文档库 最新最全的文档下载
当前位置:文档库 › 实验二 均匀直线阵

实验二 均匀直线阵

实验二 均匀直线阵
实验二 均匀直线阵

实验二 均匀直线阵

一、实验目的:

通过MATLAB 编程,了解均匀直线阵的辐射特性,熟悉影响天线阵辐射的各种因素及其产生的影响。

二、实验环境:MATLAB 软件

三、实验原理:

单个天线的方向性是有限的,为了加强天线的定向辐射能力,可以采用天线阵(Arrays)。天线阵就是将若干个单元天线按一定方式排列而成的天线系统。排列方式可以是直线阵、平面阵和立体阵。实际的天线阵多用相似元组成。所谓相似元,是指各阵元的类型、尺寸相同,架设方位相同。天线阵的辐射场是各单元天线辐射场的矢量和。只要调整好各单元天线辐射场之间的相位差,就可以得到所需要的、更强的方向性

方向图乘积定理

f(θ,φ)=f1(θ,φ)×fa(θ,φ) (3-1)

上式表明,天线阵的方向函数可以由两项相乘而得。第一项f1(θ,φ)称为元因子(Primary Pattern ),它与单元天线的结构及架设方位有关;第二项fa(θ,φ)称为阵因子(Array Pattern ),取决于天线之间的电流比以及相对位置,与单元天线无关。方向函数(或方向图)等于单元天线的方向函数(或方向图)与阵因子(或方向图)的乘积,这就是方向图乘积定理。

已知对称振子以波腹电流归算的方向函数为:

()cos(cos )cos()()60/sin m E kl kl f I r θθθθθ

-== (3-2) 将l=0.25λ代入式上式可得半波振子的方向函数为:

cos(cos )2()sin F π

θθθ

= (3-3) 如果均匀直线阵的单元天线为半波阵子的话,此即为元因子。

均匀直线阵,就是所有单元天线结构相同,并且等间距、等幅激励而相位沿阵轴线呈依次等量递增或递减的直线阵。如下图所示,N 个天线元沿y 轴排列成一行,且相邻阵元之间的距离相等都为d ,电流激励为I n =I n-1e j ξ(n=2,3, :,N),根据方向图乘积定理,均匀直线阵的方向函数等于单元天线的方向函数与直线阵阵因子的乘积。

在实际应用中,不仅要让单元天线的最大辐射方向尽量与阵因子一致,而且单元天线多采用弱方向性天线,所以均匀直线阵的方向性调控主要通过调控阵因子来实现。因此本实验讨论主要针对阵因子,至于均匀直线天线阵的总方向图只要将阵因子再乘以单元天线的方向

图就可以得到了。

图4-1 均匀直线阵坐标图

N 元均匀直线阵的阵因子为:

()2()3()(1)()1(1)()

0()1j j j j N a N j n n f e e e e e

ψδψδψδψδψδδ---==++++

+=∑ (3-4) 此式是一等比数列求和,其值为: sin

2()sin 2a N f ψ

ψψ= (3-5) 归一化后为:

sin 12()sin 2

a N F N ψψψ

= (3-6) 四、实验内容及步骤:

内容:

根据均匀直线阵阵因子归一化方向函数利用MATLAB 编程并画出其方向图。

步骤一:

编写MATLAB 程序,并保存为*.M 文件(*代表文件名自起),详细程序如下:

%这个程序通过给出的阵元数、相位差、间距和工作波长来画出天线阵阵因子的方向图 lamda=input('enter the value of wave length= '); %输入工作波长

N=input('enter the no. of elements= '); %输入线性图天线阵的振子个数

alfa=input('enter your progressive phase= '); %输入振子间的相位差(弧度表示) d=input('enter the seperation distance between elements= '); %输入振子间的间距

B=(2*pi/lamda);

theta= pi/100:pi/100:2*pi;

w=alfa+B*d.*cos(theta);

AF=1/N*(abs(sin(N*(w./2))./sin(w./2))); %公式(3-6)

polar(theta,AF)

步骤二:

在MATLAB中打开编写的*.M文件,阅读并分析整个程序,分析每条语句的作用,将程序中的内容和原理部分相对照,找出所编写程序的理论依据。

步骤三:

分析振元个数对天线阵方向图的影响。

(1)计算输入波长λ=10,振元个数=2,相位差=-pi,振源间距=5,画出天线方向图为。

图4-2 振元个数为2的天线阵方向图

(2)计算输入波长λ=10,振元个数=4,相位差=-pi,振源间距=5,画出天线方向图为。

图4-3 振元个数为4的天线阵方向图

(3)计算输入波长λ=10,振元个数=8,相位差=-pi,振源间距=5,画出天线方向图为。

图4-4 振元个数为10的天线阵方向图

从计算结果可以看出:振元间相位差为-kd时形成端射阵,最大辐射方向在阵轴的方向;增加振元个数并不能把端射阵变成边射阵,但能增加旁瓣的个数,并且减小主瓣的宽度。

步骤四:

分析振元间相位差对天线阵方向图的影响。

(1)计算输入波长λ=10,振元个数=2,相位差=0度,振源间距=5,画出天线方向图为。

图4-5 相位差=0度的天线阵方向图

(2)计算输入波长λ=10,振元个数=2,相位差=-pi/4,振源间距=5,画出天线方向图为。

图4-6 相位差=-pi/4的天线阵方向图

(3)计算输入波长λ=10,振元个数=2,相位差=-pi/2,振源间距=5,画出天线方向图为。

图4-7 相位差=-pi/2的天线阵方向图

(4)计算输入波长λ=10,振元个数=2,相位差=-3pi/4,振源间距=5,画出天线方向图为。

图4-8 相位差=-3pi/4的天线阵方向图

(5)计算输入波长λ=10,振元个数=2,相位差=-pi,振源间距=5,画出天线方向图为。

图4-9 相位差=-pi的天线阵方向图

从计算结果可以看出:振元间相位差为0时形成边射阵,最大辐射方向在垂直于阵轴的方向;改变振元间相位差并不能增加旁瓣的个数,只能改变波瓣的指向。

步骤五:

将实验过程及结果连带分析总结写入实验报告。

五、实验小结

通过MATLAB编程,了解均匀直线阵的辐射特性,知道了熟悉影响天线阵辐射的各种因素及其产生的影响。从计算结果可以看出:振元间相位差为0时形成边射阵,最大辐射方向在垂直与阵轴的方向;改变振元间相位差并不能增加旁瓣的个数,只能改变波瓣的指向。通过实验数据验证了直线阵辐射特性理论的正确性,加强了MATLAB的理解和运用,学以致用。

