文档库 最新最全的文档下载
当前位置:文档库 › 丙酮、丁酮的测定

丙酮、丁酮的测定

丙酮、丁酮的测定
丙酮、丁酮的测定

一、目的

测定工作场所空气中丙酮、丁酮的浓度。

二、适用范围

本标准规定了监测工作场所空气中脂肪族酮类化合物浓度的方法。

本标准适用于工作场所空气中脂肪族酮类化合物(包括丙酮、丁酮、甲基异丁基甲酮、双乙烯酮、异佛尔酮、二异丁基甲酮、二乙基甲酮、2-己酮、乙基戊基甲酮、乙烯酮)浓度的测定。

三、检测依据

GBZ/T 160.55-2007

四、原理

空气中的丙酮、丁酮或甲基异丁基甲酮用活性炭管采集,二硫化碳解吸后进样,经色谱柱分离,氢焰离子化检测器检测,以保留时间定性,峰高或峰面积定量。

五、试剂

1、二硫化碳,色谱鉴定无干扰杂峰。

2、FFAP,色谱固定液。

3、6201担体,60~80目。

4、标准溶液:于25mL 容量瓶中,加入约5mL 二硫化碳,准确称量后,加入适量丙酮、丁酮或甲基异丁基甲酮(色谱纯),再准确

称量;加二硫化碳至刻度,由2次称量之差计算出溶液的浓度,为丙酮、丁酮或甲基异丁基甲酮标准溶液。或用国家认可的标准溶液配制。

六、仪器

1、活性炭管,溶剂解吸型,内装100mg/50mg 活性炭。

2、空气采样器。

3、溶剂解吸瓶,5mL。

4、微量注射器,10L。

5、气相色谱仪,氢焰离子化检测器。

仪器操作参考条件

色谱柱:2m×4mm FFAP:6201担体= 10:100

柱温:90℃

汽化室温度:140℃

检测室温度:160℃

载气(氮气)流量:30mL/min

七、样品的采集、运输和保存

现场采样按照GBZ 159执行。

1、短时间采样:在采样点,打开活性炭管两端,以100mL/min 流量采集15min 空气样品。

2、长时间采样:在采样点,打开活性炭管两端,以50mL/min 流量采集2h~8h 空气样品。

3、个体采样:在采样点,打开活性炭管两端,佩戴在采样对象的前胸上部,进气口尽量接近呼吸带,以50mL/min 流量采集2~8h 空气样品。

4、样品空白:将活性炭管带至采样点,除不连接采样器采集空气外,其余操作同样品。

采样后,立即封闭活性炭管两端,置清洁容器内运输和保存。样品在室温下可保存7d。

八、分析步骤

1、样品处理:将采过样的活性炭管中前后段活性炭分别倒入溶剂解吸瓶中,各加入1.0mL 二硫化碳,封闭后,振摇1min,解吸30min。摇匀,解吸液供测定。若解吸液中待测物浓度超过测定范围,可用二硫化碳稀释后测定,计算时乘以稀释倍数。

2、标准系列的配制及测定:用二硫化碳稀释标准溶液成0g/mL、400g/mL、800g/mL和1600g/mL 丙酮标准系列,0g/mL、200g/mL、400g/mL、800g/mL和2000g/mL 丁酮标准系列,0g/mL、100g/mL、200g/mL、600g/mL、900g/mL和1200g/mL甲基异丁基甲酮标准系列。参照仪器操作条件,将气相色谱仪调节至最佳测定状态,分别进样

1.0L,测定各标准系列。每个浓度重复测定3 次。以测得的峰高或峰面积均值分别对丙酮、丁酮或甲基异丁基甲酮浓度(g/mL)绘制标准曲线或计算回归方程。

3、样品测定:用测定标准系列的操作条件测定样品和样品空白,测得的峰高或峰面积值后,由标准曲线或回归方程得丙酮、丁酮或甲基异丁基甲酮的浓度。

九、计算

1、按式(1)将采样体积换算成标准采样体积:

293 P

V o = V ×————— ×————— (1)

273 + t 101.3

式中:V o —标准采样体积,L;

V —采样体积,L;

t —采样点的温度,℃;

P —采样点的大气压,kPa。

2、按式(2)计算空气中丙酮、丁酮、甲基异丁基甲酮或环己酮的浓度:

(c1 + c2) v

C = —————— (2)

V o D

式中:C —空气中丙酮、丁酮或甲基异丁基甲酮的浓度,mg/ m3;c1,c2-测得前后段活性炭解吸液中丙酮、丁酮或甲基异丁基甲酮的浓度(减去样品空白),μg/mL;

v -解吸液的体积,mL;

V o —标准采样体积,L;

D -解吸效率,%。

酸的浓度,ug/ml;

v -解吸液的总体积,ml;

V o -标准采样体积,L;

D -解吸效率,%。

3、时间加权平均接触浓度按GBZ 159规定计算。

十、最低检出限

本法的检出限、最低检出浓度(以采集1.5L空气样品计)、相对标准偏差、穿透容量(100mg活性炭)和解吸效率列于表1。每批活性炭管应测定其解吸效率。

表 1 方法性能指标

十一、说明

1、本法可使用相应的填充柱或毛细管色谱柱。

2、样品解吸测定方法:先将溶剂解吸型吸附剂管的前段倒入解吸瓶中解吸并测定,如果测定结果显示未超出吸附剂的穿透容量时,后段可以不用解吸和测定;当测定结果显示超出吸附剂的穿透容量时,再将后段吸附剂解吸并测定。

十二、支持性文件

《空气中丙酮、丁酮的测定原始记录》

环境空气 汞的测定 原子荧光法 《空气与废气监测分析方法》(第四

新项目试验报告 项目名称:环境空气汞的测定 原子荧光分光光度法《空气与废气监测分析方法》(第四版)项目负责人:杨刚 项目审批人: 审批日期:

一、新项目概述 原子吸收分光光法和氢化物发生-原子荧光分光光度法测定汞,灵敏度高、方法快速准确、干扰少;双硫腙分光光度法是经典方法,准确、测定范围等,但操作复杂,要求严格,适用于高浓度汞污染物的监测。 二、检测方法与原理 检测方法:原子荧光分光光度法《空气与废气监测分析方法》(第四版)(2003)5.3.7.2 原理:通过等速采样,将颗粒物从固定污染源中抽取到玻璃纤维滤筒中或将无组织排放颗粒物收集到氯乙烯滤膜上。所采集的样品用混合酸消解处理。 在酸性介质中,加热消解是样品溶液中的汞以二价汞的形式存在,再被硼氢化钾还原成单质汞,形成汞蒸气,被引入原子荧光分光光度计进行测定。 大气颗粒物中Sb、Se、Bi、Au等元素含量较低,一般含量的Sb、Se、Bi、Au不干扰Hg的测定,大量的Cu、Pb等均不干扰测定。 当将采集10m3气体的滤膜制备成50ml样品时,最低检出限为3×10-3μg/m3。 三、主要仪器和试剂 1.试剂和材料 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸馏水或同等纯度的水,所有试剂应不含铬。 1.1 硝酸:ρ=1.42g/ml,优级纯。 1.2 硝酸:1+1。 1.3 硝酸:1+19。 1.4 盐酸:ρ=1.19g/ml,优级纯。 1.5 5%盐酸。 1.6 重铬酸钾:优级纯。

