文档库 最新最全的文档下载
当前位置:文档库 › 窑炉课程设计

窑炉课程设计

窑炉课程设计
窑炉课程设计

景德镇陶瓷学院

《窑炉课程设计》说明书

题目:年产650万件汤盘液化气隧道窑设计

学号:200910210226

姓名:邹发华

院(系):材料科学与工程学院

专业:09无非二班

指导教师:孙健、陆琳、胡耀江、朱庆霞

二○一二年十月十四日

目录

1 前言 (1)

2 设计任务书 (3)

3 窑体主要尺寸的确定 (4)

3.1 窑内宽的确定 (4)

3.2 窑体长度的确定 (5)

3.3 窑内高的确定 (5)

4 烧成制度的确定(主要指温度制度) (6)

5 工作系统的确定 (7)

5.1 预热带系统 (7)

5.2 烧成带系统 (7)

5.3 冷却带系统 (8)

5.4 传动系统 (8)

5.5 窑体附属结构 (8)

5.5.1 事故处理孔 (8)

5.5.2 测温测压孔及观察孔 (8)

5.5.3 膨胀缝 (8)

6 燃料燃烧计算 (8)

6.1 空气量 (8)

6.2 烟气量 (9)

6.3 燃烧温度 (9)

7 窑体材料及厚度的确定:列表表示全窑所用材料及厚度 (10)

8. 物料平衡计算 (11)

9 热平衡计算 (12)

9.1 预热带及烧成带热平衡计算 (12)

9.1.1 热平衡计算基准及范围 (12)

9.1.2 热平衡框图 (13)

9.1.3 热收入项目 (13)

9.1.4 热支出项目 (15)

9.1.5 列出热平衡方程式 (17)

9.1.6 列出预热带烧成带热平衡表 (17)

9.2 冷却带热平衡 (18)

9.2.1 热收入项目 (18)

9.2.2 热平衡框图 (18)

9.2.3 热支出项目 (19)

9.2.4 列热平衡方程式 (19)

9.2.5 列出预冷却带热平衡表 (20)

9 烧嘴的选用 (21)

10.1 每个烧嘴所需的燃烧能力 (21)

10.2 每个烧嘴所需的油(气)压 (21)

10.3 烧嘴的选用 (21)

11管道尺寸、阻力计算 (22)

12工程材料概算 (28)

13 后记 (29)

13 参考文献 (30)

1.前言

陶瓷工业窑炉是陶瓷工业生产中最重要的工艺设备之一,对陶瓷产品的产量、质量以及成本起着关键性的作用。它把燃料的化学能转变成热能或直接把电能转变成热能,以满足制品焙烧时所需要的温度,在期间完成一系列的物理化学变化,赋予制品各种宝贵的特性。因此,在选择窑炉时,为了满足陶瓷制品的工艺要求,应充分了解窑炉类型及其优缺点,考察一些与已投入生产的陶瓷厂,然后结合本厂实际情况和必要的技术论证,方可定之。判断一个窑炉好坏的标准,通常由以下几个方面来评价:

1.能满足被烧成制品的热工制度要求,能够焙烧出符合质量要求的陶瓷制品。

2.烧窑操作要灵活,方便,适应性强,能够满足市场多变的要求。

3.经济性要高。包括热效率要高,单位产品的综合能源消耗要少,炉龄要长。

4.容易实现机械化,自动化操作,劳动生产率高。

5.劳动条件好,劳动强度小,环境污染小。

以上几点,其中能否满足所烧制品的热工制度要求,是衡量陶瓷窑炉性能好坏的重要技术指标。实际生产中,往往是力求使制品被烧使窑内温差尽量减少,它是提高产品合格率的关键所在。

隧道窑是耐火材料、陶瓷和建筑材料工业中最常见的连续式烧成设备。其主体为一条类似铁路隧道的长通道。通道两侧用耐火材料和保温材料砌成窑墙,上面为由耐火材料和保温材料砌筑的窑顶,下部为由沿窑内轨道移动的窑车构成的窑底。

隧道窑的最大特点是产量高,正常运转时烧成条件稳定,并且在窑外装车,劳动条件好,操作易于实现自动化,机械化.隧道要的另一特点是它逆流传热,能利用烟气来预热坯体,使废气排出的温度只在200°C左右,又能利用产品冷却放热来加热空气使出炉产品的温度仅在80°C左右,且为连续性窑,窑墙,窑顶温度不变,不积热,所以它的耗热很低,特别适合大批量生产陶瓷,耐火材料制品,具有广阔的应用前景.

通过对上学期硅酸盐工业热工基础以及陶瓷工业窑炉的学习,本学期利用

4-6周三周的时间进行窑炉课程设计。本次实践的设计任务是年产650件汤盘液化气隧道窑设计,通过三周的努力设计,我也基本完成了任务。

在本次设计实践过程中,我得到了指导老师的精心指导,这才使我能比较顺利的完成此次设计任务,在此我向指导老师和设计过程中帮助过我的同学表示感谢!

由于本人所学知识有限,加之时间仓促,在设计过程中不可避免存在许多的错误和不足,敬请老师多多指教,恳请斧正!

设计人:邹发华 2012年10月14日

2.设计任务书

无非09级窑炉课程设计任务书

一、设计任务

年产650万件汤盘液化气隧道窑设计 二、原始数据 (一)汤盘

1.汤盘坯料组成(%)

2.产品规格:9英寸,0.4kg/块

3.入窑水分:〈3%

4.产品合格率:95%

5.烧成制度:烧成周期:16小时,最高烧成温度:1320℃(温度曲线自定)

6.窑具:SiC 棚板、SiC 支柱,尺寸自定

(二)燃料

液化气 H 2 CH 4 C 2H 6 C 2H 4 C 3H 8 C 3H 6 C 4H 10 C 4H 8 C 5H 12 C 5H 10

Q net (MJ/Nm 3)

10

6

5

16

15

15

2

8

10

13

110

(三)夏天最高气温:38℃

SiO 2 Al 2O 3 CaO MgO Fe 2O 3 K 2O+Na 2O I.L 69.20

19.96

0.87

0.49

0.88

3.12

5.48

3.窑体主要尺寸的计算

为减少窑内热量损失,提高热利用率,根据原始数据所给的清洁燃料液化气,直接用明焰裸烧,并结合装载制品9英寸汤盘的重量大小,选定全耐火纤维不承重型结构窑车:棚板、支柱均为碳化硅材料,以降低蓄散热损失,考虑到全窑最高烧成温度为13200C,故碳化硅材料选用SiC 50%,体积密度 2.2g/cm3,最高使用温度 14000C,导热系数计算式 5.23-1.28×10-3t)。

棚板规格:长×宽×高: 360×360×10(mm)

棚板质量=310×310×10×10-6×2.2==2.11 Kg

支柱规格:长×宽×高: 50×50×100(mm)

支柱质量=50×50×100×10-6×2.2=0.55Kg

3.1 窑内宽的确定

3.1.1汤盘规格

9英寸,9英寸=22.86cm=228.6mm,400g/每块,胚体高度定为20mm。考虑烧成收缩为9%,则: 坯体直径尺寸=产品尺寸÷(1-烧成收缩)=228.6÷(1-9%)=250(mm),坯体高度尺寸=产品尺寸÷(1-烧成收缩)=21.97(mm)

3.1.2汤盘码放方法

采用窑车上设置棚板并7层码放,每块棚板放置一个汤盘坯体。棚板设置规格为:5×6(其中5表示行数,6表示列数),相邻棚板间距为10mm,最底层四周棚板与垫板相距为15mm,每块棚板采用三个支柱,连线成等腰三角形。上下层棚板间距由支柱高度决定,为100mm。

3.1.3 窑车尺寸确定

车长=310×6+10×5+15×2=1940mm

车宽=310×5+10×4+15×2=1620mm

窑车架高223mm,窑车衬面边缘用四层的轻质砖共4×65+4×2=268mm,在窑车的中部填充硅酸铝纤维折叠棉块上铺1层含锆纤维毡。

窑车总高为:223+268=491mm

3.1.4 窑内宽的确定

隧道窑内宽是指窑内两侧墙间的距离,包括制品有效装载宽度与制品和两边窑墙的间距。窑车与窑墙的间隙尺寸一般为25~30mm,本设计中取用30mm,则热

窑内宽:

B =1620+30×2=1680mm

全窑宽(两侧外墙之间的距离,没有包括钢架):根据窑墙所选的材料材在预热带、冷却带单侧窑墙厚度为405mm ,烧成带单侧窑墙厚度为455mm ,故,预热带、冷却带全窑宽=405×2+1680=2490mm ,烧成带全窑宽=455×2+1680=2590mm 。 3.2窑长的尺寸确定

窑车每层装载制品数为5×6=30件,共7层,故每车装载制品数为30×7=210件,干制品质量400g ,则每车装制品质量为400g ×210=84kg ,装窑密度g=每车装载件数/车长=210/1.94m=108.24件/m

