文档库 最新最全的文档下载
当前位置:文档库 › 光电成像原理与技术课程设计

光电成像原理与技术课程设计

光电成像原理与技术课程设计
光电成像原理与技术课程设计

2013-2014第(2)学期理学院实践教学

成绩评定表

2013-2014第(2)学期理学院实践教学

任务书

随着科学技术的发展以及CCD器件的广泛应用,工业生产、国防、安防以及日常生活中高速高清CCD的需求越来越广泛。传统CCD相机像素低、帧频慢,在速度和清晰度方面有很大的缺陷,无法满足越来越高的使用需求,而高速高清CCD在图像清晰度和帧频速度都有突出的优势,为CCD相机注入了新的发展活力。最近世界各国在高速CCD相机研发领域投入大量的精力并取得了大量的成果,开展高帧频大面阵CCD相机的研制工作具有重要意义。

本文首先对柯达公司生产的逐行转移面阵CCD传感器KAI-01050做了简单的介绍,基于逐行转移CCD的工作原理、电荷转移方式的研究,设计了高速高清CCD系统的一种结构。本文通过对这些关键技术的研究,完成了高速高清CCD系统的设计工作。

关键词:高速摄像,高清CCD

第一章绪论 (1)

第二章高速高清CCD系统介绍 (2)

2.1 CCD成像原理 (2)

2.2 KAI_01050探测器介绍 (3)

第三章高速高清CCD系统的组成 (5)

3.1 光学系统设计 (5)

3.2 电路系统设计 (6)

第四章结果分析 (7)

参考文献 (8)

第一章绪论

电荷耦合器件(CCD)属于半导体器件,是一种图像传感器,能够把视场内的光学图像转化为电荷并存储在相应的像素中,然后通过读出电路将存储的像元电荷读出,并用外围电路中的模数转换模块转换为数字信号。一个完整的CCD阵列是由一系列的微小光敏物质(像素)组成。CCD图像传感器上拥有的像素数量越多,能够提供的画面清晰度也就越高。CCD器件自1969年在贝尔实验室诞生以来,

随着半导体技术的发展,CCD技术也随之得到迅速发展,从当时简单的8像元移位寄存器,到现在已具有数百万、上千万乃至上亿像元。CCD的像元尺寸已经减小到2um以下,在缩小像元尺寸的同时,通过背面光照技术等,使饱和电压和灵敏度也得到提高,在暗电流、读出噪声抑制、抗光晕转移效率等方面也得到了极大的改善。现在的CCD探测器可以探测到短波红外光谱以及一部分紫外光谱,可应用的范围广泛。

CCD和CMOS都是基于MOS结构进行光电转换达到图像采集目的,但是它们

对光电转换后的电荷采用不同的处理方式。由于工作方式、结构和制造工艺的差别,与CMOS相比,CCD器件一直有灵敏度高、噪声低等优点。CCD器件拥有光谱响应宽、噪声低、动态范围大、图像畸变小、灵敏度和几何精度高、寿命长、抗冲击、耐震动、抗电磁干扰能力强、坚固耐用、可以长时间在恶劣环境工作、进行数字化处理和与计算机连接方便等优点,在图像采集、工业测控、非接触测量、天文遥感、航空航天、机器视觉、实时监控、军事电子对抗等领域得到了广泛应用,是光电子学和测试技术中最活跃和最富有成果的研究领域之一。

随着科学技术发展和图像采集系统的广泛应用,人们对于图像釆集系统的主要指标:采样速率、分辨率、精度和抗干扰能力等方面,提出了越来越高的要求。CCD探测器作为光电转换式的图像传感器,是现代电子学和现代测试技术中最活跃的传感器,有广泛的应用需求。而大面阵,高帧频的应用需求也在逐步提高。高分辨率、高帧频的高速高清CCD技术的发展越来越受到人们的重视。

第二章高速高清CCD系统介绍

高速高清CCD系统以柯达公司生产的面阵行间转移CCD “KAI-01050"为探测器,该探测器的面阵大小为1024*1024,面阵大,采集到的视频图像清晰。高速高清CCD系统为KAI-01050探测器提供驱动电路和驱动时序,使KAI-01050能够正常的工作,将探测器采集的模拟视频信号读出。探测器采用四路输出的方式,搭配外围高速驱动芯片,使KAI-01050能够同时输出四路模拟视频信号,数据输出速率可以达到100帧/秒,达到高速高清的应用需求。本文除了介绍系统设计的大体框图之外,还对CCD信号电荷转移原理进行了介绍。

2.1 CCD成像原理

CCD原理并不复杂。我们可以把它想象成一个顶部被打开的记忆芯片。因此光束可以射到记忆单元中。根据“光电效应”,这些光束在记忆单元中产生负电荷(图1中右上部分)。

图1 CCD成像示意图

要实现信号电荷顺利的转移,一般选用的办法是将频率、波形相同、彼此相位保持固定的多个时钟脉冲依次加在CCD的栅极电极上,这些栅极电极上的电压便能够按照固定的规律变化,在半导体表面形成一系深浅分布的势阱,这样便能够使电荷包沿着势阱的移动方向作定向连续的移动,这就是多相时钟驱动法。多相时钟驱动法包括两相时钟驱动、三相时钟驱动和四相时钟驱动等。图2所示,是一个三相CCD中电荷从一个栅极下面转移至相邻栅极下面的过程。

图2 三相CCD信号电荷在势阱中的转移过程

此时电极①下面的势阱最深,这时候逐渐将电极②的电压由2v增加到10v,如图2(b)所示这时①、②两个电极下面的势阱具有同样的深度,合并在一起,原先存储在电极①下面的电荷,就会在①、②这两个电极下面均匀分布,如图

2(c)所示,然后,再逐渐将电极①的电压从10v降到2v,电极①下的势阱深度逐渐降低,如图2.1(e)所示,这时电荷全部转移到电极②下面的势阱中,此过程就完成了信号电荷从电极①到电极②的转移。

2.2KAI_01050探测器介绍

KAI-01050是柯达公司生产的黑白面阵CCD,如图3所示。KAI-01050为行间转移CCD,有效像元数达到1024*1024个,像元大小为5.5um*5.5um;动态范围可达到64dB;有4个模拟视频输出口,通过修改驱动信号和驱动程序,可选择采用1通道、2通道或者4通道输出模式。在选用4通道输出模式下,KAI-01050输出的最高帧频可达到120帧,本设计采用的是4通道,实现全像素100帧输出。

图3 KAI O1050传感器

KAI01050具体参数为:

1、传感器:KODAK KAI-01050

2、输出分辨率:1024*1024

3、像素尺寸:5.5um*5.5um

4、灵敏度:0.01lx (F1.4,for monochrome, Gain at 18dB)

5、逐行输出:2Tap输出

6、输出频率:60fps(精度60Hz±0.05%)

7、像素时钟:40MHz(2Tap输出)

8、数据输出电器规范:Camera Link(Base Mode)

9、数据输出格式:8bit/tap(提供详细输出格式)

10、自动增益:0~18dB(通过串行通讯口开启或关闭)

11、自动快门:1/60s~1/100000s(通过串行通讯口开启或关闭)

固定快门(在自动快门关闭情况,通过串行通讯口设置某一固定值)

12、自动手动白平衡:自动(通过串行通讯口选择自动白平衡开启或关闭)(在自动白平衡关闭情况,通过串行通讯口分别设定R、G、B增益调节白平衡)

13、自动增益/快门图像亮度设定值:通过串行通讯口设定

14、工作电压:12VDC±10%(功耗小于8W)