1.7 氢氧化钾或氢氧化钠:优级纯。 1.8 盐酸溶液:1+1. 1.9 0.04%硼氢化钾溶液:称取0.4g硼氢化钾于已加入1gKOH的200ml去离子水中,溶解后,用脱脂棉过滤,稀释至1000ml。此溶液现用现配。 1.10 0.5g/L重铬酸钾溶液:称取0.5g重铬酸钾溶解于1000ml(1+19)HNO3中。 1.11 汞标准贮备液:准确称取1.080g氧化汞(优级纯,于105~110℃烘干2h), 用70ml(1+1)HCl溶液溶解,加入24ml(1+1)HNO3溶液、1.0gK 2Cr 2 O 7 ,溶解 后移入1000ml容量瓶中,用水稀释定容至标线。此溶液每毫升含1.0mg汞。1.12汞标准使用液(Hg),0.500μg/ml:临用时,用0.5g/L重铬酸钾溶液逐级稀释汞贮备液而成。 2. 仪器和设备 2.1原子荧光分光光度计及相应的辅助设备。 2.2中流量采样器。 2.3烟尘采样器。 2.4玻璃纤维滤筒。 2.5过氯乙烯滤膜。 四、采样要求或样品与处理技术 4.1采集 中流量采样器,玻璃纤维滤膜过滤直径8㎝时。以50~150L/min流量,采样30~60m3。采样应将滤膜毛面朝上,放入采样夹中拧紧。采样后小心取下滤膜尘面朝里对折两次叠成扇形,放回纸袋中,并详细记录采样条件。 4.2试料溶液 4.2.1硝酸-过氧化氢溶液浸出法 取试样滤膜,置于高兴烧杯中,加入10ml硝酸-过氧化氢混合溶液浸泡2h以上,微火加热至沸腾,保持微沸10min,冷却后加入过氧化氢10ml,沸腾至微干,冷却,加硝酸溶液20ml,再沸腾10min,热溶液通过多孔玻璃过滤器,收集于烧杯中,用少量热硝酸溶液冲洗过滤器数次。待滤液冷却后,转移到50ml容量瓶中,

空气中丙酮检测

空气中丙酮的检测 前言 丙酮物理性能为:分子量58,比重0.791,沸点56.2’C,熔点一95.4’C,20’C 时蒸汽压24.1kPa,蒸汽相对密度2.0,闪点一9.4’C(杯),爆炸极限2.5%一12.8%。常温时液态具挥发性,与水和其他有机剂完全混溶,无色.有特殊甜味。吸人高浓度(约1000ppm),对鼻腔和咽喉有轻微的刺激,极高浓度下(大于10000ppm)可能造成头疼虚弱、困倦、恶心、酒醉感及呕吐。 丙酮在工业中有着广泛的应用。可以作为很多有机物质的良好溶剂,比如:石油、石蜡、树脂、橡胶、塑胶、油漆等。同时由于其价格便宜,又能与水混溶,也常用作萃取剂。另外,它在化学合成中又是一种重要的原料,可以用来合成甲基异丁基酮、异亚丙基丙酮醋酸、二酮醇等川。此外,丙酮还是动物体物质代谢的一种产物,其浓度可以反映生物体的机体状况。机体中的丙酮浓度过高可以引起酮中毒。由此看来,对丙酮气体的检测很有必要性。此前对丙酮气体的定量检测方法主要有:气相或液相色谱法、分光光度计法、石英晶体微量秤法、光寻址电位传感器(LAPS)法叫和光纤传感器法圈等。这些检测方法检测成本比较昂贵,传感器的制备方法复杂。氧化物半导体气敏传感器,由于其灵敏度高、响应快、体积小、能耗与成本低、操作简单等特点,广泛地应用在对各种目标气体的检测上。在最近几年里,国内外对丙酮半

导体材料的研究取得了一些进展。 丙酮气敏传感器的应用 丙酮气敏传感器可以在众多领域内发挥重要的作用。在工业及公共安全中的应用:丙酮气敏传感器可以监测环境中丙酮气体的泄漏,对于有可能造成的安全和人身健康方面的重大危害做出报警。在医学上的应用:诊断和监测糖尿病和酮酸中毒症。糖尿病患者,脂肪酸氧化作用的速度增加,促使肝脏制造酮体,而丙酮是酮体代谢的最终产物,大量酮体产生时,体内的碱被消耗,造成酮酸中毒。血液中的丙酮通过多孔的血管壁,混于交换气体中,因此患者呼出气体中丙酮的浓度必定与血液中丙酮的浓度成正比,如图l所示。通过对人呼出气体中丙酮气体浓度的检测,可以起到诊断和监测病情的目的困。 在畜牧业中的应用:通过对乳牛呼气中的丙酮气体浓度的

大气飘尘浓度测定方法

水质六种特定多环芳烃的测定高效液相色谱法 GB 13198—91 1 适用范围 本标准规定了测定水中多环芳烃(PAH)的高效液相色谱(HPLC)法。本标准参照采用国际标准ISO/DIS 7981/2高效液相色谱法分析的六种特定多环芳烃。 本标准适用于饮用水、地下水、湖库水、河水及焦化厂和油毡厂的工业污水中荧蒽、苯并(b)荧蒽、苯并(k)荧蒽、苯并(a)芘、苯并(ghi)苝、茚并(1,2,3-cd)芘六种多环芳烃的测定。 本法用环己烷提取水中多环芳烃,提取液通过弗罗里硅土柱,PAH吸附在柱上,用丙酮加二氯甲烷混合溶液脱附PAH后,用配备荧光和(或)紫外检测器的高效液相色谱仪测定。本方法对六种PAH通常可检测到ng/L水平。 水样中若存在可被共萃取的能产生荧光信号或熄灭荧光的物质对本法也有干扰。本法用弗罗里硅土柱层析净化分离,可降低荧光背景。 2 试剂和材料 2.1 高效液相色谱流动相为水和甲醇的混合溶液。 2.1.1 甲醇:分析纯,用全玻璃仪器重蒸馏,要求有足够低的空白。 2.1.2 水:电渗析水或蒸馏水,加高锰酸钾在碱性条件下重蒸。在测定的化合物检测限内未观察到干扰。 2.2 配制标准样品和水样预处理使用的试剂和材科。 2.2.1 二氯甲烷(CH 2Cl 2 ):用全玻璃蒸馏器重蒸馏,在测定化合物检测限内不出现色谱干扰为 合格。 2.2.2 丙酮(C3H6O):同2.2.1。 2.2.3 环已烷:分析纯,同2.2.1。 注:若环已烷的纯度不够,可采用附录中两种办法中的任一种进行净化。 2.2.4 无水硫酸钠(Na 2SO 4 ):分析纯,在400℃加热2h。 2.2.5 硫代硫酸钠(Na 2S 2 O 3 ·5H 2 O):分析纯。 2.2.6 弗罗里硅土(Florisil):60~100目,色层分析用。在400℃加热2h。冷却后,用水(2.1.2)调至含水量为11%(m/m)。 2.2.7 碱性氧化铝;层析用,50~200μm,活度为BrockmannⅠ级。达到Ⅰ级的制法如下: 将氧化铝加热至550±20℃至少2h,冷却至200~250℃,移入放有高氯酸镁的干燥器内,继续冷却,即得活度为BrockmannⅠ级的氧化铝。在干燥器内可存放五天。 2.2.8 柱层析用硅胶:100目,在300℃活化4h。 2.2.9 浓硫酸(H2SO4):分析纯。 2.2.10 标准溶液:

