递。(重点) 3.说明反射中枢的类型。 4.概述人脑的高级功能,区别大脑皮层功能区。(重点) 反射弧的构成与反射中枢 1.反射弧的构成 (1)神经调节的基本方式:反射。 (2)结构基础——反射弧 (3)反射的一般过程 感受器接受刺激并产生神经冲动,神经冲动沿着传入神经纤维传到神经中枢,然后经传出神经纤维传到效应器,从而引起机体产生某一运动。 2.反射中枢 (1)反射中枢的作用 分析、归纳和整理神经冲动,是反射弧的核心。 (2)反射中枢的组成 ①二元反射弧:最简单,由传入与传出神经元的突触联系和传出神经元的胞体构成,如膝跳反射的反射弧。 ②三元反射弧:在传入神经元和传出神经元之间增加了一个中间神经元,如缩手反射的反射弧。 ③具多个中间神经元的反射弧:绝大多数反射弧属于此类,中间神经元越精细复杂,反射中枢分析综合能力就越强。

[合作探讨] 探讨1:观察膝跳反射和缩手反射示意图,并探讨以下问题: 膝跳反射 缩手反射 (1)膝跳反射、缩手反射分别是由几个神经元完成的,由此你将得出什么结论? 提示:2、3。不同的反射需要的神经元数目不同,一般来说,反射活动越复杂,需要的神经元越多。 (2)上述两种反射弧中的传入神经分别是哪个数字序号? 提示:①、①。 探讨2:给狗喂食会引起唾液分泌,但铃声刺激不会。若每次在铃声后即给狗喂食,这样多次结合后,狗一听到铃声就会分泌唾液。 (1)食物引起味觉属于反射吗? 提示:不属于。 (2)铃声引起唾液分泌的反射弧与食物引起唾液分泌的反射弧相同吗?为什么? 提示:不相同。铃声引起唾液分泌的神经中枢在大脑皮层,食物引起唾液分泌是非条件反射,是先天就有的,神经中枢在大脑皮层以下,这两种反射的感受器和传入神经也不相同。 [归纳总结] 1.反射弧中传入神经和传出神经的判断

电离层模型精度比较

电离层模型精度比较 巩岩,韩保民 (山东理工大学建筑工程学院,山东淄博255049) 摘要:为了更好的进行电离层延迟改正,使用了常用电离层模型NeQuick模型和IRI 模型,随机选取某几天的某几个时刻进行数据处理,将得到的结果与IGS分析中心结果进行比较。结果表明,用不同的模型得到的TEC值不一样,精度不同,其中的精度更高。 关键字:NeQuick模型;IRI模型;TEC 众所周知,电离层是围绕地球的一层离子化的大气,它的电子密度、稳定程度和厚度等都在不断变化着,这些变化主要是受太阳活动的影响。太阳发生质量喷发时,可产生数以百万吨计的物质磁云飞入空间,当这些磁云到达地球电离层时,就会使电离层的电子密度发生很大变化,产生所谓的电离层暴,造成严峻的空间天气状况,严重时可以中断无线电通信系统和损害地球轨道卫星(如通信卫星)。当GPS信号传播到地球或低轨飞行器时,必须穿透电离层,此时就会产生路径延迟(等价于相应的延迟),而电离层延迟误差是GPS定位中的一项重要误差源,特别是2000年5月美国政府宣布取消了SA政策以后,电离层延迟被认为是影响GPS定位精度的最大误差源。因此对电离层活动的监测和预报,或许可以给出早期的预警信息,以便及时保护贵重的通信卫星,揭示太阳和电离层中某些现象发生的规律性,以及了解地球磁场及其他圈层变化和相互作用的规律。 1电离层模型方法与原理 电离层活动的监测很难建立完善的理论预报模型,目前大都采用统计规律及经验模型做预报,但准确率不高。电离层TEC的长期预报模式大致分两类,一种是利用NeQuick模型预测的电子密度计算TEC,二是利用IRI模型预测的电离层剖面计算电离层TEC。 1.1NeQuick模型 NeQuick模型是由意大利萨拉姆国际理论物理中心的高空物理和电波传播实验(ARPL OICTP, Trieste)与奥地利格拉茨大学的地球物理、气象和天体物理研究所(IGAM,U2niversity of Graz) 联合研究得到的新电离层模型, 该模型已经在欧空局EGNOS项目中使用, 并建议Galileo系统的单频用户采纳来修正电离层延迟。 NeQuick模型不仅可以计算任意点的垂直方向电子总含量和斜距方向上电子总含量,也可以用参数NmF2(F2层的电子密度)和hmF2(F2层峰值的高度)来表示给定时间和位置的电子浓度,从而得到电离层的垂直电子剖面图。该模型提供一种描述三维电离层图像新方法。在计算高度100km到hmF2电子浓度时,模型使用欧盟科技合作项目COST238和COST251中表示Ep stein层的DGR公式(Radicella and Leitinger, 2001)。这些参数值是时间和位置的函数,可以在国际电信联盟无线电部(ITUOR)的数据库中得到,该数据库提供各种参数的月平均值。 标准NeQuick模型在输入月份、地理纬度和经度、高程和协调世界时以后,可以给出卫星信号到接收机传播路径总电子含量或者是卫星与卫星之间总电子含量以及给出高度能到20000km的电离层垂直剖面图。模型同时还需要太阳活动参数: R12 (太阳黑子数每月平均