15、工作温度:-40~+70°C

16、储存温度:-55~+70°C

根据其分辨率1024*1024,输出频率100帧/秒的性能,可以基本实现高速高清照相。

第三章高速高清CCD系统的组成

高速高清CCD系统由可见光光学系统、CCD探测器、电气系统以及显示设备组成,如图3所示,CCD探测器是成像系统的探测器件,作用是为成像系统提供原始模拟视频信号;电气系统是CCD成像系统的核心部分,为CCD探测器提供驱动信号、电源、偏置电压、数字驱动信号、处理电路、图像处理算法等,针对CCD图像的特点进行相应的实时图像信号处理和优化,转化为标准的视频传输格式,最后通过显示设备显示。

图3 高速高清CCD成像系统

一个完整的CCD成像过程为:图像采集的目标物体反射或者福射出的可见光传输到CCD成像系统的光学镜头,光学镜头的作用是把目标发射或者福射出的可见光会聚到CCD探测器的焦平面阵列上,CCD的焦平面阵列对可见光产生响应电荷并存储在像元中,然后通过读出电路把响应电荷读出并转换为数字信号传输到数字处理板上,数字处理板对图像视频进行一系列的信号处理,最终将视频信号转化为标准视频传输格式,输出到显示器上显示。

3.1 光学系统设计

为保证最后所得图像的清晰度,相机所选用的镜头应为长焦镜头。其中的摄远物镜由一个正的前组和一个负的后组构成,如图4所示。这种物镜的特点是透镜组的长度L可缩短到焦距f’的2/3左右,视场2w=20°,相对孔径为1:8。

图4 摄远物镜组

3.2 电路系统设计

本论文中高速高清CCD成像系统结构包括硬件系统和软件系统两部分,硬件系统如图4所示,包括:驱动板、数字处理板、电源板和接口板;软件程序包括:驱动程序、数字图形处理程序、显示程序、数字图像传输程序、422接口程序以及串行FLASH读写控制程序等。

图5 电路系统结构

第四章结果分析

本文基于KAI-01050逐行转移面阵CCD开发的高速高清CCD系统,其系统结构包括光学系统设计和电路系统设计两部分。最终结果图如图6所示

图6 相机成像系统示意图

1-光学补偿组;2-中性滤光片;3-快门和光栏

4-光学变焦组;5-微距和对焦组;6-低通滤波组

7-CCD盖玻片;8-CCD感光面

由于本系统选择了长焦镜头,所以具有视角小、景深短、透视效果差等缺点。但在拍摄远距离物体如拍摄流星、运动中的运动员等远距离快速移动物体时,长焦镜头有其他镜头不具备的优点:

由于视角小,所以,拍摄的景物空间范围也小,在相同的拍摄距离处,所拍摄的影像大于标准镜头,适用于拍摄远处景物的细部和拍摄不易接近的被摄体。

景深短,所以,能使处于杂乱环境中的被摄主体得到突出。

综上所述,本设计能适应大部分拍摄过程中对固定距离被摄物体的准确拍摄。但在快速变焦方面并没有重点考虑,所以在拍摄非固定距离的高速物体时,可能出现因来不及变换焦距产生的虚影模糊等现象。

参考文献

[1] 王士绅.《高速高清CCD系统设计》.[硕士学位论文].南京理工大学,2013-03

[2] KODAK中国.《KODAK 01050 CCD 技术条件》,2012-02

[3] 映美精欧洲有限公司.《彩色CCD相机工作原理》,2010-05

https://www.wendangku.net/doc/fb6062837.html,/zh_cn/resources/whitepapers/download/ howcolcamswp.zh_cn.pdf

[4] 李林.《应用光学(第四版)》.北京北京理工大学出版社,2010-03

光电成像原理及技术课后题答案

光电成像原理及技术课后题 答案 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第一章 5.光学成像系统与光电成像系统的成像过程各有什么特点在光电成像系统性能评价方面通常从哪几方面考虑 答:a、两者都有光学元件并且其目的都是成像。而区别是光电成像系统中多了光电装换器。 b、灵敏度的限制,夜间无照明时人的视觉能力很差; 分辨力的限制,没有足够的视角和对比度就难以辨认; 时间上的限制,变化过去的影像无法存留在视觉上; 空间上的限制,隔开的空间人眼将无法观察; 光谱上的限制,人眼只对电磁波谱中很窄的可见光区感兴趣。 6.反映光电成像系统光电转换能力的参数有哪些?表达形式有哪些答:转换系数:输入物理量与输出物理量之间的依从关系。 在直视型光电成像器件用于增强可见光图像时,被定义为电镀增益G 光电灵敏度: 或者: 8.怎样评价光电成像系统的光学性能有哪些方法和描述方式 答,利用分辨力和光学传递函数来描述。 分辨力是以人眼作为接收器所判定的极限分辨力。通常用光电成像系统在一定距离内能够分辨的等宽黑白条纹来表示。 光学传递函数:输出图像频谱与输入图像频谱之比的函数。对于具有线性及时间、空间不变性成像条件的光电成像过程,完全可以用光学传递函数来 定量描述其成像特性。

第二章 6.影响光电成像系统分辨景物细节的主要因素有哪些? 答:景物细节的辐射亮度(或单位面积的辐射强度); 景物细节对光电成像系统接受孔径的张角; 景物细节与背景之间的辐射对比度。 第三章 13.根据物体的辐射发射率可见物体分为哪几种类型? 答:根据辐射发射率的不同一般将辐射体分为三类: 黑体,=1; 灰体,<1,与波长无关; 选择体,<1且随波长和温度而变化。 14.试简述黑体辐射的几个定律,并讨论其物理意义。 答:普朗克公式: 普朗克公式描述了黑体辐射的光谱分布规律,是黑体理论的基础。 斯蒂芬-波尔滋蔓公式: 表明黑体在单位面积上单位时间内辐射的总能量与黑体温度T的四次方成正比。 维恩位移定律: 他表示当黑体的温度升高时,其光谱辐射的峰值波长向短波方向移动。 最大辐射定律: 一定温度下,黑体最大辐射出射度与温度的五次方成正比。 第五章

光电成像原理复习指南(含答案)