=????=??=

94

.121095.016

3302410650244g K Dy G L τ127.69m G —生产任务,件/年; L —窑长,m ;

τ—烧成时间,h ; K —成品率,%;

D —年工作日,日/年; g —装窑密度,件/每米车长。

窑内容车数:n=127.69/1.94=65.82辆,取整数66辆,此时窑长=66× 1.94m=128.04m 。

该窑采用钢架结构,设进车和出车室各2m ,故全窑长取132.04m ,分为64 个标准节,每节长2000mm 。

根据烧成曲线,各带烧成时间与烧成周期的比值,预热带取20节,烧成带取19节,冷却带取25节,则各带长及所占比例为: 预热带长=2×20=40m 占总长的31.3% 烧成带长= 2×19=38m 占总长的29.7% 冷却带长=2×25=50m 占总长的39.0% 3.3窑内高的确定

为避免烧嘴喷出的高速火焰直接冲刷到局部制品上,影响火焰流动,造成较大温差,窑车台面与垫板间、上部制品与窑顶内表面之间都设有火焰通道,其高度(大于或等于烧嘴砖尺寸):棚板下部通道取230mm ,上部火焰通道取239mm 。

因此,窑内高初定为:230+7×10+6×100+239=1139mm

由于具体的高度确定还跟选择的耐火砖尺寸厚度的整数倍有关,通常耐火砖

厚度取65mm,所以高度方向上耐火砖块数=1139/65=17.52,取18块,则高度为:18×65=1170mm,灰缝:18×2=36mm,

则预热带、冷却带窑内高:1170+36=1206mm,

对于烧成带,内高增大一块标准砖的宽度134mm,所以内高=1206+134=1340mm 全窑高(轨面至窑顶外表面):在内高的基础上加上窑车高,预热带、烧成带为1206+491+350=2047,烧成带为1340+491+450=2281mm。

4.烧成制度的确定

4.1 温度制度的确定

表4-1 温度制度

温度(0C)时间(h)烧成阶段升(降)温速率(0C/h)20---300 2.0 预热带140

300---600 2.0 预热带150

600---900 2.0 预热带175

900---1320 3.0 烧成带140

1320---1320 1.0 烧成带(高火保温) 0

1320---800 2.0 冷却带(急冷带)260

800---400 2.0 冷却带(缓冷带)200

400---80 2.0 冷却带(快冷带)160

\

4.2 烧成温度曲线

图4-1烧成温度曲线

5.工作系统的确定

5.1预热带工作系统的确定

预热带共20节,其中第1~7节为排烟段,第1节两侧墙设置一道气幕,喷入由冷却带抽来的热风,并在窑头上部设1对排烟口,后半节下部各设1对排烟口第2节上部也加设1对排烟口,目的是使窑头气流压力自平衡,以减少窑外冷风和向内侵入,其余每节在下部(棚板通道处)各设2对排烟口。

为方便调节预热带温度,在第7~13节上部设置喷风管,每节设3根,一侧2根另一侧则设置一根,反复交替,两侧墙的喷风管成交错布置,这样有利于调节该段温度制度,也能有效搅拌预热带断面气流,达到减小预热带上下温差的目的。

为提高预热带后段下部制品温度,进一步缩小预热带后段的上下温差,在13-20节下部设置高速调温烧嘴,每节设3只,高度就设在窑车棚板的下部通道上,两侧墙则交错布置,两侧墙交替设置与喷风管设置相似。

5.2 烧成带工作系统布置

第21~39节烧成带,第21、22节与预热带一样,仅在下部设置3只烧嘴,而从第23节开始,每节上下均布有高速烧嘴,上部设置2只,下部设置3只,上下两侧墙均呈交错布置,这样有利于烧成带温度制度的调节。

5.3 冷却带工作系统布置

冷却带按照烧成工艺分成三段:

第40~45节为急冷段。该段采用喷入急冷风直接冷却方式,除急冷首节(第40节)只在后半节设冷风喷管(尺寸 67)(上设3对,下设2对)外,其余每节上部设5对冷风喷管,下部设4对冷风喷管,上下喷管交错设置。

第46~53节为缓冷段。第48节到50节的侧墙设置二段段间冷壁,每两节作

一段,顶部设有不锈钢间冷风箱,间冷壁及间冷箱均设有调节闸板,可根据需要调节抽热风量。

第54~64节为快冷段。为加强出窑前的快速冷却,在该段55~61节布置冷风喷管,直接鼓人冷风,每节6对——上部3对,下部3对。 5.4 传动系统

由窑车连续性传动,原理:由于螺旋杆上的活塞在油压的作用下连续不断的向前前进,推动窑车在窑内运动。 5.5 窑体附属结构 5.5.1 测温孔及观察孔

测温孔及观察孔在烧成曲线的关键处设置测温孔,低温段布稀点,高温处密点,以便于更好地了解窑内各段的温度情况。观察孔是为了观察烧嘴的情况。 5.3.2 测压孔

压力制度中零压面的位置控制特别重要,一般控制在预热带和烧成带交接面附近。若零压过多移向预热带,则烧成带正压过大,有大量热气体逸出窑外,不但损失热量,而且恶化操作条件;若零压过多移向烧成带,则预热带负压大,易漏入大量冷风,造成气体分层,上下温差过大,延长了烧成周期,消耗了燃料。本设计以观察孔代替测压孔。 5.3.3 膨胀缝

窑体受热会膨胀,产生很大的热应力,因此在窑墙、窑顶及窑底砌体间要留设膨胀缝以避免砌体的开裂或挤坏。本设计窑体采用装配式,每隔几米留宽度为50mm 的膨胀缝,内填矿渣棉。各层砖的膨胀缝要错缝留设。

6.燃料燃烧计算

6.1 空气量 所用燃料为液化气,其组分如下表所示:

在已知燃料组成的情况下,可根据《硅酸盐热工基础》中相关的燃烧反应式列表计算的方法,较为精确地求出燃料燃烧所需的空气量、生产烟气量及烟气组成。1m 3液化气燃烧的理论空气需要量L 0为:

H 2 CH 4 C 2H 6 C 2H 4 C 3H 8 C 3H 6 C 4H 10 C 4H 8 C 5H 12 C 5H 10 Q net (MJ/Nm 3) 10 6

5 1

6 15 15 2 8 10 13 110

2

3

30222113L =4.76C ()10(/

)

2

2

4

2

n m m O H n C H H S O m m -??++++-?

????

∑ 将数值代入公式得Lo=22.06(33/Nm Nm )取空气过剩系数为α=1.2,则实际需要空气量为:αV =α×0L =1.2×22.06=26.472(33/Nm Nm ) 6.2烟气量

烟气量根据《硅酸盐热工基础》知识用公式计算得,理论燃烧产物生产量V 0为:

02m 2222201

()H 2+N +H 0.792100

n m V CO H n C H S CO H O L ??=++++++?+????∑

将数值代入公式得V 0=23.767(33/Nm Nm ),实际燃烧产物生产量V n 为:

2m 2222201

21()H 2+N +H ()0.001242100

100n n n m V CO H n C H S CO H O n L gL ??=++++++?+-+????∑

将数值代入公式得V g =28.179(33/Nm Nm ) 6.3 燃烧温度

理论燃烧温度计算公式:g

g a

a a r r d th c V L t c t c Q t ++=

式中c r 、c a 、c g —燃料、空气及烟气的比热容,℃)?3/(Nm kJ ;

L a —一定空气消耗系数(α)下的单位燃料空气消耗量,33/Nm Nm ,a L =αL 0; V g —一定空气消耗系数下单位燃料燃烧生成的烟气量,33/Nm Nm ; t r 、t a —燃料及空气的预热温度,℃。

取室温20℃,此时空气比热为1.30℃)?3/(Nm kJ 液化石油气比热为3.91℃)?3/(Nm kJ ;

查表(燃料及燃烧表5-2)并初设烟气温度为1800℃,此时烟气比热为: c g =1.67℃)?3/(Nm kJ 。 代入上述公式得到:11000020 3.91 1.32026.472

28.179 1.8

th t +?+??=

=?2184.56℃

(2184.56-2100)/2100=4.03%<5%,所设温度合适。

取高温系数为0.8,则实际温度为:

t=0.8×2100=1680℃,比最高温度1320℃高出360℃,符合烧成需求,认为合理。

7.窑体材料及厚度的选择

窑体材料及厚度的确定原则:一是要考虑该处窑内温度对窑体的要求,即所选用的材料长期使用温度必须大于其所处位置的最高温度;二是尽可能使窑体散热损失要小;三是要考虑到砖型及外形整齐。根据上述原则,确定窑体的材料及厚度如下:

节位置(温度段)

窑墙窑顶

材质

厚度

(mm)

该段厚

度(mm)

材质厚度(mm)

该段厚

度(mm)

排烟段(1-5)(20-300℃)