饲料中淀粉的测定(蒽酮比色法)

化验室检测标准 饲料中淀粉的测定(蒽酮比色法)———————————————————————————————————————一、原理 用乙醇溶液去除饲料样品中的可溶性糖,再用高氯酸溶液溶解残留物中的淀粉,使淀粉与其他成分分离,在浓硫酸的作用下,蒽酮与淀粉反应生成蓝绿色的化合物,用分光光度计测定在640 nm 下的吸光度. 二、试剂配制 1.80%乙醇溶液; 2.52%高氯酸溶液; 3.蒽酮试剂(将 0.4 g 蒽酮溶于 100 mL浓硫酸溶液中,现用现配); 4.淀粉标准液(将 200 mg 淀粉倒入 100mL 烧杯中,加入 5 mL 蒸馏水,加入 65 mL52%高氯酸溶液,搅拌全部溶解,转入 100 mL 溶量瓶中,加水定容,浓度 2 mg/mL;取上述标准淀粉溶液10.00 mL 于 250 mL 溶量瓶中,加水定容,此淀粉溶液的浓度为 80 ug/mL. ) 三.标准曲线 在洁净的试管,分别加入 0.0、10.0、20.0、40.0、60.0、80.0 ug 淀粉标准液,每一个浓度2 个重复,加水调整各试管溶液均为 2.00 mL,在冰水中冷却 2 min,加入 6.00 mL 蒽酮-硫酸溶液,摇匀,在冰水中冷却 2 min. 将试管放入沸水中 5 min,各试管显色呈蓝绿色,取出试管,冷却至室温. 用2.00 mL 蒸馏按照上述操作作为空白参比,于 640nm 波长下比色,测定各试管溶液的吸光度. 以吸光度为横坐标,淀粉浓度作为纵坐标,绘制工作曲线,进行曲线拟合,得到吸光度和淀粉浓度之间的回归公式。 四.操作步骤 1.称取 1-2 g 饲料样品于 80 mL 离心管中,可溶性淀粉称取0.5g其中包括 2 个重复,加入 80%乙醇溶液 2 滴使样品湿润。 2.再加入 5 mL 水摇匀,加入 25 mL 热的 80%乙醇溶液, 摇匀后放置 5 min, 以2500 /分钟速度离心 5 min,倾出上清液。 3. 再用 30 mL 80%乙醇溶液提取1次。 4.于上述残留物中加入5 mL水和 30 mL 52%高氯酸溶液,搅拌 10 min,以 2500转/分钟离心 10 min。 5.将上清液转入 100 mL 溶量瓶中,残留物再用 35 mL 52%高氯酸溶液提取,合并提取液,以水定容。 6. 过滤,弃去最初5 mL滤液,吸取4.00 mL滤液于100mL溶量瓶中,加水定容. 取上述淀粉提取液 2.00 mL,测定沸水浴显色后溶液的吸光度. 五.计算公式 淀粉(%)=G/(8M). 式中:G 为由饲料样品提取液测定的吸光度,由工作曲线回归公式计算出来的淀粉毫克数;M 为饲料样品的质量; 最后换算成每克饲料干物质中淀粉的含量。对于淀粉含量高,而且粗纤维含量低的谷物籽实饲料,推荐使用高氯酸水解-蒽酮比色法,其测定结果差较小,而作步骤快捷简便;对于粗纤维含量高的粗饲料,建议用酶水解法测定,但由于操作步骤繁琐,应尽量减少操作本身造成的实验误差,而且应该选用纯度高、活性强的酶制剂。

丙酮酸的测定方法

丙酮酸的测定方法内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

实验七丙酮酸含量的测定 一、实验目的 掌握植物组织中丙酮酸含量测定的原理和方法。 二、实验原理 植物样品中的组织液,用三氯乙酸去蛋白质后,其中所含的丙酮酸可与2,4—二硝基苯肼作用,生成丙酮酸—2,4—二硝基苯腙,后者在碱性溶液中呈樱红色,其颜色可用分光光度计测量,与已知丙酮酸标准曲线进行比较,即可求得样品中丙酮酸的含量。 三、实验器材与试剂 1、.实验器材 分光光度计;研钵;具塞刻度试管:20mL×8;容量瓶:100mL×2;移液管: 1mL×15mL×4; 量筒:10mL×1;离心机;天平; 大蒜、大葱或洋葱 2、试剂 (1)8%三氯乙酸(当日配制置冰箱中备用)

(2)1.5mol/L氢氧化钠 (3)0.1%2,4—二硝基苯肼:称取2.4—二硝基苯肼100mL,溶于2mol/LHCl中配成100mL溶液,盛入棕色试剂瓶,保存于冰箱内。 (4)丙酮酸钠 四、实验操作步骤 1.丙酮酸标准曲线的制作: 称取丙酮酸钠7.5mg于烧杯中,用8%三氯乙酸溶解,转入100mL容量瓶中,并用8%三氯乙酸定容,此液为60μg/mL的丙酮酸原液。 取6支试管,按下表数据配制不同浓度的丙酮酸标准液: 1.5mol/L的氢氧化钠溶液,摇匀显色,在520nm波长下比色。做标准曲线。 2.植物样品组织液的提取: 称取植物样品(大蒜、大葱或洋葱)5g,于研钵中加入少许石英沙及少量8%三氯乙酸,仔细研成匀浆,再用8%三氯乙酸洗入100mL容量瓶中(沙留在研钵内),

定容至刻度。静置30min,取10mL匀浆液离心(4000r/min)10min,取上清液备用。 3.组织液中丙酮酸的测定1.5mol/L氢氧化钠溶液,摇匀显色。在520nm波长下比色,记录吸光度,在标准曲线上查得丙酮酸的含量。 五、结果处理 式中:A—标准曲线中查得的丙酮酸克数。 六、思考题:测定丙酮酸含量的基本原理是什么?