复习指南 注:答案差不多能在书上找到的都标注页数了,实在找不到的或者PPT上的才打在题后面了,用红色和题干区分。特此感为完善本文档所做出贡献的各位大哥。(页码标的是白廷柱、金伟其编著的光电成像原理与技术一书) 1.光电成像系统有哪几部分组成?试述光电成像对视见光谱域的延伸以及所受到的限制(长波限制和短波限制)。(辐射源,传输介质,光学成像系统,光电转换器件,信息处理装置。P2-4) 答:辐射源,传输介质,光学成像系统,光电转换器件,信息处理装置。 [1]电磁波的波动方程该方程电磁波传递图像信息物空间和像空间的定量关系,通过经典电磁场理论可以处理电磁波全部的成像问题 [2]收到的限制:当电磁波的波长增大时,所能获得的图像分辨力将显著降低。对波长超过毫米量级的电磁波而言,用有限孔径和焦距的成像系统所获得的图像分辨力将会很低。因此实际上己排除了波长较长的电磁波的成像作用。目前光电成像对光谱长波阔的延伸仅扩展到亚毫米波成像。除了衍射造成分辨力下降限制了将长波电磁波用于成像外,用于成像的电磁波也存在一个短波限。通常把这个短波限确定在X 射线(Roentgen 射线)与y 射线(Gamma 射线)波段。这是因为波长更短的辐射具有极强的穿透能力,所以,宇宙射线难以在普通条件下聚焦成像。 2.光电成像技术在哪些领域得到广泛的应用?光电成像技术突破了人眼的哪些限制?(P5) 答:[1]应用:(1)人眼的视觉特性(2)各种辐射源及目标、背景特性(3)大气光学特性对辐射传输的影响(4)成像光学系统(5)光辐射探测器及致冷器(6)信号的电子学处理(7)图像的显示 [2]突破了人眼的限制:(1)可以拓展人眼对不可见辐射的接受能力(2)可以拓展人眼对微弱光图像的探测能力(3)可以捕捉人眼无法分辨的细节( 4)可以将超快速现象存储下来 3.光电成像器件可分为哪两大类?各有什么特点?(P8)固体成像器件主要有哪两类?(P9,CCD CMOS) 答:[1]直视型:用于直接观察的仪器中,器件本身具有图像的转换、增强及显示等部分,可直接显示输出图像,通常使用光电发射效应,也成像管.[2]电视型:于电视摄像和热成像系统中。器件本身的功能是完成将二维空间的可见光图像或辐射图像转换成一维时间的视频电信号使用光电发射效应或光电导效应,不直接显示图像. 电荷耦合器件,简称CCD;自扫描光电二极管阵列,简称SSPD,又称MOS图像传感器 4.什么是像管?由哪几部分组成?(P8第一段后部) 器件本身具有图像的转换、增强及显示等部分,它的工作方式是:通过外光电效应将入射的辐射图像转换为电子图像,而后由电场或电磁场的聚焦加速作用进行能量增强以及通过二次发射作用进行电子倍增,经过增强的电子图像轰击荧光屏,激发荧光屏产生可见光图像。这样的器件通常称为像管。 基本结构包括有:光电发射体、电子光学系统、微通道板(电子倍增器件)、荧光屏以及保持高真空工作环境的管壳等。 5.像管的成像包括哪些物理过程?其相应的物理依据是什么?(P8第一段工作方式) (1)像管的成像过程包括3个过程 A、将接收的微弱的可见光图像或不可见的辐射图像转换成电子图 像B、使电子图像聚焦成像并获得能量增强或数量倍增C、将获得增强后的电子图像转

光电成像技术

2014-2015 第一学期 光电成像技术 ——红外热成像技术的发展及其应用 院系电子工程学院光电子技术系 班级光信1104 姓名王凯 学号05113123 班内序号14 考核成绩

红外热成像技术的发展及其应用 摘要:用红外热成像技术,探测目标物体的红外辐射,并通过光电转换、信号处理等手段,将目标物体的温度分布图像转换成视频图像的设备,我们称为红外热成像仪。 关键字:红外线,红外热成像技术,发展及其应用 一、引言 1800年英国的天文学家Mr.William Herschel 用分光棱镜将太阳光分解成从红色到紫色的单色光,依次测量不同颜色光的热效应。他发现,当水银温度计移到红色光边界以外,人眼看不见任何光线的黑暗区的时候,温度反而比红光区更高。反复试验证明,在红光外侧,确实存在一种人眼看不见的“热线”,后来称为“红外线”,也就是“红外辐射”。 二、红外热成像技术 我们人眼能够感受到的可见光波长为:0.38—0.78微米。通常我们将比0.78微米长的电磁波,称为红外线。自然界中,一切物体都会辐射红外线,因此利用探测器测定目标本身和背景之间的红外线差,可以得到不同的红外图像,称为热图像。同一目标的热图像和可见光图像是不同,它不是人眼所能看到的可见光图像,而是目标表面温度分布图像,或者说,红外热图像是人眼不能直接看到目标的表面温度分布,变成人眼可以看到的代表目标表面温度分布的热图像。 用红外热成像技术,探测目标物体的红外辐射,并通过光电转换、信号处理等手段,将目标物体的温度分布图像转换成视频图像的设备,我们称为红外热成像仪。红外热成像仪大致分为致冷型和非致冷型两大类。 目前,世界上最先进的红外热像仪(热成像仪或红外热成像仪),其温度灵敏度可达0.03℃。 1、红外热像仪的工作原理 红外热像仪可将不可见的红外辐射转换成可见的图像。物体的红外辐射经过镜头聚焦到探测器上,探测器将产生电信号,电信号经过放大并数字化到热像仪的电子处理部分,再转换成我们能在显示器上看到的红外图像。

光电成像原理与技术考试要点.pdf

光电成像原理与技术考试要点 第一章: 1.试述光电成像技术对视见光谱域的延伸以及所受到的限制。 答:[1]电磁波的波动方程该方程电磁波传递图像信息物空间和像空间 的定量关系,通过经典电磁场理论可以处理电磁波全部的成像问题 [2]收到的限制:当电磁波的波长增大时,所能获得的图像分辨力将显著降低。 对波长超过毫米量级的电磁波而言,用有限孔径和焦距的成像系统所获得的 图像分辨力将会很低。因此实际上己排除了波长较长的电磁波的成像作用。 目前光电成像对光谱长波阔的延伸仅扩展到亚毫米波成像。除了衍射造成分辨力下降限制了将长波电磁波用于成像外,用于成像的电磁波也存在一个短波限。通常把这个短波限确定在X 射线(Roentgen 射线)与y 射线(Gamma 射线)波段。这是因为波长更短的辐射具有极强的穿透能力,所以,宇宙射线难以在普通条件下聚焦成像。 2. 光电成像技术在哪些领域得到广泛的应用?光电成像技术突破了人眼的哪些限制? 答:[1]应用:(1)人眼的视觉特性(2)各种辐射源及目标、背景特性(3)大气光学特性对辐射传输的影响(4)成像光学系统(5)光辐射探测器及致冷器(6)信号的电子学处理(7)图像的显示 [2]突破了人眼的限制:(1)可以拓展人眼对不可见辐射的接受能力(2)可以拓展人眼对微弱光图像的探测能力(3)可以 捕捉人眼无法分辨的细节(4)可以将超快速现象存储下来 3. 光电成像器件可分为哪两大类?各有什么特点? 答:[1]直视型:用于直接观察的仪器中,器件本身具有图像的转换、增强及显示等部分,可直接显示输出图像,通常使用光电发射效应,也成像管.[2]电视型:于电视摄像和热成像系统中。器件本身的功能是完成将二维空间的可见光图像或辐射图像转换成一维时间的视频电信号使用光电发射效应或光电导效应,不直接显示图像. 4. 什么是变像管?什么是像增强器?试比较二者的异同。 答:[1]变像管:接收非可见辐射图像,如红外变像管等,特点是入射图像和出射图像的光谱不同。[2]像增强器:接收微弱可见光辐射图像,如带有微通道板的像增强器等,特点是入射图像极其微弱,经过器件内部电子图像能量增强后通过荧光屏输出人眼能够正常观看的光学图像。[3]异同、相同点:二者均属于直视型光电成像器件。不同点:主要是二者工作波段不同,变像管主要完成图像的电磁波谱转换,像增强器主要完成图像的亮度增强。 5. 反映光电成像系统光电转换能力的参数有哪些? 答:[1]转换系数(增益)[2]光电灵敏度(响应度)-峰值波长,截止波长 6. 光电成像过程通常包括哪几种噪声? 答:主要包括:(1)散粒噪声(2)产生一复合噪声(3)温度噪声(4)热噪声(5)低频噪声(1/f 噪声)(6)介质损耗噪声(7)电荷藕合器件(CCD)的转移噪声 第二章: 1. 人眼的视觉分为哪三种响应?明、暗适应各指什么? 答:[1]三种响应:明视觉、暗视觉、中介视觉。人眼的明暗视觉适应分为明适应和暗适应[2]明适应:对视场亮度由暗突然到亮的适应,大约需要2~3 min[3]暗适应:对视场亮度由亮突然到暗的适应,暗适应通常需要45 min,充分暗适应则需要一个多小时。 2. 何为人眼的绝对视觉阈、阈值对比度和光谱灵敏度? 答:[1]人眼的绝对视觉阈:在充分暗适应的状态下,全黑视场中,人眼感觉到的最小光刺激值。[2]阈值对比度:时间不限,使用双眼探测一个亮度大于背景亮度的圆盘,察觉概率为50%时,不同背景亮度下的对比度。[3]光谱灵敏度(光谱光视效率):人眼对各种不同波长的辐射光有不同的灵敏度(响应)。 3. 试述人眼的分辨力的定义及其特点。 答:[1]定义:人眼能区分两发光点的最小角距离称为极限分辨角θ,其倒数为人眼分辨力。