高中物理实验:研究匀速直线运动

高中物理实验:研究匀速直线运动 研究匀速直线运动 实验目的: 研究匀速直线运动规律 实验原理: 物体在一条直线上运动,且在相等的时间间隔内通过的位移相等,这种运动称为匀速直线运动。做匀速直线运动的物体,在不同的位移或时间段中,位移与时间的比值是一个常数,称为速度,速度的大小直接反映了物体运动的快慢。严格地讲,匀速直线运动是一种理想运动状态,本实验只做近似的研究。 实验器材: Edislabpro400数据采集器、位移分体传感器、计算机、力学轨道及配套小车等附件 实验准备:

实验装置:将力学轨道放置于平稳实验台上,安装轨道配件,在小车上放置位移传感器发射端,轨道末端固定放置接收端,使其发射、接收口基本正对,连接传感器与数据采集器以及电脑,如图(6-1)。 软件配置: 打开Edislab软件,在“实验配置”中的“采集参数”选项中“限定时间”调整到35秒左右,如图(6-2)。 实验步骤: 1、调整力学轨道,使一端垫高,用小车重力分力克服小车与轨道之间的摩擦力,调节高度到小车基本匀速滑下。 2、将小车放在轨道远离传感器接收端的一头,打开小车上的位移传感器的发射端的开关。 3、用手轻推一下小车,小车自动沿轨道平稳滑下,待运动稳定后点击“开始”,系统自动记录一系列点(注意:在小车靠近接收端时,用手阻止小车以避免二者相撞)。

数据处理分析 (1)如图(6-3)为本次实验测量数据图。 (2)观察分析阶段一、二、三对应的实际运动状态是怎样的? (3)利用“选择”工具选择有效区段二,进行直线拟合,拟合图 线完全重合,表明在匀速直线运动时位移与时间为线性关系,而其拟合直线的斜率即为运动物体的速度。速度从拟合结果中可以直接显示,也可以从“切线”工具选项详细查看每点的斜率情况。对比拟合结果,可以发现选择区域部分斜率均值为-0.12(为什么斜率是负值?),如图(6-5) 实验拓展 (1)尝试用其他方法研究匀速直线运动规律,条件允许的学校可 使用气垫导轨系统。 (2)在实验方法上稍做改进,把接收端垫高,在以上实验步骤2 中将小车的初始位置放置在靠近接收端的一端,重做实验观察数据图象(本轨道系统具有同性磁铁保护装置,建议使用此种方法)。

利用气垫导轨验证牛顿第二定律

利用气垫导轨验证牛顿第二定律 ----医学院43210309 林敏 【摘要】:气垫导轨是为研究无摩擦现象而设计的力学实验设备,在导轨表面分布着许多小孔,压缩空气从这些小孔中喷出,在导轨和滑块之间形成了月0.1mm 厚的空气层,即气垫,由于气垫的形成,滑块被托起,使滑块在气垫上作近似无摩擦的运动。利用气垫导轨,再配以光电计时系统和其他辅助部件,可以对做直线运动的物体(即滑块)进行许多研究,如测定速度、加速度、验证牛顿第二定律,研究物体间的碰撞,研究简谐运动的规律等。 【Abstract】:Using the mattress guide, photoelectric timing system and other auxiliary parts. According to the object to do straight-line movement (i.e. the slider), we can do a lot of researches, such as measuring the velocity, acceleration and proving Newton's second law. In addition, it also can research object collisions, study the law of simple harmonic oscillator and so on. 【关键词】气垫导轨、通用计数器、测速的试验方法、牛顿第二定律、控制变量法、导轨调平 实验回顾 【实验目的】 1.熟悉气垫导轨和MUJ-613电脑式数字毫秒计的使用方法。 2.学会测量滑块速度和加速度的方法。 3.研究力、质量和加速度之间的关系,通过测滑块加速度验证牛顿第二定律。

第二章-极限与连续--基础练习题(含解答)

第二章 极限与连续 基础练习题(作业) §2.1 数列的极限 一、观察并写出下列数列的极限: 1.4682, ,,357 极限为1 2.11111,,,,,2345--极限为0 3.212212?-??=?+???n n n n n n a n 为奇数为偶数极限为1 §2.2 函数的极限 一、画出函数图形,并根据函数图形写出下列函数极限: 1.lim →-∞x x e 极限为零 2.2 lim tan x x π → 无极限 3.lim arctan →-∞ x x 极限为2 π- 4.0 lim ln x x +→ 无极限,趋于-∞ 二、设2221,1()3,121,2x x f x x x x x x +??=-+? ,问当1x →,2x →时,()f x 的极限是否存在? 211lim ()lim(3)3x x f x x x ++→→=-+=;11 lim ()lim(21)3x x f x x --→→=+= 1 lim () 3.x f x →∴=

222lim ()lim(1)3x x f x x ++→→=-=;222 lim ()lim(3)53x x f x x x --→→=-+=≠ 2 lim ()x f x →∴不存在。 三、设()1 1 1x f x e =+,求 0x →时的左、右极限,并说明0x →时极限是否存在. ()1001lim lim 01x x x f x e ++→→==+ ()1 001 lim lim 11x x x f x e --→→==+ 0 lim ()x f x →∴不存在。 四、试讨论下列函数在0x →时极限是否存在. 1.绝对值函数()||=f x x ,存在极限为零 2.取整函数()[]=f x x 不存在 3.符号函数()sgn =f x x 不存在 §2.3 无穷小量与无穷大量 一、判断对错并说明理由: 1.1sin x x 是无穷小量. 错,无穷小量需相对极限过程而言,在某个极限过程中的无穷小量在其它极限过程中可能不再是无穷小量。当0x →时,1sin 0x x →;当1x →时,1sin sin1x x →不是无穷小量。 2.同一极限过程中两个无穷小量的商,未必是该极限过程中的无穷小量. 对,两个无穷小量的商是“0/0”型未定式,即可能是无穷小量,也可能是无穷大量或其它有极限但极限不为零的变量。 3.无穷大量一定是无界变量,而无界变量未必是无穷大量. 对,无穷大量绝对值无限增大因此一定是无界变量,但无界变量可能是个别点无限增大,变量并不能一致地大于任意给定的正数。 二、下列变量在哪些极限过程中是无穷大量,在哪些极限过程中是无穷小量: 1. 221 x x +-, 2x →-时,或x →∞时,为无穷小量; 1x →时,或1x →-时,为无穷大量。 2.1ln tan x ,k Z ∈

