文档库 最新最全的文档下载
当前位置:文档库 › HC轧机板形控制系统的设计

HC轧机板形控制系统的设计

HC轧机板形控制系统的设计
HC轧机板形控制系统的设计

PLC的轧钢机控制系统设计

封面

作者:PanHongliang 仅供个人学习

江西理工大学 本科毕业设计(论文)任务书电气工程与自动化学院电气专业级(届)班学号学生 专题题目(若无专题则不填):PLC软件设计 原始依据(包括设计(论文)的工作基础、研究条件、应用环境、工作目的等): 工作基础: 目前,我国基于PLC轧钢机系统已经不同程度得到了推广应用。 PLC轧钢机控制技术的发展主要经历了三个阶段:继电器控制阶段,微机控制阶段,现场总线控制阶段。现阶段轧钢机控制系统设计使用可编程控制器(PLC),其功能特点是变化灵活,编程简单,故障少,噪音低,维修保养方便,节能省工,抗干扰能力强。除此之外PLC还有其他强大功能,它可以进行逻辑控制、运动控制、通信等操作;并具有稳定性高、可移植性强等优点,因此受到广大电气工程控制技术人员的青睐。 研究条件及应用环境: 本课题是基于PLC的控制系统的研究课题。工业自动化是国家经济发展的基础,用于实现自动化控制设备主要集中为单片机和PLC。单片机由于控制能力有限、编程复杂等缺点,现在正逐步退出控制舞台。PLC则因为其功能强大、编程简单等优点,得到迅速发展及运用。PLC的功能强大,可以进行逻辑控制、运动控制、通信等操作;并具有稳定性高、可移植性强等优点,因此,PLC是工业控制领域中不可或缺的一部分。 工作目的: 轧钢机如控制和使用得当,不仅能提高效率,节约成本,还可大大延

长使用寿命。对轧钢机控制系统的性能和要求进行分析研究设计了一套低成本高性能的控制方案,可最大限度发挥轧钢机加工潜力,提高可靠性,降低运行成本,对提高机械设备的自动化程度,缩短与国际同类产品的差距,都有着重要的意义。 主要内容和要求:(包括设计(研究)内容、主要指标与技术参数,并根据课题性质对学生提出具体要求): 1)当整个机器系统的电源打开时,电机M1和M2旋转,以待传送工 件。 2)工件通过轨道从右边输送进入轧制系统。 3)感应器S1感应到有工件输送来时,输出高电位,驱动上轧辊按预定 下压一定的距离,实现轧制厚度的调节,同时电机M3开始逆时针旋转,并带动复位挡板也逆时针转动,感应器S1复位。 4)随着轧制的进行,工件不断地向左移动。当感应器S2感应到有工件 移动过来时,说明工件的要求轧制长度已经完成,此时感应器S2输出高电位,驱动控制电机M3的电磁阀作用,使电机M3顺时针转动。 5)在电机M3顺时针转动下,挡板顺时针转动,推动工进向右移动。 当工件移动到感应器S1感应到时,S1有输出高电位,使电机M3逆时针转动,同时驱动上轧辊调节好第二个下压量,进入第二次压 制的过程。 6)再次重复上述的工作,直到上轧辊完成3次下压量的作用,工件才 加工完毕。 7)系统延时等待加工完毕的工件退出轨道,此时即可进入下一个工件 的加工过程。

自动控制原理课程设计速度伺服控制系统设计样本

自动控制原理课程设计题目速度伺服控制系统设计 专业电气工程及其自动化 姓名 班级 学号 指引教师 机电工程学院 12月

目录一课程设计设计目 二设计任务 三设计思想 四设计过程 五应用simulink进行动态仿真六设计总结 七参照文献

一、课程设计目: 通过课程设计,在掌握自动控制理论基本原理、普通电学系统自动控制办法基本上,用MATLAB实现系统仿真与调试。 二、设计任务: 速度伺服控制系统设计。 控制系统如图所示,规定运用根轨迹法拟定测速反馈系数' k,以 t 使系统阻尼比等于0.5,并估算校正后系统性能指标。 三、设计思想: 反馈校正: 在控制工程实践中,为改进控制系统性能,除可选用串联校正方式外,经常采用反馈校正方式。常用有被控量速度,加速度反馈,执行机构输出及其速度反馈,以及复杂系统中间变量反馈等。反馈校正采用局部反馈包围系统前向通道中一某些环节以实现校正,。从控制观点来看,采用反馈校正不但可以得到与串联校正同样校正效果,并且尚有许多串联校正不具备突出长处:第一,反馈校正能有效地变化

被包围环节动态构造和参数;第二,在一定条件下,反馈校正装置特性可以完全取代被包围环节特性,反馈校正系数方框图从而可大大削弱这某些环节由于特性参数变化及各种干扰带给系统不利影响。 该设计应用是微分负反馈校正: 如下图所示,微分负反馈校正包围振荡环节。其闭环传递函数为 B G s ()=00t G s 1G (s)K s +()=22t 1T s T K s ζ+(2+)+1 =22'1T s 21Ts ζ++ 试中,'ζ=ζ+t K 2T ,表白微分负反馈不变化被包围环节性质,但由于阻尼比增大,使得系统动态响应超调量减小,振荡次数减小,改进了系统平稳性。 微分负反馈校正系统方框图