轻质粘

土砖4

230

405

轻质粘

土吊顶砖

250

350 硅藻土砖1 115

矿渣棉50 普通硅酸耐

火纤维板

100

陶瓷棉10

预热升温段

(6-11)(300-950℃)

轻质粘

土砖

230

405

轻质粘土

吊顶砖

250

350 硅藻土砖115

矿渣棉50

普通硅酸耐

火纤维板

100

陶瓷棉10

烧成段(12-21)(950-1310℃

轻质高

铝砖

230

455

轻质高铝吊

顶砖

250

450 轻质粘

土砖

115

含铬耐火纤

维毡

100

含铬耐火

纤维毡

100 普通硅酸耐

火纤维板

100

陶瓷棉10

急冷段(22-25)(1310-800℃

)轻质粘土

230

405

轻质粘土吊

顶砖

250

350 硅藻土砖115

矿渣棉50 普通硅酸耐

火纤维板

100

陶瓷棉10

缓冷段(26-31)(800-400℃)轻质粘土

230

405

轻质粘土吊

顶砖

250

350 硅藻土砖115

矿渣棉50 普通硅酸耐

火纤维板

100

陶瓷棉10

快冷段(32-38)(400-80℃)轻质粘土

230

405

轻质粘土吊

顶砖

250

350 硅藻土砖115

矿渣棉50 普通硅酸耐

火纤维板

100

陶瓷棉10

8.物料平衡计算

9英寸平盘的坯体成分组成如下表: (1) 每小时烧成制品的质量G m

成品每件质量400g ,则每车制品质量为400g ×210=84kg ,推车速度=66车/16时=4.125车/时。

m G =推车速度×每车载重=4.125×84=346.5( kg/h )。 (2) 每小时入窑干坯的质量G g

G g = G m ·IL -100100=346.5×48

.5100100-×=366.58kg/h

(3) 每小时入窑湿坯的质量G s

G s= G g ·ω

-100100

=366.58×2.2100100-=374.83kg/h (含水量为2.2%)

(4) 每小时蒸发的自由水量G z

G z = G s-G g =374.83-366.58=8.25kg/h (5) 每小时从精坯中产生的CO 2质量

G CaO = G g × CaO%=366.58×0.87%=3.18kg/h G MgO = G g × MgO%=366.58×0.49%=1.79kg/h Gco 2= Gc a o ×

o

Mc Mco a 2

+G MgO × MgO M Mco 2=2.49+1.07=3.56kg/h

(6) 每小时从精坯中排除结构水的质量Gi

SiO 2 Al 2O 3 CaO MgO Fe 2O 3 K 2O+Na 2O I.L 69.20

19.96

0.87

0.49

0.88

3.12

5.48

Gi= G g×IL%- Gco

=366.58×5.48%-3.56=16.52kg/h

2

(7) 每小时入窑窑具的质量G

b

窑具主要是支柱和棚板。

单个棚板质量=310×310×10×10-6×2.2=2.11 Kg

单个支柱质量=50×50×100×10-6×2.2=0.55 Kg

棚板总重量=7×30×2.11=443.1 Kg

支柱总重量=6×39×0.55=128.70 Kg

窑具的质量G b=(443.1+128.70)×4.125=2358.68 kg/h

9、热平衡计算

9.1预热带及烧成带热平衡计算

9.1.1热平衡计算基准及范围

热平衡计算以1h作为时间基准,而以0℃作为基准温度。计算燃烧消耗量时,热平衡的计算范围为预热带和烧成带,不包括冷却带。

9.1.2 热平衡框图

图9-1-1预热带和烧成带的热平衡示意图

其中:Q1—制品带入的显热;

Q2—硼板、支柱等窑具带入显热;

Q 3—产品带出显热; Q 4—硼板、支柱等窑具带出显热; Q 5—窑墙、窑顶散失之热; Q 6—窑车蓄热和散失热量; Q 7—物化反应耗热; Q 8—其他热损失;

f Q —燃料带入化学热及显热; Q

g —烟气带走显热;

a Q —助燃空气带入显热;

'

a Q —预热带漏入空气带入显热;

g Q —气幕、搅拌风带入显热; 9.1.3热收入项目 ① 坯体带入显热Q 1

由上面物料平衡计算可知入窑湿基制品质量G s =374.83kg/h ,

Q 1=11s t c ??G (kJ/h )

其中:G s —入窑湿基制品质量(Kg/h )

1t —入窑制品的温度(℃);1t =20℃

1c —入窑制品的平均比热(KJ/(Kg ·℃));1c =0.86KJ/(Kg·℃); ∴Q 1=374.83×0.86×20=6447.08(kJ/h ) ② 棚板及支柱带入的显热Q 2

22b 2c t G Q =

其中:b G —入窑硼板、支柱等窑具质量(Kg/h );G b =2358.68 kg/h ;

2t —入窑硼板、支柱等窑具的温度(℃);T 2=20℃ 2c —入窑硼板、支柱等窑具的平均比热(KJ/(Kg ·℃)); 50%碳化硅硼板、支柱的平均比热容按下式计算

2c =0.963+0.146310-?t=0.963+0.000146×20=0.966KJ/(Kg·℃) Q 2=2358.68×0.966×20=45569.70(kJ/h )

③ 燃料带入化学热及显热f Q

f Q =(d Q +f t f c )x (kJ/h )

其中:燃料为液化气,低位发热量为:d Q =110000KJ/m 3;

f t —入窑燃料温度(℃);入窑液化气温度为f t =20℃; f c —入窑燃料的平均比热,℃)?3/(Nm kJ ; f t =20℃时液化石油气比热为f c =3.91℃)?3/(Nm kJ ;

x —每小时液化石油气的消耗量为;Nm 3/h ;

f Q =(d Q +f t f c )x =(110000+20×3.91)x =110078.2x kJ/h ④ 助燃空气带入显热a Q

全部助燃空气作为一次空气,燃料燃烧所需空气量 αV =0

L αx =1.2×22.06x =26.472x

χαa a o a t c L Q ==αV a a t c

a c 、a t —助燃空气的比热与温度;

取助燃空气温度为20℃,此时空气的比热为:a c =1.30 )/(3℃?m kJ ; a Q =26.472×1.30×20

x =688.272x (kJ/h )

⑤ 从预热带不严密处漏入空气带入显热a

Q ' a

Q '= (x t c L a a g ''-0)(αα) 其中:g α—离窑烟气中的空气过剩系数取2.5

a

t '、a c '—漏入空气与喷入风的比热与温度,分别取20℃,1.30)/(3℃?m kJ a Q '=(2.5-1.2)×22.06×1.30×20x =745.628x (kJ/h )

⑥ 气幕、搅拌风带入显热g Q

气幕包括封闭气幕和搅拌气幕,封闭气幕只设在窑头,不计其带入显热。取 搅拌气幕风源为空气,其风量一般为理论助燃空气量的0.5-1.0倍,取为0.75倍。

g Q =0.75×22.06×1.30×20x =430.2x (kJ/h )

9.1.4 热支出项目 ① 产品带出显热3Q

333t c G Q m = (kJ/h )

其中:m G —出烧成带产品质量,在物料平衡计算中已得m G =346.5kg/h ; 3t —出烧成带产品温度,为1320 ℃;此时产品平均比热 3c =1.20 kJ/(kg? ℃)

则:3Q =m G 3c 3t =346.5×1320×1.20=548856(kJ/h ) ② 硼板、支柱等窑具带出显热Q 4

4Q =44b t c G (kJ/h )

其中:棚板、立柱等质量:G b = 2358.68kg/h

出烧成带棚板、立柱温度:t 4=1320℃ 此时棚板、立柱的平均比热:

4c =0.84+0.000264t=0.84+0.000264×1320=1.189 kJ/(kg · ℃) 4Q = 2358.68×1.189×1320=3700282.09(kJ/h ) ③ 离窑废气带走显热

g

Q

一般通过取离窑烟气中空气过剩系数g α=2.5,则其体积流量为: 00V [()]g g g V L x αα=+-= [28.179+(2.5-1.2) ×22.06]x =56.857x

为保证排烟机的安全使用,离窑烟气温度不应该超过300℃,则取离窑烟气温度为200℃,此时烟气比热g c =1.440 kJ/( Nm 3·℃), Q g =V g χc g t g =56.857x ×1.440×200=16374.816x (kJ/h ) ④ 窑体散热量Q 5

根据窑体砌筑材料的不同,将预热带和烧成带按不同材料与温度段将它们

分成五段。

因此,预热带、烧成带窑体总散热为各段散热量之和,即 Q 5=6789.52+5011.24+34383.80+27750.41+15559.40+13446.40 +43103.56+25874.93+106057.36+66015.33=338539(KJ/h ) ⑤ 窑车蓄热和散失热量Q 6

取经验数据,占热收入的10%。 ⑥ 物化反应耗热Q 7

1)自由水蒸发吸热Q w

Q w = G w ×(2490+1.93×t g )