非结构性碳水化合物的测定方法

水稻糖花比的测定方法 一.茎鞘非结构性碳水化合物(NSC)测定参考酶解方法。 准确称取0.5g左右的粉碎样品,加入20mL水,煮沸,使淀粉糊化后, 再添加上淀粉酶专用磷酸缓冲液(KH2PO4,12.08g/L, Na2HPO4·12H2O,7.96g/L, NaNO3,0.1g/L)20mL,加入耐热性ɑ-淀粉酶(和光公司生产)1.5mg和淀粉转葡萄糖苷酶 AMYLO-GLUCOSIDASE(SIGMA公司制造)0.5mg制备成的悬浮液。40℃水浴24h振荡培养后,再行过滤。残留物与样本的重量差即为非结构性碳水化合物。 二.茎鞘非结构性碳水化合物(NSC)采用蒽酮比色法测定。 1.可溶性糖总量的测定 称取O.1g水稻干样于150mL三角瓶中,加20mL80%乙醇,用带有长玻璃管的橡皮塞塞紧,80℃水浴浸提30min(每隔lOmin摇动一次),取出冷却,将清液过滤至150mL三角瓶中,残渣再用80%乙醇提取两次(每次lOmL、15min),再将清液滤至三角瓶中,向三角瓶中加0.25g活性炭80℃水浴脱色30min,冷却过滤至50mL容量瓶中用80%乙醇定容,取2mL提取液于25mL容量瓶中加0.5mL蒽酮试剂和5mL浓硫酸,摇匀,沸水浴中逐管保温lmin后620nm处比色。将残渣及滤纸于80℃烘干,以备测定淀粉。 2.淀粉含量的测定 将提取可溶性糖以后的干燥残渣及滤纸剪碎放入150mL三角瓶中,加20mL热蒸馏水,沸水浴中煮沸15min,加9.2mol/L高氯酸2ml提取

15min,冷却过滤至50mL容量瓶中,用I2-KI溶液检验,如有蓝色颗粒重复提取,过滤定容,取滤液2mL,加0.5mL蒽酮试剂和5mL浓硫酸,盖上塞子微微摇动,出现絮状物时剧烈摇动,然后立即放入沸水浴中确保逐管加热lmin,自然冷却至室温620nm比色,以空白提取液为对照。 糖花比=抽穗期茎鞘中非结构性碳水化合物(包括可溶性糖和淀粉)mg/颖花数,表示灌浆始期每朵颖花具有的物质积累。

饱和蒸气压的测量实验报告

饱和蒸气压的测量 09111601班1120162086 原野 一、实验目的。 测量水在不同温度下的饱和蒸气压,并求出所测温度范围内的水的平均摩尔气化焓。 二、实验原理。 饱和蒸气压:在真空容器中,液体与其蒸气建立动态平衡时(蒸气分子向液面凝结和液体分子从表面逃逸的速率相等)液面上的蒸气压力为饱和蒸气压。温度升高,分子运动加剧,单位时间内从液面逸出的分子数增多,所以蒸气压增大。饱和蒸气压与温度的关系服从克劳休斯克拉贝农方程。液体蒸发时要吸收热量,温度T下,1mol液体蒸发所吸收的热量为该物质的摩尔气化焓。沸点:蒸气压等于外压的温度。显然液体沸点随外压而变,101.325kPa下液体的沸点称正常沸点。对包括气相的纯物质两相平衡系统,因Vm(g)?Vm(l),故△Vm≈Vm(g)。若气体视理想气体,则克劳休斯-克拉贝农方程式为: d[ln(p/Pa)]/dT=ΔvapH*m/RT^2。 因温度范围小时,ΔvapH*m可以近似作为常数,将上式积分得: ln(p/Pa)=ΔvapH*m/RT+C。 作图,得一直线,斜率为ΔvapH*m/R由斜率可求算液体的ΔvapH*m。 本实验采用升温差压法测量。平衡管如图B,待测物质置于球管A 内,U型管中夜放置被测物质,将平衡管和抽气系统、压力计连接,在一定温度

下,当U形管中的液面在同一水平时,记下此时的温度和压力,则压力计示值就是该液体的饱和蒸汽压和大气压的差值。 三、实验步骤: 1、从气压计读取大气压,并记录。 2、装样:从加样口加无水乙醇,并在U型管内装入一定体积的无水乙醇。打开数字压力计电源开关,预热5 min。使饱和蒸汽压测定教学试验仪通大气,按下“清零”键。 3、检查系统是否漏气。将进气阀、阀2打开,阀1关闭。抽气减压至压力计显示压差为-80KPa时关闭进气阀和阀2,如压力计示数能在3-5min内维持不变,则系统不漏气。 4、恒温槽温度调至45℃,控制阀门1和阀门3,使bc两管液面相平。 5、当b、c两管的液面到达同一水平面时,立即记录此时的压力,关闭阀门3和阀门1,调高2℃,等待温度到达指定温度,重复测量。注:每次使系统提升2℃,重复上述操作,测至少8组数据。实验结束后,先将系统通大气,然后关闭真空泵。 四、实验数据记录及处理。 见附表。 五、结果分析。 在本次试验结果中,出现较大的气化焓和沸点与实际值的差异,有以下几方面的原因:

大气环境监测方法标准

标准编号标准名称实施日期 HJ 77.2-2008 环境空气和废气二噁英类的测定同位素稀释高分辨气相色谱-高分辨质谱 法 2009-4-1 国家环保总局公告 2007年第4号 环境空气质量监测规范(试行)2007-1-19 HJ/T 75—2007 固定污染源烟气排放连续监测技术规范(试行)2007-8-1 HJ/T 76—2007 固定污染源烟气排放连续监测系统技术要求及检测方法(试行)2007-8-1 HJ/T 373-2007 固定污染源监测质量保证与质量控制技术规范(试行)2008-1-1 HJ/T 397-2007 固定源废气监测技术规范2008-3-1 HJ/T 398-2007 固定污染源排放烟气黑度的测定林格曼烟气黑度图法2008-3-1 HJ/T 400-2007 车内挥发性有机物和醛酮类物质采样测定方法2008-3-1 HJ/T 174-2005 降雨自动采样器技术要求及检测方法2005-5-8 HJ/T 175-2005 降雨自动监测仪技术要求及检测方法2005-5-8 HJ/T 193-2005 环境空气质量自动监测技术规范2006-1-1 HJ/T 194-2005 环境空气质量手工监测技术规范2006-1-1 HJ/T 165-2004 酸沉降监测技术规范2004-12-9 HJ/T 167-2004 室内环境空气质量监测技术规范2004-12-9 HJ/T 93-2003 PM10采样器技术要求及检测方法2003-7-1 HJ/T 62-2001 饮食业油烟净化设备技术方法及检测技术规范(试行)2001-8-1 HJ/T 63.1-2001 大气固定污染源镍的测定火焰原子吸收分光光度法2001-11-1 HJ/T 63.2-2001 大气固定污染源镍的测定石墨炉原子吸收分光光度法2001-11-1 HJ/T 63.3-2001 大气固定污染源镍的测定丁二酮肟-正丁醇萃取分光光度法2001-11-1 HJ/T 64.1-2001 大气固定污染源镉的测定火焰原子吸收分光光度法2001-11-1 HJ/T 64.2-2001 大气固定污染源镉的测定石墨炉原子吸收分光光度法2001-11-1 HJ/T 64.3-2001 大气固定污染源镉的测定对-偶氮苯重氮氨基偶氮苯磺酸分光光度法2001-11-1 HJ/T 65-2001 大气固定污染源锡的测定石墨炉原子吸收分光光度法2001-11-1 HJ/T 66-2001 大气固定污染源氯苯类化合物的测定气相色谱法2001-11-1 HJ/T 67-2001 大气固定污染源氟化物的测定离子选择电极法2001-11-1 HJ/T 68-2001 大气固定污染源苯胺类的测定气相色谱法2001-11-1 HJ/T 69-2001 燃煤锅炉烟尘和二氧化硫排放总量核定技术方法—物料衡算法(试行)2001-11-1 HJ/T 77-2001 多氯代二苯并二恶英和多氯代二苯并呋喃的测定同位素稀释高分辨率毛细 管气相色谱/高分辨质谱法 2002-1-1 HJ/T 54-2000 车用压燃式发动机排气污染物测量方法2000-9-1 HJ/T 55-2000 大气污染物无组织排放监测技术导则2001-3-1 HJ/T 56-2000 固定污染源排气中二氧化硫的测定碘量法2001-3-1 HJ/T 57-2000 固定污染源排气中二氧化硫的测定定电位电解法2001-3-1 GB/T 12301-1999 船舱内非危险货物产生有害气体的检测方法2000-8-1 HJ/T 27-1999 固定污染源排气中氯化氢的测定硫氰酸汞分光光度法2000-1-1 HJ/T 28-1999 固定污染源排气中氰化氢的测定异烟酸-吡唑啉酮分光光度法2000-1-1 HJ/T 29-1999 固定污染源排气中铬酸雾的测定二苯基碳酰二肼分光光度法2000-1-1 HJ/T 30-1999 固定污染源排气中氯气的测定甲基橙分光光度法2000-1-1 HJ/T 31-1999 固定污染源排气中光气的测定苯胺紫外分光光度法2000-1-1 HJ/T 32-1999 固定污染源排气中酚类化合物的测定 4-氨基安替比林分光光度法2000-1-1

蒽酮比色法测定植物组织中总糖和可溶和性糖的含量

实验九蒽酮比色法测定植物组织中总糖和可溶和性糖的含量 一、实验目的 掌握蒽酮法测定总糖和可溶性糖含量的原理和方法 二、实验原理 蒽酮比色法是一个快速而简便的定糖方法。酸可使糖类(如已糖基,戊醛糖及已糖醛酸)脱水生成糠醛,生成的糠醛或烃甲基糖醛与蒽酮脱水缩合,形成糠醛的衍生物,呈蓝绿色,该物质在620nm处有最大光吸收值。在10~100ug范围内其他颜色的深浅与可溶性糖含量成正比。蒽酮也可以和其他一些糖类发生反应,但显现的颜色不同。当存在含有较多色氨酸蛋白质时,反应不稳定,呈现红色。而对于上述特定的糖类物质,反映较稳定。多糖和寡糖可用酸水解成单塘和蒽酮试剂反应,因此利用蒽酮法可测组织中总糖和可溶性糖。这一种方法具有很高的灵敏度,糖含量在30ug左右时就能侧进行测定,所以可作为微量测糖之用。一般样品少的情况下,采用这一方法比较合适。 三、仪器,试剂和材料 1、仪器 (1)分光光度计; (6)漏斗,漏斗架个6个 (2)电子天平;(7)容量瓶:50ml2个; (3)三角瓶:50ml2个(8)移液管; (4)刻度具塞试管;10ml13支;(9)水浴锅。 (5)试管架,试管夹各2个; 2、试剂 (1)葡萄糖标准液:100ug/ml;(2)浓硫酸; (2)蒽酮试剂:0.2g蒽酮,溶于100ml浓流酸中,现当日配制使用。 3、材料 小麦幼苗分蕖节或其植物的幼嫩组织(红薯)。 四、操作步骤 1、葡萄糖标准曲线的制作 取7支试管,按下表配制一系列不同浓度的葡萄糖溶液; 管号 1 2 3 4 5 6 7 葡萄糖标准液/mL 0 0.1 0.2 0.3 0.4 0.5 0.6 蒸馏水/mL 1.0 0.9 0.8 0.7 0.6 0.7 0.8 葡萄糖含量/ug 0 10 20 30 40 50 60 在每支试管中,加入蒽酮试剂4.0ml,迅速浸入冰水浴中冷却。各加完后一起浸入沸水浴中,管口加盖玻璃球,以防蒸发。自水浴重新煮沸起,准确煮沸10min取出,用流水冷却,室温放置10min,在620nm波长下比色。以标准葡萄糖含量(ug)做横坐标,以吸光值作纵坐标,做出标准曲线。 2、植物样品中可溶性糖的提取

煤中汞地测定方法

煤中汞的分析测定方法 汞是一种具有严重生理毒性的全球性污染物。汞一旦释放进入生态环境(尤其是水生与湿地生态环境),无机汞可以被转化为毒性更强的甲基汞,甲基汞的脂溶性和较长的半衰期使其在鱼和其它水生生物体内具有极高的生物富集系数(104以上),并通过食物链富集起来,进而置野生生物和人类于甲基汞暴露风险之中[1]。工业革命以来,由于人为释汞源使大气中汞是工业革命前的3倍,而最大的人为释汞源即为煤燃烧,每年向大气释放约810吨汞[2],超过所有人为释汞源排汞的三分之二[3]。准确分析测定煤中汞的含量是估算我国煤燃烧释汞量的基础。 我国目前分析测定煤中汞的方法是于2009年5月1日实施的GB/T 16659-2008。但笔者认为该方法由于在煤样消解过程中使用大量的V2O5为催化剂消解煤样[4],但国内生产的V2O5含汞空白一般较高(??),有的甚至是煤实际含汞量的30-50%(?),因此严重影响了煤样中汞的分析测定。因此有必要建立更为可靠的分析测定方法。 本文通过对比GB/T 16659-2008的V2O5催化消解煤样原子荧光分析法,王水常温消解煤样原子荧光分析法及煤样直接热解原子吸收分析法分析测定了煤标样及一些煤样,得出较好的结果。 1.材料及仪器 2.样品消解及分析方法 3.结果与讨论 4.结论 实验部分 1 冷原子荧光分光光度法 1.1分析仪器与试剂