电气控制图的常用的图形符号

电气控制图的常用的图形符号 序号说明及应用图形符号序号说明及应用图形符号1高压断路器2熔断器 3 高压 隔离开关4继电器线圈一 般符号 5动合触点6动断触点 7双速感应 电动机8三相鼠笼式感 应电动机 9缓慢吸合继电 器的线圈10 缓慢释放继电 器的线圈 11具有动合触点 且自动复位的 按钮开关 12 具有动断触点 且自动复位的 按钮开关 13当操作器件被 吸合时延时断 开的动断触点 14 当操作器件被 吸合时延时闭 合的动合触点

15接触器的主动 合触点16接触器的主动 断触点 17端子18连接、连接点19插头和插座20电机绕组 21电阻器22带滑动触头的 电位器 23双绕组变压器24在一个绕组上有中心点抽头的变压器 25热敏自动开关 的动断触点26转换开关 27连接片28接机壳或接底 板 29位置开关、动断 触点30位置开关、动合 触点 31桥式全波整流 器 32灯,信号灯

33旋钮开关34三相绕线式转子感应电动机 35热效应36电容器 本章所使用的电子线路图形符号 序号元件名称图形符号序号元件名称图形符号1电阻4三极管 2电容5二极管 3电感6电源 电气主接线常用电气设备的符号 序号设备名称新标准序号设备名称新标准 1有铁心的单相双绕 组变压器 5 单二次绕组的电 流互感器

2YN/d连接的有铁 心三相双绕组变压 器 6 双二次绕组的电流 互感器(有两个铁 心) 3YN/y/d连接有铁 心的三相三绕组变 压器 7 双二次绕组的电流 互感器(有共同铁 心) 4Y形连接的有铁心 的三相自耦变压器 8三极高压断路器 表4.1 电气主接线常用电气设备的符号(续表) 序号设备名称新标准序号设备名称新标准 9 Y/d连接的具有 有载分接开关的三 相变压器 15三极高压隔离开关 10接地消弧线圈16熔断器11负荷开关17跌开式熔断器12电抗器18阀型避雷器

轧机厚度自动控制系统设计

轧机厚度自动控制系统设计 摘要:随着社会经济的发展,对板带产品的质量和精度要求越来越高。厚度精度就是板带产品的重要质量指标之一。本文针对轧机AGC技术的现状,以及轧机厚差产生的原因进行了分析。在此基础上,对轧机AGC进行分析,以APC为主要研究对象,选用PLC作为系统的控制器,将位移传感器测得的位移量经A/D转换送给PLC来控制步进电机,从而控制阀,通过轧制力来改变辊缝厚度实现轧机厚度控制。 1 引言 轧机又称轧钢机,轧钢机就是在旋转的轧辊之间对钢件进行轧制的机械,轧钢机一般包括主要设备(主机)和辅助设备(辅机)两大部分。轧钢机按轧辊的数目分为二辊,三辊式,四辊式和多辊式,轧钢机通常简称为轧机。 板带厚度精度是板带材的两大质量指标之一,板带厚度控制是板带轧制领域里的两大关键技术之一。带钢纵向厚度不均是影响产品质量的一大障碍,因此,轧机的一项重要课题就是带钢厚度的自动控制。厚度自动控制系统是通过测厚仪或传感器对带材实际轧出厚度连续进行测量,并根据实测值与给定值比较后的偏差信号,借助于控制回路或计算机的功能程序,改变压下装置、张力或轧制速度,把带材出口厚度控制在允许的偏差范围内。实现厚度自动控制的系统称为“AGC"。 我国近年来从发达国家引进的一些大型的现代化的板带轧机,其关键技术是高精度的板带厚度控制和板形控制。板带厚度精度关系到

金属的节约、构件的重量以及强度等使用性能,为了获得高精度的产品厚度,AGC系统必须具有高精度的压下调节系统及控制系统的支持。 而对于轧机来说产生厚差的原因大致可分为三大类: (1)轧机方面的原因:轧辊热膨胀和磨损、轧辊弯曲、轧辊偏心和支撑辊轴承油膜厚度等都会产生厚度波动。它们都是在液压阀位置不变的情况下,使实际辊缝发生变化,从而导致轧出的带钢厚度产生波动。 (2)轧件方面的原因:厚度偏差会直接受到坯料尺寸变化的影响。它包括来料宽度不均和来料厚度不均的影响。 (3)轧制工艺方面的原因:轧制时前后张力的变化、轧制速度的变化等。 2 系统总体设计 厚度自动控制AGC (Automatic Gauge Control)是指钢板轧机在轧制过程中通过动态微调使钢板纵向厚度均匀的一种控制手段。厚度自动控制系统是通过测厚仪或传感器对带材实际轧出厚度连续进行测量,并根据实测值与给定值比较后的偏差信号,借助于控制回路或计算机的功能程序,改变压下装置、张力或轧制速度,把带材出口厚度控制在允许的偏差范围内。 AGC系统一般包括有: 1)压下位置闭环:为了轧出给定厚度的轧件,首先必须在轧件进入辊缝之前,准确地设定空载辊缝。其次,在轧制过程中,为了使轧后的轧件厚度均匀一致,还必须随着轧制条件的变化及时的调整空

轧钢机电气控制系统设计

信电学院 课程设计说明书(2014/2015学年第二学期) 课程名称:可编程控制器课程设计 题目:轧钢机电气控制系统设计 专业班级: 学生姓名: 学号: 指导老师: 设计周数: 设计成绩: 2015年7月9日