其中:入窑制品中自由水的质量 G w =g G G S -= 374.83-366.58=8.25kg/h 1.93—烟气离窑时温度下的水蒸气平均比热,kJ/kg

烟气离窑的温度t g =200℃。则可得: Q w = 8.25×(2490+1.93×200)= 23727kJ/h

2)结构水脱水吸热w

Q ' w

Q '=6700w G '(kJ/h ) 其中:w

G ' —入窑制品所含结构水的质量,kg/h 6700—1Kg 结构水脱水所需热量,KJ/Kg

物料平衡中已算出w

G '=16.52kg/h w Q '=6700w G '=16.52×6700=110684(kJ/h )

3)其余物化反应吸热r Q 用Al 2O 3反应热近似代替 r Q =G r ×2100×Al 2O 3 %(KJ/h )

其中:G r ——入窑干制品质量,kg/h ;G r =366.58 kg/h ; 2100—— 1k g Al 2O 3的反应热,kJ/Kg ;

r Q =G r ×2100×Al 2O 3%= 366.58×2100×19.65%=151269.24(kJ/h ) 则物化反应总耗热为:

Q 7= 23727 +110684+151269.24=285680.24(kJ/h ) ⑦ 其他热损失Q 8

根据具体情况,可对比现有同类型的窑加以确定,一般占总热收入的5%—10%,本设计中取6%。 9.1.5 列出热平衡方程式

由热平衡方程——热收入=热支出,得出:

Q 1+Q 2+Q f +Q a +a

Q '+g Q =Q 3+Q 4+Q g +Q 5+Q 6+Q 7+Q 8

07《窑炉课程设计》指导书

热工、无非、硅工艺专业 《窑炉课程设计》 指导书 周露亮编 2010年5月

目录 课程设计要求与说明 (1) 第一章窑炉制图规格 (2) 第二章窑体图 (9) 第三章尺寸标注 (13) 第四章窑炉课程设计说明书撰写规范 (19) 第五章设计说明书的编写 (22) 图1 隧道窑窑体主图 (26) 图2 隧道窑预热带典型断面图 (30) 图3 辊道窑窑体主图 (31) 图4 辊道窑窑体断面图 (33)

课程设计要求与说明 一、课程设计目的 课程设计是课堂教学的实践延伸,目的是对学生学习《热工过程及设备》课程的最后总结,是教学重要的一环。要求学生通过课程设计能综合运用和巩固所学的理论知识,并学会如何将理论与实践结合,研究解决实际中的工程技术问题。 主要任务是培养学生设计与绘图的基本技能,掌握窑炉设备的设计程序、过程与内容。学生根据老师给定的设计任务,在规定的时间里,应围绕自己的题目内容,结合所学知识,认真查阅资料,体验工程设计的过程,同时锻炼学生分析和解决实际问题的能力。 二、课程设计要求 通过本课程设计,要求学生进一步了解窑炉设备的基本结构;掌握窑炉设备的工作原理、工程制图方法和编制设计说明书的方法,同时要求学生融会贯通所学的理论知识,与实践结合,理解窑炉设备的设计思想和设计方法。学生对课程设计题目应视作真正的任务,要求学生认真负责地进行设计,每一个计算数据和结构设计应尽可能与生产实际相结合,课程设计应作为学生的创造性成果,不能抄袭历届学生的设计,也不允许简单照搬现成的资料,要求学生能表达自己的设计思想。 三、课程设计题目、内容 1、设计题目:隧道窑设计 辊道窑设计 2、设计内容 (1)图纸:主体结构图及主要断面图。要求尺寸标注齐全,线条、文字、图例规范; (2)说明书:确定主要尺寸和工作系统,进行燃烧计算和热平衡计算,要求计算正确,编写完整,格式规范。

年产860万件汤盘天然气隧道窑设计说明书

景德镇陶瓷学院《窑炉课程设计》说明书 题目:年产860万件汤盘天然气隧道窑设计说明书

目录 前言 一、设计任务书 (4) 二、烧成制度的确定 2.1 温度制度的确定 (5) 三、窑体主要尺寸的计算.. 3.1棚板和立柱的选择 (5) 3.2窑长及各带长的确定 (5) 3.2.1 装车方法 (5) 3.2.2 窑车尺寸确定 (6) 3.2.3窑内宽、内高、全高、全宽的确定 (6) 3.2.4 窑长的确定 (7) 3.2.5 全窑各带长的确定 (7) 四、工作系统的确定 4.1 排烟系统 (7) 4.2 燃烧系统 (8) 4.3 冷却系统 (8) 4.4 传动系统 (8) 4.5 窑体的附属结构 (8) 五、窑体材料及厚度的选择 (8) 六、燃料燃烧计算 (12) 七、物料平衡计算 (13) 八、热平衡计算 (14) 九.冷却带的热平衡计算 (18) 十、烧嘴的选用 (21) 十一、心得体会 (22) 十二、参考文献 (23) 前言

隧道窑是耐火材料、陶瓷和建筑材料工业中最常见的连续式烧成设备。是以一条类似铁路隧道的长通道为主体,通道两侧用耐火材料和保温材料砌成窑墙,上面为由耐火材料和保温材料砌成的窑顶,下部为由沿窑内轨道移动的窑车构成的窑底形成的一种烧成过程。 随着经济的不断发展,陶瓷工业在人民生产、生活中都占有重要的地位。陶瓷的发展与窑炉的改革密切相关,某一种特定的窑炉可以烧制出其他窑炉所不能烧制的产品,而有时需要一种特定的产品,就需要对其窑炉的条件加以限制,因此,配方和烧成是陶瓷制品优化的两个重量级过程,每个过程都必须精益求精,才能得到良好,称心的陶瓷制品。 隧道窑是现代化的连续式烧成的热工设备,以窑车为运载工具,具有生产质量稳定、产量大、消耗低的特点,最适合于工艺成熟批量生产的日用瓷。由于现在能源价格不断上涨,为了节约成本,更好的赢取经济利益,就需要窑炉在烧成过程中严格的控制温度制度、气氛制度,压力制度,提高生产效率及质量,更好的向环保节能型窑炉方向发展。 所以,我们作为新一批的陶瓷制作学习者,要求经过这个设计周,全面了解一个合适,高校的烧成窑炉在生产实践中都应注意的问题,将自己学的理论知识与现实生产进行紧密贴合。了解隧道窑的设计过程,和在设计过程中应注意的问题。

《窑炉课程设计》指导书

热工、无非、材物、材化专业 《窑炉课程设计》 指导书 周露亮编 2014年9月 目录 课程设计要求与说明 (3) 第一章窑炉制图规格 (4) | 第二章窑体图 (10) 第三章尺寸标注 (13) 第四章窑炉课程设计说明书撰写规范 (18) 第五章设计说明书的编写 (21)

课程设计要求与说明 一、课程设计目的 课程设计是课堂教学的实践延伸,目的是对学生学习《热工过程及设备》课程的最后总结,是教学重要的一环。要求学生通过课程设计能综合运用和巩固所学的理论知识,并学会如何将理论与实践结合,研究解决实际中的工程技术问题。 主要任务是培养学生设计与绘图的基本技能,掌握窑炉设备的设计程序、过程与内容。学生根据老师给定的设计任务,在规定的时间里,应围绕自己的题目内容,结合所学知识,认真查阅资料,体验工程设计的过程,同时锻炼学生分析和解决实际问题的能力。 ? 二、课程设计要求 通过本课程设计,要求学生进一步了解窑炉设备的基本结构;掌握窑炉设备的工作原理、工程制图方法和编制设计说明书的方法,同时要求学生融会贯通所学的理论知识,与实践结合,理解窑炉设备的设计思想和设计方法。学生对课程设计题目应视作真正的任务,要求学生认真负责地进行设计,每一个计算数据和结构设计应尽可能与生产实际相结合,课程设计应作为学生的创造性成果,不能抄袭历届学生的设计,也不允许简单照搬现成的资料,要求学生能表达自己的设计思想。 三、课程设计题目、内容 1、设计题目:隧道窑设计 辊道窑设计 2、设计内容 (1)图纸:主体结构图及主要断面图。要求尺寸标注齐全,线条、文字、图例规范; (2)说明书:确定主要尺寸和工作系统,进行燃烧计算和热平衡计算,要求计算正确,编写完整,格式规范。