1.1.1 分析仪器:金丝捕汞管,冷原子荧光分光光度计,分析天平:感量0.1mg,汞蒸气发生瓶(50ml),振荡器 1.1.2 试剂:优级纯浓硝酸;优级纯浓盐酸;12% 盐酸羟胺溶液; 10% SnCl2溶液 BrCl 溶液: 11. 0 g 分析纯KBrO3 和15.0 g 分析纯KBr 溶于200 mL 蒸馏去离子水中, 轻轻搅拌溶液, 同时缓慢加入700 mL 优级纯浓HCl。整个操作应在通风橱内进行。冷却后, 装入棕色瓶中, 放置阴凉处保存。 王水:按浓盐酸:浓硝酸=3:1,配制。加入硝酸时,缓慢搅拌溶液。整个操作应在通风橱内进行。静置1-2小时后,放置阴凉处保存。 1.2除汞方法 将新配好的氯化亚锡溶液置于还原瓶中, 以0. 5 L/ min 的速度通入不含汞的氮气12 h, 装瓶备用。 1.3化学试剂及器皿的汞空白 汞空白值0.05 0.04 1.4 煤样消解 称取粒度小于0.2mm的空气干燥煤样约1g,称准到0.0002g,于50ml离心管中。加入事先配制好的王水10ml,摇匀,静置24h。第二天将加有试剂的离心管放入振荡器内,拧紧离心管盖子,转速调到220-240转/分,两小时后关闭振荡器,取下离心管。加入1ml BrCl,摇匀,用去离子水定容到50ml。 1.5溶液过滤 在铁架台上用漏斗和中速滤纸,过滤离心管中溶液。滤过后溶液用新离心管盛放。 1.6样品测定 冷原子荧光光度计设备开机,运行20分钟,测噪声。低于40分贝时开始吹扫金管中富集

实验室气相色谱法测定丙酮中的杂质

气相色谱法测定丙酮中的杂质 1.范围 本方法是用气相色谱仪来测定原料中的丙酮或双酚-A生产中回收的丙酮所含的杂质的量的 2.方法概述 丙酮中杂质的量是用气相色谱仪来测定的,这种色谱仪装配了火焰离子检测器并使用内部标准,杂质的量是由各自的峰面积与内部标准物质的峰面积的比确定的。 3.仪器 3.1 气相色谱仪,有色谱工作站 检测器:FID 作载气 最小检测能力 : <5pg Carbon/sec,以N 2 线性动力范围 : >106 3.2 色谱柱:石英玻璃毛细管 60m(长)×0.25mm(内径)×0.25μm(膜厚) 固定液:聚乙烯乙二醇 极性:有极性的 最高温度:220℃ 3.3 微量注射器:10μL 3.4 容量瓶 : 100mL 3.5 螺纹口瓶:100mL 3.6 分析天平:能称重到0.1mg 3.7 聚乙烯管:1mL,任意 4.试剂 4.1 异丙基苯:分析纯 4.2 甲醇:分析纯 4.3 异丙醇:分析纯 4.4 苯:分析纯 4.5 双丙酮醇:分析纯 4.6 甲苯:分析纯 4.7 2-异丙基乙醚:分析纯 4.8 乙醛:分析纯

4.9 异亚丙基丙酮:分析纯 4.10 乙苯:分析纯 4.11 乙腈:色谱纯 4.12 氮气:超过99.99% 4.13 氢气:超过99.99% 4.14 空气:干燥、过滤>6Kg/Cm2 5.仪器参数 5.1 色谱柱温度:在50℃保持4分钟后以8℃/分钟的速度升高温度到200℃5.2 进样温度:150℃ 5.3 检测器温度:250℃(FID) 5.4 载气:氮气,1.3mL/min 5.5 分流比:1/50 5.6 进样量:1-3μL 6.内标物校正因子的测定 6.1下列试剂100mL放入螺纹口瓶中,称每种化合物的加入量精确到0.1mg 试剂重量mg 异丙苯50(大约.1000ppm) 甲苯50(大约.1000ppm) 2-异丙基乙醚100(大约.1000ppm) 甲醇100(大约.1000ppm) 异丙醇100(大约.1000ppm) 苯50(大约.1000ppm) 二丙酮醇100(大约.1000ppm) 乙醛100(大约.1000ppm) 异亚丙基丙酮100(大约.1000ppm) 乙苯50(大约.1000ppm) 二甲基缩醛丙酮100(大约.1000ppm) 6.2 加入50mg乙腈到混合物中,称其重量精确到0.1mg并混合均匀 6.3 将混合物用气相色谱仪分析,按第5部分规定的操作 6.4 用以下方程计算每个组分对异丙苯的校正因子 Fi=(Ac×Wi)/(Ai×Wc)

液体饱和蒸气压的测定

实验报告不能打印,应该手写。装置图也要画,实验数据的验算(公式)要详细哦! 实验一 液体饱与蒸气压的测定 一、目的要求 1、明确饱与蒸气压的定义,了解纯液体的饱与蒸气压与温度的关系、克劳修斯-克拉贝龙方程式的意义。 2、掌握静态法测定液体饱与蒸气压的原理及操作方法。 3、了解真空泵、恒温槽及气压计的使用及注意事项。 4、学会由图解法求液体的平均摩尔气化热与正常沸点。 二、预习与思考 1.预习基础知识与技巧部分的热效应测量技术及仪器、温度控制技术与压力测量技术及仪器; 2.思考: (1)汽化热与温度有无关系?克—克方程在什么条件下才能应用? (2)实验中测定哪些数据?精确度如何?有几位有效数字?作图就是怎样选取坐标分度? (3)用此装置可以很方便地研究各种液体,如苯、乙醇、异丙醇、正丙醇、丙酮、四氯化碳、水与二氯乙烯等,这些液体中很多就是易燃的,在加热时应该注意什么问题? 三、实验原理 通常温度下(距离临界温度较远时),密闭真空容器中的纯液体与其蒸气达平衡时的蒸气压称为该温度下液体的饱与蒸气压,简称为蒸气压。恒压条件下蒸发1mol 液体所吸收的热量称为该温度下液体的摩尔气化热。液体的蒸气压随温度而变化,温度升高时,蒸气压增大;温度降低时,蒸气压降低,这主要与分子的动能有关。当蒸气压等于外界压力时,液体便沸腾,此时的温度称为沸点,外压不同时,液体沸点将相应改变,当外压为101、325kPa 时,液体的沸点称为该液体的正常沸点。 液体的饱与蒸气压与温度的关系用克劳修斯-克拉贝龙方程式表示: 式中,R 为摩尔气体常 数;T 为热力学温度;Δvap H m 为在温度T 时纯液体的摩尔气化热。 (1) ln 2 RT H dT p d m vap ?=