数学实验二_极限与连续

实验二:极限与连续 第一题:数列极限 In[1]= f[n_]:=Sum[1/j^3,{j,1,n}]; xn=Table[N[f[n],10],{n,30}] Out[1]= {1.000000000,1.125000000,1.162037037,1.177662037,1.185662037,1.190291667,1. 193207119,1.195160244,1.196531986,1.197531986,1.198283300,1.198862004,1.199 317170,1.199681602,1.199977898,1.200222039,1.200425580,1.200597048,1.200742 842,1.200867842,1.200975822,1.201069736,1.201151926,1.201224264,1.201288264 ,1.201345159,1.201395965,1.201441518,1.201482521,1.201519558} In[2]=ListPlot[xn,PlotStyle→PointSize[0.02]] 第二题:递归数列 In[3]=Clear[f]; f[1]=1; f[n_]:=f[n]=N[(f[n-1]+3/f[n-1])/2,20]; fn=Table[f[n],{n,30}]

Out[3]= {1,2.00,1.00,1.29,1.05,1.53,1.35,1.35,1.35,1.35,1.35,1.35,1.35,1.35,1.35,1.35,1.35,1.3 5,1.35,1.35,1.35,1.35,1.35,1.35,1.35,1.35,1.35,1.35,1.35,1.35} In[4]=ListPlot[fn,PlotStyle→PointSize[0.02]] Out[4]= Graphics 第三题:多次自复合 In[5]= Plot[{Sin[x],Nest[Sin,x,5],Nest[Sin,x,10],Nest[Sin,x,30]},{x,-2Pi,2Pi},PlotStyle→{R GBColor[0,0,1],RGBColor[1,1,0],RGBColor[1,0,0],RGBColor[0,1,0]}] Out[5]=

在“验证牛顿第二定律”实验中为什么要求M--m

在“验证牛顿第二定律”实验中为什么要求M >> m 在“验证牛顿第二定律”实验中,研究加速度与力的关系时得到如图所示的图像,试分析其原因。 探究加速度的实验中为什么小车及其中砝码的质量要远大于托盘及其中砝码的质量 错误解法:mg-T=ma T=Ma 代入上式 mg-Ma=ma 化简a=〔m/(M+m)〕g 因此要使〔〕中的式子接近于1 分子分母同除以m,所以M不应该远小于m嘛! 。 【分析】在做a - F关系实验时,用托盘及其中砝码重力mg代替了小车所受的拉力F,如图所示。事实上,托盘及其中砝码的重力mg与小车所受的拉力F是不相等的。这是产生实验系统误差的原因,为此,必须根据牛顿第二定律分析mg和F在产生加速度问题上存在的差别。 由图像经过原点知,小车所受的摩擦力已被平衡。设小车实际加速度为a,由牛顿第二定律可得:mg=(m+M)a,即a=mg/(M+m) 若视F = mg,设这种情况下小车的加速度为a′,则a′= mg/M。 在本实验中,M保持不变,a'与mg(F)成正比,而实际加速度a与mg成非线性关系,且m越大,图像斜率越小。理想情况下,加速度a与实际加速度a差值为△a=mg/M-mg/(M+m)=m2g/[M(M+m)]=g/[M(M/m2+1/m)] 上式可见,m取不同值,△a不同,m越大,△a越大,当M >> m时,a≈a',△a→0,这就是要求该实验必须满足M >> m的原因所在。 本题误差是由于当托盘及其中砝码质量较大时,不能很好满足M >> m造成的。 【点评】本实验的误差来源:因原理不完善引起的误差,用托盘及其中砝码的总重力mg代替小车的拉力,而实际小车所受的拉力要小于托盘及其中砝码的总重力,这个托盘及其中砝码的总质量越接近小车和砝码的总质量,误差越大,反之托盘及其中砝码的总质量越小于小车和砝码的总质量,由此引起的误差就越小。因此满足托盘及其中砝码的总质量m 远小于小车和砝码的总质量M的目的就是为了减小因实验原理不完善而引起的误差。此误差可因为M >> m而减小,但不可能消去此误差。

【精品】高等数学习题详解第2章 极限与连续

习题2-1 1.观察下列数列的变化趋势,写出其极限: (1)1n n x n =+; (2)2(1)n n x =--; (3)13(1)n n x n =+-; (4)2 11n x n =-。 解:(1)此数列为12341234,,,,,,23451n n x x x x x n =====+所以lim 1n n x →∞ =。 (2)12343,1,3,1,,2(1),n n x x x x x =====--所以原数列极限不存在。 (3)1234111131,3,3,3,,3(1),234n n x x x x x n =-=+=-=+=+- 所以lim 3n n x →∞ =。 (4)12342111111,1,1,1,,1,4916n x x x x x n =-=-=-=-=-所以lim 1n n x →∞ =- 2.下列说法是否正确: (1)收敛数列一定有界; (2)有界数列一定收敛; (3)无界数列一定发散;

(4)极限大于0的数列的通项也一定大于0. 解:(1)正确. (2)错误例如数列{}(-1)n 有界,但它不收敛。 (3)正确。 (4)错误例如数列21(1)n n x n ??=+-???? 极限为1,极限大于零,但是11x =-小于零。 *3。用数列极限的精确定义证明下列极限: (1)1 (1)lim 1n n n n -→∞+-=; (2)222lim 11 n n n n →∞-=++; (3)3 23125lim -=-+∞→n n n 证:(1)对于任给的正数ε,要使1(1)111n n n x n n ε-+--=-=<,只要1n ε >即可,所以可取正整数1 N ε≥. 因此,0ε?>,1N ε???=???? ,当n N >时,总有1(1)1n n n ε-+--<,所以

实验二极限与连续数学实验课件习题答案

天水师范学院数学与统计学院 实验报告 实验项目名称极限与连续 所属课程名称数学实验 实验类型上机操作 实验日期 2013-3-22 班级 10数应2班 学号 291010836 姓名吴保石 成绩