隧道窑课程设计说明书最终版备课讲稿

隧道窑课程设计说明 书最终版

《无机非金属材料》 课程设计 学生姓名: 学号: 181000435 专业班级:材料10级(4)班 指导教师: 二○一三年九月四日

目录 一、前言..................................................... - 1 - 二、设计任务和原始数据........................................ - 2 - 2.1设计任务................................................ - 2 - 2.2课程设计原始数据........................................ - 2 - 三、窑体主要尺寸的确定........................................ - 3 - 3.1隧道窑容积的计算........................................ - 3 - 3.2隧道窑内高、内宽、长度及各带长度计算.................... - 3 - 四、工作系统的安排............................................ - 5 - 4.1预热带工作系统.......................................... - 5 - 4.2烧成带工作系统.......................................... - 5 - 4.3冷却带工作系统.......................................... - 6 - 五、窑体材料以及厚度的确定.................................... - 7 - 六、燃料燃烧计算.............................................. - 8 - 6.1燃烧所需空气量计算...................................... - 8 - 6.2燃烧产生烟气量计算...................................... - 8 - 6.3燃烧温度计算............................................ - 8 - 七、预热带和烧成带热平衡计算................................. - 10 - 7.1热平衡计算基准及范围................................... - 10 - 7.2预热、烧成带热收入项目:............................... - 10 - 7.3预热、烧成带热支出项目: ................................ - 13 - 7.4预热、烧成带平衡热计算................................. - 14 - 7.5预热、烧成带热平衡表................................... - 14 - 八、冷却带热平衡计算......................................... - 15 - 8.1冷却带热收入项目:..................................... - 15 - 8.2冷却带热支出项目:..................................... - 15 - 8.4冷却带热平衡表......................................... - 17 - 九、选用烧嘴及燃烧室计算..................................... - 17 - 十、排烟系统的计算及排烟机的选型 ............................. - 18 - 10.1排烟系统的设计........................................ - 18 - 10.2 阻力计算............................................. - 19 - 10.3 风机选型............................................. - 21 - 十一、结束语................................................. - 23 - 十二、参考文献............................................... - 23 -

筑炉工程培训资料

筑炉工程培训资料 一、窑炉工程简介 1窑炉工程分类 窑炉工程一般分为锅炉砌筑工程、连续式直立炉砌筑工程焦炉砌筑工程、转化炉和裂解炉砌筑工程、玻璃熔窑砌筑工程、铝电解槽砌筑工程、煅烧炉、高炉砌筑工程、热风炉砌筑工程、均热炉、加热炉和热处理炉砌筑工程、以及回转窑和隧道窑砌筑工程等。每种炉的用途、作用、构造虽然不尽相同,但筑炉砌筑工艺原理基本相似。

1、筑炉工具 切砖机 磨砖机 灰浆机 泥刀 开凿 铁锤 木槌 钢凿 勾缝刀 灰槽 2、筑炉量具 水准仪 经纬仪 水平尺 线锤 托线板 卷尺 塞尺 测角器 三、筑炉施工工艺 1筑炉程序 筑炉大棚---土建、工艺设备安装中间交接验收---搭材料棚---选砖—预砌—确定灰缝厚度—立批数杆——砌筑 2炉体结构构造 焦炉结构:

蓄热室、炭化室、斜道、炉顶、烟道 锅炉结构: 落灰斗、燃烧室、前后拱及各类拱门、折焰墙、炉顶、省煤 气墙 转化炉结构: 烟道、对流段、过渡段、辐射段 (1) 一段转化炉是大型合成氨生产装置的关键设备之一。 传统的筑炉施工中,一般都统一用耐火砖和耐火浇注料作为内衬材料,近几年炉体衬里结构型式发生了较大的变化,尤其是辐射段,不再使用传统的保温板和高铝隔热耐火砖的复合结构,而统一使用陶瓷纤维模块作为衬里层。 (2) 与一段转化炉一样,二段转化炉也是大型合成氨生产 装置中的重要设备。其型式为立式圆筒形容器,由筒体、颈部、连接接头,底部支承拱等三部分组成。通常选用耐火度高、组织致密均匀、线变化小、化学稳定性好的低硅纯铝酸钙水泥耐火浇注料作为衬里材料。 一段转化炉平面 烟道 对流段 过渡段 辐射段 二段炉 输气总管

课程设计:日产8吨高硼硅玻璃窑炉设计

日产8吨的高硅硼玻璃的全电熔窑炉设计

1.前言 所谓全电容窑炉,通常是指配合料熔成导电介质后,玻璃液体本身成为电阻组件,实现玻璃的连续融化。但配合料(含有部分熟料)未熔成导电介质之前,即在烤窑阶段,仍需要气体或液体来加热。 玻璃电熔技术是目前国际上最先进的熔制工艺,是玻璃生产企业提高产品质量,降低能耗,从根本上消除环境污染的十分有效的途径。对于15t/d以下的小型玻璃熔窑来说,在电力充足和电价适中的地区,用电熔工艺生产各种玻璃制品的综合经济效益是很理想的;在电价高的地区,对于生产彩色玻璃、乳浊玻璃、硅酸盐玻璃、铅玻璃、高挥发组分玻璃或特种玻璃也是很合算的。 电熔窑炉产生的废气量少,防止空气污染;能降低挥发性配合料组分的挥发;降低因结石造成的产品损失;而且玻璃成分均匀,在整个窑炉期间可始终保持满负荷的出料量。另外它的建设投资少,占地面积小。玻璃质量好,效率高,但成本低。玻璃电熔窑炉也有耐火寿命短的缺陷,而且窑炉的用电成本和初期安装成本高。 玻璃电熔窑炉工作原理:玻璃在低温下几乎是绝缘的,但在高温下熔融的玻璃是一种良导体。玻璃电熔窑炉就是将电流引入玻璃液中,玻璃液直接通电加热,通电后两极间的玻璃液在交流电的作用下产生焦耳热,从而达到熔化和调温的目的。玻璃液之所以具有导电性,主要是因为电荷通过离子发生迁移。 导电性的难易是以电阻率ρ(Ω·cm)或其倒数σ((Ω·cm)-1)来表示,ρ值越小,则电导本领越强。玻璃在室温下为绝缘体,它的电导率约为10-13~10-15(Ω·cm)-1。如果提高温度,玻璃的电导率会急剧增加,在熔融状态可达到0.1~1(Ω·cm)-1。电熔化能用来融化几乎所有品种的玻璃以及某些呈现高阻值的硅酸盐材料。各种玻璃的电导率随其成分不同可有很大差别,对同一种玻璃,电导率则是温度的函数。在网状结构中,含有其他改良剂离子时,能降低Na+离子的迁移和玻璃的电导率。例如,加入Ca2+,Ba2+,Pb2+离子会大大增加玻璃的电导率。 玻璃的电阻率强烈依赖于温度,这是因为网状结构空穴中的改良离子,在

隧道窑课程设计说明书---设计一条年产卫生陶瓷万大件的隧道窑[25页].docx

本资料由皮匠网收录,更多免费资料下载请点击:https://https://www.wendangku.net/doc/f76491852.html, / 窑炉设计说明书 题目:设计一条年产卫生陶瓷12万大件的隧道窑

本资料由皮匠网收录,更多免费资料下载请点击:https://https://www.wendangku.net/doc/f76491852.html, / 一、前言 随着经济不断发展,人民生活水平的不断提高,陶瓷工业在人民生产、生活中都占有重要的地位。陶瓷的发展与窑炉的改革密切相关,一定结构特点的窑炉烧出一定品质的陶瓷。因此正确选择烧成窑炉是获得性能良好制品的关键。 陶瓷窑炉可分为两种:一种是间歇式窑炉,比如梭式窑;另一种是连续式窑炉,比如隧道窑。隧道窑由于窑内温度场均匀,从而保证了产品质量,也为快烧提供了条件;而隧道窑中空、裸烧的方式使窑内传热速率与传热效率大,又保证了快烧的实现;而快烧又保证了产量,降低了能耗。所以,隧道窑是当前陶瓷工业中优质、高产、低消耗的先进窑型,在我国已得到越来越广泛的应用。 烧成在陶瓷生产中是非常重要的一道工序。烧成过程严重影响着产品的质量,与此同时,烧成也由窑炉的窑型决定。 在烧成过程中,温度控制是最重要的关键。没有合理的烧成控制,产品质量和产量都会很低。要想得到稳定的产品质量和提高产量,首先要有符合产品的烧成制度。然后必须维持一定的窑内压力。 最后,必须要维持适当的气氛。

本资料由皮匠网收录,更多免费资料下载请点击:https://https://www.wendangku.net/doc/f76491852.html, / 二、设计任务与原始资料 1课程设计题目 设计一条年产卫生陶瓷12万大件的隧道窑 2课程设计原始资料 (1)、年产量:12万大件/年; (2)、产品规格:400*200*200mm,干制品平均质量10Kg/件; (3)、年工作日:340天/年; (4)、成品率:90%; (5)、燃料种类:天然气,热值Q D =36000KJ/Bm3; (6)、制品入窑水分:2.0%; (7)、烧成曲线: 20~~970℃, 9h; 970~~1280℃, 4h;

工业窑炉课程设计

萍乡学院 《窑炉课程设计》说明书 题目:窑炉设计7000m2 液化气辊道窑 院(系):材料与化工学工程系 专业: 学号: 姓名: 指导老师:肖素萍 二〇一三年月日