目录 1、课程设计目的 (2) 2、课程设计内容 (2) 2.1可编程控制器概述 (2) 2.2课程设计正文 (2) 2.3轧钢机电气控制模版 (3) 2.3.1轧钢机简介 (3) 2.3.2热金属探测仪 (3) 2.3.3液压系统 (4) 2.3.4电机正反转 (4) 2.4 设备选择 (4) 2.5 系统的I/O口配置 (5) 2.6梯形图程序设计 (5) 2.7程序流程图 (9) 3、课程设计总结 (10) 4、参考文献 (11)

1、课程设计目的 本次课程设计的主要任务如下: 1)了解普通轧钢机的结构和工作过程。 2)弄清有哪些信号需要检测,写明各路检测信号到PLC的输入通道,包括传感器的原理、连接方法、信号种类、信号调理电路、引入PLC的接线以及PLC中的编址。 3)弄清有哪些执行机构,写明从PLC到各执行机构的各输出通道,包括各执行机构的种类和工作机理,驱动电路的构成,PLC输出信号的种类和地址。 4)绘制出轧钢机电控系统的电路原理图,编制I/O地址分配表。 5)编制PLC的程序,结合实验室设备完成系统调试,在实验室手动仿真模型上仿真轧钢机工作过程的控制。 2、课程设计内容 2.1可编程控制器概述 可编程控制器是一种数字运算操作的电子装置,专为在工业环境下应用而设计。它采用可编程库的存储器,用来在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,并通过数字式或模拟式的输入和输出控制各种类型的机械或生产过程。可编程控制器及其有关的外围设备都应按易于与工业控制系统连成一个整体,易于扩充其功能的原则设计。可编程控制器简称PLC,是以微处理器为基础,综合了计算机技术、自动控制技术和通讯技术而发展起来的一种新型、通用的自动控制装置。 2.2课程设计正文 (1)按下启动按钮,上下两轧辊电机(主拖动电机,M1)起动运转,轧制方向为从右向左轧制。左右侧轧道电机(M2和M3)启动逆时针运转,向左输送。(2)设备启动5秒后,PLC检测有无等待的轧件,即S1是否有效。若无轧件则一直等待。S1有效信号到来后,PLC通过某一路开出控制电磁铁动作,打开轧件挡板,让轧件进入轧机的右侧轨道。(3)待轧件完全进入后(设需时4秒),释放电磁铁,关闭轧件挡板。(4)轧件在右侧辊道推动下进入轧辊下轧制,轧辊间有热金属探测仪给出正在轧制的信号,由S2仿真,高电平表示正在轧制。(5)S2由高电平变为低电平表示轧件已经通过轧辊。轧件通过轧辊后PLC控制两侧辊道停止,电磁液压阀Y2动作使左侧辊道翘起。(6)1秒后启动左侧辊道向右输送。这时由安装在上轧辊上方的另一个热金属探测仪给出轧件通过的信号,由另一个手动开关S3仿真。(7)S3由高电平变为低电平表示轧件已经完全回到了轧辊右侧。PLC断开电磁阀Y2电源,并停止左侧辊道运转。(8)1秒钟后左侧辊道放平,启动左右侧辊道电机向左输送,开始下一次轧制。(9)重复(4)-(8)完成第二次轧制,并准备好第三次轧制。(10)三次轧制完成后,即热金属探测仪输出由高电平变为低电平后,左侧辊道继续向左输送3秒钟,把轧件送出轧机。结束该轧件的轧制过程。(11)回到第二步但不需要5秒的延时。(12)按下停止按钮结束工作。

冷轧轧机TDC控制系统

目录 冷轧轧机TDC控制系统 一.硬件和组态 二.系统软件 1.处理器功能简介 https://www.wendangku.net/doc/f16354141.html,MON FUNCTIONS 通用功能 3.MASTER FUNCTIONS 主令功能: 4.STAND1-STAND5 机架控制系统1-5 冷轧轧机TDC控制系统 一.硬件和组态 TDC工业控制系统西门子公司SIMADYN D的升级换代产品,也是一种多处理器并行远行的控制系统。典型的TDC控制系统的配置是由电源框架、处理器摸板、I/O摸板和通讯摸板搭建构成。 电源框架含21个插槽,最多允许20个处理器同时运行。框架上方的电源可单独拆卸,模板不可带电插拔。 CPU551是TDC控制系统的中央处理器,带有一个4M记忆卡,程序存储在记忆卡内,电源启动时被读入CPU551中执行。可通过在线功能对处理器和存储卡中的程序作同步修改。 SM500是数字量/模拟量输入/输出模板,更换时注意跳线. CP50MO是MPI/PROFIBUS通讯摸板,更换时需要使用COM-PROFIBUS软件对其进行组态的软件下装。 CP5100是工业以态网的通讯摸板,更换时注意插槽跳线。 CP52A0是GDM通讯模板。GDM是不同框架的TDC之间进行数据交换的特有通讯方式,不同框架的TDC通过光缆汇总到GDM内,点对点之间的通讯更加直接,传输速度更快。 TDC控制系统的硬件需要在软件程序中进行组态和编译,然后下装到CPU中。 二.系统软件 包钢薄板厂冷轧轧机区域TDC控制系统按框架分为以下三个功能:

2.1 处理器功能简介 1.COMMON FUNCTIONS 通用功能: 处理器1:SIL: 模拟功能 SDH: 轧制参数管理 IVI: 人机画面 处理器2:MTR: 物料跟踪系统 WDG: 楔形调整功能 处理器3: ADP: 实际值管理2.MASTER FUNCTIONS 主令功能: 处理器1: MRG-GT: 轧机区域速度主令 处理器2: THC-TH: 轧机厚度控制入口区域 处理器3: THC-TX: 轧机厚度控制出口区域 处理器4: SLC: 轧机滑差计算 ITG: 张力计接口 处理器5: LCO-LT: 轧机区域生产线协调3.STAND1-STAND5 机架控制系统1-5 处理器1: CAL: 机架标定 SCO: 通讯接口 MAI: 手动干涉 ITC: 机架间张力控制 处理器2: SDS: 机架压下系统 处理器3: RBS: 机架弯辊系统

轧钢机电气控制系统plc设计

科信学院 课程设计说明书(2008 /2009 学年第一学期) 课程名称:可编程序控制器设计任务书 题目:轧钢机电气控制系统设计 专业班级:电气及自动化05-1班 学生姓名:杨晓娜 学号:050062107 指导教师:安宪军 设计周数:2周 设计成绩: 2009年1月9日

目录 一、课程设计的目的 (1) 二、课程设计正文 (1) 三、可编程序控制器概述 (1) 四、轧钢机电气控制模板 (2) 五、编制梯形图 (2) 六.实验程序 (6) 十二、课程设计总结或结论 (7) 十三、参考文献 (8)

一、课程设计目的 了解普通轧钢机的结构和工作过程;弄清有那些信号需要检测;弄清有那些执行机构;绘制出轧钢机电控系统的电路原理图,编制I/0地址分配表;编制PLC的程序,结合实验室设备完成系统调试,在实验室手动仿真模型上仿真轧钢机工作过程的控制。 二、课程设计正文 1.控制要求 (1)按下启动按钮,上下两轧辊电机(主拖动电机,M1)起动运转,轧制方向为从右向左轧制。左右侧轧道电机(M2和M3)启动逆时针运转,向左输送。(2)设备启动5秒后,PLC 检测有无等待的轧件,即S1是否有效。若无轧件则一直等待。S1有效信号到来后,PLC通过某一路开出控制电磁铁动作,打开轧件挡板,让轧件进入轧机的右侧轨道。(3)待轧件完全进入后(设需时4秒),释放电磁铁,关闭轧件挡板。(4)轧件在右侧辊道推动下进入轧辊下轧制,轧辊间有热金属探测仪给出正在轧制的信号,由S2仿真,高电平表示正在轧制。(5)S2由高电平变为低电平表示轧件已经通过轧辊。轧件通过轧辊后PLC控制两侧辊道停止,电磁液压阀Y2动作使左侧辊道翘起。(6)1秒后启动左侧辊道向右输送。这时由安装在上轧辊上方的另一个热金属探测仪给出轧件通过的信号,由另一个手动开关S3仿真。(7)S3由高电平变为低电平表示轧件已经完全回到了轧辊右侧。PLC断开电磁阀Y2电源,并停止左侧辊道运转。(8)1秒钟后左侧辊道放平,启动左右侧辊道电机向左输送,开始下一次轧制。(9)重复(4)-(8)完成第二次轧制,并准备好第三次轧制。(10)三次轧制完成后,即热金属探测仪输出由高电平变为低电平后,左侧辊道继续向左输送3秒钟,把轧件送出轧机。结束该轧件的轧制过程。(11)回到第二步但不需要5秒的延时。(12)按下停止按钮结束工作。 三、可编程序控制器概述 可编程序控制器是一种数字运算操作的电子系统,专为在工业环境下应用而设计。它采用可编程序的存储器,用来在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的命令,并通过数字式模拟式的输入和输出,控制各种类型的机械或生产过程。可编程序控制器及其有关设备,都应按易于与工业控制系统联成一个整体,易于扩充功能的原则而设计”。 四、轧钢机电气控制模板

自动控制系统概要设计

目录 1引言 (3) 1.1编写目的 (3) 1.2背景 (3) 1.3技术简介 (4) https://www.wendangku.net/doc/f16354141.html,简介 (4) 1.3.2SQL Server2008简介 (5) 1.3.3Visual Studio2010简介 (5) 1.4参考资料 (6) 2总体设计 (8) 2.1需求规定 (8) 2.2运行环境 (8) 2.3数据库设计 (8) 2.3.1数据库的需求分析 (9) 2.3.2数据流图的设计 (9) 2.3.3数据库连接机制 (10) 2.4结构 (11) 2.5功能需求与程序的关系 (11) 3接口设计 (12) 3.1用户接口 (12) 3.2外部接口............................................................................................错误!未定义书签。 3.3内部接口............................................................................................错误!未定义书签。4运行设计.....................................错误!未定义书签。 4.1运行模块组合....................................................................................错误!未定义书签。 4.2运行控制............................................................................................错误!未定义书签。 4.3运行时间............................................................................................错误!未定义书签。5测试 (13)