光电成像技术玉林师范学院期末考试

1.简述: (1)CMOS器件和CCD器件的工作原理上有什么相同点和不同点; 答:CMOS图像传感器的光电转换原理与CCD基本相同,其光敏单元受到光照后产生光生电子。而信号的读出方法却与CCD不同,每个CMOS源像素传感单元都有自己的缓冲放大器,而且可以被单独选址和读出,工作时仅需工作电压信号,而CCD读取信号需要多路外部驱动。 (2)在应用上各自有什么优缺点,以及各自的应用领域是什么 答:优缺点比较:CMOS与CCD图像传感器相比,具有功耗低、摄像系统尺寸小,可将图像处理电路与MOS图像传感器集成在一个芯片上等优点,但其图像质量(特别是低亮度环境下)与系统灵活性与CCD的相比相对较低。灵敏度代表传感器的光敏单元收集光子产生电荷信号的能力,而CCD灵敏度较CMOS高30%~50%。电子-电压转换率表示每个信号电子转换为电压信号的大小,由于CMOS在像元中采用高增益低功耗互补放大器结构,其电压转换率略优于CCD。 运用的领域:CMOS传感器在低端成像系统中具有广泛运用,如数码相机,微型和超微型摄像机。CCD在工业生产中的应用广泛,如冶金部门中的各种管、线轧制过程中的尺寸测量。 (3)全球生产CMOS器件和CCD几件的企业有哪些分别位于哪些国家,并对先关企业进行简要描述。 2、简要概述《光电成像原理与技术》各章的主要内容,并用自己的语言陈述各章之间的联系(文字在1000字以上)。 答: 1.光电成像技术的产生及发展,光电成像对视见光谱域的延伸,光电成像技术的应用范畴,光电成像器件的分类,光电成像器件的特性。 2.] 3.人眼的视觉特性与图像探测:人眼的视觉特性与模型,图像探测理论与图像探测方程,目标的探测与识别。 4.辐射源与典型景物辐射:辐射度量及光度量,朗伯辐射体及其辐射特性,黑体辐射定律,辐射源及其特性。 5.辐射在大气中的传输:大气的构成,大气消光及大气窗口,大气吸收和散射的计算,大气消光对光电成像系统性能的影响。 6.直视型电真空成像器件成像物理:像管成像的物理过程,像管结构类型与性能参数,辐射图像的光电转换,电子图像的成像理论,电子图像的发光显示,光学图像的传像与电子图像的倍增。 7.直视型光电成像系统与特性分析:直视型光电成像系统的原理,夜视光电成像系统的主要部件及特性,直视型夜视成像系统的总体设计,夜视系统的作用距离。 8.电视型电真空成像器件成像物理:电视摄像的基本原理,摄像管的主要性能参数,摄像管的分类,热释电摄像管,电子枪简介。 9.固体成像器件成像原理及应用: CCD的物理基础与工作原理, CDD的结构与特性,CCD 成像原理,增强型(微光)电荷耦合成像器件,CCD的应用,CMOS成像器件及其应用。10.电视型光电成像系统与特性分析:电视系统的组成与工作原理,电视型微光成像系统(微光电视),成像光子计数探测系统。 11.红外热成像器件成像物理:红外探测器的分类,红外探测器的工作条件与性能参数,光电导型红外探测器,光伏型红外探测器,红外焦平面阵列探测器,非制冷红外焦平面陈列探测器,量子阱红外探测器。

光电成像原理及技术--部分答案(北理工)

光电成像原理及技术--部分答案(北理工)

第一章 5.光学成像系统与光电成像系统的成像过程各有什么特点?在光电成像系统性能评价方面通常从哪几方面考虑? 答:a、两者都有光学元件并且其目的都是成像。而区别是光电成像系统中多了光电装换器。b、灵敏度的限制,夜间无照明时人的视觉能力很差; 分辨力的限制,没有足够的视角和对比度就难以辨认; 时间上的限制,变化过去的影像无法存留在视觉上; 空间上的限制,隔开的空间人眼将无法观察; 光谱上的限制,人眼只对电磁波谱中很窄

的可见光区感兴趣。 6.反映光电成像系统光电转换能力的参数有哪些?表达形式有哪些? 答:转换系数:输入物理量与输出物理量之间的依从关系。 在直视型光电成像器件用于增强可见 光图像时,被定义为电镀增益G1, 光电灵敏度: 或者: 8.怎样评价光电成像系统的光学性能?有哪些 方法和描述方式? 答,利用分辨力和光学传递函数来描述。 分辨力是以人眼作为接收器所判定的极限分

辨力。通常用光电成像系统在一定距离内 能够分辨的等宽黑白条纹来表示。 光学传递函数:输出图像频谱与输入图像频谱之比的函数。对于具有线性及时间、空间 不变性成像条件的光电成像过程,完全可 以用光学传递函数来定量描述其成像特 性。 第二章 6.影响光电成像系统分辨景物细节的主要因素 有哪些? 答:景物细节的辐射亮度(或单位面积的辐射强度); 景物细节对光电成像系统接受孔径的张角; 景物细节与背景之间的辐射对比度。

第三章 13.根据物体的辐射发射率可见物体分为哪几种 类型? 答:根据辐射发射率的不同一般将辐射体分为三类: 黑体,=1; 灰体,<1,与波长无关; 选择体,<1且随波长和温度而变化。 14.试简述黑体辐射的几个定律,并讨论其物理 意义。 答:普朗克公式: 普朗克公式描述了黑体辐射的光谱分布规律,是黑体理论的基础。