【实验过程】(实验步骤、记录、数据、分析) 1.数列极限的概念 通过计算与作图,加深对极限概念的理解. 例2.1 考虑极限3321 lim 51 x n n →∞++ Print[n ," ",Ai ," ",0.4-Ai]; For[i=1,i 15,i++,Aii=N[(2i^3+1)/(5i^3+1),10]; Bii=0.4-Aii ;Print[i ," ",Aii ," ",Bii]] 输出为数表 输入 fn=Table[(2n^3+1)/(5n^3+1),{n ,15}]; ListPlot[fn ,PlotStyle {PointSize[0.02]}] 观察所得散点图,表示数列的点逐渐接近直线y=0 .4 2.递归数列 例2.2 设n n x x x +==+2,211.从初值21=x 出发,可以将数列一项项地计算出来,这样定义的数列称为 数列,输入 f[1]=N[Sqrt[2],20]; f[n_]:=N[Sqrt[2+f[n-1]],20]; f[9] 则已经定义了该数列,输入 fn=Table[f[n],{n ,20}] 得到这个数列的前20项的近似值.再输入 ListPlot[fn ,PlotStyle {PointSize[0.02]}] 得散点图,观察此图,表示数列的点越来越接近直线2y =

例2.3 考虑函数arctan y x =,输入 Plot[ArcTan[x],{x ,-50,50}] 观察函数值的变化趋势.分别输入 Limit[ArcTan[x],x Infinity ,Direction +1] Limit[ArcTan[x],x Infinity ,Direction -1] 输出分别为2 π 和2π-,分别输入 Limit[sign[x],x 0,Direction +1] Limit[Sign[x],x 0,Direction -1] 输出分别为-1和1 4.两个重要极限 例2.4 考虑第一个重要极限x x x sin lim 0→ ,输入 Plot[Sin[x]/x ,{x ,-Pi ,Pi}] 观察函数值的变化趋势.输入 Limit[Sin[x]/x ,x 0] 输出为1,结论与图形一致. 例2.5 考虑第二个重要极限1 lim(1)x x x →∞+,输入 Limit[(1+1/n)^n ,n Infinity] 输出为e .再输入 Plot[(1+1/n)^n ,{n ,1,100}] 观察函数的单调性 5.无穷大 例2.6 考虑无穷大,分别输人 Plot[(1+2x)/(1-x),{x ,-3,4}] Plot[x^3-x ,{x ,-20,20}] 观察函数值的变化趋势.输入 Limit[(1+2x)/(1-x),x 1] 输出为-∞ 例2.7 考虑单侧无穷大,分别输人 Plot[E^(1/x),{x ,-20,20},PlotRange {-1,4}] Limit[E^(1/x),x 0,Direction +1] Limit[E^(1/x),x 0,Direction -1] 输出为图2.8和左极限0,右极限∞.再输入 Limit[E^(1/x),x 0] 观察函数值的变化趋势. 例2.8 输入 Plot[x+4*Sin[x],{x ,0,20Pi}] 观察函数值的变化趋势. 输出为图2 .9.观察函数值的变化趋势,当x →∞时,这个函数是无穷大,但是,它并不是单调增加.于是,无并不要求函数单调 例2.9 输入

大学物理实验报告范例(验证牛顿第二定律)

大学物理实验报告范例(验证牛顿第二定律)

怀化学院

1 、 速度测量 挡光片宽度Δs 已知,用计时测速仪测出挡光片通过光电门时的挡光时间Δt,即可测出平均速度,因Δs 很小,该平均速度近似为挡光片通过光电门时的瞬时速度,即: 瞬时速度:t s dt ds t s v t ??≈=??=→?lim MUJ-5B 计时仪能直接计算并显示速度。 2、 加速度测量

(1)验证质量不变时,加速度与合外力成正比。 用电子天平称出滑块质量滑块m ,测速仪功能选“加速度”, 按上图所示放置滑块,并在滑块上加4个砝码(每个砝码及砝码盘质量均为5g),将滑块移至远离滑轮一端,使其从静止开始作匀加速运动,记录通过两个光电门之间的加速度。再将滑块上的4个砝码分四次从滑块上移至砝码盘上,重复上述步骤。 (2)验证合外力不变时,加速度与质量成反比。 计时计数测速仪功能设定在“加速度”档。在砝码盘上放一个砝码(即 g m 102=),测量滑块由静止作匀加速运动时的加速度。再将四个配重块(每个配重 块的质量均为m ′=50g)逐次加在滑块上,分别测量出对应的加速度。 【数据处理】 (数据不必在报告里再抄写一遍,要有主要的处理过程和计算公式,要求用作图法处理的应附坐标纸作图或计算机打印的作图) 1、由数据记录表3,可得到a 与F 的关系如下: 由上图可以看出,a 与F 成线性关系,且直线近似过原点。 上图中直线斜率的倒数表示质量,M=1/0.0058=172克,与实际值M=165克的相对误差: %2.4165 165 172=- 可以认为,质量不变时,在误差范围内加速度与合外力成正比。 2、由数据记录表4,可得a 与M 的关系如下:

实验:验证牛顿第二定律习题及详解

实验:验证牛顿第二定律 1.“验证牛顿运动定律”的实验中,以下说法正确的是( ) A.平衡摩擦力时,小盘应用细线通过定滑轮系在小车上 B.实验中应始终保持小车和砝码的质量远远大于小盘和砝码的质量 C.实验中如果用纵坐标表示加速度,用横坐标表示小车和车内砝码的总质量,描出相应的点在一条直线上时,即可证明加速度与质量成反比 D.平衡摩擦力时,小车后面的纸带必须连好,因为运动过程中纸带也要受到阻力 解析:平衡摩擦力时,细线不能系在小车上,纸带必须连好,故A错D对;小车和砝码的总质量应远大于小盘和砝码的总质量,故B对;若横坐标表示小车和车内砝码的总质量,则a-M图象是双曲线,不是直线,故C错.答案: BD 2.(2011年三明模拟)用如图甲所示的装置做“验证牛顿第二定律”实验,甲同学根据实验数据画出的小车的加速度a和小车所受拉力F的图象为图中的直线Ⅰ,乙同学画出的a-F图象为下图中的直线Ⅱ.直线Ⅰ、Ⅱ在纵轴或横轴上的截距较大,明显超出了误差范围,下面给出了关于形成这种情况原因的四种解释,其中可能正确的是( ) A.实验前甲同学没有平衡摩擦力 B.甲同学在平衡摩擦力时,把长木板的末端抬得过高了 C.实验前乙同学没有平衡摩擦力 D.乙同学在平衡摩擦力时,把长木板的末端抬得过高了 解析:由直线Ⅰ可知,甲同学在未对小车施加拉力F时小车就有了加速度,说明在平衡摩擦力时,把木板的末端抬得过高了,B正确,A错误;由直线Ⅱ可知,乙同学在对小车施加了一定的拉力时,小车的加速度仍等于零,故实验前乙同学