20辊轧机电气控制系统介绍

20辊轧机电气控制系统介绍 发布时间:2007-11-15 来源:打印该页 一系统概述 某冷轧不锈钢板厂采用西门子S7 300系列的315-2DP控制器作为主控制单元,安置于主操作台上作为主站,采用2套西门子ET200 远程站作为从站,安置于前后两个操作箱内接受现场操作工控制指令。ET200远程站与CPU315-2DP主站之间采用PROFIBUS现场总线连接进行通讯。轧机采用前卷取、后卷取、主轧三台直流电机完成整个不锈钢板的张力轧制。直流电机采用西门子6RA70直流调速器进行控制,控制器与CPU315-2DP之间采用PROFIBUS现场总线通讯。 同时还为此轧机配置了一台平整机,电器配置完全相同,只在功能,电机功率等参数上与主轧机略有不同。 二系统要求 1.采用西门子6RA70直流调速器作为电机控制单元,调速器可以独立采集安装于电机上的编码器读取的数据,安装于轧机上的张力传感器读取的数据,作为基本参数高速运算得到当前系统所实际需要的张力,控制直流电机让其达到需要的张力。 2. PLC控制器控制液压,压下,润滑,等外部设备,同时将操作工设定的数据实时的通过PROFIUBS现场总线传输给6RA70直流调速装置。 3.采用油马达,利用液压装置实现对轧机机心的压力控制,采用上,下各10个轧辊相互之间的挤压力实现对不锈钢板的轧制。 4.甲方要求轧制线速度,主轧120M/分,平整 90M/分。 5.该设备为国内首家自发研制的20辊轧机。 三系统配置与功能实现 根据现场实际情况和功能扩展要求,主轧机我们采用两台450KW的直流电机作为前后卷取电机,采用一台1250KW的电机作为主轧电机,平整机我们采用两台250KW的直流电机作为前后卷取电机,采用一台400KW的电机作为平整电机。采用西门子S7 300系列的315-2DP的CPU 作为主控制器,采用ET200分布式I/O作为前后操作箱的控制装置。 西门子S7-300、6RA70控制器、分布式I/O ET200,特点如下: 1.采用CPU315-2DP作为主控制器,利用CPU315内存大、速度快、支持PROFIBUS现场总线的特点,充分满足轧钢行业要求响应速度快,控制灵敏,要求复杂,现场施工简单的要求;2.采用远程I/O方案,最大限度减少接线;

液位自动控制系统设计与调试

液位自动控制系统设计 与调试 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

课程设计 2016年6月17日

电气信息学院 课程设计任务书 课题名称液位自动控制系统设计与调试 姓名专业班级学号 指导老师沈细群 课程设计时间2016年6月6日~2016年6月17日(第15~16周) 教研室意见同意开题。审核人:汪超林国汉 一.课程设计的性质与目的 本课程设计是自动化专业教学计划中不可缺少的一个综合性教学环节,是实现理论与实践相结合的重要手段。它的主要目的是培养学生综合运用本课程所学知识和技能去分析和解决本课程范围内的一般工程技术问题,建立正确的设计思想,掌握工程设计的一般程序和方法。通过课程设计使学生得到工程知识和工程技能的综合训练,获得应用本课程的知识和技术去解决工程实际问题的能力。 二. 课程设计的内容 1.根据控制对象的用途、基本结构、运动形式、工艺过程、工作环境和控制要求,确定控制方案。 2.绘制水箱液位系统的PLC I/O接线图和梯形图,写出指令程序清单。 3.选择电器元件,列出电器元件明细表。 4.上机调试程序。 5.编写设计说明书。 三. 课程设计的要求 1.所选控制方案应合理,所设计的控制系统应能够满足控制对象的工艺要求,并且技术先进,安全可靠,操作方便。

2.所绘制的设计图纸符合国家标准局颁布的GB4728-84《电气图用图形符号》、GB6988-87《电气制图》和GB7159-87《电气技术中的文字符号制定通则》的有关规定。 3.所编写的设计说明书应语句通顺,用词准确,层次清楚,条理分明,重点突出,篇幅不少于7000字。

温度自动控制系统的设计毕业设计论文

北方民族大学学士学位论文论文题目:温度自动控制系统的设计 北方民族大学教务处制

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

棒材连轧生产线电气控制.doc

七、棒材连轧生产线电气控制系统材料清单 1、棒材线轧机、飞剪传动控制系统 序号名称规格型号单位数量单价金额主材厂家1.11000KW进线柜1000KW直流电机控制柜台9 每套包含以下主材: 1)进线配电柜1000*1000*2200台1 2)ME开关ME-250000台1人民 3)电枢电抗器AC660V 1900A台1德瑞 4)辅材套1 1.21000KW整流柜1000KW直流电机控制柜台9 每套包含以下主材: 1)主控柜1000*1000*2200台1 2)空开NF125-CP 125A台1三菱 3)空开NF63-CP 50A台2三菱 4)接触器S-V50 220VAC台1三菱 5)接触器S-V10 220VAC台1三菱 6)热继电器THN20KP 36A台1三菱 7)热继电器THN12KP 2.1A台1三菱 8)西门子 PLC6ES7 214-1BD21-0XB0台1西门子 9)脉冲放大板ZLZJ-006/MCF0块1 10)整流装置散热器1800A 不可逆台1 11)可控硅1800A块6西电 12)辅材套1 2.11250KW进线柜1250KW直流电机控制柜台1 每套包含以下主材: 1)进线配电柜1000*1000*2200台1 2)ME开关ME-2500台1人民3)电枢电抗器AC660V 1900A台1德瑞4)辅材套1 2.21250KW整流柜1250KW直流电机控制柜台1 每套包含以下主材: 1)主控柜1000*1000*2200台1 2)空开NF125-CP 125A台1三菱 3)空开NF63-CP 50A台2三菱 4)接触器S-V50 220VAC台1三菱 5)接触器S-V10 220VAC台1三菱 6)热继电器THN20KP 36A台1三菱 7)热继电器THN12KP 2.1A台1三菱 8)西门子 PLC6ES7 214-1BD21-0XB0台1西门子 9)脉冲放大板ZLZJ-006/MCF0块1