光电成像原理与应用复习资料

1、光电效应应按部位不同分为内光电效应和外光电效应,内光电效应包括(光电导)和(光伏效应)。 2、真空光电器件是一种基于(外光电)效应的器件,它包括(光电管)和(光电倍增管)。 3、光电导器件是基于半导体材料的(光电导)效应制成的,最典型的光电导器件是(光敏电阻)。 4、硅光电二极管在反偏置条件下的工作模式为(光电导),在零偏置条件下的工作模式为(光伏模式)。 5、变象管是一种能把各种(不可见)辐射图像转换成为(可见)图像的真空光电成像器件。 6、固体成像器件电荷转移通道主要有两大类,一类是(SCCD),另一类是(BCCD)。 7、光电技术室(光子技术)和(电子技术)相结合而形成的一门技术。 8、场致发光有(直流)、(交流)和结型三种形态。 9、常用的光电阴极有(正电子亲合势光电阴极)和(负电子亲合势光电阴极),正电子亲和势材料光电阴极有哪些(Ag-O-Cs,单碱锑化物,多碱锑化物)。 10、根据衬底材料的不同,硅光电二极管可分为(2DU)型和(2CU)型两种。 11、像增强器是一种能把(微弱)增强到可以使人眼直接观察的真空光电成像器件,因此也称为(微光管)。 12、光导纤维简称光纤,光纤有(纤芯)、(包层)及(外套)组成。 13、光源按光波在时间,空间上的相位特征可分为(相干)和(非相干)光源。 14、光纤的色散有材料色散、(波导色散)和(多模色散)。 15、光纤面板按传像性能分为(普通OFP)、(变放大率的锥形OFP)和(传递倒像的扭像器)。 16、光纤的数值孔径表达式为(),它是光纤的一个基本参数、它反映了光纤的(集光)能力。 17、真空光电器件是基于(外光电)效应的光电探测器,他的结构特点是有一个(真空管),其他元件都置于(真空管)。 18、根据衬底材料的不同,硅光电电池可分为(2DR)型和(2CR)型两种。 19、根据衬底材料的不同,硅光点二、三级管可分为(3DU)型和(3CU)型两种。 20、为了从数量上描述人眼对各种波长辐射能的相对敏感度,引入视见函数V(f), 视见函数有(明视见函数)和(暗视见函数)。 21、PMT有哪几部分组成?并说明店子光学系统的作用是什么?PMT的工作原理? PMT主要由入射窗口、光电阴极、电子光学系统、电子倍增系统和阳极五个主要部分组成。 电子光学系统的主要作用有两点: 1、使光电阴极发射的光电子尽可能全部汇聚到第一倍增极上,而将其他部分的杂散热电子散射掉,提高信噪比. 2 . PMT的工作原理 1.光子透过入射窗口入射在光电阴极K上 2.光电阴极K受光照激发,表面发射光电子 3.光电子被电子光学系统加速和聚焦后入射到第一倍增极D1上,将 发射出比入射电子数更多的二次电子。入射电子经N级倍增后, 光电子数就放大N次. 4.经过倍增后的二次电子由阳极P收集起来,形成阳极光电流I p,在负载R L上产生信号电压U0。 22、PMT的倍增极结构有几种形式?个有什么特点? 鼠笼式,盒栅式,直线聚焦型,百叶窗式,近贴栅网式,微通道板式。 23、什么是二次电子?并说明二次电子发射过程的三个阶段是什么?光电子发射过程的三步骤? 答:当具有足够动能的电子轰击倍增极材料时,倍增极表面将发射新的电子。称入射的电子为一次电子,从倍增极表面发射的电子为二次电子。 二次电子发射过程的三个阶段: 1) 材料吸收一次电子的能量,激发体内电子到高能态,这些受激电子称为内二次电子; 2) 内二次电子中初速指向表面的那一部分向表面运动,在运动中因散射而损失部分能量; 3) 到达界面的内二次电子中能量大于表面势垒的电子发射到真空中,成为二次电子。 24、简述Si-PIN光电二极管的结构特点,并说明Si-PIN管的频率特性为什么比普通光电二极管好?p69 25、简述常用像增强器的类型?并指出什么是第一、第二和第三代像增强器,第四代像增强器在在第三代基础上突破的两个技术室什么?p130 1). 级联式像增强器2) 第2代像增强器(微通道板像增强器)3).第3代像增强器4).第4代像增强器 26、什么是光电子技术?光电子技术以什么为特征? 光电子技术是:光子技术与电子技术相结合而形成的一门技术。主要研究光与物质中的电子相互作用及其能量相互转

光电成像原理及技术__部分答案(北理工)解析

第一章 5.光学成像系统与光电成像系统的成像过程各有什么特点?在光电成像系统性能评价方面通常从哪几方面考虑? 答:a、两者都有光学元件并且其目的都是成像。而区别是光电成像系统中多了光电装换器。 b、灵敏度的限制,夜间无照明时人的视觉能力很差; 分辨力的限制,没有足够的视角和对比度就难以辨认; 时间上的限制,变化过去的影像无法存留在视觉上; 空间上的限制,隔开的空间人眼将无法观察; 光谱上的限制,人眼只对电磁波谱中很窄的可见光区感兴趣。 6.反映光电成像系统光电转换能力的参数有哪些?表达形式有哪些? 答:转换系数:输入物理量与输出物理量之间的依从关系。 在直视型光电成像器件用于增强可见光图像时,被定义为电镀增益G1, 光电灵敏度: 或者: 8.怎样评价光电成像系统的光学性能?有哪些方法和描述方式? 答,利用分辨力和光学传递函数来描述。 分辨力是以人眼作为接收器所判定的极限分辨力。通常用光电成像系统在一定距离内能够分辨的等宽黑白条纹来表示。 光学传递函数:输出图像频谱与输入图像频谱之比的函数。对于具有线性及时间、空间不

变性成像条件的光电成像过程,完全可以用光学传递函数来定量描述其成像特性。 第二章 6.影响光电成像系统分辨景物细节的主要因素有哪些? 答:景物细节的辐射亮度(或单位面积的辐射强度); 景物细节对光电成像系统接受孔径的张角; 景物细节与背景之间的辐射对比度。 第三章 13.根据物体的辐射发射率可见物体分为哪几种类型? 答:根据辐射发射率的不同一般将辐射体分为三类: 黑体,=1; 灰体,<1,与波长无关; 选择体,<1且随波长和温度而变化。 14.试简述黑体辐射的几个定律,并讨论其物理意义。 答:普朗克公式: 普朗克公式描述了黑体辐射的光谱分布规律,是黑体理论的基础。 斯蒂芬-波尔滋蔓公式: 表明黑体在单位面积上单位时间内辐射的总能量与黑体温度T的四次方成正比。