没有平衡摩擦力或平衡摩擦力不足,C正确,D错误. 答案:BC 3.在“探究加速度与物体质量、物体受力的关系”实验中,某小组设计了如图所示的实验装置.图中上下两层水平轨道表面光滑,两小车前端系上细线,细线跨过定滑轮并挂上砝码盘,两小车尾部细线连到控制装置上,实验时通过控制装置使两小车同时开始运动,然后同时停止. (1)在安装实验装置时,应调整滑轮的高度,使__________.在实验时,为减小系统误差,应使砝码盘和砝码的总质量________(选填“远大于”、“远小于”或“等于”)小车的质量. (2)本实验通过比较两小车的位移来比较小车加速度的大小,能这样比较,是因为________. 解析:(1)在安装实验装置时,应调整滑轮的高度,使细线与水平轨道平行,在实验时,为使砝码和盘的总重力近似等于细线的拉力,作为小车所受的合外力,必须满足砝码和盘的总质量远小于小车的质量. (2)因为两小车同时开始运动,同时停止,运动时间相同,由s=1 2 at2可知,a 与s成正比. 答案:(1)小车与滑轮之间的细线与轨道平行远小于 (2)两车从静止开始匀加速直线运动,且两车运动的时间相同,其加速度与位移成正比 4.如图为“用DIS(位移传感器、数据采集器、计算机)研究加速度和力的关系”的实验装置.

高一物理(匀速直线运动)单元测试题

匀速直线运动测试题 一、本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有 一个选项正确,有的小题有多个选项正确.全部选对的得4分,选对但不全的得2分,有选错或不答的得0分. 1.关于位移和路程,下列说法中正确的是( ) A .物体通过的路程不同,但位移可能相同 B .物体沿直线向某一方向运动,通过的路程就是位移 C .物体的位移为零,说明物体没有运动 D .物体通过的路程就是位移的大小 2.雨滴从高空下落,由于空气阻力作用,其加速度逐渐减小,直到为零,在此过程中雨 滴的运动情况是( ) A .速度不断减小,加速度为零时,速度最小 B .速度不断增大,加速度为零时,速度最大 C .速度一直保持不变 D .速度的变化率越来越小 3.一个运动员在百米赛跑中,测得他在50m 处的速度为6m/s ,16s 末到达终点时速度为 7.5m/s ,则全程的平均速度为( ) A .6m/s B .6.25m/s C .6.75m/s D .7.5m/s 4.某物体运动的v —t 图象如图所示,下列说法正确的是( ) A .物体在第1s 末运动方向发生变化 B .物体在第2s 内和第3s 内的加速度是相同的 C .物体在4s 末返回出发点 D .物体在6s 末离出发点最远,且最大位移为1m 5.在平直公路上,汽车以15m/s 的速度做匀速直线运动, 从某时刻开始刹车,在阻力作用下,汽车以2m/s 2 的加速度做匀减速直线运动,则刹车后10s 内汽车的位移大小为( ) A .50m B .56.25m C .75m D .150m 6.一列火车从静止开始做匀加速直线运动,一人站在第一节车厢前端的旁边观测,第一 车厢通过他历时2s ,整列车厢通过他历时6s ,则这列火车的车厢有( ) A .3节 B .6节 C .9节 D .12节 7.一个物体从某一高度做自由落体运动,已知它第1秒内的位移是它落地前最后一秒内 位移的一半,g 取10m/s 2,则它开始下落时距地面的高度为( ) A .5m B .20m C .11.25m D . 31.25m t/s -

第二章极限习题及答案:函数的连续性

函数的连续性 分段函数的极限和连续性 例 设???????<<=<<=) 21( 1)1( 21 )10( )(x x x x x f (1)求)x f (在点1=x 处的左、右极限,函数)x f (在点1=x 处是否有极限? (2)函数)x f (在点1=x 处是否连续? (3)确定函数)x f (的连续区间. 分析:对于函数)x f (在给定点0x 处的连续性,关键是判断函数当0x x →时的极限是否等于)(0x f ;函数在某一区间上任一点处都连续,则在该区间上连续. 解:(1)1lim )(lim 1 1 ==- - →→x x f x x 11lim )(lim 1 1 ==++→→x x x f ∴1)(lim 1 =→x f x 函数)x f (在点1=x 处有极限. (2))(lim 2 1)1(1 x f f x →≠= 函数)x f (在点1=x 处不连续. (3)函数)x f (的连续区间是(0,1),(1,2). 说明:不能错误地认为)1(f 存在,则)x f (在1=x 处就连续.求分段函数在分界点0x 的左右极限,一定要注意在分界点左、右的解析式的不同.只有)(lim ),(lim )(lim 0 x f x f x f x x x x x x →→→+ - =才存在. 函数的图象及连续性 例 已知函数2 4)(2 +-= x x x f , (1)求)x f (的定义域,并作出函数的图象;

(2)求)x f (的不连续点0x ; (3)对)x f (补充定义,使其是R 上的连续函数. 分析:函数)x f (是一个分式函数,它的定义域是使分母不为零的自变量x 的取值范围,给函数)x f (补充定义,使其在R 上是连续函数,一般是先求)(lim 0 x f x x →,再让)(lim )(0 0x f x f x x →=即可. 解:(1)当02≠+x 时,有2-≠x . 因此,函数的定义域是()()+∞--∞-,22, 当2≠x 时,.22 4)(2 -=+-=x x x x f 其图象如下图. (2)由定义域知,函数)x f (的不连续点是20-=x . (3)因为当2≠x 时,2)(-=x x f 所以4)2(lim )(lim 2 2 -=-=-→-→x x f x x 因此,将)x f (的表达式改写为 ?? ? ??-=--≠+-=)2(4)2(2 4 )(2x x x x x f 则函数)x f (在R 上是连续函数. 说明:要作分式函数的图象,首先应对函数式进行化简,再作函数的图象,特别要注意化简后的函数与原来的函数定义域是否一致. 利用函数图象判定方程是否存在实数根 例 利用连续函数的图象特征,判定方程01523 =+-x x 是否存在实数根.