板带材高精度轧制和板形控制

板带材高精度轧制和板形控制 板带轧制产生两个过程:轧件塑性变形过程和轧机弹性变形(弹跳)过程。 轧机弹跳方程h=s o’+p/k h- ----轧出带材厚;s o’:理论空载辊缝;p:轧制力;k:轧机刚度 直线A线,又称轧机弹性变形线,斜率k为轧机的刚度 零位调整后的弹跳方程 厚控方程h =s。+(p-p。)/k s。----考虑预压变形的相当空载辊缝 轧件塑性变形过程: 当来料厚度一定,由一定h值对应一 定p值可得近似直线B线,又称轧件 塑性变形线(斜率M为轧件塑性刚度 系数)。与A线相交纵坐标为轧制力p, 横坐标为板带实际厚度h C线:该线为等厚轧制线 厚度控制实质:不管轧制条 件如何变化,总要使A,B两线 交于C线,即可得到恒定厚度(高 精度)的板带材。 板带厚度变化的原因和特点(影响出 口厚度的因素) S。----由轧辊的偏心运转、磨损与热膨胀及轧辊轴承油膜厚度的变化所决定。它们都是在压下螺丝定位时使实际辊缝发生变化的 K ----在既定轧机轧制一定宽度的产品时,认为不变 P -----主要因素:故可影响到轧制力的因素必会影响到板带的厚度精度(使B线发生偏移)(1)轧件温度、成分和组织性能的不均对温度的影响具有重发性,温差会多次出现。故只在热轧精轧道次对厚度控制才有意义 (2)坯料原始厚度的不均可改变B线的位置和斜率,使压下量变化,引起压力和弹跳的变化。必须选择高精度的原料 (3)张力的变化通过影响应力状态及变形抗力而起作用;还引起宽度的改变。故热连轧采用不大的恒张力,冷连轧采用大张力。调节张力为厚控的重要手段 (4)轧制速度的变化影响摩擦系数(冷轧影响大)和变形抗力(热轧影响大),乃至影响轴承油膜厚度来改变轧制压力。对冷轧影响大。 板带厚度控制方法1)调压下改变A(2)调张力改变B 3)调轧制速度 最主要、最基本、最常用的还是调压下的方法。 调压下适用于下图16-2 a b两情况 调压下(改变原始辊缝,即改变A线): 用于消除轧制力p引起的厚度差(即B线偏移)

轧钢机PLC控制系统设计

轧钢机PLC控制系统设计 1 问题分析及解决方案 1.1 问题描述 在冶金企业中轧钢机是重要 的组成部分,运用PLC实现对轧钢 机的模拟,如右图。 当起始位置检测到有工件时, 电机M1、M2开始转动M3正转, 同时轧钢机的档位至A档,将钢板 轧成A档厚度,当钢板运行到左检 测位,电磁阀得电动作将左面滚轴 升高,M2停止转动,电机M3反 转将轧钢板送回起始侧。 此时起始侧再检测到有钢板, 轧钢机跳到B档,把钢板轧成B档厚度,电磁阀得电,将滚轴下降,M3正转,M2转动,当左侧检测到钢板时M2停止转动,电磁阀得电将滚轴抬高M3反转,将钢板运到起始侧。 如此循环直到ABC三档全部轧完,钢板达到指定的厚度,轧钢完成。 1.2 分析过程 该工作过程分为三个时序,当起始位置第一次检测到信号时,A档轧钢;起始位置第二次检测到信号时,B档轧钢;起始位置第三次检测到信号时,C档轧钢。由于每个档位都要工作一段时间才能切换,可以用两个定时器来实现。 2 PLC选型及硬件配置 PLC选型及硬件配置如图1。 图1

3 分配I/O地址表 I/O地址表如图2。 图2 4 主电路图及PLC外部接线图 4.1 主电路图 主电路图如图3。 图3

4.2 PLC外部接线图 PLC外部接线图如图4。 图4 5 控制流程图及梯形图程序 5.1 控制流程图 控制流程图如图5。 图5

5.2 T型图程序

6 程序调试 6.1 问题调试 为了解决A、B、C三个档位的时序问题,我选择用三条T型图程序来实现,但输出有重复,导致T型图程序运行正确但仿真出现错误。于是我改变方案,采用了M存储器来代替输出,仿真成功。 6.2 仿真图 A档运行: 传送回初始位: B档运行: C档运行:

PWM温度自动控制系统的设计

《计算机控制技术》 课程设计 学生姓名: 学号: 专业班级:电气工程及其自动化(1)班 指导教师: 二○一二年十月二十九日

目录 1.课程设计目的 (3) 2.课程设计题目和要求 (3) 3.设计内容 (3) 4.设计总结 (10) 4.参考书目 (11) 5.附录

1.课程设计目的 通过本课程设计, 主要训练和培养学生的以下能力: (1).查阅资料:搜集与本设计有关部门的资料(包括从已发表的文献中和从生产现场中搜集)的能力; (2).方案的选择:树立既考虑技术上的先进性与可行性,又考虑经济上的合理性,并注意提高分析和解决实际问题的能力; (3).迅速准确的进行工程计算的能力,计算机应用能力; (4).用简洁的文字,清晰的图表来表达自己设计思想的能力。 2.课程设计题目和要求 题目:PWM温度自动控制系统的设计 要求: 1.要求设计温度控制系统,设定温度为230度,采用电阻丝作为加热器件,要求无余差,超调小,加热速度快。 2.硬件采用51系列单片机,采用固态继电器作为控制元件。 3采用keil c作为编程语言,采用结构化的设计方法。 4.要求用protel设计出硬件电路图。 5画出系统控制框图。 6 画出软件流程图。 3.设计内容 3.1 PID控制原理 将偏差的比例,积分和微分通过线性组合构成控制量,用这一控制对被控对象进行控制,这一样的控制器称PID控制器