光电成像原理

光电成像原理论文 院系:物理学系 专业:光信息科学与技术 姓名:王世明 学号:2007113143

嵌入式光电成像系统及高分辨率的实现 王世明 (西北大学2007级陕西西安 710069) 摘要:自上世纪初人类揭示光电效应的本质以来,光电成像技术一直是成像领域的热点技术,并得到了迅速的发展。目前,光电成像技术已广泛应用于国防、航天、生物科学、化工检测、工业监控乃至日常消费等领域。本论文分析了目前光电成像系统结构和性能上的优势和不足,从提高系统移动性和集成度、突破传输受限和增强系统实时处理和分析三个方面出发,设计了一套新型的光电成像系统,并详细分析了这套系统的整体构造、软硬件设计和实现形式、调试技术和实验结果。 嵌入式技术的引入,可以大大减小光电成像系统的体积,降低功耗,提高便携性,从而扩展光电成像技术的应用领域。本论文将该系统应用于图像采集,得到了理想的实验结果。论文最后,总结了设计过程中所做的工作和创新点,同时对于系统的进一步完善和开发进行了展望。本文主要介绍了光电成像原理的发展过程及其在实际生活中的运用,为我们介绍了具体的应用及未来的发展前景。 实现成像系统的超高分辨是光电探测领域中探索和追求的重要目标。 对提高天文观测、空间侦察和资源探铡的信息容量及精度具有重要意义。 归纳总结了近年来国内外从光学系统结构、光电探测器及软件重建等方面对提高系统分辨能力所进行的部分研究和进展.结合本实验室在这一领城开展的研究,时其中的一些理论及工程方法探索进行了阐述和分析,旨在为进一步实现超高分辨光电成像系统的研究提供建设性参考意见。 关键词:光电成像、嵌入式系统、ADS调试、图像采集 一.光电成像系统的发展 现代人类是生活在信息时代,获取图像信息是人类文明生存和发展的基本需要,据统计,在人类接受的信息中,视觉信息占到了60%。但是由于视觉性能的限制,通过直接观察所获得的图像信息是有限的。首先是灵敏度的限制,在照明不足的情况下人的视觉能力很差;其次是分辨力的限制;还有时间上的限制,已变化过的景象无法留在视觉上。总之,人的直观视觉只能有条件地提供图像信息。在很久以前,人们就已经开始为开拓自身的视觉能力而探索,望远镜、显微镜、胶片照相机等的应用,为人类观察和保留事物景象提供了方便。直到上世纪20年代,爱因斯坦完善了光与物质内部电子能态相互作用的量子理论,人类从此揭开了内光电效应的本质。同时,随着半导体理论发展和随之研制出来的各种光电器件,内光电效应得到了广泛的应用。而在外光电效应领域,1929年科勒制成了第一个实用的光电发射体一银氧铯光阴极,随后成功研制了红外变像管,实现了将不可见的红外图像转换为可见光图像。随之而来的是紫外变像管和X射线变像管,人类的视觉光谱范围获得了很大的扩展。上世纪30年代,人类又开始为扩展视界而致力于电视技术的研究。以弗兰兹沃思开发的光电析像器为起端,伴随而来的是众多摄像器件的诞生,超正析像管、分流摄像管、视像管、热释电摄像管等。1976年,美国贝尔实验室发现电荷通过半导体势阱发生转移的现象,利用

光电成像原理与技术总复习

光电成像原理与技术总复习 一、重要术语 光电成像技术、像管、变像管、像增强器、摄像管(器)、明适(响) 应、暗适(响)应、人眼的绝对视觉阈、人眼的阈值对比度、人眼的光 谱灵敏度(光谱光视效率)、人眼的分辨率、图像的信噪比、凝视、凝 视中心、瞥见时间、瞥见孔径、辐射度量、辐射功率、辐射强度、辐亮 度、辐照度、辐射出照度、光度量、光能、光能密度、光通量、光亮 度、光出射度,照度,发光强度,光亮度;坎(凯)德拉、流明、勒克 司、视见函数、朗伯辐射体、气溶胶粒子、云、雾、霾、霭、大气消 光、大气散射、大气吸收、大气能见度(能见距离)、大气透明度、电 子透镜、光电子图像、亮度增益、等效背景照度、畸变、像管分辨力 (率)、正(负)电子亲(素)和势、负电子亲和势、光电发射的极 限、电流密度、MCP的饱和电流密度、荧光、磷光、表面态、微光夜视仪、照明系统的光强分布、成像系统的极限分辨力、选通技术、靶、惰 性(上升惰性、衰减惰性)、摄像管的分辨力、动态范围、靶网、居里 温度、热释电靶的单畴化、CCD的开启电压、CCD的转移效率、界面 态“胖0”工作模式、光注入、电注入。 二、几个重要的效应 1.光电转换效应(内/外) 2.热释电能转换效率(应) 3.三环效应 4.MCP的电阻效应/充电效应 三、几个重要定律 1.朗伯余弦 2.基尔霍夫 3.黑体辐射(共4个) 4.波盖尔

5.斯托列托夫 6.爱因斯坦 四、重要结构及其工作原理、特点 1.直视型光电成像器件的基本结构、工作原理 2.非直视型(电视型)光电成像器件的基本结构、工作原理 3.人眼的结构及其图像形成过程 4.大气层的基本构成、结构特点 5.像管的结构及其成像的物理过程 6.光阴极实现辐射图像光电转换的物理过程(光电发射过程) 7.电子光学系统的基本结构及其成像过程 8.荧光屏的结构及其发光过程 9.光谱纤维面板的结构及其成像原理 10.微通道板(MCP的结构及其电子图像的倍增原理) 11.主动红外成像系统结构及其成像过程 12.夜视成像系统结构及其成像过程 13.摄像管的结构及其工作原理 14.光电导摄像管的结构及其工作原理 15.热释电摄像管的结构及其工作原理 16.电子枪的结构及其工作原理 17.MOS电容器的结构及其电荷存储原理、 https://www.wendangku.net/doc/fb6062837.html,D的结构及其电荷传输原理 19.埋沟CCD(BCCD)的结构及其工作原理

《光电成像原理与技术》学习指南

《光电成像原理与技术》学习指南 图像是人类获取信息的最主要途径,据相关统计,人类所获取的信息80%以上来自于人眼,即来自于图像。光电成像原理与技术即为介绍迄今为止人类为扩展自身的视野和获取更多的信息所进行的努力和掌握的技术的课程。 本课程系统地介绍了光电成像技术发展的历史沿革和现状,讲述了人眼的视觉特性与图像探测的规律和目标景物特性及大气传输特性对光电成像过程的影响,系统、全面地介绍了微光夜视技术,电视摄像技术和红外热成像技术,内容包括各种光电成像器件的工作机理、结构及以这些器件为核心的典型光电成像系统。 本门课程特点是,理论知识涉及面广(物理学、电子学、工程光学),工程性知识点多(人眼的特性、自然的辐射环境与辐射源、大气对辐射传输的影响、光机结构等),知识点和技能点较学科基础课程系统性差。因此,要学好光电成像原理与技术这门课程,应该注意两条脉络: 1、光电转换技术、信号增强技术和发光显示技术,注意光电成像器件与系统是怎样完成“光-电-光”的转换的(这里需要有关半导体物理、电磁场理论等方面的知识)。其中的前提是,从人眼观察物体及对物体的分辨角度上讲,图像就是一个亮度(灰度)分布的点阵!因此,不管是直视型的光电成像还是电视型的光电成像,都是在研究解决在“光-电-光”转换的过程中和问题上如何保持构成原物体的这些点的空间分布。前述问题清楚了,后面就是搞清楚直视型光电成像器件上与电视型光电成像器件上二者的异同在哪里?进而不同的电视型光电成像器件在解决上述问题的异同又是在哪里?这些问题清楚了,解决了,那你对光电成像器件的认识就达成了。 涉及上述内容的章节为第五章、第七章、第八章和第十章。 2、从光电成像器件到光电成像系统的问题。因为光线从目标物到达人眼,需要通过目标所处的环境提供照明,需要透过大气到达光电成像系统的光学透镜表面,又要通过光学系统形成图像在光电成像器件的光电转换面上,然后通过光电成像器件及系统完成“光-电-光”的转换后,呈现在人眼面前,于是我们看到了距离遥远(电视)的图像,看到了很弱光线下(夜晚等)的图像(像增强器、微光夜视),看到了人眼无法直接看到(X射线、紫外、近红外、短波红外、中长波红外等)的图像,于是我们人类就可以由此获得很多通过人眼自身而不能直接得到的各种信息。 涉及上述内容的章节为第二章、第三章、第四章、第六章、第九章和第十一章。 总之,作为一门反映近代物理学优秀成果的光电成像技术,需要我们有一定的前期知识基础,如应用光学、物理光学、半导体物理学、辐射度与光度学知识等,希望学习者能够具备这些知识。 从学习方法上讲,学习者首先应该学会从系统到器件、从整体到局部地将知识统和起来-“树叶再多也是通过树枝长在树上的”。其次要学会抓住主要矛盾,建立工程和系统的意识-如何成像才是关键!再次,要善于温故知新,在具体的系统与器件中认识已知的科学道理,善于归纳总结,在对比中发现原理、技术手段中的共性和不同。最后,还希望学习者经常关注我们身边的光电成像技术,了解行业发展及动态,因为光电技术的发展日新月异,因此光电成像技术的发展也会推陈出新,不断把更精彩的物质世界展现在人类的面前! 祝学习者学有所成,造福人类。