匀速直线运动的研究

Δx =aT 2的证明及应用 在任意连续相等时间(T )内位移之差等于一个恒量,即△x =aT 2,该式是匀变速直线运动的判别式。推广式为:x m -x n =(m -n )aT 2。 证明:设质点以0v 的初速度、a 的加速度做匀加速直线运动,自计时起有: 在第一个T 内的位移为:21012 s v T aT =+ 在第二个T 内的位移为:2220013()22 s v aT T aT v T aT =++=+ 在第三个T 内的位移为:2230015(2)22 s v a T T aT v T aT =+?+=+ …… 在第n 个T 内的位移为:2200121[(1)]22 n n s v a n T T aT v T aT -=+?-+=+ 所以有:221s s aT -=,232s s aT -=,……21n n s s aT --= 即做匀变速直线运动的质点在连续相等的时间T 内的位移差: 213221n n s s s s s s s aT -?=-==-=-=……为恒定值。 如果相等的时间间隔不相邻,可将△x =aT 2推广。设质点在第m 个T 内的位移为x m ,第n 个T 内的位移为x n ,则推广式为:x m -x n =(m -n )aT 2。 例1 一个物体做初速为零,加速度a =2 m/s 2的匀加速直线运动在任何两个相邻的1s 内,位移的增加量为( ) A .1m B.2m C.4m D.不能确定 解析 初速度为零的匀加速运动在连续相等的时间内的位移差为一常数,即 Δx =aT 2,而T =1s 所以Δx =2×12m=10m ,故答案为B 。 例2 一个做匀加速运动的物体先后通过A 、B 、C 三点,所用的时间均为2s ,它在前2 s 的位移和后2 s 的位移分别为21m 和27m 。求物体运动的加速度和初速度。

DIS专用实验五牛顿第二定律

实验五牛顿第二定律 实验器材 朗威DISLab数据采集器、位移传感器、DISLab力学轨道、DISLab力学轨道小车、滑轮、砝码、细绳、转接器、支架、计算机。 实验装置 类似图1-1,但需在轨道一端安装滑轮,并使用吊有砝码的细绳通过滑轮牵引轨道小车(图5-1、图5-2)。 图1-1 实验装置 图5-1 用细绳牵引小车 图5-2 滑轮的使用

实验操作 1.将位移传感器接收器固定在轨道的一端,连接到数据采集器第一通道;将位移传感器发射器固定到小车上。 2.进行摩擦力平衡调整。步骤如下: a .点击教材专用软件主界面上的实验条目“从v-t 图求加速度”,打开该软件; b.将小车放到斜面上,打开位移传感器发射器电源开关,点击“开始记录”,释放小车; c.调节轨道的倾角,用实验三的方法测量小车的加速度。当加速度接近零时,可以认为小车重力沿斜面的分力已与小车和轨道之间的摩擦力平衡,见图5-3。 3.返回教材专用软件主界面,点击实验条目“牛顿第二定律”,打开该软件。 4.将细绳的一端拴在小车上,另一端通过滑轮拴在放有砝码的小桶上。 5.在窗口下方的表格内输入小车的质量及拉力数值(砝码重量+小桶重量)。 6.将小车放到轨道上,打开位移传感器发射器电源开关,点击“开始记录”,释放小车,使小车在砝码的拉动下开始运动。待小车停止运动,点击“停止记录”。 7.拖动窗口下方的滚动条,将实验获得的v-t图线置于显示区域中间,点击“选择区域”,选择需要研究的一段v-t 图线。 8.软件窗口下方的表格中自动显示该段v-t 图线对应的加速度(图5-4)。 9.保持小车质量不变,改变拉力,重复步骤5、6,可得到另几组数据(图5-5)。 10.点击“a-F图像”按钮,即得到加速度与拉力关系图线(图5-6)。 图5-3 平衡摩擦力 图 5-4 研究区域内v-t 图线对应的加速度 图5-5 质量不变,改变拉力测得实验数据

高等数学习题详解-第2章-极限与连续

习题2-1 1. 观察下列数列的变化趋势,写出其极限: (1) 1 n n x n = + ; (2) 2(1)n n x =--; (3) 13(1)n n x n =+-; (4) 211n x n =-. 解:(1) 此数列为12341234,,,,,,23451 n n x x x x x n =====+L L 所以lim 1n n x →∞=。 (2) 12343,1,3,1,,2(1),n n x x x x x =====--L L 所以原数列极限不存在。 (3) 1234111131,3,3,3,,3(1),234n n x x x x x n =-=+=-=+=+-L L 所以lim 3n n x →∞ =。 (4) 123421111 11,1,1,1,,1,4916n x x x x x n =-= -=-=-=-L L 所以lim 1n n x →∞=- 2.下列说法是否正确: (1)收敛数列一定有界 ; (2)有界数列一定收敛; (3)无界数列一定发散; (4)极限大于0的数列的通项也一定大于0. 解:(1) 正确。 (2) 错误 例如数列{} (-1)n 有界,但它不收敛。 (3) 正确。 (4) 错误 例如数列21(1) n n x n ?? =+-??? ? 极限为1,极限大于零,但是11x =-小于零。 *3.用数列极限的精确定义证明下列极限: (1) 1 (1)lim 1n n n n -→∞+-=; (2) 22 2 lim 11 n n n n →∞-=++; (3) 3 2 3125lim -=-+∞→n n n 证:(1) 对于任给的正数ε,要使1(1)111n n n x n n ε-+--= -=<,只要1 n ε >即可,所以可取正整数1 N ε ≥ . 因此,0ε?>,1N ε?? ?=???? ,当n N >时,总有 1(1)1n n n ε-+--<,所以