大气中汞的测定

环境空气汞的测定巯基棉富集-冷原子荧光分光光度法1.适用范围 本标准规定了测定环境空气中汞及其化合物的巯基棉富集-冷原子荧光分光光度法。 本标准适用于环境空气中汞及其化合物的测定。 本标准方法检出限为0.1ng/10ml试样溶液。当采样体积为15 L时,检出限为6.6×10-6mg/m3,测定下限为2.6×10-5mg/m3。 2规范性引用文件 本标准内容引用了下列文件中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。 HJ/T 194 环境空气质量手工监测技术规范 GB/T 6682 分析实验室用水规格和试验方法 3方法原理 在微酸性介质中,用巯基棉富集环境空气中的汞及其化合物。无机汞反应式如下: 有机汞反应式如下: 元素汞通过巯基棉采样管时,主要为物理吸附及单分子层的化学吸附。 采样后,用4.0 mol/L盐酸-氯化钠饱和溶液解吸总汞,经氯化亚锡还原为金属汞,用冷原子荧光测汞仪测定总汞含量。 4试剂和材料 除非另有说明,分析时均使用符合国家标准的分析纯试剂。水,GB/T 6682,二级。4.1 高纯氮气:?=99.999%。 4.2 重铬酸钾(K2Cr2O7):优级纯。 4.3 硫酸:ρ (H2SO4)=1.84 g/ml,优级纯。 4.4 盐酸:ρ (HCl)=1.19 g/ml,优级纯。 4.5 硝酸:ρ (HNO3)=1.42 g/ml,优级纯。 4.6 重铬酸钾溶液:w(K2Cr2O7)=1.0%。 称取1.0 g的重铬酸钾(4.2),溶于水,稀释到100 ml。 4.7 硫酸溶液:(H2SO4)=10%。 量取10 ml的浓硫酸(4.3),缓慢加入90 ml水中。 4.8盐酸溶液:c(HCl)=4.0 mol/L。 量取123 ml盐酸(4.4),用水稀释至1 000 ml,混匀。 4.9 盐酸溶液:c(HCl)=2.0 mol/L。 量取12 ml盐酸(4.4),用水稀释至1 000 ml,混匀。 4.10 盐酸溶液:pH=3。 吸取2.0 mol/L 盐酸(4.9)0.50 ml,用水稀释至1 000 ml,混匀。

甲醛的测定__乙酰丙酮分光光度法[1]

空气甲醛的测定乙酰丙酮分光光度法 1 适用范围:工业废气、环境空气和室内空气中甲醛的测定。 2 原理 甲醛气体经水吸收后,在pH=6的乙酸-乙酸铵缓冲溶液中,与乙酰丙酮作用,在沸水浴条件下,迅速生成稳定的黄色化合物,在波长413nm处测定。 3 最低检出浓度 本方法的检出限为0.25μg,在采样体积为30L时,最低检出浓度为0.008 mg/m3。 4 试剂 除非另有说明,分析时均使用符合国家标准的分析纯试剂和按(4.1)条制备的水。 4.1 不含有机物的蒸馏水:加少量高锰酸钾的碱性溶液于水中再行蒸馏即得(在整个蒸馏过程中水应始终保持红色,否则应随时补加高锰酸钾)。 4.2 吸收液:不含有机物的重蒸馏水。 4.3 乙酸铵(NH4CH3COO)。 4.4 冰乙酸(CH3COOH):ρ=1.055。 4.5 乙酰丙酮溶液,0.25%(V/V):称25g乙酸铵,加少量水溶解,加3mL冰乙酸及0.25mL新蒸馏的乙酰丙酮,混匀再加水至100mL,调整pH=6.0,此溶液于2℃~5 ℃贮存,可稳定一个月。 4.6 0.1000mol/L碘溶液:称量40g碘化钾,溶于25mL水中,加入12.7g碘。待碘完全溶解后,用水定容至1000mL。移入棕色瓶中,暗处贮存。 4.7 氢氧化钠(NaOH)。 4.8 1mol/L氢氧化钠溶液:称量40g氢氧化钠,溶于水中,并稀释至1000mL。 4.9 0.5mol/L硫酸溶液:取28mL浓硫酸(ρ=1.84g/mL)缓慢加入水中,冷却后,稀释至1000mL。 4.10 1+5硫酸:取40mL浓硫酸(ρ=1.84g/mL)缓慢加入200 mL水中,冷却后待用。 4.11 0.5%淀粉指示剂:将0.5g可溶性淀粉,用少量水调成糊状后,再加入100mL沸水,并煮沸2~3 min至溶液透明。冷却后,加入0.1g水杨酸或0.4g氯化锌保存。 4.12 重铬酸钾标准溶液:C(1/6K2Cr2O7)=0.1000mol/L 准确称取在110~130℃烘2h,并冷至室温的重铬酸钾2.4516g,用水溶解后移入500mL容量瓶中,用水稀释至标线,摇匀。 4.13 硫代硫酸钠标准滴定溶液:c(Na2S2O3·5H2O)≈0.10mol/L。 称取12.5g硫代硫酸钠溶于煮沸并放冷的水中,稀释至1000mL。加入0.4g氢氧化钠,贮于棕色瓶内,使用前用重铬酸钾标准溶液标定,其标定方法如下: 于250mL碘量瓶内,加入约1g碘化钾及50mL水,加入20.0mL重铬酸钾标准溶液(4.12),加入5mL硫酸溶液(4.10),混匀,于暗处放置5min。用硫代硫酸钠溶液滴定,待滴定至溶液呈淡黄色时,加入1mL淀粉指示剂(4.11),继续滴定至蓝色刚好退去,记下用量(V1)。 硫代硫酸钠标准滴定溶液浓度(mol/L),由式(1)计算: 式中:C1——硫代硫酸钠标准滴定溶液浓度,mol/L; C2——重铬酸钾标准溶液浓度,mol/L; V1——滴定时消耗硫代硫酸钠溶液体积,mL; V2——取用重铬酸钾标准溶液体积,mL。

纯液体饱和蒸汽压的测定

纯液体饱和蒸气压的测定 一、实验目的 1.用平衡管测定不同温度下液体的饱和蒸气压。 2.了解纯液体的饱和蒸气压与温度的关系,即克劳修斯-克拉贝龙方程式的意义,并学会用由图解法求其平均摩尔气化热和正常沸点。 3.掌握用静态法测定液体饱和蒸气压的操作方法,了解真空泵、恒温槽气压计的使用。 二、实验原理 本实验采用的静态法,是指在某一温度下,直接测量饱和蒸气压。平衡管A球和U型管B、C组成。平衡管上接一冷凝管,以橡皮管与压力计相连。A内装待测液体,当A球的液面上纯粹是待测液体的蒸气,而B管与C管的液面处于同一水平时,则表示B管液面上的(即A球液面上的蒸气压)与加在C管液面上的外压相等。此时体系气液两相平衡,该温度称为液体在此外压下的沸点。用当时的大气压减去数字压力计的读数(压差△P),即为该温度下液体的饱和蒸气压。液体的饱和蒸气压与温度的关系用克劳修斯-克拉贝龙方程式表示: dlnp∕dT=△H∕RT2 式中R为摩尔气体常数;T为热力学温度,△H为在温度T时纯液体的摩尔气化热。假定△H与温度无关,可近似为常数。 积分上式得:dlnp=-△H∕RT+C