3.1.1.模拟PID控制原理 在模拟控制系统中,控制器最常用的控制规律是PID控制。为了说明控制器 (t)与实际输出信号n(t)进行比的原理,以图1.1的例子说明。给定输入信号n (t)-n(t),经过PID控制器调整输出控制信号u(t),u(t)对目较,其差值e(t)=n 标进行作用,使其按照期望运行。 常规的模拟PID控制系统原理框图如同1.2所示。该系统有模拟PID和被控对象组成。图中r(t)是给定的期望值,y(t)是系统的实际输出值,给定值与实际输出值,给定值与实际值构成控制偏差e(t): e(t)作为PID控制的输入,u(t)作为PID控制的输出和被控对象的输入。构成PID和被控对象的输入。构成PID控制的规律为: 其中:Kp为控制器的比例系数 Ti为控制器的积分时间,也称积分系数 Td为控制器的未分时间,也称微分系数

电气元件符号常用电气图形符号

电气元件符号 - 常用电气图形符号

交流接触器接线图电动机可逆运行控制电路的调试

1、检查主回路路的接线是否正确,为了保证两个接触器动作时能够可靠调换电动机的相序,接线时应使接触器的上口接线保持一致,在接触器的下口调相。 2、检查接线无误后,通电试验,通电试验时为防止意外,应先将电动机的接线断开。 故障现象预处理; 1 、不启动;原因之一,检查控制保险FU 是否断路,热继电器FR 接点是否用错或接触不良,SB1 按钮的常闭接点是否不良。原因之二按纽互锁的接线有误。 2、起动时接触器“叭哒”就不吸了;这是因为接触器的常闭接点互锁接线有错,将互锁接点接成了自己锁自己了,起动时常闭接点是通的接触器线圈的电吸合,接触器吸合后常闭接点又断开,接触 器线圈又断电释放,释放常闭接点又接通接触器又吸合,接点又断开,所以会出现“叭哒”接触器不 吸合的现象。 3、不能够自锁一抬手接触器就断开,这是因为自锁接点接线有误。 电动机可逆运行控制电路为了使电动机能够正转和反转,可采用两只接触器KM1 、KM2 换接电动机三相电源的相序,但两个接触器不能吸合,如果同时吸合将造成电源的短路事故,为了防止这种 事故,在电路中应采取可靠的互锁,上图为采用按钮和接触器双重互锁的电动机正、反两方向运行 的控制电路。线路分析如下: 一、正向启动: 1 、合上空气开关QF 接通三相电源 2、按下正向启动按钮SB3 ,KM1 通电吸合并自锁,主触头闭合接通电动机,电动机这时的相序是L1 、L2 、L3 ,即正向运行。 二、反向启动: 1 、合上空气开关QF 接通三相电源 2、按下反向启动按钮SB2 ,KM2 通电吸合并通过辅助触点自锁,常开主触头闭合换接了电动机三相的电源相序,这时电动机的相序是L3 、L2、L1 ,即反向运行。 三、互锁环节:具有禁止功能在线路中起安全保护作用 1 、接触器互锁:KM1 线圈回路串入KM 2 的常闭辅助触点,KM2 线圈回路串入KM1 的常闭触点。当正转接触器KM1 线圈通电动作后,KM1 的辅助常闭触点断开了KM2 线圈回路,若使KM1 得电吸合,必须先使KM2 断电释放,其辅助常闭触头复位,这就防止了KM1 、KM2 同时吸合造成相间短路,这一线路环节称为互锁环节。 2 、按钮互锁:在电路中采用了控制按钮操作的正反传控制电路,按钮SB2 、SB 3 都具有一对常开触点,一对常闭触点,这两个触点分别与KM1 、KM2 线圈回路连接。例如按钮SB2 的常开触点与接触器KM2 线圈串联,而常闭触点与接触器KM1 线圈回路串联。按钮SB3 的常开触点与接触器