前言 隧道窑是耐火材料、陶瓷和建筑材料工业中最常见的连续式烧成设备。其主体为一条类似铁路隧道的长通道。通道两侧用耐火材料和保温材料砌成窑墙,上面为由耐火材料和保温材料砌筑的窑顶,下部为由沿窑内轨道移动的窑车构成的窑底。 隧道窑的最大特点是产量高,正常运转时烧成条件稳定,并且在窑外装车,劳动条件好,操作易于实现自动化,机械化.隧道要的另一特点是它逆流传热,能利用烟气来预热坯体,使废气排出的温度只在200°C左右,又能利用产品冷却放热来加热空气使出炉产品的温度仅在80°C左右,且为连续性窑,窑墙,窑顶温度不变,不积热,所以它的耗热很低,特别适合大批量生产陶瓷,耐火材料制品,具有广阔的应用前景. 本设计为年产10万件高为:0.7m,长为:1.7m,宽为:0.8m的浴缸的隧道窑。窑炉总长为190m,烧成周期为40小时,最高烧成温度为1320℃,采用的是0#柴油。

目录 一原始资料的收集 (4) 二烧成制度的确定 (5) 三窑体主要尺寸的计算 (6) 四工作系统的确定 (7) 五窑体材料及厚度的选择 (9) 六燃料燃烧计算 (11) 七物料平衡计算 (13) 八热平衡计算 (13) 九冷却带的热平衡计算 (18) 十管道尺寸、阻力计算 (21) 十一工程材料概算 (26) 十二后记 (29)

一、原始资料的收集 由设计任务书得到:1、年产量:10万件 2、产品规格:高:0.7m 长:1.7m 宽:0.8m 3、年工作日:330天 4、燃料:0#柴油,Q =41800KJ/Nm3 net 5、入窑水分:1.7% 6、产品合格率:98% 7、烧成周期:40小时 8、最高烧成温度:1320℃ 9、坯料组成(%): 10、燃料组成成分:

陶瓷隧道窑微机温度控制系统

陶瓷隧道窑微机温度控制系统 摘要 目前我国陶瓷隧道窑炉大多采用人工或简单仪表控制,要想使窑炉长期达到最佳工作状态是不可能的,造成产品合格率、一级品率一直处于较低的水平。陶瓷隧道窑炉是由预热带、烧成带和冷却带三个部分组成,瓷件烧成温度在1320℃左右,窑内温度场主要由烧成带12对喷嘴燃冷煤气产生,窑炉系统用8组风机来调节窑内的压力场。排烟风、助燃风将直接影响烧成带的温度场,急冷风会影响最终产品的质量。 温度控制系统将采集的各点温度值,经A/D转换后与设定值进行比较,控制器输出经由D/A变换,变成 4~20mA形式模拟量输出给电动执行器,驱动蝶形阀调节喷嘴的煤气进给量,从而控制烧成带的温度。12只温度传感器与12个喷嘴一一对应。 关键词:MSP430F149单片机、热电偶,变送器、大林算法、 I2C总线、多路开关

一.总体方案设计 1.对象的工艺过程 陶瓷隧道窑炉是由预热带、烧成带和冷却带三个部分组成,瓷件烧成温度在1320℃左右,窑内温度场主要由烧成带12对喷嘴燃冷煤气产生,窑炉系统用8组风机来调节窑内的压力场。排烟风、助燃风将直接影响烧成带的温度场,急冷风会影响最终产品的质量。 温度控制系统将采集的各点温度值,经A/D转换后与设定值进行比较,控制器输出经由D/A变换,变成 4~20mA形式模拟量输出给电动执行器,驱动蝶形阀调节喷嘴的煤气进给量,从而控制烧成带的温度。12只温度传感器与12个喷嘴一一对应。

窑温控制示意图 2.对象分析 被控过程传递函数s e s s G 403 o ) 251(25.2)(-+= 是一个大的延迟环节,而且温度的控制对系统的输出超调量有严格的限制,用最少拍无纹波数字控制器的设计,和PID 算法效果欠佳,所以本设计采用大林算法设计数字控制器。 3.控制系统设计要求 窑温控制在1320±10℃范围内。微机自动调节:正常工况下,系统投入自动。模拟手动操作:当系统发生异常,投入手动控制。 微机监控功能:显示当前被控量的设定值、实际值,控制量的输出值,参数报警时有灯光报警。 二、硬件的设计和实现 1.选择计算机机型和系统总线 本系统控制的回路12个,所以只需要一片微控制器即可实现,本设计采用TI 公司的MSP430系列单片机,MSP430 系列是一个 16 位的、具有精简指令集的、超低功耗的混合型单片机,有较高的处理速度,在 8MHz 晶体驱动下指

隧道窑窑炉课程设计样本

课程设计说明书 题目: 年产800万件8寸汤盘隧道窑设计 学号: 201xxxxxcccm 姓名: xxxxx 院 ( 系) : fffff学院工程系 专业: xxxjj金属材料工程 日期: .05.26- .06.13

目录 1 前言 (1) 2 设计任务书 (3) 3 窑体主要尺寸的确定 (4) 3.1 窑内宽的确定 (4) 3.2 窑体长度的确定 (5) 3.3 窑内高的确定 (5) 4 烧成制度的确定( 主要指温度制度) (6) 5 工作系统的确定 (7) 5.1 预热带系统 (7) 5.2 烧成带系

统 (7) 5.3 冷却带系统 (8) 5.4 传动系统 (8) 5.5 窑体附属结构 (8) 5.5.1 事故处理孔 (8) 5.5.2 测温测压孔及观察孔 (8) 5.5.3 膨胀缝 (8) 6 燃料燃烧计算 (8) 6.1 空气量 (8) 6.2 烟气量 (9) 6.3 燃烧温度 (9) 7 窑体材料及厚度的确定: 列表表示全窑所用材料及厚

度 (10) 8. 物料平衡计算 (11) 9 热平衡计算 (12) 9.1 预热带及烧成带热平衡计算 (12) 9.1.1 热平衡计算基准及范围 (12) 9.1.2 热平衡框图 (13) 9.1.3 热收入项目 (13) 9.1.4 热支出项目 (15) 9.1.5 列出热平衡方程式 (17) 9.1.6 列出预热带烧成带热平衡表 (17) 9.2 冷却带热平衡 (18)

9.2.1 热收入项目 (18) 9.2.2 热平衡框图 (18) 9.2.3 热支出项目 (19) 9.2.4 列热平衡方程式 (19) 9.2.5 列出预冷却带热平衡表 (20) 9 烧嘴的选用 (21) 10.1 每个烧嘴所需的燃烧能力 (21) 10.2 每个烧嘴所需的油( 气) 压 (21)

无机材料工艺课程设计指导书

无机非金属材料专业 《无机材料工艺课程设计》 指导书 无机非金属材料研究所编 2010年5月

目录 课程设计要求与说明 (1) 第一章窑炉制图规格 (2) 第二章窑体图 (9) 第三章尺寸标注 (13) 第四章窑炉课程设计说明书撰写规范 (19) 第五章设计说明书的编写 (22) 图1 隧道窑窑体主图 (26) 图2 隧道窑预热带典型断面图 (30) 图3 辊道窑窑体主图 (31) 图4 辊道窑窑体断面图 (33)

课程设计要求与说明 一、课程设计目的 课程设计是课堂教学的实践延伸,目的是对学生学习《陶瓷工艺学》课程的最后总结,是教学重要的一环。要求学生通过课程设计能综合运用和巩固所学的理论知识,并学会如何将理论与实践结合,研究解决实际中的工程技术问题。 主要任务是培养学生设计与绘图的基本技能,掌握窑炉设备的设计程序、过程与内容。学生根据老师给定的设计任务,在规定的时间里,应围绕自己的题目内容,结合所学知识,认真查阅资料,体验工程设计的过程,同时锻炼学生分析和解决实际问题的能力。 二、课程设计要求 通过本课程设计,要求学生进一步了解窑炉设备的基本结构;掌握窑炉设备的工作原理、工程制图方法和编制设计说明书的方法,同时要求学生融会贯通所学的理论知识,与实践结合,理解窑炉设备的设计思想和设计方法。学生对课程设计题目应视作真正的任务,要求学生认真负责地进行设计,每一个计算数据和结构设计应尽可能与生产实际相结合,课程设计应作为学生的创造性成果,不能抄袭历届学生的设计,也不允许简单照搬现成的资料,要求学生能表达自己的设计思想。 三、课程设计题目、内容 1、设计题目:隧道窑设计 辊道窑设计 2、设计内容 (1)图纸:主体结构图及主要断面图。要求尺寸标注齐全,线条、文字、图例规范; (2)说明书:确定主要尺寸和工作系统,进行燃烧计算和热平衡计算,要求计算正确,编写完整,格式规范。

隧道窑课程设计

成都理工大学 隧道窑课程设计书 课程设计题目:设计一条年产卫生陶瓷10万大件的隧道窑 学院:材料与化学化工学院 专业:材料科学与工程 姓名:朱廷刚 学号:20080204 指导老师:叶巧明 刘菁