电离层环境及其影响

电离层环境及其影响 摘要:电离层是指位于地面约60km至1000km处的被电离了的大气层。电子密度的不均匀分布是电离层的重要特性之一,这种不均匀的密度分布的尺度为数米一数十公里量级,亦称为电离层不规则结构。电离层不规则结构会引起卫星电波闪烁,从而导致数据通信线路、广播、测距信号等的一时中断或质量劣化。太阳事件、地磁活动等会引起电离层电子密度的增大,电子密度增大将导致信号延迟增大,从而影响导航定位精度。 关键字:电离层卫星导航飞行器 1引言 电离层(Ionosphere)是地球大气的一个电离区域(如图1所示)。60千米以上的整个地球大气层都处于部分电离或完全电离的状态,电离层是部分电离的大气区域,完全电离的大气区域称磁层。也有人把整个电离的大气称为电离层,这样就把磁层看作电离层的一部分。电离层从离地面约50公里开始一直伸展到约1000公里高度的地球高层大气空域,其中存在相当多的自由电子和离子,能使无线电波改变传播速度,发生折射、反射和散射,产生极化面的旋转并受到不同程度的吸收[1]。 图1 电离层位置示意图 2电离层环境

大气的电离主要是太阳辐射中紫外线和X射线所致。此外,太阳高能带电粒子和银河宇宙射线也起相当电离层知识的拓宽重要的作用。地球高层大气的分子和原子,在太阳紫外线、Χ射线和高能粒子的作用下电离,产生自由电子和正、负离子,形成等离子体区域即电离层。电离层从宏观上呈现中性。电离层的变化,主要表现为电子密度随时间的变化。而电子密度达到平衡的条件,主要取决于电子生成率和电子消失率。表1列出了电离层的一些基本参数。 表1电离层基本参量数据[2] 太阳辐射对不同高度不同成分的空气分子电离,根据电子浓度的变化,电离层也可分成几个区域(如图2所示),即D层(60~90km)、E 层(90~140km)、F1层(140~200km)F2层(200~1000km或2000km)和外电离层(F2层以上)[3]。

基于GPS的电离层研究

中国地质大学本科生课程论文封面 课程名称:全球定位系统原理及应用班级: 姓名:xxxx 学号: 专业:地理信息科学 日期: 2015 年1 月19日

评语 注:1、无评阅人签名成绩无效; 2、必须用钢笔或圆珠笔批阅,用铅笔阅卷无效; 3、如有平时成绩,必须在上面评分表中标出,并计算入总成绩。

基于GPS的电离层研究 摘要 本文主要介绍了电离层的基本特性,阐述了利用GPS观测量计算电离层TEC的三种方法的基本原理:包括码观测解算电离层TEC的基本原理,载波相位观测电离层TEC的基本原理以及码观测和载波相位观测联合解算电离层TEC的基本原理。最后简单的介绍了基于基于GPS的三维电离层层析技术。电离层层析成像技术是计算机层析成像技术在电离层监测中的一种新的应用。该技术通过对电离层进行分层研究,不仅克服了薄层假设电离层层析模型的局限性,也克服了经验模型与传统地面探测手段的局限性,特别适合于监测大尺度电离层电子密度垂直分布及其扰动状态。 关键词:GPS 电离层 TEC

目录 第一章引言 (1) 第二章电离层的基本特性 (2) §2.1 电离层结构 (2) §2.2 电离层骚扰 (2) 第三章计算TEC的基本理论 (3) §3.1 TEC简介 (3) §3.2 GPS观测量及观测方程 (3) 3.2.1 伪距及码观测方程 (3) 3.2.2 载波相位及其观测方程 (4) §3.3 码观测解算电离层TEC的基本原理 (4) §3.4 载波相位观测解算电离层TEC的基本原理 (5) §3.5GPS码与相位观测联合解算电离层TEC (6) 3.5.1 前因 (6) 3.5.2 基本原理 (6) 第四章基于GPS的三维电离层层析技术 (9) 总结 (11) 参考文献 (12)

相关文档
相关文档 最新文档