800mm电子铝箔轧机板形自动控制系统

800mm电子铝箔轧机板形自动控制系统 (洛阳有色金属加工设计研究院黄利斌河南洛阳471039) 摘要:本文介绍我院自主开发设计的800mm电子铝箔轧机板形自动控制系统的性能、组成及功能。 关键词:电子铝箔,板形仪,板形自动控制系统,分段冷却控制,板形目标曲线 1.前言 随着加工工业逐步采用高速自动作业线,特别是电子铝箔对板厚板形精度要求日益严格。目前,板厚自动控制技术(AGC,Automatic Gauge Control)已日益成熟,厚度控制精度得到了解决。而板形自动控制(AFC,Automatic Flatness Control),由于影响因素极其复杂,给板形控制带来很大困难,板形控制已成为国内外轧机界研究热点之一。国外这几年也先后有多家公司和研究机构推出了不同种类的板形自动控制系统,实践生产效果不错,但由于价格非常昂贵,国内目前引进的很少。1999年,我院成立新技术开发中心,把板形自动控制系统作为重点开发项目,通过近3年多努力终于取得成功,该系统借鉴了国外同类产品的先进经验、控制方法和模型,适用于冷轧铝薄带材板形自动控制的计算机自动控制系统。2002年12月板形自动控制系统在由我院总包的新疆众和股份有限公司800mm电子铝箔轧机上成功运行,各项指标达到设计要求,控制精度接近国际水平,受到用户好评。目前,应用于河南顺源铝业有限公司的1850mm铝箔轧机板形自动控制系统已安装就绪,进入最后的调试阶段。本文仅对800mm电子铝箔轧机自动控制系统的性能、组成及功能作些介绍,以供读者参考。 2.轧机参数及控制精度 新疆众和股份有限公司800mm电子铝箔轧机的主要参数如下: 轧机形式:四辊不可逆铝箔冷轧机 轧机尺寸:ф200mm/ф480mm ×800mm 最大轧制力: 2600KN 最大轧制速度:1200m/min 来料宽度:420—640mm 来料厚度: 0.6mm 开卷张力:180—5700N 卷取张力:80—4300N 通过有关技术人员的共同努力,经过现场调试实验,在投入板形自动控制系统且正常稳定轧制条件下达到以下控制效果: 厚度范围:0.32mm—0.017mm 最大轧制速度:900m/min 板形控制精度: 0.1mm: ±15I 0.065mm: ±20I 3.系统组成

自动控制系统毕业设计..

目录 摘要…………………………………………………………………第1章任务要求和方案设计…………………………………… 1.1 任务要求……………………………………………………… 2.1 总体方案确定及元件选择…………………………………….. 2.1.1 总体设计框图……………………………………………… 2.1.2 控制方案确定………………………………...…………… 2.1.3 系统组成……………………………………………… 2.1.4 单片机系统……………………………………….. 2.1.15 D/A转换........................................................................... 2.1.5 晶闸管控制………………………………………... 2.1.6 传感器……………………………………………… 2.1.7 信号放大电路………………………………………. 2.1.8 A/D转换……………………………………………. 2.1.9 设定温度及显示……………………………………. 第2章系统硬件设计……………………….…………………2.1 系统硬件框图……………………………………………2.2 系统组成部分之间接线分析…………………………… 第3章系统软件设计…………………………………………. 3.1程序流程图..…………………………………..…………… 第4章参数计算……………………………..………………... 4.1 系统各模块设计及参数计算 4.1.1、温度采集部分及转换部分

4.1.2、传感器输出信号放大电路部分:........................... 4.1.3、模数转换电路部分:............................ 4.1.4、ADC0804芯片外围电路的设计:....................... 4.1.5、数值处理部分及显示部分:............................. 4.1.6、PID算法的介绍....................................: 4.1.7、A/D转换模块.......................................... 4.1.7、A/D转换模块................................... 4.1.8 单片机基本系统调试............................... 4 .1. 9 注意事项:................................................................ 第5章测试方法和测试结果 5.1 系统测试仪器及设备 5.2 测试方法 5.3 测试结果 结束语........................................... 参考文献.…………………………………….……….……………

轧钢机电气控制系统设计

信息与电气工程学院 课程设计说明书(2013 /2014 学年第 2 学期) 课程名称:《可编程序控制器应用》课程设计题目:轧钢机电气控制系统设计 专业班级:电气工程及其自动化1104班 学生姓名: 学号: 指导教师:刘增环、岑毅南等 设计周数: 2 周 设计成绩: 2014 年7月11 日

自从1969年美国DEC公司研制出世界上第一台可编程逻辑控制器以来,经过三十多年发展与实践,其功能和性能已经有了很大的提高,从当初用于逻辑控制和顺序控制领域扩展到运动和过程控制领域。可编程序控制器简称PLC,它是一个以微处理器为核心的数字运算操作电子系统装置,转为在工业现场应用而设计,PLC的程序编程,不需要专门的计算机编程语言知识,而是采用一套以继电器梯形图为基础的简单指令形式,使用程序编制形象、直观、方便易学,灵活的方便将PLC 运用到生产实践中。 随着生产力和科学技术的不断发展,人们的日常生活和生产活动大量的使用自动化控制,不仅节约了人力资源,而且很大程度上提高了生产效率,又进一步的促进了生产力快速发展,并不断的丰富着人们的生活。 本设计是基于PLC的轧钢机控制系统,利用传感器S1来检测传送带上是否有钢板,若S1有信号,表示有钢板,电机M3、M2启动,信号指示灯Y1亮。S1的信号消失,检测传送带上钢板到位的传感器S2有信号,表示钢板到位,电磁阀动作,指示灯Y2亮,电机M3反转,之后S3有信号时,钢件重复以上过程三次,即轧钢三次后满足要求,完成后,把轧件送出轧机。结束该轧件后重复上述过程进行下个轧件的过程。这种结合完成了工业上轧钢技术的大大进步。

一课程设计任务简介 (3) 1.1 设计题目 (3) 1.2 课程设计的目的 (3) 1.3 设计要求 (3) 二硬件电路设计 (5) 2.1 可编程序控制器概述 (5) 2.2 方案选定 (5) 2.3总体控制系统框架 (5) 2.4硬件系统设计 (5) 2.5 I/O地址分配 (6) 三程序设计 (7) 3.1程序流程图 (7) 3.2操作过程 (8) 3.3实验现象图块 (9) 四课程设计总结 (12) 五参考文献 (13) 附录一梯形图 (14)

相关文档
相关文档 最新文档