目录 前言 (2) 一原始资料的收集 (3) 二窑型选择 (3) 三窑体主要尺寸的计算 (4) 四工作系统的确定 (8) 五窑体材料及厚度的确定 (10) 六燃料燃烧的计算 (11) 七用经验数据决定燃料的消耗量 (12) 八预热带及烧成带的热平衡计算 (13) 九冷却带热平衡计算 (18) 十烧嘴的选用及燃烧室的计算 (22) 十一烟道和管道计算,阻力计算和风机选型 (23)

前言 窑炉的设计计算,其基本原则都是一样的。掌握隧道窑设计计算的主要内容,方法及具有识固的能力,对其他窑炉的设计计算也就举一反三了。隧道窑的设计计算包括三大部分:1.窑体主要尺寸及结构的计算;设备的计算;3.通风设备及其他附届设施计算。2.燃料燃烧及燃烧隧道窑的设计计算工作且相当繁重,所以在计算过程中往往采用简化的经验数据。近年来采用电子计算机技术,对隧道窑设计进行了研究,使设计工作向前推进了一步。例如,对窑墙传热,窑车不稳定传热,绕成带绕宪分布及各对烧嘴中照料的分配,预热带排拥口分布乃久对排姻口烟气量的分配等都可用电子 计算机设计计算。

一原始资料的收集 1.年产量:10万大件/年; 2.产品规格:400×200×200mm,干制品平均质量 3.年工作日:340天/年; 4.成品率:90%; 5.燃料种类:天然气,热值Q D=36000KJ/Bm3; 6.制品如要水分:2.0%; 7.烧成曲线:20℃~970℃,9h; 970℃~1280℃, 4h; 1280℃, 保温1h; 1280℃~80℃, 14h; 最高烧成温度1280℃,烧成周期28h. 二窑型选择 卫生瓷是大件产品,采用普通窑车隧道窑。 由于考虑到燃料为城市煤气,经过净化处理,不会污染制品。若再从窑的结构上加以考虑,避免火焰直接冲剧制品,所以采用明焰露袭的形式(制品不袭匣钵),既能保证产品质量,又增加了产量,降低了燃科消耗,改善了工人操作条件,并降低了窑的造价,是合理的。 烧成制度:

串级控制过程控制课程设计

设计内容与设计要求 设计内容: 某隧道窑炉系统,考虑将燃烧室温度作为副变量,烧成温度为主变量,燃烧室温度为副变量的串级控制系统中主、副对象的传递函数分别为: G01(s)=1/(30s+1)(3s+1);g02(s)=1/((10s+1)(s+1)^2); 主控制器采用比例积分控制,副控制器采用比例控制。 设计要求: 试分别采用单回路控制和串级控制设计主、副PID控制器的参数,并给出整定后系统的阶跃响应曲线和阶跃扰动的响应曲线,并说明不同控制方案对系统的影响。

目录 第1章概述 (1) 第2章系统总体方案 (2) 2.1 隧道窑的结构 (2) 2.2 方案比较 (2) 2.3 方案选择 (4) 第3章系统控制参数的选择 (5) 3.1串级控制系统选择 (5) 3.1.1 主变量的选择 (5) 3.1.2 副变量的选择 (5) 3.1.3 操纵变量的选择 (5) 3.2 调节阀开关形式的选择 (6) 3.3 传感器、变送器的选择 (6) 3.4 控制器的选择 (7) 3.4.1 控制器控制规律的选择 (7) 3.4.2 控制器正、反作用选择 (7) 3.4.3 控制器选型 (8) 第4章系统调试 (10) 4.1系统参数的整定 (10) 4.2 系统仿真 (10) 第5章心得体会 (14) 参考文献 (15)

第1章概述 随着人们物质生活水平的提高以及市场竞争的日益激烈,产品的质量和功能也向更高的档次发展,制造产品的工艺过程变得越来越复杂,为满足优质、高产、低消耗,以及安全生产、保护环境等要求,做为工业自动化重要分支的过程控制的任务也愈来愈繁重。 在现代工业控制中, 过程控制技术是一历史较为久远的分支。在本世纪30 年代就已有应用。过程控制技术发展至今天, 在控制方式上经历了从人工控制到自动控制两个发展时期。在自动控制时期内,过程控制系统又经历了三个发展阶段, 它们是:分散控制阶段, 集中控制阶段和集散控制阶段。几十年来,工业过程控制取得了惊人的发展,无论是在大规模的结构复杂的工业生产过程中,还是在传统工业过程改造中,过程控制技术对于提高产品质量以及节省能源等均起着十分重要的作用。 目前,过程控制正朝高级阶段发展,不论是从过程控制的历史和现状看,还是从过程控制发展的必要性、可能性来看,过程控制是朝综合化、智能化方向发展,即计算机集成制造系统(CIMS):以智能控制理论为基础,以计算机及网络为主要手段,对企业的经营、计划、调度、管理和控制全面综合,实现从原料进库到产品出厂的自动化、整个生产系统信息管理的最优化。 本次课程设计是隧道窑的温度课程系统,而隧道窑是对陶瓷制品进行预热、烧成、冷却的装置。因为几个环节都涉及到温度的控制,因此隔焰隧道窑的温度是生产工艺的一项重要指标,温度控制的好坏将直接影响产品的质量。如果火焰直接在窑道烧成带燃烧,燃烧气体中的有害物质将会影响产品的光泽和颜色,所以就出现了隔焰式隧道窑。火焰在燃烧室中燃烧,热量经过隔焰板辐射加热烧成带。 另外随着现代工业生产的迅速发展,对工艺操作条件的要求更严格,对安全运行及对控制质量的要求也更高。而因为隧道窑温度的变化比较慢,所以滞后比较大。综上所述,须设计一套以温度为控制变量的控制系统。 该控制系统的生产工艺要求: ⑴可以实现对整个隧道窑的工艺流程的控制。 ⑵能够克服较大的滞后。 ⑶能够自动控制窑内温度,并达到所需精度。

隧道窑窑炉课程设计

课程设计说明书 题目:年产800万件8寸汤盘隧道窑设计 学号: 201xxxxxcccm 姓名: xxxxx 院(系): fffff学院工程系 专业: xxxjj金属材料工程 日期: 2014.05.26-2014.06.13

目录 1 前言 (1) 2 设计任务书 (3) 3 窑体主要尺寸的确定 (4) 3.1 窑内宽的确定 (4) 3.2 窑体长度的确定 (5) 3.3 窑内高的确定 (5) 4 烧成制度的确定(主要指温度制度) (6) 5 工作系统的确定 (7) 5.1 预热带系统 (7) 5.2 烧成带系统 (7) 5.3 冷却带系统 (8) 5.4 传动系统 (8) 5.5 窑体附属结构 (8) 5.5.1 事故处理孔 (8) 5.5.2 测温测压孔及观察孔 (8) 5.5.3 膨胀缝 (8) 6 燃料燃烧计算 (8) 6.1 空气量 (8) 6.2 烟气量 (9) 6.3 燃烧温度 (9) 7 窑体材料及厚度的确定:列表表示全窑所用材料及厚度 (10) 8. 物料平衡计算 (11) 9 热平衡计算 (12) 9.1 预热带及烧成带热平衡计算 (12) 9.1.1 热平衡计算基准及范围 (12) 9.1.2 热平衡框图 (13) 9.1.3 热收入项目 (13) 9.1.4 热支出项目 (15) 9.1.5 列出热平衡方程式 (17) 9.1.6 列出预热带烧成带热平衡表 (17) 9.2 冷却带热平衡 (18) 9.2.1 热收入项目 (18) 9.2.2 热平衡框图 (18) 9.2.3 热支出项目 (19) 9.2.4 列热平衡方程式 (19) 9.2.5 列出预冷却带热平衡表 (20) 9 烧嘴的选用 (21) 10.1 每个烧嘴所需的燃烧能力 (21) 10.2 每个烧嘴所需的油(气)压 (21)

隧道窑课程设计说明书

成都理工大学 窑炉设计说明书 题目:设计一条年产卫生陶瓷10万大件的隧道窑 学号: 200802040315 姓名:赵礼 学院:材料科学与工程学院 班级: 08级材料(三)班 指导教师:叶巧明刘菁

目录 一、前言····················································································· 二、设计任务与原始资料······································································· 三、烧成制度的确定··········································································· 四、窑体主要尺寸的确定······································································· 五、工作系统的安排··········································································· 六、窑体材料以及厚度的确定··································································· 七、燃料燃烧计算············································································· 八、加热带热平衡计算········································································· 九、冷却带热平衡计算········································································· 十、烧嘴的选用级燃烧室的计算·································································十一、烟道和管道计算,阻力计算和风机选型······················································十二、后记··················································································· 十三、参考文献···············································································一、前言 随着经济不断发展,人民生活水平的不断提高,陶瓷工业在人民生产、生活