高中物理_第二章测试匀速直线运动

直线运动单元追踪测试题 一、选择题(每小题4分,共48分) 1.一个运动员在百米赛跑中,测得他在50m处的速度是6m/s,16s末到终点时的速度是7.5m/s,则全程内的平均速度的大小是() A.6m/s B.6.25m/s C.6.75m/s D.7.5m/s 2.关于物体的运动,下面说法中不可能的是() A.加速度在减小,速度在增加 B.加速度的方向始终变而速度不变 C.加速度和速度大小都在变化,加速度最大时速度最小,速度最大时加速度最小 D.加速度的方向不变而速度方向变化 3.如图2-1所示为表示甲、乙物体运动的s -t图象,则其 中错误 ..的是( ) A.甲物体做变速直线运动,乙物体做匀速直线运动 B.两物体的初速度都为零 C.在t1时间内两物体平均速度大小相等 D.相遇时,甲的速度大于乙的速度 4.某物体沿直线运动的υ-t图象如图2-2所示,由图可以看出物体( ) ①沿直线向一个方向运动 ②沿直线做往复运动 ③加速度大小不变 ④做匀变速直线运动 上述说法正确的是 A.①④ B.①③ C.②③ D.②④ 5.甲、乙两辆汽车沿平直公路从某地同时驶向同一目标,甲车在前一半时间内以速度υ1做匀速运动,后一半时间内以速度υ2做匀速运动;乙车在前一半路程中以速度υ1做匀速运动,后一半路程中以速度υ2做匀速运动,则( ) A.甲先到达B.乙先到达C.甲、乙同时到达D.不能确定6.为了测定某辆轿车在平直路上起动时的加速度(轿车起动时的运动可近似看做匀加速运动),某人拍摄了一张在同一底片上多次曝光的照片(如图2-3所示).如果拍摄时每隔2秒曝光一次,轿车车身总长为4.5m,那么这辆轿车的加速度为 ( ) A.1m/s2 B.2m/s2C.3m/s2D.4m/s2 7.在一个以加速度g做自由下落的密闭电梯内,有一人同时相对电梯 由静止释放一只铅球和一只氢气球,则电梯内的人将会看到( ) A.铅球坠落到电梯底板上,氢气球上升到电梯顶板 B.铅球仍在人释放的位置,与人相对静止,而氢气球上升到电梯顶板C.铅球坠落到电梯顶板上,氢气球仍在人释放的位置,与人相对静止D.铅球与氢气球均在人释放的位置,与人相对静止 8.a、b两个物体从同一位置沿同一直线运动,它们的速度图象如图所示,下列说法正确的是( ) A.a、b加速时,物体a的加速度大于物体b的加速度 B.20s时,a、b两物体相距最远 C.60s时,物体a在物体b的前方 D.40s时,a、两物体速度相等,相距200m 9.一个物体做匀变速直线运动,若运动的时间之比为t1:t2:t3:…=1:2:3:…,下面有三种说法,则() ①相应的运动距离之比一定是s1:s2:s3:…=1:4:9:… ②相邻的相同时间内的位移之比一定是s1:s2:s3:…=1:3:5:… ③相邻的相同时间内位移之差值一定是△s=aT2,其中T为相同的时间间隔. A.只有③正确B.只有②③正确 s

验证牛顿第二定律—气垫导轨实验(一)

中国石油大学(华东)现代远程教育 实验报告 课程名称:大学物理(一) 实验名称:验证牛顿第二定律――气垫导轨 实验(一) 实验形式:在线模拟+现场实践 提交形式:提交书面实验报告 学生:学号: 年级专业层次: 学习中心:

提交时间:年月日 一、实验目的 1.了解气垫导轨的构造和性能,熟悉气垫导轨的调节和使用方法。 2.了解光电计时系统的基本工作原理,学会用光电计时系统测量短暂时间的方法。 3.掌握在气垫导轨上测定速度、加速度的原理和方法。 4.从实验上验证F=ma的关系式,加深对牛顿第二定律的理解。 5.掌握验证物理规律的基本实验方法。 二、实验原理 1.速度的测量 一个作直线运动的物体,如果在t~t+Δt时间通过的位移为Δx(x~x+Δx),则该物 体在Δt时间的平均速度为,Δt越小,平均速度就越接近于t时刻的实际速度。当Δt→0时,平均速度的极限值就是t时刻(或x位置)的瞬时速度 (1) 实际测量中,计时装置不可能记下Δt→0的时间来,因而直接用式(1)测量某点的速度就难以实现。但在一定误差围,只要取很小的位移Δx,测量对应时间间隔Δt,就可以用平均速度近似代替t时刻到达x点的瞬时速度。本实验中取Δx为定值(约10mm),用光电计时系统测出通过Δx所需的极短时间Δt,较好地解决了瞬时速度的测量问题。2.加速度的测量 在气垫导轨上相距一定距离S的两个位置处各放置一个光电门,分别测出滑块经过这两个位置时的速度v1和v2。对于匀加速直线运动问题,通过加速度、速度、位移及运动时间之间的关系,就可以实现加速度a的测量。 (1)由测量加速度 在气垫导轨上滑块运动经过相隔一定距离的两个光电门时的速度分别为v1和v2,经过两个光电门之间的时间为t21,则加速度a为 (2) 根据式(2)即可计算出滑块的加速度。 (2)由测量加速度 设v1和v2为滑块经过两个光电门的速度,S是两个光电门之间距离,则加速度a为

牛顿第二定律实验

物理必修1第四章牛顿运动定律班级: 姓名: 使用时间 第三节探究牛顿第二定律 课型:实验课制作人: 审核:高一物理备课组 1?知识与技能 (1)以实验为基础,通过观察、测量、归纳得到物体的加速度跟它的质量及所受外力的关系?培养学生的实验能力、概括能力和分析推理能力。 (2)认识到实验在物理学中的地位和作用。 2.过程与方法 (1)采用控制变量的方法,通过实验对a、F、m三个物理量间的数量关系进行定量研究;运用列表法处理数据;根据实验数据,归纳、推理实验结论(定量分析)。 (2)经历科学探究过程,认识科学探究的意义,培养学生科学探究的意识和方法。 3?情感态度与价值观 (1 )体验探索牛顿第二定律过程中的艰辛与喜悦,养成科学严谨的治学态度。 (2 )学会与他人合作、交流,具有团队意识和团队精神。 1、实验器材:小车,一端带有定滑轮的平板,钩码,砝码若干,细线,打点计时器,纸带,刻度尺