《光电成像导论》知识点复习(吐血推荐)

1,直接带隙材料和间接带隙材料(直接带隙半导体材料就是导带最小值(导带底)和满带 最大值在k空间中同一位置。电子要跃迁到导带上产生导电的电子和空穴(形成半满能带)只需要吸收能量。) 2,直接跃迁和间接跃迁3,什么是散射,原因 4,光学的两个特殊角,全反射角和布鲁斯特角 光由光密介质进入光疏介质时,当入射角θ增加到某种程度,会发生全反射。折射角为90度所对应的入射角为临界角。自然光在电介质界面上反射和折射时,一般情况下反射光和折射光都是部分偏振光,只有当入射角为某特定角时反射光才是线偏振光,其振动方向与入射面垂直,此特定角称为布儒斯特角或起偏角,用θb表示。此规律称为布儒斯特定律。光以布儒斯特角入射时,反射光与折射光互相垂直。 5,在迪拜长度后面那个,具体得翻书才能知道,好像是折射率的证明(p77) 6,关于散射的应用题,给一个波长函数,有两个参数待定,然后给两组数据,求出两个参数,然后再给一个数据,求解。不难,需要求导 7,一个关于光吸收能量转化的应用题,给出一堆参数,根据能量守恒,需要知道一些常量,比如h,e等8,速率方程,教材最后一节内容,知道怎么列出的 9,可见光范围380nm—760nm 10,光子频率能量范围 本征吸收:本征吸收是指在价带和导带之间电子的跃迁产生与自由原子的线吸收谱相当 的晶体吸收谱,它决定着半导体的光学性质.本征吸收最明显的特点是具有基本的吸收边(吸收系数陡峭增大的波长)这种由于电子由带与带之间的跃迁所形成的吸收过程称为本征吸收。 辐射复合:根据能量守恒原则,电子和空穴复合时应释放一定的能量,如果能 量以光子的形式放出,这种复合称为辐射复合(Radiative Recombination)。辐射复合可以是导带电子与价带的空穴直接复合,这种复合又称为直接辐射复合,是辐射复合中的主要形式。此外辐射复合也可以通过复合中心进行。在平衡态,载流子的产生率总与复合率相等。辐射复合(Radiative Recombination)是等离子体中电子与离子碰撞的主要复合过程之一,它是光电离的逆过程,对等离子中电离平衡的建立和维持以及等离子体的辐射输运都起着重要作用。《光电成像导论》 复习提纲 (2012-12-18) 第1章光电阴极及其半导体物理基础 §1.1 光电发射体的半导体物理基础 1.1.2 载流子复合过程的动力学 总复合包括两个过程: (1) 一个电子从导带中消失(过程a); (2) 一个空穴从价带中消失(过程c)。 四个过程的几率: 1. 电子的俘获几率r a: f) ( nN V r t n th a - =1 σ (1-1) 2. 电子的发射几率r b: f N e r t n b = (1-2) 3. 空穴复合率r c: f PN V r t p th c σ = (1-3) 4. 空穴发射几率r d: f) ( N e r t p d - =1 (1-4) 以上公式的应用范围:非平衡条件和热平衡条件非平衡、热稳定条件下的半导体的费米函数

光电成像卷子

2004级光电工程系光电成像原理与技术期末试题A卷 班级:学号:姓名:分数: 一、填空(每空1分,共27分) 1.人眼按不同照度下的响应可分为()视觉、()视觉及()视觉。 2.Johnson准则把目标的探测等级分为4等,其中:()意味着在视场中发现一个目标,()意味着可将目标大致分类,()意味着可区分目标的型号和其他细节特征;这三者探测等级实现概率为50%时,对应地在目标临界尺寸上,可分辨的等效条带的周期数目应分别是()、()、()。 3.()是利用二次电子发射性质来完成电子图像的倍增的。 4.若像管的光阴极半径是r c,物镜系统的焦距是f o’,夜视仪的物镜视场角应该是()。 5.双反射镜系统中,往往存在一个主反射镜,一个次反射镜,次反射镜在系统中的作用是()。 6.对于线阵CCD成像器件,在行扫描正程,()区负责积累光信号,()下没有势阱,()区在交变电压的作用下,将上一行信号依次传输到输出电路。为使电荷包实现定向转移,需要控制好相邻栅极上的(),从而调节其下对应势阱的深浅,电压的绝对值越大,势阱就越(),电荷包总是从()势阱流向()势阱。 7.大气传输对于目标探测有两方面的影响:首先是大气传输会消弱目标的辐射功率,经过l距离大气后辐射功率与初始辐射功率的比用()参数来描述,当已知能见距离是R v的前提下,在可见光波段,该参数可用公式()来计算;其次,大气传输会削弱目标与背景的对比度,设目标与背景故有对比度是C0,地平天空亮度与背景照度之比为K,经过上述距离的大气后,到达成像系统近前的目标与背景的表观对比度C l应为()。 8.当目标到达光阴极面的照度为E c,表观对比度为C l时,对应于获得同样的分辨力,需要阴极面对于对比度为100%的黑白条纹的照度E100%为()。9.某些材料受光子照射后,其中的电子吸收入射光子能量而发生运动状态的改变,导致该材料的某些电学性质发生改变,这种现象称之为(),其分为产生光电子发射的()和产生光电导及光伏效应的()。

光电成像技术

2013-2014 第一学期 光电成像技术 ——微光夜视技术的发展及其应用 院系电子工程学院光电子技术系 班级光信息1003 姓名刘寒 学号05103073 班内序号05 考核成绩

微光夜视技术的发展及其应用 1 摘要始于20世纪60年代的微光夜视技术靠夜里自然光照明景物,以被动方式工作,自身隐蔽性好,在军事、安全、交通等领域得到广泛的应用。近年来,微光夜视技术得到迅速发展,在第一代、第二代、第三代的基础上,第四代技术应运而生。结合我国目前的设备条件元器件性能和技术水平的现状,对我国微光夜视技术的发展方向和重要的关键技术进行了阐述-提出了一些建议和展望。 关键字:微光夜视技术;超二代微光;三代微光;四代微光;微光像增强器 2 微光夜视技术及其发展 2.1 第一代微光夜视技术20世纪60年代初,在多碱光阴极(Sb-Na-K-Cs)、光学纤维面板的发明和同心球电子光学系统设计理论的完善的基础上,将这三大技术工程化,研制成第一代微光管。其一级单管可实现约50倍亮度增益,通过三级级联,增益可达5x104~105倍。第一代微光夜视技术属于被动观察方式,其特点是隐蔽性好、体积小、重量小、成品率高,便于大批量生产;技术上兼顾并解决了光学系统的平像场与同心球电子光学系统要求有球面物(像)面之间的矛盾,成像质量明显提高。其缺点是怕强光,有晕光现象。 2.2 第二代微光夜视技术第二代微光夜视器件的主要特色是微通道板电子倍增器(MCP)的发明并将其引入单级微光管中。装有1个MCP的一级微光管可达到104—105亮度增益,从而替代了原有的体积大、笨重的三级级联第一代微光管;同时,MCP微通道板内壁实际上是具有固定板电阻的连续打拿级,因此,在恒定工作电压下,有强电流输入时,有恒定输出电流的自饱和效应,此效应正好克服了微光管的晕光现象;加之它的体积更小、重量更轻,所以,第二代微光夜视仪是目前国内微光夜视装备的主体。 2.3 第三代微光夜视技术第三代微光夜视器件的主要特色是将透射式GaAs