玻璃马池焰窑炉课程设计说明书

目录 1.绪论 (1) 2. 计算内容 (4) 2.2 熔化率的选取 (4) 2.3熔窑基本结构尺寸的确定 (4) 2.4 窑体主要部位所用材料的选择和厚度的确定 (6) 2.5 燃料燃烧计算 (7) 2.6燃料消耗量的计算 (8) 2.7 小炉结构的确定与计算 (10) 2.8蓄热室的设计 (11) 2.9 窑体主要部位所用材料的选择和厚度的确定 (12) 3.主要技术经济指标 (12) 4.对本人设计的评述 (14) 参考文献 (14)

1.绪论 课程设计是培养学生运用《玻璃窑炉及设计》课程的理论和专业知识解决实际问题,进一步提高设计运算,使用专业资料等能力。目的是使学生受到设计方法的初步训练,逐步树立正确的设计观点,增强设计能力,创新能力和综合能力,逐步掌握窑炉及其他热工设备设计的基础知识和技能,并对所学窑炉热工设备理论知识进行验证和深化,为将来从事生产、设计、研究及教学奠定良好的基础,同时为毕业论文打下坚实的基础。 1.1设计依据 设计内容:年产12000吨高白料酒瓶燃油蓄热式马蹄焰池窑 (1)原始数据: a)产品规格:青白酒瓶容量500mL, 重量400g/只 b)行列机年工作时间及机时利用率:313 天,95% c)机速:QD6行列机青白酒瓶38只/分钟 d)产品合格率:90% e)玻璃熔化温度1430℃ f)玻璃形成过程耗热量q玻=2350kJ/kg玻璃液 g)重油组成(质量分数%),见表1﹣1 1.2 述玻璃窑炉的发展历史及今后的发展动向 玻璃窑炉是熔制玻璃的热工设备,利用燃料的化学能、电能或其它能源产生热量,造成可控的高温环境,使玻璃配合料在其中经传热、传质和动量传递过程,完成物理和化学变化,经过熔化、澄清、均化和冷却等阶段,为生产提供一定数量和质量的玻璃液。 我国的玻璃窑炉古已有之,其经历了一个漫长的发展史,通过燃料和技术的发展提高,玻璃窑炉现在已经有了较大的进步。我国的玻璃窑炉基本上都为火焰池窑,其基本结构为:玻璃熔制、热源供给、余热回收、排烟供气四部分。目前我国玻璃窑炉的主体要燃料有煤、重油、发生炉煤气、天然气,其中最普遍采用的是煤和重油,为节能降耗减少污染,也有许多窑炉采用发生炉煤气和天然气,如下表1-2介绍了我国玻璃窑炉的发展史:

窑炉设计辊道窑

景德镇陶瓷大学 《窑炉课程设计》说明书 题目年产245万平米玻化砖液化气辊道窑设计 学号:.201310260130 姓名:黄慧莹 院(系) 材料科学与工程学院 : 专业:粉体材料科学与工程 O一六年六月六日

目录 1前言 (1) 2设计任务书 (2) 3窑体主要尺寸的确定 (3) 4烧成制度的确定 (5) 5工作系统的确定 (6) 5.1 排烟系统 (6) 5.2 燃烧系统 (6) 5.3 冷却系统 (6) 5.4 传动系统 (7) 5.5 窑体附属结构 (8) 5.6 窑体加固钢架结构形式 (9) 6燃料燃烧计算 (10) 6.1 空气量 (10) 6.2 烟气量 (10) 6.3 燃烧温度 (11) 7窑体材料及厚度的确定 (11) 8热平衡计算 (13) 8.1 预热带及烧成带热平衡计算 (11) 8.2 冷却带热平衡 (19) 9烧嘴的选用 (26) 参考文献 (29)

1.刖言 《热工过程及设备》作为一门热工以及材料专业的专业课程,目的是对学生学习《热工过程 及设备》课程后,引导学生总结、归纳理论知识,在此基础上推陈出新,根据当前的社会和科学环境,不断创新,最大可能的从环境保护和能源节约方面考虑,设计出符合社会需要的新时代窑炉,为创建社会主义和谐社会贡献自己的智力支持。通过课程设计辊道窑,综合运用和巩固所学知识,学会将理论知识与生产实践相结合,去研究解决实际中的工程技术问题,本设计的任务主要是培养学生设计与绘图的基本技能,初步掌握窑炉设计的程序、过程和内容;进一步了解窑炉设备的基本结构;掌握窑炉设备的工作原理,工程制图方法和编制设计说明书的方法。 辊道窑属于连续性窑炉,传动方式有斜齿轮传动及链条传动两种形式,一般以刚玉瓷辊作为传动 辊子运载产品。按加热方式可分为火焰加热辊道窑炉和电加热辊道窑炉两类。可根据要求通气氛。 辊道窑是当代陶瓷工业的先进窑炉,是近几十年来发展起来的新型快烧连续式工业窑炉,目前已广泛用于釉面砖、墙地砖、抛光砖、彩釉砖等建筑陶瓷工业生产中。而辊道窑在短短的几十年中发展如此迅速,说明它具有旺盛的生命力,它代表了陶瓷工业窑炉的发展方向,这是因为辊道窑具备其他陶瓷工业窑炉无法比拟的优点。 本设计书在写作过程中得到老师和同学的指导,在此表示深深地谢意。 编写时,本人想设计一个实用、廉价的建陶工业辊道窑,内容上尽量达到符合工程上的需要,但由于本人水平所限,设计书中一定有不少缺点和不足之处,诚挚地希望老师批评指正。

辊道窑设计

景德镇陶瓷学院 《窑炉课程设计》说明书窑炉课程设计》 题目:年产 90 万平米墙地砖辊道窑设计 院(系):专姓学业:名:徐号: (科院)08 热 工程系工 武 2 00 8 3 0 4 53 01 6 林 指导教师:陈功备 周露亮 二○一一 年 12 月14 日 目 录 前言....................................................................................... 前言 (3) 一:原始资料的收集…………………………………………………………………4 原始资料的收集…………………………………………………………………4 ………………………………………………………………… 二:窑体主要尺寸的确定……………………………………………………………4 窑体主要尺寸的确定……………………………………………………………4 …………………………………………………………… 三:工作系统的确定…………………………………………………………………8 工作系统的确

定…………………………………………………………………8 ……………………………………………… 四:窑体材料的确定…………………………………………………………………13 窑体材料的确定…………………………………………………………………13 ………………………………………………………………… 五:燃料及燃烧计算…………………………………………………………………14 燃料及燃烧计算…………………………………………………………………14 燃烧计算………………………………………………………………… 六:物料平衡…………………………………………………………………………15 物料平衡…………………………………………………………………………15 …………………………………………………………… 七:热平衡计算………………………………………………………………………16 热平衡计算………………………………………………………………………16 …………………………………………………… ……… 八:参考文献…………………………………………………………………………36 考文献…………………………………………………………………………36 ………………………………………………………………………… 2 前言 随着经济不断发展,人民生活水平的不断提高,陶瓷工业在人民生产、生活中都占有重要的地位。陶瓷的发展与窑炉的改革密切相关,一定结构特点的窑炉烧出一定品质的陶瓷。因此正确选择烧成窑炉是获得性能良好制品的关键。陶瓷窑炉可分为两种:一种是间歇式窑炉,比如梭式窑;另一种是连续式窑炉,比如辊道窑。辊道窑由于窑内温度场均匀,从而保证了产品质量,也为快烧提供了条件;而辊道窑中空、裸烧的方式使窑内传热速率与传热效率大,又保证了快烧的实现;而快烧又保证了产量,降低了能耗。产品单位能耗一般在2000~3500 KJ/Kg ,而传统隧道窑则高达5500~9000 KJ/Kg 。所以,辊道窑是当前陶瓷工业中优质、高产、低消耗的先进窑型,在我国已得到越来越广泛的应用。在烧成过程中,温度控制是最重要的关键。没有合理的烧成控制,产品质量和产量都会很低。要想得到稳定的产品质量和提高产量,首先要有符合产品的烧成制度。然后必须维持一定的窑内压力。最后,必须要维持适当的气氛。这些要求都应该遵循。我设计的辊道窑是连续式窑。窑炉总长86 余米,内宽2.3 米,烧成温度是1210 摄氏度。燃料采用焦炉煤气。我设计的辊道窑,窑体趋向轻型化,燃料清洁化,烧成质量好,产量高,年产量达近百万平方米。全窑采用新型耐火材料,改善了窑炉的保温性。 3 1 原始资料收集设计前必须根据设计任务收集所需的原始资料。设计原始资料如下:瓷质砖1. 产量:年产90 万㎡墙地砖2. 产品规格:600×600×11(㎜) 3. 年工作日:330 天 4. 燃料:焦炉煤气热值:16600KJ/m

相关文档
相关文档 最新文档