2、实验原理:以小车为研究对象,小车的运动可以通过研究与小车相连的纸带上的点的运动而得出;小车的拉力由绳子下面悬挂的钩码的重力来确定;采用控制变量法研究三个物理量间的数量关系。 3、加速度、质量、力三者之间的关系,采用的方法是__________________ 4.实验时为什么要平衡摩擦力? _____________________________________________ 怎样平衡摩擦力?____________________________________________________ 5?如果a-F, a-1/m图象,并不严格地位于某条直线上,或直线并非准确地通过原点,可能的原因是 6、实验中我们采取了近似处理:近似认为小车的拉力大小等于绳子下面悬挂的钩码的重力。这要求钩码的质量远小 于小车的质量。 【探究一】加速度与力的关系 (一)实验步1。用天平测量出小车的质量。 2将打点计时器固定在平板的一端,同时把这一端适当垫高,直到小车在平板上均匀下滑为止。 3调节平板另一端定滑轮的高度,保证细线与平板平行。在细线的一段连接一个钩码,小车和打点计时器连接好纸带。 4打开电源,让小车从顶端自由滑下,得到一条纸带。 5保持小车质量不变,改变钩码质量,进行第四步的相同操作,得到又一条纸带。重复三到五次,然后对所得纸带进行分析。 (二)数据分析:设计表格,把同一物体在不同力作用下的加速度填在下面的表格中

匀速直线运动实验的改进

匀速直线运动实验的改进 学号:122003081 姓名:夏燕程 摘要:物理实验是探究物理规律的重要方法。初二的学生学习物理所作的“第一个”物理实验应该就是匀速直线运动的规律探究,因为,我觉得先前的物理实验只是对一些物理现象的重现。匀速直线运动的研究关键是寻找一个作匀速直线运动的物体,本文通过对匀速直线运动实验的思考和三种具体的改进,试图寻找物理实验改进和创新的方法,从而提高物理实验的可视性与可操作性。 关键词:匀速直线运动改进 正文: 一问题的提出 匀速直线运动是八年级上册物理(苏科版)的重要教学内容,也是学生学习物理的入门。学生学完这一节后,应该学会用定量计算的方法研究物体的运动规律。同时,本节内容也是上一节内容速度的拓展和延伸。物理学习重要一点就是让学生用物理的方法去探究物理问题,从物理的视角观察物理现象。匀速直线运动这一节内容主要描述了物体的两种运动形式—匀速直线运动和变速直线运动,学生通过实验得到匀速直线运动的特征,通过观察和计算得到变速直线运动的特点。然而,自然界很少会出现真正的匀速直线运动这种运动形式,书本也只是列举了站在自动扶梯上的人和在冰面上的滑行一定情况下可以近似的看成是匀速直线运动。那么学生如何利用实验探究匀速直线运动的运动规律呢? 二现有的实验方法 要用实验探究匀速直线运动,首先是要找 到一个做匀速直线的物体,然后利用刻度尺测 量运动路程,秒表测量对应的运动时间。关键 是如何才能找到作匀速直线运动的物体呢? 教科书给了我们一个很好的提示:利用水中的 气泡在上升时受到浮力和水的阻力的作用(忽 略气泡自身重力),阻力随气泡速度的增加而 变大,当阻力大小等于浮力时,气泡受平衡力 作匀速直线运动。 这里存在三个问题: 1 气泡受到的浮力会不会发生变化?我的答案是会发生变化。因为在地球附近的水的内部存在压强,气泡在向上运动过程中受到水的压强会发生变化。那么气泡的体积也会发生变化,气泡的浮力也是变化的。当然这种变化不是非常显著,但确实会影响到气泡的运动。 2 水和气泡都是无色透明,初中学生实验过程中观察不够到位,容易发生漏测、误测现象。 3 一般情况下,竖直放置的玻璃管中气泡运动较快,学生来不及测量。 针对这些问题,许多老师想出了各种解决方法。 三问题的解决和思考 方法一:将玻璃管中的水换成油,研究气泡在油当中上升的情况。 首先油是有颜色的和气泡颜色存在一定差异,方便学生的观察与测量。其次油的粘滞系数较大,气泡在油中的运动比水中要慢一些,方便学生的时间测量。

验证牛顿第二定律参考实验报告

《验证牛顿第二定律》参考实验报告 实验目的 1.熟悉气垫导轨的构造,掌握正确的使用方法。 2.熟悉光电计时系统的工作原理,学会用光电计时系统测量短暂时间的方法。 3.学会测量物体的速度和加速度。 4.验证牛顿第二定律。 实验仪器 气垫导轨,气源,通用电脑计数器,游标卡尺,物理天平等。 实验原理 牛顿第二定律的表达式为 F =m a (1—1) 验证此定律可分两步 (1)验证m 一定时,a 与F 成正比。 (2)验证F 一定时,a 与m 成反比。 把滑块放在水平导轨上。滑块和砝码相连挂在滑轮上,由砝码盘、滑块、砝码和滑轮组成的这一系统,其系统所受到的合外力大小等于砝码(包括砝码盘)的重力W 减去阻力,在本实验中阻力可忽略,因此砝码的重力W 就等于作用在系统上合外力的大小。系统的质量m 就等于砝码的质量m 1、滑块的质量m 2和滑轮的折合质量2r I 的总和,按牛顿第二定律 a r I m m W )(221++= (1—2) 在导轨上相距S (系统默认S=50cm )的两处放置两光电门k 1和k 2,测出此系统在砝码重力作用下滑块通过两光电门和速度v 1和v 2,则系统的加速度a (可有光电计时器直接读出)等于 S v v a 22122-= (1-3) 在滑块上放置双挡光片,同时利用计时器测出经两光电门的时间间隔,则通过2个光电门的速度为 (用卡尺测出遮光片两挡光沿的宽度d ?,cm d 1=?)(速度可有光电计时器直接读出) 2 211,t d v t d v ??=??= (1-4) 其中d ?为遮光片两个挡光沿的宽度如图1-1所示。在此测量中实际上测 定的是滑块上遮光片(宽d ?)经过某一段时间的平均速度,但由于d ?较 窄,所以在d ?范围内,滑块的速度变化比较小,故可把平均速度看成是滑 块上遮光片经过两光电门的瞬时速度。同样,如果t ?越小(相应的遮光片 宽度d ?也越窄),则平均速度越能准确地反映滑块在该时刻运动的瞬时速 度。 实验步骤 1.调好光电计时器,调整气垫导轨水平 (1)首先检查计时装置是否正常。将计时装置与光电门连接好,要注意套管插头和插孔要正确插入,将两光电门按在导轨上,利用功能键调到加速度,利用转换键调至显示速度和加速度。双挡光片第一次挡光开始计时,第二次挡光停止计时就说明光电计时装置能正常

相关文档
相关文档 最新文档