光电成像技术考点及解析

基本术语:光电成像技术(P2):采用各类光电成像器件完成成像过程的技术可以统称为光电成像技术。像管(P8):直视型光电成像器件基本结构包括有:光电发射体、电子光学系统、微通道板(电子倍增器件)、荧光屏以及保持高真空工作环境的管壳等。这种成像器件通常简称为像管。变像管(P8):接受非可见辐射图像的直视型光电成像器件统称为变像管。像增强器(P8):接受微弱可见光图像的直视型光电成像器件统称为像增强器。摄像器(P8):电视型光电成像器件用于电视摄像和热成像系统中,只完成摄像功能,不直接输出图像的器件,也称为非直视型光电成像器件或者摄像器件。明适应、暗适应、:P31-32 凝视、凝视中心:P48的倒数第二段人眼的绝对视觉阈:P32.2 人眼的阈值对比度:P33.3 人眼的光谱灵敏度:光谱光视效率P34.4 人眼的分辨力:P34.5 图像的信噪比:P42的2-27 瞥见时间:P48的倒数第二段瞥见孔径:P49的顺数第二行辐射度量、辐射功率、辐度强度、辐亮度、辐照度、辐射出射度:P54 光度量、光能、光能密度、光通量:都在P58表3-3 光出射度:符号M、Mv,意义:光源单位面积向半球空间发射的光通量;定义式:,单位:; 照度:符号,意义:照射到表面一点处单位面积的光通量;定义式:,单位:lx;发光照度:符号:,意义:在给定方向上,单位立体角内的光通量;定义式:,单位:cd; 光亮度:,意义:表面一点处的面元,在给定方向上发光强度除以该面元在垂直于给定,单位:;方

向上的投影面积;定义式:坎德拉:光源在给定方向上的发光强度,该光源发出频率为540*10∧12Hz的单色辐射,且在此方向上的辐射强度为1/163W/sr.cd(P58) 1流明lm(P58):光通量的单位,点光源在某一方向的发光强度为1cd时,在该方向单位立体角内传出的光通量。(P58) 1勒克司lx:1lm的光通量均匀分布在1平方米的面积所产生的照度称为1lx。(P58) 视见函数:P59 朗伯辐射体:P60 气溶胶粒子:P91 云、雾、霾、霭:云由水滴和冰晶两种粒子组成,液态云滴的半径约为一到一百微米,冰晶尺寸稍大。雾由靠近地面漂浮在空中的机细小水滴或冰晶组成,是一种近地层的云。通常把水平能见度小于一千米的近地层水汽凝结物称为雾,能见度在一到十千米的雾称为轻雾和霭。由于人类活动排放的烟尘,或者海上产生的人力漂浮于大气中的固态气溶胶系统称为霾。(P91~92)大气消光:P94 大气散射:P99 大气吸收:P96 大气能见度(能见距度)(P101)大气透明度(P101)电子透镜(P123倒数第三段)光电子图像:由光电发射的斯托列托夫定律可知,饱和光电发射的光电子流密度与入射辐射通量密度成正比。因此,由入射辐射分布构成的图像的可以通过光阴极变换成由变换成由正比光电子流分布构成的图像。(P123)亮度增益:像管在标准光源照射下,荧光屏上的光出射度M与入射到阴极面上的照度Ev成正比。即GL=M/Ev(倍)在(P132页)等效背景照度:使荧光屏上亮度等于暗背景亮度值时的光

光电成像原理与技术课程设计

2013-2014第(2)学期理学院实践教学 成绩评定表

2013-2014第(2)学期理学院实践教学 任务书

随着科学技术的发展以及CCD器件的广泛应用,工业生产、国防、安防以及日常生活中高速高清CCD的需求越来越广泛。传统CCD相机像素低、帧频慢,在速度和清晰度方面有很大的缺陷,无法满足越来越高的使用需求,而高速高清CCD在图像清晰度和帧频速度都有突出的优势,为CCD相机注入了新的发展活力。最近世界各国在高速CCD相机研发领域投入大量的精力并取得了大量的成果,开展高帧频大面阵CCD相机的研制工作具有重要意义。 本文首先对柯达公司生产的逐行转移面阵CCD传感器KAI-01050做了简单的介绍,基于逐行转移CCD的工作原理、电荷转移方式的研究,设计了高速高清CCD系统的一种结构。本文通过对这些关键技术的研究,完成了高速高清CCD系统的设计工作。 关键词:高速摄像,高清CCD

第一章绪论 (1) 第二章高速高清CCD系统介绍 (2) 2.1 CCD成像原理 (2) 2.2 KAI_01050探测器介绍 (3) 第三章高速高清CCD系统的组成 (5) 3.1 光学系统设计 (5) 3.2 电路系统设计 (6) 第四章结果分析 (7) 参考文献 (8)

第一章绪论 电荷耦合器件(CCD)属于半导体器件,是一种图像传感器,能够把视场内的光学图像转化为电荷并存储在相应的像素中,然后通过读出电路将存储的像元电荷读出,并用外围电路中的模数转换模块转换为数字信号。一个完整的CCD阵列是由一系列的微小光敏物质(像素)组成。CCD图像传感器上拥有的像素数量越多,能够提供的画面清晰度也就越高。CCD器件自1969年在贝尔实验室诞生以来, 随着半导体技术的发展,CCD技术也随之得到迅速发展,从当时简单的8像元移位寄存器,到现在已具有数百万、上千万乃至上亿像元。CCD的像元尺寸已经减小到2um以下,在缩小像元尺寸的同时,通过背面光照技术等,使饱和电压和灵敏度也得到提高,在暗电流、读出噪声抑制、抗光晕转移效率等方面也得到了极大的改善。现在的CCD探测器可以探测到短波红外光谱以及一部分紫外光谱,可应用的范围广泛。 CCD和CMOS都是基于MOS结构进行光电转换达到图像采集目的,但是它们 对光电转换后的电荷采用不同的处理方式。由于工作方式、结构和制造工艺的差别,与CMOS相比,CCD器件一直有灵敏度高、噪声低等优点。CCD器件拥有光谱响应宽、噪声低、动态范围大、图像畸变小、灵敏度和几何精度高、寿命长、抗冲击、耐震动、抗电磁干扰能力强、坚固耐用、可以长时间在恶劣环境工作、进行数字化处理和与计算机连接方便等优点,在图像采集、工业测控、非接触测量、天文遥感、航空航天、机器视觉、实时监控、军事电子对抗等领域得到了广泛应用,是光电子学和测试技术中最活跃和最富有成果的研究领域之一。 随着科学技术发展和图像采集系统的广泛应用,人们对于图像釆集系统的主要指标:采样速率、分辨率、精度和抗干扰能力等方面,提出了越来越高的要求。CCD探测器作为光电转换式的图像传感器,是现代电子学和现代测试技术中最活跃的传感器,有广泛的应用需求。而大面阵,高帧频的应用需求也在逐步提高。高分辨率、高帧频的高速高清CCD技术的发展越来越受到人们的重视。

相关文档
相关文档 最新文档