式中C为积分常数,,由此式可以看出,lnp对 1∕T作图应为一直线,直线的斜率为-△H∕R,由斜率可求算液体的△H。 三、仪器和试剂 纯液体饱和蒸气压测定装置一套;真空泵一台;数字压力计一台;数字温度计;乙醇 四、实验步骤 装置仪器 将待测液体装入平衡管,A球约2/3体积,B和C球各1/2体积,如下图。 排除A、B弯管空间内的空气 将恒温槽温度调至45错误!未找到引用源。,接通冷凝水,抽气减压至液体轻微沸腾观察温度槽上的实际温度与设定温度接近且稳定时,此时AB弯管内的空气不断随蒸气经C管溢出,可认为空气被排除。 饱和蒸气压的测定:当空气被排除干净,且体系温度恒定后,旋

中华人民共和国国家标准环境空气质量标准

中华人民共和国国家标准环境空气质量标准 添加时间:[2004-05-27]创建人:管理员 GB 3095-1996 (代替GB 3095-82) 国家环境保护局1996-01-18批准1996-10-01实施 前言 根据《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,为改善环境空气质量,防止生态破坏,创造清洁适宜的环境,保护人体健康,特制订本标准。 本标准从1996年10月1日起实施,同时代替GB3095-82。 本标准在下列内容和章节有改变: -标准名称; -3.1-3.14(增加了14种术语的定义); -4.1-4.2(调整了分区和分级的有关内容); -5.(补充和调整了污染物项目、取值时间和浓度限值); -7.(增加了数据统计的有效性规定)。 本标准由国家环境保护局科技标准司提出。 本标准由国家环境保护局负责解释。 1 主题内容与适用范围 本标准规定了环境空气质量功能区划分、标准分级、污染物项目、取值时间及浓度限值,采样与分析方法及数据统计的有效性规定。 本标准适用于全国范围的环境空气质量评价。 2 引用标准 GB/T 15262空气质量二氧化硫的测定──甲醛吸收副玫瑰苯胺分光光度法 GB 8970空气质量二氧化硫的测定──四氯汞盐副玫瑰苯胺分光光度法

GB/T 15432环境空气总悬浮颗粒物测定──重量法 GB 6921空气质量大气飘尘浓度测定方法 GB/T 15436环境空气氮氧化物的测定──Saltzman法 GB/T 15435环境空气二氧化氮的测定──Saltzman法 GB/T 15437环境空气臭氧的测定──靛蓝二磺酸钠分光光度法 GB/T 15438环境空气臭氧的测定──紫外光度法 GB 9801空气质量一氧化碳的测定──非分散红外法 GB 8971空气质量苯并[a]芘的测定──乙酰化滤纸层析荧光分光光度法 GB/T 15439环境空气苯并[a]芘的测定──高效液相色谱法 GB/T 15264空气质量铅的测定──火焰原子吸收分光光度法 GB/T 15434环境空气氟化物的测定──滤膜氟离子选择电极法 GB/T 15433环境空气氰化物的测定──石灰滤纸氟离子选择电极法 3、定义 1.总悬浮颗粒物(Total Suspended Particicular,TSP):指能悬浮在空气中,空气动力学当量直径≤100微米的颗粒物。 2.可吸入颗粒物(Particular matter less than 10 μm,PM10):指悬浮在空气中,空气动力学当量直径≤10微米的颗粒物。 3.氮氧化物(以NO2计):指空气中主要以一氧化氮和二氧化氮形式存在的氮的氧化物。

总糖的测定-蒽酮比色法教学提纲

总糖的测定-蒽酮比色 法

植物组织中总糖和还原糖含量的测定(蒽酮比色法)2010-5-24 一、实验目的 掌握蒽酮比色法测定总糖和还原糖含量的原理和方法,学会正确使用分光光度计。 二、实验原理 游离的己糖或多糖中的己糖基、戊糠醛及己糖醛酸在浓硫酸的作用下脱水生成糠醛衍生物,糠醛衍生物与蒽酮缩合成蓝色的化合物,在620nm处有最大吸收,在一定糖浓度范围内(200ug/ml),溶液吸光度值与糖溶液的浓度成线性关系。用酸将植物组织中没有还原性的多糖和寡糖彻底水解成具有还原性的单糖,或直接提取植物组织中的还原糖,即可对植物组织中的总糖和还原糖进行定量测定。 三、实验材料 1.可见分光光度计、电子天平(1/100)、粉碎机、水浴锅、电炉。 2.研钵、量筒、三角烧瓶、烧杯、容量瓶、玻璃漏斗、试管1.5cm×15cm、刻度吸管、胶头滴管、pH试纸、坐标纸。 3.植物原料,如银耳、木耳、菜叶等。 四、实验试剂 1.蒽酮试剂:取2g蒽酮溶于l000ml体积分数为80%的硫酸中,当日配制使用。 2.标准葡萄糖溶液(0.1mg/m1):称取100mg葡萄糖,溶于蒸馏水并稀释至1 000ml(可滴加几滴甲苯作防腐剂)。 3.6mol/L HCl溶液:50ml盐酸,加水至100ml。 4.10%NaOH溶液:称取10g NaOH固体,溶于蒸馏水并稀释至100ml。 五、操作步骤 1.葡萄糖标准曲线的绘制 取干净试管6支,按下表进行操作。以吸光度为纵坐标,各标准液浓度(mg/m1)为横坐标做图。 2.样品中还原糖的提取和测定 称取植物原料干粉0.1~0.5g,加水约3ml,在研钵中磨成匀浆,转入三角烧瓶中,并用约30ml的蒸馏水冲洗研钵2~3次,洗出液也转入三角烧瓶中。于50℃水浴中保温半小时(使还原糖浸出),取出,冷却后定容至100ml。过滤,取lml滤液进行还原糖的测定:吸取lml总糖类溶液置试管中,浸于冰浴中冷却,再加入4ml蒽酮试剂,沸水浴中准确加热10min,取出用自来水冷却后比色,其他条件与做标准曲线相同,测得的吸光度值由标准曲线查算出样品液的糖含量。(样品液显色后若颜色很深,其吸光度超过标准曲线浓度范围,则应将样品提取液适当稀释后再加蒽酮显色测定)。

相关文档
相关文档 最新文档